Analysing wear behaviour of Al–CaCO3 composites using ANN and Sugeno-type fuzzy inference systems
Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and process control parameters for best physical and mechanical properties. A soft-computing model can accurately learn the complex interactions betw...
Saved in:
| Published in | Neural computing & applications Vol. 32; no. 17; pp. 13453 - 13464 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.09.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-020-04753-6 |
Cover
| Abstract | Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and process control parameters for best physical and mechanical properties. A soft-computing model can accurately learn the complex interactions between process parameters to provide great insights in the development of this composite. This paper demonstrates and analyses the potential of artificial neural network (ANN) and Sugeno-type fuzzy inference systems (FIS) for wear behaviour prediction of calcium carbonate-reinforced aluminium composites. The models were trained with data collected from the experiment. The data consist of filler particle size of 150 μm with weights fractions varied from 0 to 25 wt%, in step of 5. Wear test data at different time of contacts (30, 60, 90, 120 and 150 s) and variable loads of 2.27 N, 4.54 N and 6.80 N were collected, resulting to 120 length vectors. Comparing the experimental results of wear test with those predicted using the ANN and Sugeno-type FIS, the integration of calcium carbonate particulate enhanced the wear characteristics of Al matrix up to 200%. On the use of back-propagation neural network with 4–3–1 architecture for wear prediction, the Levenberg–Marquardt training algorithm performs better. For Sugeno-type FIS, the Gaussian membership function resulted to the best prediction of wear rate. When ANN and Sugeno-type FIS performance on the test set were analysed based on some statistical parameters, the later returned an
R
2
value of 0.9775 as against ANN’s value of 0.3684. The predicted wear rate using ANFIS with Gaussian membership functions was in good agreement with the experimental values. |
|---|---|
| AbstractList | Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and process control parameters for best physical and mechanical properties. A soft-computing model can accurately learn the complex interactions between process parameters to provide great insights in the development of this composite. This paper demonstrates and analyses the potential of artificial neural network (ANN) and Sugeno-type fuzzy inference systems (FIS) for wear behaviour prediction of calcium carbonate-reinforced aluminium composites. The models were trained with data collected from the experiment. The data consist of filler particle size of 150 μm with weights fractions varied from 0 to 25 wt%, in step of 5. Wear test data at different time of contacts (30, 60, 90, 120 and 150 s) and variable loads of 2.27 N, 4.54 N and 6.80 N were collected, resulting to 120 length vectors. Comparing the experimental results of wear test with those predicted using the ANN and Sugeno-type FIS, the integration of calcium carbonate particulate enhanced the wear characteristics of Al matrix up to 200%. On the use of back-propagation neural network with 4–3–1 architecture for wear prediction, the Levenberg–Marquardt training algorithm performs better. For Sugeno-type FIS, the Gaussian membership function resulted to the best prediction of wear rate. When ANN and Sugeno-type FIS performance on the test set were analysed based on some statistical parameters, the later returned an
R
2
value of 0.9775 as against ANN’s value of 0.3684. The predicted wear rate using ANFIS with Gaussian membership functions was in good agreement with the experimental values. Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and process control parameters for best physical and mechanical properties. A soft-computing model can accurately learn the complex interactions between process parameters to provide great insights in the development of this composite. This paper demonstrates and analyses the potential of artificial neural network (ANN) and Sugeno-type fuzzy inference systems (FIS) for wear behaviour prediction of calcium carbonate-reinforced aluminium composites. The models were trained with data collected from the experiment. The data consist of filler particle size of 150 μm with weights fractions varied from 0 to 25 wt%, in step of 5. Wear test data at different time of contacts (30, 60, 90, 120 and 150 s) and variable loads of 2.27 N, 4.54 N and 6.80 N were collected, resulting to 120 length vectors. Comparing the experimental results of wear test with those predicted using the ANN and Sugeno-type FIS, the integration of calcium carbonate particulate enhanced the wear characteristics of Al matrix up to 200%. On the use of back-propagation neural network with 4–3–1 architecture for wear prediction, the Levenberg–Marquardt training algorithm performs better. For Sugeno-type FIS, the Gaussian membership function resulted to the best prediction of wear rate. When ANN and Sugeno-type FIS performance on the test set were analysed based on some statistical parameters, the later returned an R2 value of 0.9775 as against ANN’s value of 0.3684. The predicted wear rate using ANFIS with Gaussian membership functions was in good agreement with the experimental values. |
| Author | Gbenebor, O. P. Bakare, O. O. Adeosun, S. O. Sosimi, A. A. Olaleye, S. A. Oyerinde, O. |
| Author_xml | – sequence: 1 givenname: A. A. orcidid: 0000-0003-0019-7096 surname: Sosimi fullname: Sosimi, A. A. email: asosimi@unilag.edu.ng organization: Department of Systems Engineering, University of Lagos – sequence: 2 givenname: O. P. surname: Gbenebor fullname: Gbenebor, O. P. organization: Department of Metallurgical and Materials Engineering, University of Lagos – sequence: 3 givenname: O. surname: Oyerinde fullname: Oyerinde, O. organization: Department of Metallurgical and Materials Engineering, University of Lagos – sequence: 4 givenname: O. O. surname: Bakare fullname: Bakare, O. O. organization: Department of Metallurgical and Materials Engineering, University of Lagos – sequence: 5 givenname: S. O. surname: Adeosun fullname: Adeosun, S. O. organization: Department of Metallurgical and Materials Engineering, University of Lagos – sequence: 6 givenname: S. A. surname: Olaleye fullname: Olaleye, S. A. organization: Department of Mechanical Engineering, University of Lagos |
| BookMark | eNp9kE1OwzAQRi1UJFrgAqwssQ6MYztxllXFn4ToAlhbE9cpqVq72AkoXXEHbshJCC0SEouuZjHfG833RmTgvLOEnDG4YAD5ZQSQKUsghQRELnmSHZAhE5wnHKQakCEUol9ngh-RUYwLABCZkkNixg6XXazdnL5bDLS0L_hW-zZQX9Hx8uvjc4KTKafGr9Y-1o2NtN2mxw8PFN2MPrZz63zSdGtLq3az6WjtKhusM5bGLjZ2FU_IYYXLaE9_5zF5vr56mtwm99Obu8n4PjGcFU1SSlPmhQEFWBpUQuRQKYElQ9EXKVJRMCkxk1yq1FYszTE3OCtK5CrNCjbjx-R8d3cd_GtrY6MXfZG-X9Sp4CJjXGVZn1K7lAk-xmArbeoGm9q7JmC91Az0j1K9U6p7pXqrVP-g6T90HeoVhm4_xHdQ7MNubsPfV3uob9L3i34 |
| CitedBy_id | crossref_primary_10_1590_1980_5373_mr_2022_0306 crossref_primary_10_1007_s11831_022_09841_5 crossref_primary_10_1115_1_4062518 crossref_primary_10_1007_s10266_022_00726_4 crossref_primary_10_3390_jcs5100280 crossref_primary_10_1007_s11831_021_09691_7 crossref_primary_10_1155_2021_9529199 crossref_primary_10_1177_09544089211049012 crossref_primary_10_1007_s11837_021_04701_2 crossref_primary_10_1016_j_mtcomm_2023_107507 crossref_primary_10_3390_atmos12070871 crossref_primary_10_1016_j_ijlmm_2023_07_003 |
| Cites_doi | 10.1007/s11665-015-1612-0 10.1016/j.jksus.2014.04.003 10.1016/j.matdes.2005.07.021 10.1007/s11665-011-9867-6 10.1080/10402004.2014.880979 10.1016/S1003-6326(16)64256-5 10.1016/S0890-6955(01)00107-9 10.1016/j.msea.2016.01.114 10.1016/j.jmrt.2015.05.003 10.1007/s00521-015-1891-2 10.1007/s00170-016-9595-z 10.1016/j.matdes.2014.06.005 10.1007/s12205-017-2039-y 10.1016/j.dyepig.2011.06.020 10.1016/j.triboint.2016.01.008 10.1016/j.matdes.2014.10.048 10.24874/ti.2018.40.04.05 10.1016/j.surfin.2017.01.004 10.3139/120.111387 10.1080/16583655.2018.1451119 10.4028/www.scientific.net/KEM.739.87 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-020-04753-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 13464 |
| ExternalDocumentID | 10_1007_s00521_020_04753_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-b5cb79c080abca84470f84ab1a44339249155a653582ef127a7cad9ba382691d3 |
| IEDL.DBID | AGYKE |
| ISSN | 0941-0643 |
| IngestDate | Mon Jul 14 09:40:39 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Wed Oct 01 02:25:58 EDT 2025 Fri Feb 21 02:35:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | ANN Stir casting Sugeno-type FIS composite Wear Al–CaCO |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b5cb79c080abca84470f84ab1a44339249155a653582ef127a7cad9ba382691d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0019-7096 |
| PQID | 2434613866 |
| PQPubID | 2043988 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2434613866 crossref_citationtrail_10_1007_s00521_020_04753_6 crossref_primary_10_1007_s00521_020_04753_6 springer_journals_10_1007_s00521_020_04753_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200900 2020-09-00 20200901 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 9 year: 2020 text: 20200900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Özyürek, Kalyon, Yıldırım, Tuncay, Çiftçi (CR10) 2014; 1 Ikpambese, Lawrence (CR18) 2018; 40 Akbari, Baharvandi, Shirvanimoghaddam (CR7) 2015; 66 Mazahery, Shabani (CR8) 2012; 21 Vijayaraghavan, Castagne, Srivastava, Qin (CR16) 2017; 90 Koker, Altinkok, Demir (CR22) 2007; 28 Gurgenc (CR19) 2019; 61 Agbeleye, Esezobor, Agunsoye, Balogun, Sosimi (CR6) 2018; 12 Biswas, Pramanik, Giri (CR2) 2016; 27 Kavimani, Prakash, Thankachan (CR12) 2017; 1 Thapliyal, Dwivedi (CR9) 2016; 1 CR14 Burkinshaw, Jeong (CR3) 2012; 92 Kountouras, Stergioudi, Tsouknidas, Vogiatzis, Skolianos (CR4) 2015; 24 Senthil Kumar, Manisekar, Narayanasamy (CR17) 2014; 57 Lin, Lin (CR20) 2002; 42 Moses, Dinaharan, Sekhar (CR5) 2016; 26 Rao, Rodrigues (CR13) 2018; 13 Bodunrin, Alaneme, Chown (CR1) 2015; 4 Hassan, Aigbodion (CR11) 2015; 27 Shirvanimoghaddam, Khayyam, Abdizadeh, Akbari, Pakseresht, Ghasali, Naebe (CR15) 2016; 21 Salemi, Mikaeil, Haghshenas (CR21) 2018; 22 A Salemi (4753_CR21) 2018; 22 MK Akbari (4753_CR7) 2015; 66 4753_CR14 KK Ikpambese (4753_CR18) 2018; 40 AA Agbeleye (4753_CR6) 2018; 12 D Özyürek (4753_CR10) 2014; 1 JJ Moses (4753_CR5) 2016; 26 V Kavimani (4753_CR12) 2017; 1 S Thapliyal (4753_CR9) 2016; 1 V Vijayaraghavan (4753_CR16) 2017; 90 MO Bodunrin (4753_CR1) 2015; 4 T Gurgenc (4753_CR19) 2019; 61 S Rao (4753_CR13) 2018; 13 SM Burkinshaw (4753_CR3) 2012; 92 SB Hassan (4753_CR11) 2015; 27 P Senthil Kumar (4753_CR17) 2014; 57 DT Kountouras (4753_CR4) 2015; 24 K Shirvanimoghaddam (4753_CR15) 2016; 21 P Biswas (4753_CR2) 2016; 27 A Mazahery (4753_CR8) 2012; 21 R Koker (4753_CR22) 2007; 28 JL Lin (4753_CR20) 2002; 42 |
| References_xml | – volume: 13 start-page: 4102 issue: 6 year: 2018 end-page: 4108 ident: CR13 article-title: Comparative analysis of simulation of different ANN algorithms for predicting drill flank wear in the machining of GFRP composites publication-title: Int J Appl Eng Res – volume: 24 start-page: 3315 issue: 9 year: 2015 end-page: 3322 ident: CR4 article-title: Properties of high volume fraction fly Ash/Al alloy composites produced by infiltration process publication-title: J Mater Eng Perform doi: 10.1007/s11665-015-1612-0 – volume: 27 start-page: 49 issue: 1 year: 2015 end-page: 56 ident: CR11 article-title: Effects of eggshell on the microstructures and properties of Al–Cu–Mg/eggshell particulate composites publication-title: J King Saud Univ Eng Sci doi: 10.1016/j.jksus.2014.04.003 – volume: 28 start-page: 616 issue: 2 year: 2007 end-page: 627 ident: CR22 article-title: Neural network-based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms publication-title: Mater Des doi: 10.1016/j.matdes.2005.07.021 – volume: 21 start-page: 247 issue: 2 year: 2012 end-page: 252 ident: CR8 article-title: Mechanical properties of squeeze-cast A356 composites reinforced with B4C particulates publication-title: J Mater Eng Perform doi: 10.1007/s11665-011-9867-6 – ident: CR14 – volume: 57 start-page: 455 issue: 3 year: 2014 end-page: 471 ident: CR17 article-title: Experimental and prediction of abrasive wear behavior of sintered Cu-SiC composites containing graphite by using artificial neural networks publication-title: Tribol Trans doi: 10.1080/10402004.2014.880979 – volume: 26 start-page: 1498 issue: 6 year: 2016 end-page: 1511 ident: CR5 article-title: Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(16)64256-5 – volume: 42 start-page: 237 issue: 2 year: 2002 end-page: 244 ident: CR20 article-title: The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(01)00107-9 – volume: 21 start-page: 135 issue: 658 year: 2016 end-page: 149 ident: CR15 article-title: Boron carbide reinforced aluminium matrix composite: physical, mechanical characterization and mathematical modelling publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2016.01.114 – volume: 4 start-page: 434 issue: 4 year: 2015 end-page: 445 ident: CR1 article-title: Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2015.05.003 – volume: 27 start-page: 727 issue: 3 year: 2016 end-page: 737 ident: CR2 article-title: TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1891-2 – volume: 90 start-page: 2885 issue: 9–12 year: 2017 end-page: 2899 ident: CR16 article-title: State-of-the-art in experimental and numerical modeling of surface characterization of components in mass finishing process publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9595-z – volume: 1 start-page: 270 issue: 63 year: 2014 end-page: 277 ident: CR10 article-title: Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using artificial neural networks publication-title: Mater Des doi: 10.1016/j.matdes.2014.06.005 – volume: 22 start-page: 1978 issue: 5 year: 2018 end-page: 1990 ident: CR21 article-title: Integration of finite difference method and genetic algorithm to seismic analysis of circular shallow tunnels (case study: Tabriz urban railway tunnels) publication-title: KSCE J Civ Eng doi: 10.1007/s12205-017-2039-y – volume: 92 start-page: 1025 issue: 3 year: 2012 end-page: 1030 ident: CR3 article-title: The dyeing of poly (lactic acid) fibres with disperse dyes using ultrasound: part 1—initial studies publication-title: Dyes Pigm doi: 10.1016/j.dyepig.2011.06.020 – volume: 1 start-page: 124 issue: 97 year: 2016 end-page: 135 ident: CR9 article-title: Study of the effect of friction stir processing of the sliding wear behavior of cast NiAl bronze: a statistical analysis publication-title: Tribol Int doi: 10.1016/j.triboint.2016.01.008 – volume: 66 start-page: 150 year: 2015 end-page: 161 ident: CR7 article-title: Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites publication-title: Mater Des (1980–2015) doi: 10.1016/j.matdes.2014.10.048 – volume: 40 start-page: 565 issue: 4 year: 2018 end-page: 573 ident: CR18 article-title: Comparative analysis of multiple linear regression and artificial neural network for predicting friction and wear of automotive brake pads produced from palm kernel shell publication-title: Tribol Ind doi: 10.24874/ti.2018.40.04.05 – volume: 1 start-page: 143 issue: 6 year: 2017 end-page: 153 ident: CR12 article-title: Surface characterization and specific wear rate prediction of r-GO/AZ31 composite under dry sliding wear condition publication-title: Surf Interfaces doi: 10.1016/j.surfin.2017.01.004 – volume: 61 start-page: 787 issue: 8 year: 2019 end-page: 796 ident: CR19 article-title: Microstructure, mechanical properties and ELM based wear loss prediction of plasma sprayed ZrO –MgO coatings on a magnesium alloy publication-title: Mater Test doi: 10.3139/120.111387 – volume: 12 start-page: 235 issue: 2 year: 2018 end-page: 240 ident: CR6 article-title: Prediction of the abrasive wear behaviour of heat-treated aluminium-clay composites using an artificial neural network publication-title: J Taibah Univ Sci doi: 10.1080/16583655.2018.1451119 – volume: 12 start-page: 235 issue: 2 year: 2018 ident: 4753_CR6 publication-title: J Taibah Univ Sci doi: 10.1080/16583655.2018.1451119 – volume: 4 start-page: 434 issue: 4 year: 2015 ident: 4753_CR1 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2015.05.003 – volume: 27 start-page: 49 issue: 1 year: 2015 ident: 4753_CR11 publication-title: J King Saud Univ Eng Sci doi: 10.1016/j.jksus.2014.04.003 – volume: 27 start-page: 727 issue: 3 year: 2016 ident: 4753_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1891-2 – volume: 21 start-page: 135 issue: 658 year: 2016 ident: 4753_CR15 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2016.01.114 – volume: 61 start-page: 787 issue: 8 year: 2019 ident: 4753_CR19 publication-title: Mater Test doi: 10.3139/120.111387 – volume: 42 start-page: 237 issue: 2 year: 2002 ident: 4753_CR20 publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(01)00107-9 – volume: 1 start-page: 270 issue: 63 year: 2014 ident: 4753_CR10 publication-title: Mater Des doi: 10.1016/j.matdes.2014.06.005 – volume: 24 start-page: 3315 issue: 9 year: 2015 ident: 4753_CR4 publication-title: J Mater Eng Perform doi: 10.1007/s11665-015-1612-0 – volume: 40 start-page: 565 issue: 4 year: 2018 ident: 4753_CR18 publication-title: Tribol Ind doi: 10.24874/ti.2018.40.04.05 – volume: 21 start-page: 247 issue: 2 year: 2012 ident: 4753_CR8 publication-title: J Mater Eng Perform doi: 10.1007/s11665-011-9867-6 – volume: 28 start-page: 616 issue: 2 year: 2007 ident: 4753_CR22 publication-title: Mater Des doi: 10.1016/j.matdes.2005.07.021 – volume: 1 start-page: 143 issue: 6 year: 2017 ident: 4753_CR12 publication-title: Surf Interfaces doi: 10.1016/j.surfin.2017.01.004 – volume: 13 start-page: 4102 issue: 6 year: 2018 ident: 4753_CR13 publication-title: Int J Appl Eng Res – volume: 90 start-page: 2885 issue: 9–12 year: 2017 ident: 4753_CR16 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9595-z – ident: 4753_CR14 doi: 10.4028/www.scientific.net/KEM.739.87 – volume: 92 start-page: 1025 issue: 3 year: 2012 ident: 4753_CR3 publication-title: Dyes Pigm doi: 10.1016/j.dyepig.2011.06.020 – volume: 22 start-page: 1978 issue: 5 year: 2018 ident: 4753_CR21 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-017-2039-y – volume: 26 start-page: 1498 issue: 6 year: 2016 ident: 4753_CR5 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(16)64256-5 – volume: 66 start-page: 150 year: 2015 ident: 4753_CR7 publication-title: Mater Des (1980–2015) doi: 10.1016/j.matdes.2014.10.048 – volume: 1 start-page: 124 issue: 97 year: 2016 ident: 4753_CR9 publication-title: Tribol Int doi: 10.1016/j.triboint.2016.01.008 – volume: 57 start-page: 455 issue: 3 year: 2014 ident: 4753_CR17 publication-title: Tribol Trans doi: 10.1080/10402004.2014.880979 |
| SSID | ssj0004685 |
| Score | 2.3081882 |
| Snippet | Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13453 |
| SubjectTerms | Algorithms Aluminum Artificial Intelligence Artificial neural networks Back propagation networks Calcium carbonate Composite materials Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Design of experiments Fuzzy systems Image Processing and Computer Vision Inference Mathematical models Mechanical properties Neural networks Original Article Probability and Statistics in Computer Science Process controls Process parameters Systems design Ultrasonic testing Wear rate Wear tests |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vXjxLa4vcvCmwW2TTboHkXVRRLCKD_BWkrQRQbrqbhE9-R_8h_4SM9nUVUGvbZLDzCSZJPN9H8BWIpO80JLTVq4Tyo1mVNuIU1Ek0nR0oaxEgPNpKo6v-clN-2YC0hoLg2WV9ZroF-q8b_COfDfmjLutJxFi_-GRomoUvq7WEhoqSCvke55ibBKmYmTGasDUwWF6fvENKelFOt2ZBut9OAswGg-mwxtS9zXGckeXxFPxc6sa55-_nkz9TnQ0BzMhhSTdkc_nYaIoF2C2lmcgYbYuggmEI-UteXbxTAIiv3oifUu69x9v7z3VO2MEq8qxdKsYkMq37qYpUWVOLitkcKV4S0ts9fr6Qu5qeCAZMUAPluD66PCqd0yDpgI1brINqW4bLTtIL660UQnnsmUTrnSkOGcMD2POgEq0EUBb2CiWShqVd7Ri7hzSiXK2DI2yXxYrQFrMutwjyq2ILHddlMukuJIt18z5XLAmRLX5MhMIx1H34j77okr2Js-cyTNv8kw0Yfurz8OIbuPf1uu1V7Iw9QbZOFCasFN7avz779FW_x9tDaZjHxxYX7YOjeFTVWy4hGSoN0OUfQJVoNux priority: 102 providerName: ProQuest |
| Title | Analysing wear behaviour of Al–CaCO3 composites using ANN and Sugeno-type fuzzy inference systems |
| URI | https://link.springer.com/article/10.1007/s00521-020-04753-6 https://www.proquest.com/docview/2434613866 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BuXBhR6yVD9zAqIndOD2G0oJYCgIqwSmynRghUEC0EaIn_oE_5EsYp05ZBEiccvCixDMTz9jz3gBshCJMUiU4rSUqpFwrRpXxOA3SUOiGSqURFuB83An2u_zgsn7pQGG9Mtu9vJIs_tQjsJs9wcTQ17fpiOhk02AcJgq-rQpMRHtXh61PeMiiFCdGLjarhzMHlvl5lq8b0oeX-e1itNhv2tPQLd90mGZyu5331bYefCNx_O-nzMCUc0BJNNSYWRhLszmYLos7EGfr86AdXUl2TZ7QGojD8-eP5N6Q6O7t5bUpmyeM2Jx0m_iV9khe9I46HSKzhJznlv-V2jNeYvLB4JnclOBCMuSP7i1At926aO5TV5GBajTVPlV1rUTDkpNLpWXIuaiZkEvlSc4Zs6EcuicyqFv4bWo8X0ihZdJQkmEU0_AStgiV7D5Ll4DUmEHPxUtM4BmOQyT6YVyKGnZDjQnYMnilWGLt6Mpt1Yy7eES0XKxijKsYF6sYB8uwORrzMCTr-LP3Wint2BluL_Y54-jhhAE2b5XC-2j-fbaV_3VfhUm_kL_NVluDSv8xT9fRvemrKoyH7b0q6vTu8dF51ek2PndandMzbO360TvaiPP0 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROLQX-q8upcWH9tRa3cReOzmgaruAlgJp1YLELdiOXSGhLLAbITj1HXgfHoYnYex12LZSuXFN7FE0M7Fn7Pm-AXiXyayyWnLarXRGudGMapdwKmwmTa6tctIDnHcKMdzjX_d7-3Nw1WJhfFlluyaGhboaGX9G_inljOPWkwnx-fiE-q5R_na1baGhYmuFajVQjEVgx5Y9P8MUbry6uYb2fp-mG-u7gyGNXQaoQfebUN0zWuaecFtpozLOZddlXOlEcc6YT09QpBI9Dym1LkmlkkZVuVYMI_M8qRjKfQAL-Hk5Jn8LX9aL7z_-QGaGpqCYQ_n6Is4ibCeA9_yJLD5NfXklJg1U_L01zuLdf65ow8638QQWY8hK-lMfewpztn4Gj9t2ECSuDs_BRIKT-hc5Q8WQyADQnJKRI_2j69-XAzX4xoivYvelYnZMmjC6XxRE1RX52XjGWOpPhYlrLi7OyWELRyRTxunxC9i7F-2-hPl6VNtXQLrMYayTVE4kjuMUhZEbV7KLw9DHBOtA0qqvNJHg3PfZOCpvqZmDyktUeRlUXooOfLidczyl97hz9HJrlTL-6uNy5pgd-Nhaavb6_9KW7pa2Ag-Huzvb5fZmsfUaHqXBUXxt2zLMT04b-waDoYl-Gz2OwMF9O_kN0_EXsA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduYJHEbpwco0JVtoAElXqL7CRGSFVatYkQPfEP_CFfwjhLWxAgcfbYhxlbfmPPe4PQscOdKJacESOSDmGhpEQqkxE7dnjoylgorgnOt77d6bKrXrM3x-LPq92rL8mC06BVmpL0bBipsynxTb9mQhps6dJEANzEXkRLTAslwI7uWt4cMzJvygk5jK7vYbSkzfy8xteraYY3v32R5jdPex2tlpARe0WMN9BCnGyitaodAy5P5xYKS4GR5Am_wP7FJQM_G-GBwl7_4-29JVp3FOsqcl2qFY9xllt7vo9FEuGHTCu2Ev0qi1U2mbzi54oOiAvF5_E26rYvHlsdUvZQICEcrpTIZii5q-XEhQyFwxg3lMOENAVjlOrkCwCFsJuaMBsr0-KChyJypaCQd7hmRHdQLRkk8S7CBlWANcxI2aZiMEUAcmKCG2AGMbZpHZmV-4KwFBjXfS76wVQaOXd5AC4PcpcHdh2dTOcMC3mNP60bVVSC8qiNA4tRBpjEsWH4tIrUbPj31fb-Z36Elu_P28HNpX-9j1asfN_oUrMGqqWjLD4AbJLKw3z7fQLmodkn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysing+wear+behaviour+of+Al%E2%80%93CaCO3+composites+using+ANN+and+Sugeno-type+fuzzy+inference+systems&rft.jtitle=Neural+computing+%26+applications&rft.au=Sosimi%2C+A.+A.&rft.au=Gbenebor%2C+O.+P.&rft.au=Oyerinde%2C+O.&rft.au=Bakare%2C+O.+O.&rft.date=2020-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=17&rft.spage=13453&rft.epage=13464&rft_id=info:doi/10.1007%2Fs00521-020-04753-6&rft.externalDocID=10_1007_s00521_020_04753_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |