Spatial analysis of EEG signals for Parkinson’s disease stage detection

Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker to diagnose PD, using the electroencephalography (EEG) signals. In the proposed method, EEG is used to detect the brain electrical activities...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 14; no. 2; pp. 397 - 405
Main Authors Naghsh, Erfan, Sabahi, Mohamad Farzan, Beheshti, Soosan
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1863-1703
1863-1711
DOI10.1007/s11760-019-01564-8

Cover

Abstract Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker to diagnose PD, using the electroencephalography (EEG) signals. In the proposed method, EEG is used to detect the brain electrical activities in internal regions of brain, e.g., basal ganglia (BG). Based on the high correlation between PD and brain activities in the BG, the proposed method provides a highly accurate PD diagnostic measure. Moreover, we obtain a quantitative measure of the disease severity, using the spectral analysis of extracted brain sources. The proposed method is denoted by Parkinson’s disease stage detection (PDSD). The PDSD includes brain sources separation and localization steps. The accuracy of the method in detection and quantification of PD is evaluated and verified by using information of ten patients and ten healthy people. The results show that there is a significant difference in the number of brain sources within the BG region, as well as their power spectral density, between healthy cases and patients. The accuracy and the cross-validation error of PDSD to detect PD are 95% and 6.25%, respectively. Furthermore, it is shown that the total power of extracted brain sources within the BG region in the α and β rhythms can be used effectively to determine the severity of PD.
AbstractList Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker to diagnose PD, using the electroencephalography (EEG) signals. In the proposed method, EEG is used to detect the brain electrical activities in internal regions of brain, e.g., basal ganglia (BG). Based on the high correlation between PD and brain activities in the BG, the proposed method provides a highly accurate PD diagnostic measure. Moreover, we obtain a quantitative measure of the disease severity, using the spectral analysis of extracted brain sources. The proposed method is denoted by Parkinson’s disease stage detection (PDSD). The PDSD includes brain sources separation and localization steps. The accuracy of the method in detection and quantification of PD is evaluated and verified by using information of ten patients and ten healthy people. The results show that there is a significant difference in the number of brain sources within the BG region, as well as their power spectral density, between healthy cases and patients. The accuracy and the cross-validation error of PDSD to detect PD are 95% and 6.25%, respectively. Furthermore, it is shown that the total power of extracted brain sources within the BG region in the α and β rhythms can be used effectively to determine the severity of PD.
Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker to diagnose PD, using the electroencephalography (EEG) signals. In the proposed method, EEG is used to detect the brain electrical activities in internal regions of brain, e.g., basal ganglia (BG). Based on the high correlation between PD and brain activities in the BG, the proposed method provides a highly accurate PD diagnostic measure. Moreover, we obtain a quantitative measure of the disease severity, using the spectral analysis of extracted brain sources. The proposed method is denoted by Parkinson’s disease stage detection (PDSD). The PDSD includes brain sources separation and localization steps. The accuracy of the method in detection and quantification of PD is evaluated and verified by using information of ten patients and ten healthy people. The results show that there is a significant difference in the number of brain sources within the BG region, as well as their power spectral density, between healthy cases and patients. The accuracy and the cross-validation error of PDSD to detect PD are 95% and 6.25%, respectively. Furthermore, it is shown that the total power of extracted brain sources within the BG region in the α and β rhythms can be used effectively to determine the severity of PD.
Author Naghsh, Erfan
Sabahi, Mohamad Farzan
Beheshti, Soosan
Author_xml – sequence: 1
  givenname: Erfan
  surname: Naghsh
  fullname: Naghsh, Erfan
  organization: Department of Electrical Engineering, University of Isfahan
– sequence: 2
  givenname: Mohamad Farzan
  orcidid: 0000-0003-2359-2582
  surname: Sabahi
  fullname: Sabahi, Mohamad Farzan
  email: sabahi@eng.ui.ac.ir
  organization: Department of Electrical Engineering, University of Isfahan
– sequence: 3
  givenname: Soosan
  surname: Beheshti
  fullname: Beheshti, Soosan
  organization: Department of Electrical and Computer Engineering, University of Ryerson
BookMark eNp9kMFKAzEQhoNUsNa-gKeA59VMku5mj1KqFgoK6jlks0lJrZuapIfefA1fzycxdUXBQweGGYb_G37-UzTofGcQOgdyCYRUVxGgKklBoM49KXkhjtAQRMkKqAAGvzthJ2gc44rkYrQSpRii-eNGJafWWHVqvYsuYm_xbHaLo1vmS8TWB_ygwovrou8-3z8ibl00Khock1oa3JpkdHK-O0PHNgNm_DNH6Plm9jS9Kxb3t_Pp9aLQDOpUNLTh1IjWKt3YitBWqJLXNeiJAd0KbXlJa0MqDi0wRbk2rbINV5w2GppasRG66P9ugn_bmpjkym_D3qukrCTARUlJVolepYOPMRgrtUtq7zMF5dYSiNxnJ_vsZM5OfmcnRUbpP3QT3KsKu8MQ66GYxd3ShD9XB6gvWp-Ecw
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108462
crossref_primary_10_1371_journal_pone_0242014
crossref_primary_10_3390_diagnostics12010166
crossref_primary_10_1038_s41598_022_23247_0
crossref_primary_10_3390_diagnostics12071543
crossref_primary_10_1049_sil2_12019
crossref_primary_10_1080_02648725_2023_2200333
crossref_primary_10_1109_TNSRE_2023_3242263
crossref_primary_10_1016_j_bspc_2022_103743
crossref_primary_10_1016_j_compbiomed_2021_104841
crossref_primary_10_1109_JSEN_2021_3080135
crossref_primary_10_1080_19420889_2022_2153648
crossref_primary_10_1088_1741_2552_ac861e
crossref_primary_10_3390_s22052028
crossref_primary_10_1007_s11760_021_01947_w
crossref_primary_10_1007_s00521_020_05505_2
crossref_primary_10_1109_TIM_2024_3351248
Cites_doi 10.1186/1743-0003-4-1
10.1016/j.conb.2010.08.022
10.1523/ENEURO.0151-19.2019
10.1007/s00521-018-3689-5
10.1186/1743-0003-5-25
10.1109/TBME.2008.2006022
10.1016/j.bspc.2013.12.003
10.1109/TBME.2004.836507
10.1109/78.558475
10.1007/s11760-016-0928-z
10.1016/j.neuroimage.2007.11.022
10.1016/j.neuroimage.2015.09.021
10.1371/journal.pone.0174364
10.1201/9781315156415
10.1109/TBME.2002.807661
10.1007/s11571-013-9247-z
10.1023/A:1012944913650
10.1109/ICEPE.2016.7781351
10.1016/S0013-4694(97)00106-5
10.1016/j.jneumeth.2003.10.009
10.1007/s00702-018-1961-6
10.1007/s11760-008-0074-3
10.1007/s13311-016-0426-6
10.1093/cercor/bhn171
10.1109/TSP.2011.2166392
10.1109/TMM.2013.2245319
10.1016/j.aci.2018.08.006
10.1109/10.568913
10.1007/s00500-018-3041-0
10.1111/cogs.12506
10.1134/S1054661814040166
10.1007/s11760-018-1298-5
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
2019© Springer-Verlag London Ltd., part of Springer Nature 2019
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: 2019© Springer-Verlag London Ltd., part of Springer Nature 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11760-019-01564-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 405
ExternalDocumentID 10_1007_s11760_019_01564_8
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-b2b42e8dfacbf702d8a64991c5e1cd8cf4629e0741d13a24cedafb4a42bc1b9a3
IEDL.DBID U2A
ISSN 1863-1703
IngestDate Thu Sep 25 00:45:41 EDT 2025
Wed Oct 01 04:04:38 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Fri Feb 21 02:27:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Brain source localization
Basal ganglia region
Parkinson’s disease
Independent component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-b2b42e8dfacbf702d8a64991c5e1cd8cf4629e0741d13a24cedafb4a42bc1b9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2359-2582
PQID 2360148620
PQPubID 2044169
PageCount 9
ParticipantIDs proquest_journals_2360148620
crossref_citationtrail_10_1007_s11760_019_01564_8
crossref_primary_10_1007_s11760_019_01564_8
springer_journals_10_1007_s11760_019_01564_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References JatoiMAKamelNBrain Source Localization Using EEG Signal Analysis2017Boca RatonCRC Press10.1201/9781315156415
GriffantiLRolinskiMSzewczyk-KrolikowskiKMenkeRAFilippiniNZamboniGJenkinsonMHuMTMackayCEChallenges in the reproducibility of clinical studies with resting state fMRI: an example in early parkinson’s diseaseNeuroimage201612470471310.1016/j.neuroimage.2015.09.021
Motamedi-FakhrSMoshrefi-TorbatiMHillMHillCMWhitePRSignal processing techniques applied to human sleep eeg signals-a reviewBiomed. Signal Process. Control201410213310.1016/j.bspc.2013.12.003
ChenXChenXWardRKWangZJA joint multimodal group analysis framework for modeling corticomuscular activityIEEE Trans. Multimed.20131551049105910.1109/TMM.2013.2245319
JatoiMAKamelNBrain source localization using reduced eeg sensorsSignal Image Video Process.20181281447145410.1007/s11760-018-1298-5
Hoehn, M.M., Yahr, M.D.: Parkinsonism: onset, progression and mortality. Neurology (2001)
HanC-XWangJYiG-SCheY-QInvestigation of EEG abnormalities in the early stage of Parkinson’s diseaseCogn. Neurodyn.20137435135910.1007/s11571-013-9247-z
YanHWangJQuantification of motor network dynamics in parkinson’s disease by means of landscape and flux theoryPloS One2017123e017436410.1371/journal.pone.0174364
GatevPWichmannTInteractions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian stateCereb. Cortex20081961330134410.1093/cercor/bhn171
GutiérrezDNehoraiAMuravchikCHEstimating brain conductivities and dipole source signals with EEG arraysIEEE Trans. Biomed. Eng.200451122113212210.1109/TBME.2004.836507
Aldea, R.T., Geman, O., Chiuchisan, I., Lazar, A.M.: A comparison between healthy and neurological disorders patients using nonlinear dynamic tools. In: International Conference and Exposition on Electrical and Power Engineering (EPE), pp. 299–303, IEEE, Iasi, Romania (2016)
TangTChenSZhaoMHuangWLuoJVery large-scale data classification based on k-means clustering and multi-kernel SVMSoft Comput.201923113793380110.1007/s00500-018-3041-0
BuciuIKotropoulosCPitasIComparison of ICA approaches for facial expression recognitionSignal Image Video Process.20093434510.1007/s11760-008-0074-31178.94016
RieraJValdesPFuentesMOharrizYExplicit Backus and Gilbert EEG Inverse Solution for Spherical Symmetry2002HavanaDepartment of Neurophysics, Cuban Neuroscience Center
ChiangJWangZJMcKeownMJA generalized multivariate autoregressive (GmAR)-based approach for EEG source connectivity analysisIEEE Trans. Signal Process.201260145346510.1109/TSP.2011.216639229321311393.94197
Ornelas-VencesCSánchez-FernándezLPSánchez-PérezLAMartínez-HernándezJMComputer model for leg agility quantification and assessment for parkinson’s disease patientsMed. Biol. Eng. Comput.201857114
MantiniDFranciottiRRomaniGLPizzellaVImproving MEG source localizations: an automated method for complete artifact removal based on independent component analysisNeuroImage200840116017310.1016/j.neuroimage.2007.11.022
Rodríguez-RiveraAVan VeenBDWakaiRTStatistical performance analysis of signal variance-based dipole models for meg/eeg source localization and detectionIEEE Trans. Biomed. Eng.200350213714910.1109/TBME.2002.807661
BailletSGarneroLA bayesian approach to introducing anatomo-functional priors in the eeg/meg inverse problemIEEE Trans. Biomed. Eng.199744537438510.1109/10.568913
HallezHVanrumsteBGrechRMuscatJDe ClercqWVergultAD’AsselerYCamilleriKPFabriSGVan HuffelSReview on solving the forward problem in eeg source analysisJ. Neuroeng. Rehabilit.20074112910.1186/1743-0003-4-1
TharwatAIndependent component analysis: an introductionAppl. Comput. Inform.201810.1016/j.aci.2018.08.006
de Peralta MenendezRGAndinoSGLantzGMichelCMLandisTNoninvasive localization of electromagnetic epileptic activity. i. method descriptions and simulationsBrain Topogr.200114213113710.1023/A:1012944913650
WichmannTDeLongMRDeep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality?Neurotherapeutics201613226428310.1007/s13311-016-0426-6
ObukhovYVGabovaAZaljalovaZIllarioshkinSKarabanovAKorolevMKuznetsovaGMorozovANigmatullinaRObukhovKYElectroencephalograms features of the early stage parkinson’s diseasePattern Recognit. Image Anal.201424459360410.1134/S1054661814040166
DelormeAMakeigSEeglab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysisJ. Neurosci. Methods2004134192110.1016/j.jneumeth.2003.10.009
TurnerRSDesmurgetMBasal ganglia contributions to motor control: a vigorous tutorCurr. Opin. Neurobiol.201020670471610.1016/j.conb.2010.08.022
GorodnitskyIFRaoBDSparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithmIEEE Trans. Signal Process.199745360061610.1109/78.558475
GrechRCassarTMuscatJCamilleriKPFabriSGZervakisMXanthopoulosPSakkalisVVanrumsteBReview on solving the inverse problem in EEG source analysisJ. Neuroeng. Rehabilit.2008512510.1186/1743-0003-5-25
BartonMJRobinsonPAKumarSGalkaADurrant-WhyteHFGuivantJOzakiTEvaluating the performance of kalman-filter-based eeg source localizationIEEE Trans. Biomed. Eng.200956112213610.1109/TBME.2008.2006022
StoccoAA biologically plausible action selection system for cognitive architectures: implications of basal ganglia anatomy for learning and decision-making modelsCogn. Sci.201842245749010.1111/cogs.12506
JacksonNColeSRVoytekBSwannNCCharacteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalographyeNeuro20196311110.1523/ENEURO.0151-19.2019
MostileGGiulianoLDibilioVLucaACiceroCESofiaVNicolettiAZappiaMComplexity of electrocortical activity as potential biomarker in untreated parkinson’s diseaseJ. Neural Transm.2019126216717210.1007/s00702-018-1961-6
CharvátováHProcházkaAVaseghiSVyšataOVališMGps-based analysis of physical activities using positioning and heart rate cycling dataSignal Image Video Process.201711225125810.1007/s11760-016-0928-z
OhSLHagiwaraYRaghavendraUYuvarajRArunkumarNMurugappanMAcharyaURA deep learning approach for parkinson’s disease diagnosis from EEG signalsNeural Comput. Appl.201810.1007/s00521-018-3689-5
NuwerMRComiGEmersonRFuglsang-FrederiksenAGuéritJ-MHinrichsHIkedaALuccasFJCRappelsburgerPIFCN standards for digital recording of clinical EEGElectroencephalogr. Clin. Neurophysiol.1998106325926110.1016/S0013-4694(97)00106-5
S Motamedi-Fakhr (1564_CR16) 2014; 10
R Grech (1564_CR27) 2008; 5
D Gutiérrez (1564_CR31) 2004; 51
IF Gorodnitsky (1564_CR23) 1997; 45
H Charvátová (1564_CR28) 2017; 11
T Wichmann (1564_CR12) 2016; 13
1564_CR33
RG de Peralta Menendez (1564_CR24) 2001; 14
J Riera (1564_CR26) 2002
S Baillet (1564_CR25) 1997; 44
RS Turner (1564_CR9) 2010; 20
H Yan (1564_CR15) 2017; 12
A Tharwat (1564_CR18) 2018
SL Oh (1564_CR7) 2018
A Stocco (1564_CR10) 2018; 42
A Rodríguez-Rivera (1564_CR22) 2003; 50
D Mantini (1564_CR30) 2008; 40
YV Obukhov (1564_CR4) 2014; 24
C Ornelas-Vences (1564_CR6) 2018; 57
C-X Han (1564_CR34) 2013; 7
MJ Barton (1564_CR21) 2009; 56
H Hallez (1564_CR20) 2007; 4
L Griffanti (1564_CR13) 2016; 124
P Gatev (1564_CR11) 2008; 19
MA Jatoi (1564_CR14) 2017
1564_CR1
T Tang (1564_CR35) 2019; 23
MA Jatoi (1564_CR19) 2018; 12
MR Nuwer (1564_CR32) 1998; 106
G Mostile (1564_CR3) 2019; 126
A Delorme (1564_CR29) 2004; 134
I Buciu (1564_CR17) 2009; 3
N Jackson (1564_CR2) 2019; 6
J Chiang (1564_CR5) 2012; 60
X Chen (1564_CR8) 2013; 15
References_xml – reference: JatoiMAKamelNBrain source localization using reduced eeg sensorsSignal Image Video Process.20181281447145410.1007/s11760-018-1298-5
– reference: TangTChenSZhaoMHuangWLuoJVery large-scale data classification based on k-means clustering and multi-kernel SVMSoft Comput.201923113793380110.1007/s00500-018-3041-0
– reference: Aldea, R.T., Geman, O., Chiuchisan, I., Lazar, A.M.: A comparison between healthy and neurological disorders patients using nonlinear dynamic tools. In: International Conference and Exposition on Electrical and Power Engineering (EPE), pp. 299–303, IEEE, Iasi, Romania (2016)
– reference: Rodríguez-RiveraAVan VeenBDWakaiRTStatistical performance analysis of signal variance-based dipole models for meg/eeg source localization and detectionIEEE Trans. Biomed. Eng.200350213714910.1109/TBME.2002.807661
– reference: JatoiMAKamelNBrain Source Localization Using EEG Signal Analysis2017Boca RatonCRC Press10.1201/9781315156415
– reference: TurnerRSDesmurgetMBasal ganglia contributions to motor control: a vigorous tutorCurr. Opin. Neurobiol.201020670471610.1016/j.conb.2010.08.022
– reference: WichmannTDeLongMRDeep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality?Neurotherapeutics201613226428310.1007/s13311-016-0426-6
– reference: de Peralta MenendezRGAndinoSGLantzGMichelCMLandisTNoninvasive localization of electromagnetic epileptic activity. i. method descriptions and simulationsBrain Topogr.200114213113710.1023/A:1012944913650
– reference: NuwerMRComiGEmersonRFuglsang-FrederiksenAGuéritJ-MHinrichsHIkedaALuccasFJCRappelsburgerPIFCN standards for digital recording of clinical EEGElectroencephalogr. Clin. Neurophysiol.1998106325926110.1016/S0013-4694(97)00106-5
– reference: StoccoAA biologically plausible action selection system for cognitive architectures: implications of basal ganglia anatomy for learning and decision-making modelsCogn. Sci.201842245749010.1111/cogs.12506
– reference: DelormeAMakeigSEeglab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysisJ. Neurosci. Methods2004134192110.1016/j.jneumeth.2003.10.009
– reference: BuciuIKotropoulosCPitasIComparison of ICA approaches for facial expression recognitionSignal Image Video Process.20093434510.1007/s11760-008-0074-31178.94016
– reference: TharwatAIndependent component analysis: an introductionAppl. Comput. Inform.201810.1016/j.aci.2018.08.006
– reference: GatevPWichmannTInteractions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian stateCereb. Cortex20081961330134410.1093/cercor/bhn171
– reference: HanC-XWangJYiG-SCheY-QInvestigation of EEG abnormalities in the early stage of Parkinson’s diseaseCogn. Neurodyn.20137435135910.1007/s11571-013-9247-z
– reference: MostileGGiulianoLDibilioVLucaACiceroCESofiaVNicolettiAZappiaMComplexity of electrocortical activity as potential biomarker in untreated parkinson’s diseaseJ. Neural Transm.2019126216717210.1007/s00702-018-1961-6
– reference: GrechRCassarTMuscatJCamilleriKPFabriSGZervakisMXanthopoulosPSakkalisVVanrumsteBReview on solving the inverse problem in EEG source analysisJ. Neuroeng. Rehabilit.2008512510.1186/1743-0003-5-25
– reference: OhSLHagiwaraYRaghavendraUYuvarajRArunkumarNMurugappanMAcharyaURA deep learning approach for parkinson’s disease diagnosis from EEG signalsNeural Comput. Appl.201810.1007/s00521-018-3689-5
– reference: RieraJValdesPFuentesMOharrizYExplicit Backus and Gilbert EEG Inverse Solution for Spherical Symmetry2002HavanaDepartment of Neurophysics, Cuban Neuroscience Center
– reference: ChenXChenXWardRKWangZJA joint multimodal group analysis framework for modeling corticomuscular activityIEEE Trans. Multimed.20131551049105910.1109/TMM.2013.2245319
– reference: CharvátováHProcházkaAVaseghiSVyšataOVališMGps-based analysis of physical activities using positioning and heart rate cycling dataSignal Image Video Process.201711225125810.1007/s11760-016-0928-z
– reference: MantiniDFranciottiRRomaniGLPizzellaVImproving MEG source localizations: an automated method for complete artifact removal based on independent component analysisNeuroImage200840116017310.1016/j.neuroimage.2007.11.022
– reference: ChiangJWangZJMcKeownMJA generalized multivariate autoregressive (GmAR)-based approach for EEG source connectivity analysisIEEE Trans. Signal Process.201260145346510.1109/TSP.2011.216639229321311393.94197
– reference: Ornelas-VencesCSánchez-FernándezLPSánchez-PérezLAMartínez-HernándezJMComputer model for leg agility quantification and assessment for parkinson’s disease patientsMed. Biol. Eng. Comput.201857114
– reference: BartonMJRobinsonPAKumarSGalkaADurrant-WhyteHFGuivantJOzakiTEvaluating the performance of kalman-filter-based eeg source localizationIEEE Trans. Biomed. Eng.200956112213610.1109/TBME.2008.2006022
– reference: YanHWangJQuantification of motor network dynamics in parkinson’s disease by means of landscape and flux theoryPloS One2017123e017436410.1371/journal.pone.0174364
– reference: ObukhovYVGabovaAZaljalovaZIllarioshkinSKarabanovAKorolevMKuznetsovaGMorozovANigmatullinaRObukhovKYElectroencephalograms features of the early stage parkinson’s diseasePattern Recognit. Image Anal.201424459360410.1134/S1054661814040166
– reference: GriffantiLRolinskiMSzewczyk-KrolikowskiKMenkeRAFilippiniNZamboniGJenkinsonMHuMTMackayCEChallenges in the reproducibility of clinical studies with resting state fMRI: an example in early parkinson’s diseaseNeuroimage201612470471310.1016/j.neuroimage.2015.09.021
– reference: BailletSGarneroLA bayesian approach to introducing anatomo-functional priors in the eeg/meg inverse problemIEEE Trans. Biomed. Eng.199744537438510.1109/10.568913
– reference: JacksonNColeSRVoytekBSwannNCCharacteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalographyeNeuro20196311110.1523/ENEURO.0151-19.2019
– reference: Motamedi-FakhrSMoshrefi-TorbatiMHillMHillCMWhitePRSignal processing techniques applied to human sleep eeg signals-a reviewBiomed. Signal Process. Control201410213310.1016/j.bspc.2013.12.003
– reference: HallezHVanrumsteBGrechRMuscatJDe ClercqWVergultAD’AsselerYCamilleriKPFabriSGVan HuffelSReview on solving the forward problem in eeg source analysisJ. Neuroeng. Rehabilit.20074112910.1186/1743-0003-4-1
– reference: Hoehn, M.M., Yahr, M.D.: Parkinsonism: onset, progression and mortality. Neurology (2001)
– reference: GutiérrezDNehoraiAMuravchikCHEstimating brain conductivities and dipole source signals with EEG arraysIEEE Trans. Biomed. Eng.200451122113212210.1109/TBME.2004.836507
– reference: GorodnitskyIFRaoBDSparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithmIEEE Trans. Signal Process.199745360061610.1109/78.558475
– ident: 1564_CR33
– volume: 4
  start-page: 1
  issue: 1
  year: 2007
  ident: 1564_CR20
  publication-title: J. Neuroeng. Rehabilit.
  doi: 10.1186/1743-0003-4-1
– volume: 20
  start-page: 704
  issue: 6
  year: 2010
  ident: 1564_CR9
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2010.08.022
– volume: 6
  start-page: 1
  issue: 3
  year: 2019
  ident: 1564_CR2
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0151-19.2019
– year: 2018
  ident: 1564_CR7
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3689-5
– volume: 5
  start-page: 25
  issue: 1
  year: 2008
  ident: 1564_CR27
  publication-title: J. Neuroeng. Rehabilit.
  doi: 10.1186/1743-0003-5-25
– volume: 56
  start-page: 122
  issue: 1
  year: 2009
  ident: 1564_CR21
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2006022
– volume: 10
  start-page: 21
  year: 2014
  ident: 1564_CR16
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.12.003
– volume: 51
  start-page: 2113
  issue: 12
  year: 2004
  ident: 1564_CR31
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.836507
– volume: 45
  start-page: 600
  issue: 3
  year: 1997
  ident: 1564_CR23
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.558475
– volume: 11
  start-page: 251
  issue: 2
  year: 2017
  ident: 1564_CR28
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-016-0928-z
– volume: 40
  start-page: 160
  issue: 1
  year: 2008
  ident: 1564_CR30
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.022
– volume: 124
  start-page: 704
  year: 2016
  ident: 1564_CR13
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.021
– volume: 12
  start-page: e0174364
  issue: 3
  year: 2017
  ident: 1564_CR15
  publication-title: PloS One
  doi: 10.1371/journal.pone.0174364
– volume-title: Brain Source Localization Using EEG Signal Analysis
  year: 2017
  ident: 1564_CR14
  doi: 10.1201/9781315156415
– volume: 50
  start-page: 137
  issue: 2
  year: 2003
  ident: 1564_CR22
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2002.807661
– volume-title: Explicit Backus and Gilbert EEG Inverse Solution for Spherical Symmetry
  year: 2002
  ident: 1564_CR26
– volume: 7
  start-page: 351
  issue: 4
  year: 2013
  ident: 1564_CR34
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-013-9247-z
– volume: 14
  start-page: 131
  issue: 2
  year: 2001
  ident: 1564_CR24
  publication-title: Brain Topogr.
  doi: 10.1023/A:1012944913650
– ident: 1564_CR1
  doi: 10.1109/ICEPE.2016.7781351
– volume: 57
  start-page: 1
  year: 2018
  ident: 1564_CR6
  publication-title: Med. Biol. Eng. Comput.
– volume: 106
  start-page: 259
  issue: 3
  year: 1998
  ident: 1564_CR32
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(97)00106-5
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 1564_CR29
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 126
  start-page: 167
  issue: 2
  year: 2019
  ident: 1564_CR3
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-018-1961-6
– volume: 3
  start-page: 345
  issue: 4
  year: 2009
  ident: 1564_CR17
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-008-0074-3
– volume: 13
  start-page: 264
  issue: 2
  year: 2016
  ident: 1564_CR12
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-016-0426-6
– volume: 19
  start-page: 1330
  issue: 6
  year: 2008
  ident: 1564_CR11
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn171
– volume: 60
  start-page: 453
  issue: 1
  year: 2012
  ident: 1564_CR5
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2166392
– volume: 15
  start-page: 1049
  issue: 5
  year: 2013
  ident: 1564_CR8
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2013.2245319
– year: 2018
  ident: 1564_CR18
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.08.006
– volume: 44
  start-page: 374
  issue: 5
  year: 1997
  ident: 1564_CR25
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.568913
– volume: 23
  start-page: 3793
  issue: 11
  year: 2019
  ident: 1564_CR35
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3041-0
– volume: 42
  start-page: 457
  issue: 2
  year: 2018
  ident: 1564_CR10
  publication-title: Cogn. Sci.
  doi: 10.1111/cogs.12506
– volume: 24
  start-page: 593
  issue: 4
  year: 2014
  ident: 1564_CR4
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661814040166
– volume: 12
  start-page: 1447
  issue: 8
  year: 2018
  ident: 1564_CR19
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-018-1298-5
SSID ssj0000327868
Score 2.2509344
Snippet Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 397
SubjectTerms Biomarkers
Brain
Computer Imaging
Computer Science
Diagnostic systems
Electroencephalography
Error detection
Ganglia
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Parkinson's disease
Pattern Recognition and Graphics
Power spectral density
Signal,Image and Speech Processing
Spatial analysis
Spectrum analysis
Vision
Title Spatial analysis of EEG signals for Parkinson’s disease stage detection
URI https://link.springer.com/article/10.1007/s11760-019-01564-8
https://www.proquest.com/docview/2360148620
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: AFBBN
  dateStart: 20070401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: U2A
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG0RKnMRJxhb1AUidqFSmyE8WlCIadv4Gf49fwjl1WkCAxJQhjiOd7-Lv4u--AzjPlBImEcZLlWRexHzjCR0bDyOJJlzJ1JiKIDth42l0M4tnrihsUbPd6yPJ6ku9LnYLEmZJVJbfE7PISzehGVs5L_TiKe2t_qz4IU3SZQ1cyqz-ph-6apmfp_m6I61h5reT0WrDGe7BjkOKpLdc2n3Y0EULdusuDMQFZQu2P0kKHsC17TGMPkW4Uxshc0MGgxGxRA10NYIgldhS56rq6_31bUHcGQ1BnPigidJlxc4qDmE6HNxdjT3XLsGTGEelJ6iIqE6V4RLN71OVcob5TCBjHVgFABMxmmkLIVQQchpJrbgREY-okIHIeHgEjWJe6GPAVyEOEhxT5wwjPMky4UuJiYlGtBjrOGtDUJssl05L3La0eMzXKsjWzDmaOa_MnKdtuFg987RU0vhzdKdeidxF1SKnIbM_QBn123BZr8769u-znfxv-ClsUZtWV1SzDjTK5xd9htijFF1o9ob9_sReR_e3g27leh-9ktOT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG0RKHMdJxgq1tFA6tVK3yJ8sKEU07PwN_h6_BNt1KCBAYo7jSOe7-J397h3AeS4l1ynXQSYFDQgNdcBVogMTSThlUmRaO4LsiPYn5GaaTH1R2Lxmu9dXku5PvSx2i1JqSVSW35NQEmSrsGYFrKxi_gR3Pk5Wwhin2aIGLqNWfzOMfbXMz9N83ZGWMPPbzajbcHo7sOWRIuoslnYXVlTZhO26CwPyQdmEzU-SgnswsD2GjU8h5tVG0EyjbvcaWaKGcTVkQCqypc6u6uvt5XWO_B0NMjjxXiGpKsfOKvdh0uuOr_qBb5cQCBNHVcAxJ1hlUjNhzB9imTFq8plIJCqyCgCaUJwrCyFkFDNMhJJMc8II5iLiOYsPoFHOSnUI5lMGB3FmUufcRHia5zwUwiQmyqDFRCV5C6LaZIXwWuK2pcVDsVRBtmYujJkLZ-Yia8HFxzuPCyWNP0e365UofFTNCxxTewBKcdiCy3p1lo9_n-3of8PPYL0_vhsWw8Ho9hg2sE2xHe2sDY3q6VmdGBxS8VPndu-IZtNv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSAgO7Iiy-sANoiaO4yTHClrKIsSBStwir1xQWkG48xv8Hl_COEsDCJA4x3GkWeQ38bw3AEep1tLG0nqJVtxj3LeeNJH1MJNoLLRKrC0bZG_4cMQu76P7Tyz-stu9uZKsOA1OpSkvuhNtuy3xLYi5a6hyvT4RZ14yC_PMCSVgRI9ob_qXxQ9pnFR8uIQ7LU4_rJkzP2_z9XRqIee3W9Ly8BmswnKNGkmvcvMazJh8HVaaiQykTtB1WPokL7gBF27eMMYXEbXyCBlb0u-fE9e0gWFHELASR3suGWDvr2_PpL6vIYgZHwzRpig7tfJNGA36d6dDrx6d4CnMqcKTVDJqEm2FQlf4VCeCY20TqMgETg3AMk5T4-CEDkJBmTJaWMkEo1IFMhXhFszl49xsA34KMZEUWEanmO1xmkpfKSxSDCLHyERpB4LGZJmqdcXdeIvHrFVEdmbO0MxZaeYs6cDx9J1Jparx5-q9xhNZnWHPGQ25-xnKqd-Bk8Y77ePfd9v53_JDWLg9G2TXFzdXu7BIXbVddqDtwVzx9GL2EZIU8qCMug_3ater
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+analysis+of+EEG+signals+for+Parkinson%E2%80%99s+disease+stage+detection&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Naghsh%2C+Erfan&rft.au=Sabahi%2C+Mohamad+Farzan&rft.au=Beheshti%2C+Soosan&rft.date=2020-03-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=14&rft.issue=2&rft.spage=397&rft.epage=405&rft_id=info:doi/10.1007%2Fs11760-019-01564-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_019_01564_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon