Analysing wear behaviour of Al–CaCO3 composites using ANN and Sugeno-type fuzzy inference systems

Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and process control parameters for best physical and mechanical properties. A soft-computing model can accurately learn the complex interactions betw...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 32; no. 17; pp. 13453 - 13464
Main Authors Sosimi, A. A., Gbenebor, O. P., Oyerinde, O., Bakare, O. O., Adeosun, S. O., Olaleye, S. A.
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-020-04753-6

Cover

Abstract Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and process control parameters for best physical and mechanical properties. A soft-computing model can accurately learn the complex interactions between process parameters to provide great insights in the development of this composite. This paper demonstrates and analyses the potential of artificial neural network (ANN) and Sugeno-type fuzzy inference systems (FIS) for wear behaviour prediction of calcium carbonate-reinforced aluminium composites. The models were trained with data collected from the experiment. The data consist of filler particle size of 150 μm with weights fractions varied from 0 to 25 wt%, in step of 5. Wear test data at different time of contacts (30, 60, 90, 120 and 150 s) and variable loads of 2.27 N, 4.54 N and 6.80 N were collected, resulting to 120 length vectors. Comparing the experimental results of wear test with those predicted using the ANN and Sugeno-type FIS, the integration of calcium carbonate particulate enhanced the wear characteristics of Al matrix up to 200%. On the use of back-propagation neural network with 4–3–1 architecture for wear prediction, the Levenberg–Marquardt training algorithm performs better. For Sugeno-type FIS, the Gaussian membership function resulted to the best prediction of wear rate. When ANN and Sugeno-type FIS performance on the test set were analysed based on some statistical parameters, the later returned an R 2 value of 0.9775 as against ANN’s value of 0.3684. The predicted wear rate using ANFIS with Gaussian membership functions was in good agreement with the experimental values.
AbstractList Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and process control parameters for best physical and mechanical properties. A soft-computing model can accurately learn the complex interactions between process parameters to provide great insights in the development of this composite. This paper demonstrates and analyses the potential of artificial neural network (ANN) and Sugeno-type fuzzy inference systems (FIS) for wear behaviour prediction of calcium carbonate-reinforced aluminium composites. The models were trained with data collected from the experiment. The data consist of filler particle size of 150 μm with weights fractions varied from 0 to 25 wt%, in step of 5. Wear test data at different time of contacts (30, 60, 90, 120 and 150 s) and variable loads of 2.27 N, 4.54 N and 6.80 N were collected, resulting to 120 length vectors. Comparing the experimental results of wear test with those predicted using the ANN and Sugeno-type FIS, the integration of calcium carbonate particulate enhanced the wear characteristics of Al matrix up to 200%. On the use of back-propagation neural network with 4–3–1 architecture for wear prediction, the Levenberg–Marquardt training algorithm performs better. For Sugeno-type FIS, the Gaussian membership function resulted to the best prediction of wear rate. When ANN and Sugeno-type FIS performance on the test set were analysed based on some statistical parameters, the later returned an R 2 value of 0.9775 as against ANN’s value of 0.3684. The predicted wear rate using ANFIS with Gaussian membership functions was in good agreement with the experimental values.
Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and process control parameters for best physical and mechanical properties. A soft-computing model can accurately learn the complex interactions between process parameters to provide great insights in the development of this composite. This paper demonstrates and analyses the potential of artificial neural network (ANN) and Sugeno-type fuzzy inference systems (FIS) for wear behaviour prediction of calcium carbonate-reinforced aluminium composites. The models were trained with data collected from the experiment. The data consist of filler particle size of 150 μm with weights fractions varied from 0 to 25 wt%, in step of 5. Wear test data at different time of contacts (30, 60, 90, 120 and 150 s) and variable loads of 2.27 N, 4.54 N and 6.80 N were collected, resulting to 120 length vectors. Comparing the experimental results of wear test with those predicted using the ANN and Sugeno-type FIS, the integration of calcium carbonate particulate enhanced the wear characteristics of Al matrix up to 200%. On the use of back-propagation neural network with 4–3–1 architecture for wear prediction, the Levenberg–Marquardt training algorithm performs better. For Sugeno-type FIS, the Gaussian membership function resulted to the best prediction of wear rate. When ANN and Sugeno-type FIS performance on the test set were analysed based on some statistical parameters, the later returned an R2 value of 0.9775 as against ANN’s value of 0.3684. The predicted wear rate using ANFIS with Gaussian membership functions was in good agreement with the experimental values.
Author Gbenebor, O. P.
Bakare, O. O.
Adeosun, S. O.
Sosimi, A. A.
Olaleye, S. A.
Oyerinde, O.
Author_xml – sequence: 1
  givenname: A. A.
  orcidid: 0000-0003-0019-7096
  surname: Sosimi
  fullname: Sosimi, A. A.
  email: asosimi@unilag.edu.ng
  organization: Department of Systems Engineering, University of Lagos
– sequence: 2
  givenname: O. P.
  surname: Gbenebor
  fullname: Gbenebor, O. P.
  organization: Department of Metallurgical and Materials Engineering, University of Lagos
– sequence: 3
  givenname: O.
  surname: Oyerinde
  fullname: Oyerinde, O.
  organization: Department of Metallurgical and Materials Engineering, University of Lagos
– sequence: 4
  givenname: O. O.
  surname: Bakare
  fullname: Bakare, O. O.
  organization: Department of Metallurgical and Materials Engineering, University of Lagos
– sequence: 5
  givenname: S. O.
  surname: Adeosun
  fullname: Adeosun, S. O.
  organization: Department of Metallurgical and Materials Engineering, University of Lagos
– sequence: 6
  givenname: S. A.
  surname: Olaleye
  fullname: Olaleye, S. A.
  organization: Department of Mechanical Engineering, University of Lagos
BookMark eNp9kE1OwzAQRi1UJFrgAqwssQ6MYztxllXFn4ToAlhbE9cpqVq72AkoXXEHbshJCC0SEouuZjHfG833RmTgvLOEnDG4YAD5ZQSQKUsghQRELnmSHZAhE5wnHKQakCEUol9ngh-RUYwLABCZkkNixg6XXazdnL5bDLS0L_hW-zZQX9Hx8uvjc4KTKafGr9Y-1o2NtN2mxw8PFN2MPrZz63zSdGtLq3az6WjtKhusM5bGLjZ2FU_IYYXLaE9_5zF5vr56mtwm99Obu8n4PjGcFU1SSlPmhQEFWBpUQuRQKYElQ9EXKVJRMCkxk1yq1FYszTE3OCtK5CrNCjbjx-R8d3cd_GtrY6MXfZG-X9Sp4CJjXGVZn1K7lAk-xmArbeoGm9q7JmC91Az0j1K9U6p7pXqrVP-g6T90HeoVhm4_xHdQ7MNubsPfV3uob9L3i34
CitedBy_id crossref_primary_10_1590_1980_5373_mr_2022_0306
crossref_primary_10_1007_s11831_022_09841_5
crossref_primary_10_1115_1_4062518
crossref_primary_10_1007_s10266_022_00726_4
crossref_primary_10_3390_jcs5100280
crossref_primary_10_1007_s11831_021_09691_7
crossref_primary_10_1155_2021_9529199
crossref_primary_10_1177_09544089211049012
crossref_primary_10_1007_s11837_021_04701_2
crossref_primary_10_1016_j_mtcomm_2023_107507
crossref_primary_10_3390_atmos12070871
crossref_primary_10_1016_j_ijlmm_2023_07_003
Cites_doi 10.1007/s11665-015-1612-0
10.1016/j.jksus.2014.04.003
10.1016/j.matdes.2005.07.021
10.1007/s11665-011-9867-6
10.1080/10402004.2014.880979
10.1016/S1003-6326(16)64256-5
10.1016/S0890-6955(01)00107-9
10.1016/j.msea.2016.01.114
10.1016/j.jmrt.2015.05.003
10.1007/s00521-015-1891-2
10.1007/s00170-016-9595-z
10.1016/j.matdes.2014.06.005
10.1007/s12205-017-2039-y
10.1016/j.dyepig.2011.06.020
10.1016/j.triboint.2016.01.008
10.1016/j.matdes.2014.10.048
10.24874/ti.2018.40.04.05
10.1016/j.surfin.2017.01.004
10.3139/120.111387
10.1080/16583655.2018.1451119
10.4028/www.scientific.net/KEM.739.87
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-04753-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 13464
ExternalDocumentID 10_1007_s00521_020_04753_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-b5cb79c080abca84470f84ab1a44339249155a653582ef127a7cad9ba382691d3
IEDL.DBID AGYKE
ISSN 0941-0643
IngestDate Mon Jul 14 09:40:39 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Wed Oct 01 02:25:58 EDT 2025
Fri Feb 21 02:35:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords ANN
Stir casting
Sugeno-type FIS
composite
Wear
Al–CaCO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b5cb79c080abca84470f84ab1a44339249155a653582ef127a7cad9ba382691d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0019-7096
PQID 2434613866
PQPubID 2043988
PageCount 12
ParticipantIDs proquest_journals_2434613866
crossref_citationtrail_10_1007_s00521_020_04753_6
crossref_primary_10_1007_s00521_020_04753_6
springer_journals_10_1007_s00521_020_04753_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Özyürek, Kalyon, Yıldırım, Tuncay, Çiftçi (CR10) 2014; 1
Ikpambese, Lawrence (CR18) 2018; 40
Akbari, Baharvandi, Shirvanimoghaddam (CR7) 2015; 66
Mazahery, Shabani (CR8) 2012; 21
Vijayaraghavan, Castagne, Srivastava, Qin (CR16) 2017; 90
Koker, Altinkok, Demir (CR22) 2007; 28
Gurgenc (CR19) 2019; 61
Agbeleye, Esezobor, Agunsoye, Balogun, Sosimi (CR6) 2018; 12
Biswas, Pramanik, Giri (CR2) 2016; 27
Kavimani, Prakash, Thankachan (CR12) 2017; 1
Thapliyal, Dwivedi (CR9) 2016; 1
CR14
Burkinshaw, Jeong (CR3) 2012; 92
Kountouras, Stergioudi, Tsouknidas, Vogiatzis, Skolianos (CR4) 2015; 24
Senthil Kumar, Manisekar, Narayanasamy (CR17) 2014; 57
Lin, Lin (CR20) 2002; 42
Moses, Dinaharan, Sekhar (CR5) 2016; 26
Rao, Rodrigues (CR13) 2018; 13
Bodunrin, Alaneme, Chown (CR1) 2015; 4
Hassan, Aigbodion (CR11) 2015; 27
Shirvanimoghaddam, Khayyam, Abdizadeh, Akbari, Pakseresht, Ghasali, Naebe (CR15) 2016; 21
Salemi, Mikaeil, Haghshenas (CR21) 2018; 22
A Salemi (4753_CR21) 2018; 22
MK Akbari (4753_CR7) 2015; 66
4753_CR14
KK Ikpambese (4753_CR18) 2018; 40
AA Agbeleye (4753_CR6) 2018; 12
D Özyürek (4753_CR10) 2014; 1
JJ Moses (4753_CR5) 2016; 26
V Kavimani (4753_CR12) 2017; 1
S Thapliyal (4753_CR9) 2016; 1
V Vijayaraghavan (4753_CR16) 2017; 90
MO Bodunrin (4753_CR1) 2015; 4
T Gurgenc (4753_CR19) 2019; 61
S Rao (4753_CR13) 2018; 13
SM Burkinshaw (4753_CR3) 2012; 92
SB Hassan (4753_CR11) 2015; 27
P Senthil Kumar (4753_CR17) 2014; 57
DT Kountouras (4753_CR4) 2015; 24
K Shirvanimoghaddam (4753_CR15) 2016; 21
P Biswas (4753_CR2) 2016; 27
A Mazahery (4753_CR8) 2012; 21
R Koker (4753_CR22) 2007; 28
JL Lin (4753_CR20) 2002; 42
References_xml – volume: 13
  start-page: 4102
  issue: 6
  year: 2018
  end-page: 4108
  ident: CR13
  article-title: Comparative analysis of simulation of different ANN algorithms for predicting drill flank wear in the machining of GFRP composites
  publication-title: Int J Appl Eng Res
– volume: 24
  start-page: 3315
  issue: 9
  year: 2015
  end-page: 3322
  ident: CR4
  article-title: Properties of high volume fraction fly Ash/Al alloy composites produced by infiltration process
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-015-1612-0
– volume: 27
  start-page: 49
  issue: 1
  year: 2015
  end-page: 56
  ident: CR11
  article-title: Effects of eggshell on the microstructures and properties of Al–Cu–Mg/eggshell particulate composites
  publication-title: J King Saud Univ Eng Sci
  doi: 10.1016/j.jksus.2014.04.003
– volume: 28
  start-page: 616
  issue: 2
  year: 2007
  end-page: 627
  ident: CR22
  article-title: Neural network-based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2005.07.021
– volume: 21
  start-page: 247
  issue: 2
  year: 2012
  end-page: 252
  ident: CR8
  article-title: Mechanical properties of squeeze-cast A356 composites reinforced with B4C particulates
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-011-9867-6
– ident: CR14
– volume: 57
  start-page: 455
  issue: 3
  year: 2014
  end-page: 471
  ident: CR17
  article-title: Experimental and prediction of abrasive wear behavior of sintered Cu-SiC composites containing graphite by using artificial neural networks
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2014.880979
– volume: 26
  start-page: 1498
  issue: 6
  year: 2016
  end-page: 1511
  ident: CR5
  article-title: Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(16)64256-5
– volume: 42
  start-page: 237
  issue: 2
  year: 2002
  end-page: 244
  ident: CR20
  article-title: The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(01)00107-9
– volume: 21
  start-page: 135
  issue: 658
  year: 2016
  end-page: 149
  ident: CR15
  article-title: Boron carbide reinforced aluminium matrix composite: physical, mechanical characterization and mathematical modelling
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2016.01.114
– volume: 4
  start-page: 434
  issue: 4
  year: 2015
  end-page: 445
  ident: CR1
  article-title: Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2015.05.003
– volume: 27
  start-page: 727
  issue: 3
  year: 2016
  end-page: 737
  ident: CR2
  article-title: TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1891-2
– volume: 90
  start-page: 2885
  issue: 9–12
  year: 2017
  end-page: 2899
  ident: CR16
  article-title: State-of-the-art in experimental and numerical modeling of surface characterization of components in mass finishing process
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-9595-z
– volume: 1
  start-page: 270
  issue: 63
  year: 2014
  end-page: 277
  ident: CR10
  article-title: Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using artificial neural networks
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2014.06.005
– volume: 22
  start-page: 1978
  issue: 5
  year: 2018
  end-page: 1990
  ident: CR21
  article-title: Integration of finite difference method and genetic algorithm to seismic analysis of circular shallow tunnels (case study: Tabriz urban railway tunnels)
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-017-2039-y
– volume: 92
  start-page: 1025
  issue: 3
  year: 2012
  end-page: 1030
  ident: CR3
  article-title: The dyeing of poly (lactic acid) fibres with disperse dyes using ultrasound: part 1—initial studies
  publication-title: Dyes Pigm
  doi: 10.1016/j.dyepig.2011.06.020
– volume: 1
  start-page: 124
  issue: 97
  year: 2016
  end-page: 135
  ident: CR9
  article-title: Study of the effect of friction stir processing of the sliding wear behavior of cast NiAl bronze: a statistical analysis
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2016.01.008
– volume: 66
  start-page: 150
  year: 2015
  end-page: 161
  ident: CR7
  article-title: Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites
  publication-title: Mater Des (1980–2015)
  doi: 10.1016/j.matdes.2014.10.048
– volume: 40
  start-page: 565
  issue: 4
  year: 2018
  end-page: 573
  ident: CR18
  article-title: Comparative analysis of multiple linear regression and artificial neural network for predicting friction and wear of automotive brake pads produced from palm kernel shell
  publication-title: Tribol Ind
  doi: 10.24874/ti.2018.40.04.05
– volume: 1
  start-page: 143
  issue: 6
  year: 2017
  end-page: 153
  ident: CR12
  article-title: Surface characterization and specific wear rate prediction of r-GO/AZ31 composite under dry sliding wear condition
  publication-title: Surf Interfaces
  doi: 10.1016/j.surfin.2017.01.004
– volume: 61
  start-page: 787
  issue: 8
  year: 2019
  end-page: 796
  ident: CR19
  article-title: Microstructure, mechanical properties and ELM based wear loss prediction of plasma sprayed ZrO –MgO coatings on a magnesium alloy
  publication-title: Mater Test
  doi: 10.3139/120.111387
– volume: 12
  start-page: 235
  issue: 2
  year: 2018
  end-page: 240
  ident: CR6
  article-title: Prediction of the abrasive wear behaviour of heat-treated aluminium-clay composites using an artificial neural network
  publication-title: J Taibah Univ Sci
  doi: 10.1080/16583655.2018.1451119
– volume: 12
  start-page: 235
  issue: 2
  year: 2018
  ident: 4753_CR6
  publication-title: J Taibah Univ Sci
  doi: 10.1080/16583655.2018.1451119
– volume: 4
  start-page: 434
  issue: 4
  year: 2015
  ident: 4753_CR1
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2015.05.003
– volume: 27
  start-page: 49
  issue: 1
  year: 2015
  ident: 4753_CR11
  publication-title: J King Saud Univ Eng Sci
  doi: 10.1016/j.jksus.2014.04.003
– volume: 27
  start-page: 727
  issue: 3
  year: 2016
  ident: 4753_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1891-2
– volume: 21
  start-page: 135
  issue: 658
  year: 2016
  ident: 4753_CR15
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2016.01.114
– volume: 61
  start-page: 787
  issue: 8
  year: 2019
  ident: 4753_CR19
  publication-title: Mater Test
  doi: 10.3139/120.111387
– volume: 42
  start-page: 237
  issue: 2
  year: 2002
  ident: 4753_CR20
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(01)00107-9
– volume: 1
  start-page: 270
  issue: 63
  year: 2014
  ident: 4753_CR10
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2014.06.005
– volume: 24
  start-page: 3315
  issue: 9
  year: 2015
  ident: 4753_CR4
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-015-1612-0
– volume: 40
  start-page: 565
  issue: 4
  year: 2018
  ident: 4753_CR18
  publication-title: Tribol Ind
  doi: 10.24874/ti.2018.40.04.05
– volume: 21
  start-page: 247
  issue: 2
  year: 2012
  ident: 4753_CR8
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-011-9867-6
– volume: 28
  start-page: 616
  issue: 2
  year: 2007
  ident: 4753_CR22
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2005.07.021
– volume: 1
  start-page: 143
  issue: 6
  year: 2017
  ident: 4753_CR12
  publication-title: Surf Interfaces
  doi: 10.1016/j.surfin.2017.01.004
– volume: 13
  start-page: 4102
  issue: 6
  year: 2018
  ident: 4753_CR13
  publication-title: Int J Appl Eng Res
– volume: 90
  start-page: 2885
  issue: 9–12
  year: 2017
  ident: 4753_CR16
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-9595-z
– ident: 4753_CR14
  doi: 10.4028/www.scientific.net/KEM.739.87
– volume: 92
  start-page: 1025
  issue: 3
  year: 2012
  ident: 4753_CR3
  publication-title: Dyes Pigm
  doi: 10.1016/j.dyepig.2011.06.020
– volume: 22
  start-page: 1978
  issue: 5
  year: 2018
  ident: 4753_CR21
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-017-2039-y
– volume: 26
  start-page: 1498
  issue: 6
  year: 2016
  ident: 4753_CR5
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(16)64256-5
– volume: 66
  start-page: 150
  year: 2015
  ident: 4753_CR7
  publication-title: Mater Des (1980–2015)
  doi: 10.1016/j.matdes.2014.10.048
– volume: 1
  start-page: 124
  issue: 97
  year: 2016
  ident: 4753_CR9
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2016.01.008
– volume: 57
  start-page: 455
  issue: 3
  year: 2014
  ident: 4753_CR17
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2014.880979
SSID ssj0004685
Score 2.3081882
Snippet Design of experiment for the development of stir cast calcium carbonate-reinforced aluminium composite is a search for optimum combination of material and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13453
SubjectTerms Algorithms
Aluminum
Artificial Intelligence
Artificial neural networks
Back propagation networks
Calcium carbonate
Composite materials
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Design of experiments
Fuzzy systems
Image Processing and Computer Vision
Inference
Mathematical models
Mechanical properties
Neural networks
Original Article
Probability and Statistics in Computer Science
Process controls
Process parameters
Systems design
Ultrasonic testing
Wear rate
Wear tests
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50vXjxLa4vcvCmwW2TTboHkXVRRLCKD_BWkrQRQbrqbhE9-R_8h_4SM9nUVUGvbZLDzCSZJPN9H8BWIpO80JLTVq4Tyo1mVNuIU1Ek0nR0oaxEgPNpKo6v-clN-2YC0hoLg2WV9ZroF-q8b_COfDfmjLutJxFi_-GRomoUvq7WEhoqSCvke55ibBKmYmTGasDUwWF6fvENKelFOt2ZBut9OAswGg-mwxtS9zXGckeXxFPxc6sa55-_nkz9TnQ0BzMhhSTdkc_nYaIoF2C2lmcgYbYuggmEI-UteXbxTAIiv3oifUu69x9v7z3VO2MEq8qxdKsYkMq37qYpUWVOLitkcKV4S0ts9fr6Qu5qeCAZMUAPluD66PCqd0yDpgI1brINqW4bLTtIL660UQnnsmUTrnSkOGcMD2POgEq0EUBb2CiWShqVd7Ri7hzSiXK2DI2yXxYrQFrMutwjyq2ILHddlMukuJIt18z5XLAmRLX5MhMIx1H34j77okr2Js-cyTNv8kw0Yfurz8OIbuPf1uu1V7Iw9QbZOFCasFN7avz779FW_x9tDaZjHxxYX7YOjeFTVWy4hGSoN0OUfQJVoNux
  priority: 102
  providerName: ProQuest
Title Analysing wear behaviour of Al–CaCO3 composites using ANN and Sugeno-type fuzzy inference systems
URI https://link.springer.com/article/10.1007/s00521-020-04753-6
https://www.proquest.com/docview/2434613866
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BuXBhR6yVD9zAqIndOD2G0oJYCgIqwSmynRghUEC0EaIn_oE_5EsYp05ZBEiccvCixDMTz9jz3gBshCJMUiU4rSUqpFwrRpXxOA3SUOiGSqURFuB83An2u_zgsn7pQGG9Mtu9vJIs_tQjsJs9wcTQ17fpiOhk02AcJgq-rQpMRHtXh61PeMiiFCdGLjarhzMHlvl5lq8b0oeX-e1itNhv2tPQLd90mGZyu5331bYefCNx_O-nzMCUc0BJNNSYWRhLszmYLos7EGfr86AdXUl2TZ7QGojD8-eP5N6Q6O7t5bUpmyeM2Jx0m_iV9khe9I46HSKzhJznlv-V2jNeYvLB4JnclOBCMuSP7i1At926aO5TV5GBajTVPlV1rUTDkpNLpWXIuaiZkEvlSc4Zs6EcuicyqFv4bWo8X0ihZdJQkmEU0_AStgiV7D5Ll4DUmEHPxUtM4BmOQyT6YVyKGnZDjQnYMnilWGLt6Mpt1Yy7eES0XKxijKsYF6sYB8uwORrzMCTr-LP3Wint2BluL_Y54-jhhAE2b5XC-2j-fbaV_3VfhUm_kL_NVluDSv8xT9fRvemrKoyH7b0q6vTu8dF51ek2PndandMzbO360TvaiPP0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5ROLQX-q8upcWH9tRa3cReOzmgaruAlgJp1YLELdiOXSGhLLAbITj1HXgfHoYnYex12LZSuXFN7FE0M7Fn7Pm-AXiXyayyWnLarXRGudGMapdwKmwmTa6tctIDnHcKMdzjX_d7-3Nw1WJhfFlluyaGhboaGX9G_inljOPWkwnx-fiE-q5R_na1baGhYmuFajVQjEVgx5Y9P8MUbry6uYb2fp-mG-u7gyGNXQaoQfebUN0zWuaecFtpozLOZddlXOlEcc6YT09QpBI9Dym1LkmlkkZVuVYMI_M8qRjKfQAL-Hk5Jn8LX9aL7z_-QGaGpqCYQ_n6Is4ibCeA9_yJLD5NfXklJg1U_L01zuLdf65ow8638QQWY8hK-lMfewpztn4Gj9t2ECSuDs_BRIKT-hc5Q8WQyADQnJKRI_2j69-XAzX4xoivYvelYnZMmjC6XxRE1RX52XjGWOpPhYlrLi7OyWELRyRTxunxC9i7F-2-hPl6VNtXQLrMYayTVE4kjuMUhZEbV7KLw9DHBOtA0qqvNJHg3PfZOCpvqZmDyktUeRlUXooOfLidczyl97hz9HJrlTL-6uNy5pgd-Nhaavb6_9KW7pa2Ag-Huzvb5fZmsfUaHqXBUXxt2zLMT04b-waDoYl-Gz2OwMF9O_kN0_EXsA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduYJHEbpwco0JVtoAElXqL7CRGSFVatYkQPfEP_CFfwjhLWxAgcfbYhxlbfmPPe4PQscOdKJacESOSDmGhpEQqkxE7dnjoylgorgnOt77d6bKrXrM3x-LPq92rL8mC06BVmpL0bBipsynxTb9mQhps6dJEANzEXkRLTAslwI7uWt4cMzJvygk5jK7vYbSkzfy8xteraYY3v32R5jdPex2tlpARe0WMN9BCnGyitaodAy5P5xYKS4GR5Am_wP7FJQM_G-GBwl7_4-29JVp3FOsqcl2qFY9xllt7vo9FEuGHTCu2Ev0qi1U2mbzi54oOiAvF5_E26rYvHlsdUvZQICEcrpTIZii5q-XEhQyFwxg3lMOENAVjlOrkCwCFsJuaMBsr0-KChyJypaCQd7hmRHdQLRkk8S7CBlWANcxI2aZiMEUAcmKCG2AGMbZpHZmV-4KwFBjXfS76wVQaOXd5AC4PcpcHdh2dTOcMC3mNP60bVVSC8qiNA4tRBpjEsWH4tIrUbPj31fb-Z36Elu_P28HNpX-9j1asfN_oUrMGqqWjLD4AbJLKw3z7fQLmodkn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysing+wear+behaviour+of+Al%E2%80%93CaCO3+composites+using+ANN+and+Sugeno-type+fuzzy+inference+systems&rft.jtitle=Neural+computing+%26+applications&rft.au=Sosimi%2C+A.+A.&rft.au=Gbenebor%2C+O.+P.&rft.au=Oyerinde%2C+O.&rft.au=Bakare%2C+O.+O.&rft.date=2020-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=17&rft.spage=13453&rft.epage=13464&rft_id=info:doi/10.1007%2Fs00521-020-04753-6&rft.externalDocID=10_1007_s00521_020_04753_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon