Spatial analysis of EEG signals for Parkinson’s disease stage detection
Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker to diagnose PD, using the electroencephalography (EEG) signals. In the proposed method, EEG is used to detect the brain electrical activities...
Saved in:
| Published in | Signal, image and video processing Vol. 14; no. 2; pp. 397 - 405 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.03.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1863-1703 1863-1711 |
| DOI | 10.1007/s11760-019-01564-8 |
Cover
| Abstract | Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker to diagnose PD, using the electroencephalography (EEG) signals. In the proposed method, EEG is used to detect the brain electrical activities in internal regions of brain, e.g., basal ganglia (BG). Based on the high correlation between PD and brain activities in the BG, the proposed method provides a highly accurate PD diagnostic measure. Moreover, we obtain a quantitative measure of the disease severity, using the spectral analysis of extracted brain sources. The proposed method is denoted by Parkinson’s disease stage detection (PDSD). The PDSD includes brain sources separation and localization steps. The accuracy of the method in detection and quantification of PD is evaluated and verified by using information of ten patients and ten healthy people. The results show that there is a significant difference in the number of brain sources within the BG region, as well as their power spectral density, between healthy cases and patients. The accuracy and the cross-validation error of PDSD to detect PD are 95% and 6.25%, respectively. Furthermore, it is shown that the total power of extracted brain sources within the BG region in the
α
and
β
rhythms can be used effectively to determine the severity of PD. |
|---|---|
| AbstractList | Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker to diagnose PD, using the electroencephalography (EEG) signals. In the proposed method, EEG is used to detect the brain electrical activities in internal regions of brain, e.g., basal ganglia (BG). Based on the high correlation between PD and brain activities in the BG, the proposed method provides a highly accurate PD diagnostic measure. Moreover, we obtain a quantitative measure of the disease severity, using the spectral analysis of extracted brain sources. The proposed method is denoted by Parkinson’s disease stage detection (PDSD). The PDSD includes brain sources separation and localization steps. The accuracy of the method in detection and quantification of PD is evaluated and verified by using information of ten patients and ten healthy people. The results show that there is a significant difference in the number of brain sources within the BG region, as well as their power spectral density, between healthy cases and patients. The accuracy and the cross-validation error of PDSD to detect PD are 95% and 6.25%, respectively. Furthermore, it is shown that the total power of extracted brain sources within the BG region in the α and β rhythms can be used effectively to determine the severity of PD. Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker to diagnose PD, using the electroencephalography (EEG) signals. In the proposed method, EEG is used to detect the brain electrical activities in internal regions of brain, e.g., basal ganglia (BG). Based on the high correlation between PD and brain activities in the BG, the proposed method provides a highly accurate PD diagnostic measure. Moreover, we obtain a quantitative measure of the disease severity, using the spectral analysis of extracted brain sources. The proposed method is denoted by Parkinson’s disease stage detection (PDSD). The PDSD includes brain sources separation and localization steps. The accuracy of the method in detection and quantification of PD is evaluated and verified by using information of ten patients and ten healthy people. The results show that there is a significant difference in the number of brain sources within the BG region, as well as their power spectral density, between healthy cases and patients. The accuracy and the cross-validation error of PDSD to detect PD are 95% and 6.25%, respectively. Furthermore, it is shown that the total power of extracted brain sources within the BG region in the α and β rhythms can be used effectively to determine the severity of PD. |
| Author | Naghsh, Erfan Sabahi, Mohamad Farzan Beheshti, Soosan |
| Author_xml | – sequence: 1 givenname: Erfan surname: Naghsh fullname: Naghsh, Erfan organization: Department of Electrical Engineering, University of Isfahan – sequence: 2 givenname: Mohamad Farzan orcidid: 0000-0003-2359-2582 surname: Sabahi fullname: Sabahi, Mohamad Farzan email: sabahi@eng.ui.ac.ir organization: Department of Electrical Engineering, University of Isfahan – sequence: 3 givenname: Soosan surname: Beheshti fullname: Beheshti, Soosan organization: Department of Electrical and Computer Engineering, University of Ryerson |
| BookMark | eNp9kMFKAzEQhoNUsNa-gKeA59VMku5mj1KqFgoK6jlks0lJrZuapIfefA1fzycxdUXBQweGGYb_G37-UzTofGcQOgdyCYRUVxGgKklBoM49KXkhjtAQRMkKqAAGvzthJ2gc44rkYrQSpRii-eNGJafWWHVqvYsuYm_xbHaLo1vmS8TWB_ygwovrou8-3z8ibl00Khock1oa3JpkdHK-O0PHNgNm_DNH6Plm9jS9Kxb3t_Pp9aLQDOpUNLTh1IjWKt3YitBWqJLXNeiJAd0KbXlJa0MqDi0wRbk2rbINV5w2GppasRG66P9ugn_bmpjkym_D3qukrCTARUlJVolepYOPMRgrtUtq7zMF5dYSiNxnJ_vsZM5OfmcnRUbpP3QT3KsKu8MQ66GYxd3ShD9XB6gvWp-Ecw |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108462 crossref_primary_10_1371_journal_pone_0242014 crossref_primary_10_3390_diagnostics12010166 crossref_primary_10_1038_s41598_022_23247_0 crossref_primary_10_3390_diagnostics12071543 crossref_primary_10_1049_sil2_12019 crossref_primary_10_1080_02648725_2023_2200333 crossref_primary_10_1109_TNSRE_2023_3242263 crossref_primary_10_1016_j_bspc_2022_103743 crossref_primary_10_1016_j_compbiomed_2021_104841 crossref_primary_10_1109_JSEN_2021_3080135 crossref_primary_10_1080_19420889_2022_2153648 crossref_primary_10_1088_1741_2552_ac861e crossref_primary_10_3390_s22052028 crossref_primary_10_1007_s11760_021_01947_w crossref_primary_10_1007_s00521_020_05505_2 crossref_primary_10_1109_TIM_2024_3351248 |
| Cites_doi | 10.1186/1743-0003-4-1 10.1016/j.conb.2010.08.022 10.1523/ENEURO.0151-19.2019 10.1007/s00521-018-3689-5 10.1186/1743-0003-5-25 10.1109/TBME.2008.2006022 10.1016/j.bspc.2013.12.003 10.1109/TBME.2004.836507 10.1109/78.558475 10.1007/s11760-016-0928-z 10.1016/j.neuroimage.2007.11.022 10.1016/j.neuroimage.2015.09.021 10.1371/journal.pone.0174364 10.1201/9781315156415 10.1109/TBME.2002.807661 10.1007/s11571-013-9247-z 10.1023/A:1012944913650 10.1109/ICEPE.2016.7781351 10.1016/S0013-4694(97)00106-5 10.1016/j.jneumeth.2003.10.009 10.1007/s00702-018-1961-6 10.1007/s11760-008-0074-3 10.1007/s13311-016-0426-6 10.1093/cercor/bhn171 10.1109/TSP.2011.2166392 10.1109/TMM.2013.2245319 10.1016/j.aci.2018.08.006 10.1109/10.568913 10.1007/s00500-018-3041-0 10.1111/cogs.12506 10.1134/S1054661814040166 10.1007/s11760-018-1298-5 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 2019© Springer-Verlag London Ltd., part of Springer Nature 2019 |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: 2019© Springer-Verlag London Ltd., part of Springer Nature 2019 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11760-019-01564-8 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1863-1711 |
| EndPage | 405 |
| ExternalDocumentID | 10_1007_s11760_019_01564_8 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-b2b42e8dfacbf702d8a64991c5e1cd8cf4629e0741d13a24cedafb4a42bc1b9a3 |
| IEDL.DBID | U2A |
| ISSN | 1863-1703 |
| IngestDate | Thu Sep 25 00:45:41 EDT 2025 Wed Oct 01 04:04:38 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Fri Feb 21 02:27:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Brain source localization Basal ganglia region Parkinson’s disease Independent component analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-b2b42e8dfacbf702d8a64991c5e1cd8cf4629e0741d13a24cedafb4a42bc1b9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2359-2582 |
| PQID | 2360148620 |
| PQPubID | 2044169 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2360148620 crossref_citationtrail_10_1007_s11760_019_01564_8 crossref_primary_10_1007_s11760_019_01564_8 springer_journals_10_1007_s11760_019_01564_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Signal, image and video processing |
| PublicationTitleAbbrev | SIViP |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | JatoiMAKamelNBrain Source Localization Using EEG Signal Analysis2017Boca RatonCRC Press10.1201/9781315156415 GriffantiLRolinskiMSzewczyk-KrolikowskiKMenkeRAFilippiniNZamboniGJenkinsonMHuMTMackayCEChallenges in the reproducibility of clinical studies with resting state fMRI: an example in early parkinson’s diseaseNeuroimage201612470471310.1016/j.neuroimage.2015.09.021 Motamedi-FakhrSMoshrefi-TorbatiMHillMHillCMWhitePRSignal processing techniques applied to human sleep eeg signals-a reviewBiomed. Signal Process. Control201410213310.1016/j.bspc.2013.12.003 ChenXChenXWardRKWangZJA joint multimodal group analysis framework for modeling corticomuscular activityIEEE Trans. Multimed.20131551049105910.1109/TMM.2013.2245319 JatoiMAKamelNBrain source localization using reduced eeg sensorsSignal Image Video Process.20181281447145410.1007/s11760-018-1298-5 Hoehn, M.M., Yahr, M.D.: Parkinsonism: onset, progression and mortality. Neurology (2001) HanC-XWangJYiG-SCheY-QInvestigation of EEG abnormalities in the early stage of Parkinson’s diseaseCogn. Neurodyn.20137435135910.1007/s11571-013-9247-z YanHWangJQuantification of motor network dynamics in parkinson’s disease by means of landscape and flux theoryPloS One2017123e017436410.1371/journal.pone.0174364 GatevPWichmannTInteractions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian stateCereb. Cortex20081961330134410.1093/cercor/bhn171 GutiérrezDNehoraiAMuravchikCHEstimating brain conductivities and dipole source signals with EEG arraysIEEE Trans. Biomed. Eng.200451122113212210.1109/TBME.2004.836507 Aldea, R.T., Geman, O., Chiuchisan, I., Lazar, A.M.: A comparison between healthy and neurological disorders patients using nonlinear dynamic tools. In: International Conference and Exposition on Electrical and Power Engineering (EPE), pp. 299–303, IEEE, Iasi, Romania (2016) TangTChenSZhaoMHuangWLuoJVery large-scale data classification based on k-means clustering and multi-kernel SVMSoft Comput.201923113793380110.1007/s00500-018-3041-0 BuciuIKotropoulosCPitasIComparison of ICA approaches for facial expression recognitionSignal Image Video Process.20093434510.1007/s11760-008-0074-31178.94016 RieraJValdesPFuentesMOharrizYExplicit Backus and Gilbert EEG Inverse Solution for Spherical Symmetry2002HavanaDepartment of Neurophysics, Cuban Neuroscience Center ChiangJWangZJMcKeownMJA generalized multivariate autoregressive (GmAR)-based approach for EEG source connectivity analysisIEEE Trans. Signal Process.201260145346510.1109/TSP.2011.216639229321311393.94197 Ornelas-VencesCSánchez-FernándezLPSánchez-PérezLAMartínez-HernándezJMComputer model for leg agility quantification and assessment for parkinson’s disease patientsMed. Biol. Eng. Comput.201857114 MantiniDFranciottiRRomaniGLPizzellaVImproving MEG source localizations: an automated method for complete artifact removal based on independent component analysisNeuroImage200840116017310.1016/j.neuroimage.2007.11.022 Rodríguez-RiveraAVan VeenBDWakaiRTStatistical performance analysis of signal variance-based dipole models for meg/eeg source localization and detectionIEEE Trans. Biomed. Eng.200350213714910.1109/TBME.2002.807661 BailletSGarneroLA bayesian approach to introducing anatomo-functional priors in the eeg/meg inverse problemIEEE Trans. Biomed. Eng.199744537438510.1109/10.568913 HallezHVanrumsteBGrechRMuscatJDe ClercqWVergultAD’AsselerYCamilleriKPFabriSGVan HuffelSReview on solving the forward problem in eeg source analysisJ. Neuroeng. Rehabilit.20074112910.1186/1743-0003-4-1 TharwatAIndependent component analysis: an introductionAppl. Comput. Inform.201810.1016/j.aci.2018.08.006 de Peralta MenendezRGAndinoSGLantzGMichelCMLandisTNoninvasive localization of electromagnetic epileptic activity. i. method descriptions and simulationsBrain Topogr.200114213113710.1023/A:1012944913650 WichmannTDeLongMRDeep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality?Neurotherapeutics201613226428310.1007/s13311-016-0426-6 ObukhovYVGabovaAZaljalovaZIllarioshkinSKarabanovAKorolevMKuznetsovaGMorozovANigmatullinaRObukhovKYElectroencephalograms features of the early stage parkinson’s diseasePattern Recognit. Image Anal.201424459360410.1134/S1054661814040166 DelormeAMakeigSEeglab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysisJ. Neurosci. Methods2004134192110.1016/j.jneumeth.2003.10.009 TurnerRSDesmurgetMBasal ganglia contributions to motor control: a vigorous tutorCurr. Opin. Neurobiol.201020670471610.1016/j.conb.2010.08.022 GorodnitskyIFRaoBDSparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithmIEEE Trans. Signal Process.199745360061610.1109/78.558475 GrechRCassarTMuscatJCamilleriKPFabriSGZervakisMXanthopoulosPSakkalisVVanrumsteBReview on solving the inverse problem in EEG source analysisJ. Neuroeng. Rehabilit.2008512510.1186/1743-0003-5-25 BartonMJRobinsonPAKumarSGalkaADurrant-WhyteHFGuivantJOzakiTEvaluating the performance of kalman-filter-based eeg source localizationIEEE Trans. Biomed. Eng.200956112213610.1109/TBME.2008.2006022 StoccoAA biologically plausible action selection system for cognitive architectures: implications of basal ganglia anatomy for learning and decision-making modelsCogn. Sci.201842245749010.1111/cogs.12506 JacksonNColeSRVoytekBSwannNCCharacteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalographyeNeuro20196311110.1523/ENEURO.0151-19.2019 MostileGGiulianoLDibilioVLucaACiceroCESofiaVNicolettiAZappiaMComplexity of electrocortical activity as potential biomarker in untreated parkinson’s diseaseJ. Neural Transm.2019126216717210.1007/s00702-018-1961-6 CharvátováHProcházkaAVaseghiSVyšataOVališMGps-based analysis of physical activities using positioning and heart rate cycling dataSignal Image Video Process.201711225125810.1007/s11760-016-0928-z OhSLHagiwaraYRaghavendraUYuvarajRArunkumarNMurugappanMAcharyaURA deep learning approach for parkinson’s disease diagnosis from EEG signalsNeural Comput. Appl.201810.1007/s00521-018-3689-5 NuwerMRComiGEmersonRFuglsang-FrederiksenAGuéritJ-MHinrichsHIkedaALuccasFJCRappelsburgerPIFCN standards for digital recording of clinical EEGElectroencephalogr. Clin. Neurophysiol.1998106325926110.1016/S0013-4694(97)00106-5 S Motamedi-Fakhr (1564_CR16) 2014; 10 R Grech (1564_CR27) 2008; 5 D Gutiérrez (1564_CR31) 2004; 51 IF Gorodnitsky (1564_CR23) 1997; 45 H Charvátová (1564_CR28) 2017; 11 T Wichmann (1564_CR12) 2016; 13 1564_CR33 RG de Peralta Menendez (1564_CR24) 2001; 14 J Riera (1564_CR26) 2002 S Baillet (1564_CR25) 1997; 44 RS Turner (1564_CR9) 2010; 20 H Yan (1564_CR15) 2017; 12 A Tharwat (1564_CR18) 2018 SL Oh (1564_CR7) 2018 A Stocco (1564_CR10) 2018; 42 A Rodríguez-Rivera (1564_CR22) 2003; 50 D Mantini (1564_CR30) 2008; 40 YV Obukhov (1564_CR4) 2014; 24 C Ornelas-Vences (1564_CR6) 2018; 57 C-X Han (1564_CR34) 2013; 7 MJ Barton (1564_CR21) 2009; 56 H Hallez (1564_CR20) 2007; 4 L Griffanti (1564_CR13) 2016; 124 P Gatev (1564_CR11) 2008; 19 MA Jatoi (1564_CR14) 2017 1564_CR1 T Tang (1564_CR35) 2019; 23 MA Jatoi (1564_CR19) 2018; 12 MR Nuwer (1564_CR32) 1998; 106 G Mostile (1564_CR3) 2019; 126 A Delorme (1564_CR29) 2004; 134 I Buciu (1564_CR17) 2009; 3 N Jackson (1564_CR2) 2019; 6 J Chiang (1564_CR5) 2012; 60 X Chen (1564_CR8) 2013; 15 |
| References_xml | – reference: JatoiMAKamelNBrain source localization using reduced eeg sensorsSignal Image Video Process.20181281447145410.1007/s11760-018-1298-5 – reference: TangTChenSZhaoMHuangWLuoJVery large-scale data classification based on k-means clustering and multi-kernel SVMSoft Comput.201923113793380110.1007/s00500-018-3041-0 – reference: Aldea, R.T., Geman, O., Chiuchisan, I., Lazar, A.M.: A comparison between healthy and neurological disorders patients using nonlinear dynamic tools. In: International Conference and Exposition on Electrical and Power Engineering (EPE), pp. 299–303, IEEE, Iasi, Romania (2016) – reference: Rodríguez-RiveraAVan VeenBDWakaiRTStatistical performance analysis of signal variance-based dipole models for meg/eeg source localization and detectionIEEE Trans. Biomed. Eng.200350213714910.1109/TBME.2002.807661 – reference: JatoiMAKamelNBrain Source Localization Using EEG Signal Analysis2017Boca RatonCRC Press10.1201/9781315156415 – reference: TurnerRSDesmurgetMBasal ganglia contributions to motor control: a vigorous tutorCurr. Opin. Neurobiol.201020670471610.1016/j.conb.2010.08.022 – reference: WichmannTDeLongMRDeep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality?Neurotherapeutics201613226428310.1007/s13311-016-0426-6 – reference: de Peralta MenendezRGAndinoSGLantzGMichelCMLandisTNoninvasive localization of electromagnetic epileptic activity. i. method descriptions and simulationsBrain Topogr.200114213113710.1023/A:1012944913650 – reference: NuwerMRComiGEmersonRFuglsang-FrederiksenAGuéritJ-MHinrichsHIkedaALuccasFJCRappelsburgerPIFCN standards for digital recording of clinical EEGElectroencephalogr. Clin. Neurophysiol.1998106325926110.1016/S0013-4694(97)00106-5 – reference: StoccoAA biologically plausible action selection system for cognitive architectures: implications of basal ganglia anatomy for learning and decision-making modelsCogn. Sci.201842245749010.1111/cogs.12506 – reference: DelormeAMakeigSEeglab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysisJ. Neurosci. Methods2004134192110.1016/j.jneumeth.2003.10.009 – reference: BuciuIKotropoulosCPitasIComparison of ICA approaches for facial expression recognitionSignal Image Video Process.20093434510.1007/s11760-008-0074-31178.94016 – reference: TharwatAIndependent component analysis: an introductionAppl. Comput. Inform.201810.1016/j.aci.2018.08.006 – reference: GatevPWichmannTInteractions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian stateCereb. Cortex20081961330134410.1093/cercor/bhn171 – reference: HanC-XWangJYiG-SCheY-QInvestigation of EEG abnormalities in the early stage of Parkinson’s diseaseCogn. Neurodyn.20137435135910.1007/s11571-013-9247-z – reference: MostileGGiulianoLDibilioVLucaACiceroCESofiaVNicolettiAZappiaMComplexity of electrocortical activity as potential biomarker in untreated parkinson’s diseaseJ. Neural Transm.2019126216717210.1007/s00702-018-1961-6 – reference: GrechRCassarTMuscatJCamilleriKPFabriSGZervakisMXanthopoulosPSakkalisVVanrumsteBReview on solving the inverse problem in EEG source analysisJ. Neuroeng. Rehabilit.2008512510.1186/1743-0003-5-25 – reference: OhSLHagiwaraYRaghavendraUYuvarajRArunkumarNMurugappanMAcharyaURA deep learning approach for parkinson’s disease diagnosis from EEG signalsNeural Comput. Appl.201810.1007/s00521-018-3689-5 – reference: RieraJValdesPFuentesMOharrizYExplicit Backus and Gilbert EEG Inverse Solution for Spherical Symmetry2002HavanaDepartment of Neurophysics, Cuban Neuroscience Center – reference: ChenXChenXWardRKWangZJA joint multimodal group analysis framework for modeling corticomuscular activityIEEE Trans. Multimed.20131551049105910.1109/TMM.2013.2245319 – reference: CharvátováHProcházkaAVaseghiSVyšataOVališMGps-based analysis of physical activities using positioning and heart rate cycling dataSignal Image Video Process.201711225125810.1007/s11760-016-0928-z – reference: MantiniDFranciottiRRomaniGLPizzellaVImproving MEG source localizations: an automated method for complete artifact removal based on independent component analysisNeuroImage200840116017310.1016/j.neuroimage.2007.11.022 – reference: ChiangJWangZJMcKeownMJA generalized multivariate autoregressive (GmAR)-based approach for EEG source connectivity analysisIEEE Trans. Signal Process.201260145346510.1109/TSP.2011.216639229321311393.94197 – reference: Ornelas-VencesCSánchez-FernándezLPSánchez-PérezLAMartínez-HernándezJMComputer model for leg agility quantification and assessment for parkinson’s disease patientsMed. Biol. Eng. Comput.201857114 – reference: BartonMJRobinsonPAKumarSGalkaADurrant-WhyteHFGuivantJOzakiTEvaluating the performance of kalman-filter-based eeg source localizationIEEE Trans. Biomed. Eng.200956112213610.1109/TBME.2008.2006022 – reference: YanHWangJQuantification of motor network dynamics in parkinson’s disease by means of landscape and flux theoryPloS One2017123e017436410.1371/journal.pone.0174364 – reference: ObukhovYVGabovaAZaljalovaZIllarioshkinSKarabanovAKorolevMKuznetsovaGMorozovANigmatullinaRObukhovKYElectroencephalograms features of the early stage parkinson’s diseasePattern Recognit. Image Anal.201424459360410.1134/S1054661814040166 – reference: GriffantiLRolinskiMSzewczyk-KrolikowskiKMenkeRAFilippiniNZamboniGJenkinsonMHuMTMackayCEChallenges in the reproducibility of clinical studies with resting state fMRI: an example in early parkinson’s diseaseNeuroimage201612470471310.1016/j.neuroimage.2015.09.021 – reference: BailletSGarneroLA bayesian approach to introducing anatomo-functional priors in the eeg/meg inverse problemIEEE Trans. Biomed. Eng.199744537438510.1109/10.568913 – reference: JacksonNColeSRVoytekBSwannNCCharacteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalographyeNeuro20196311110.1523/ENEURO.0151-19.2019 – reference: Motamedi-FakhrSMoshrefi-TorbatiMHillMHillCMWhitePRSignal processing techniques applied to human sleep eeg signals-a reviewBiomed. Signal Process. Control201410213310.1016/j.bspc.2013.12.003 – reference: HallezHVanrumsteBGrechRMuscatJDe ClercqWVergultAD’AsselerYCamilleriKPFabriSGVan HuffelSReview on solving the forward problem in eeg source analysisJ. Neuroeng. Rehabilit.20074112910.1186/1743-0003-4-1 – reference: Hoehn, M.M., Yahr, M.D.: Parkinsonism: onset, progression and mortality. Neurology (2001) – reference: GutiérrezDNehoraiAMuravchikCHEstimating brain conductivities and dipole source signals with EEG arraysIEEE Trans. Biomed. Eng.200451122113212210.1109/TBME.2004.836507 – reference: GorodnitskyIFRaoBDSparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithmIEEE Trans. Signal Process.199745360061610.1109/78.558475 – ident: 1564_CR33 – volume: 4 start-page: 1 issue: 1 year: 2007 ident: 1564_CR20 publication-title: J. Neuroeng. Rehabilit. doi: 10.1186/1743-0003-4-1 – volume: 20 start-page: 704 issue: 6 year: 2010 ident: 1564_CR9 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2010.08.022 – volume: 6 start-page: 1 issue: 3 year: 2019 ident: 1564_CR2 publication-title: eNeuro doi: 10.1523/ENEURO.0151-19.2019 – year: 2018 ident: 1564_CR7 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3689-5 – volume: 5 start-page: 25 issue: 1 year: 2008 ident: 1564_CR27 publication-title: J. Neuroeng. Rehabilit. doi: 10.1186/1743-0003-5-25 – volume: 56 start-page: 122 issue: 1 year: 2009 ident: 1564_CR21 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2006022 – volume: 10 start-page: 21 year: 2014 ident: 1564_CR16 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.12.003 – volume: 51 start-page: 2113 issue: 12 year: 2004 ident: 1564_CR31 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.836507 – volume: 45 start-page: 600 issue: 3 year: 1997 ident: 1564_CR23 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.558475 – volume: 11 start-page: 251 issue: 2 year: 2017 ident: 1564_CR28 publication-title: Signal Image Video Process. doi: 10.1007/s11760-016-0928-z – volume: 40 start-page: 160 issue: 1 year: 2008 ident: 1564_CR30 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.11.022 – volume: 124 start-page: 704 year: 2016 ident: 1564_CR13 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.021 – volume: 12 start-page: e0174364 issue: 3 year: 2017 ident: 1564_CR15 publication-title: PloS One doi: 10.1371/journal.pone.0174364 – volume-title: Brain Source Localization Using EEG Signal Analysis year: 2017 ident: 1564_CR14 doi: 10.1201/9781315156415 – volume: 50 start-page: 137 issue: 2 year: 2003 ident: 1564_CR22 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2002.807661 – volume-title: Explicit Backus and Gilbert EEG Inverse Solution for Spherical Symmetry year: 2002 ident: 1564_CR26 – volume: 7 start-page: 351 issue: 4 year: 2013 ident: 1564_CR34 publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-013-9247-z – volume: 14 start-page: 131 issue: 2 year: 2001 ident: 1564_CR24 publication-title: Brain Topogr. doi: 10.1023/A:1012944913650 – ident: 1564_CR1 doi: 10.1109/ICEPE.2016.7781351 – volume: 57 start-page: 1 year: 2018 ident: 1564_CR6 publication-title: Med. Biol. Eng. Comput. – volume: 106 start-page: 259 issue: 3 year: 1998 ident: 1564_CR32 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00106-5 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 1564_CR29 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 126 start-page: 167 issue: 2 year: 2019 ident: 1564_CR3 publication-title: J. Neural Transm. doi: 10.1007/s00702-018-1961-6 – volume: 3 start-page: 345 issue: 4 year: 2009 ident: 1564_CR17 publication-title: Signal Image Video Process. doi: 10.1007/s11760-008-0074-3 – volume: 13 start-page: 264 issue: 2 year: 2016 ident: 1564_CR12 publication-title: Neurotherapeutics doi: 10.1007/s13311-016-0426-6 – volume: 19 start-page: 1330 issue: 6 year: 2008 ident: 1564_CR11 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn171 – volume: 60 start-page: 453 issue: 1 year: 2012 ident: 1564_CR5 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2166392 – volume: 15 start-page: 1049 issue: 5 year: 2013 ident: 1564_CR8 publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2013.2245319 – year: 2018 ident: 1564_CR18 publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2018.08.006 – volume: 44 start-page: 374 issue: 5 year: 1997 ident: 1564_CR25 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.568913 – volume: 23 start-page: 3793 issue: 11 year: 2019 ident: 1564_CR35 publication-title: Soft Comput. doi: 10.1007/s00500-018-3041-0 – volume: 42 start-page: 457 issue: 2 year: 2018 ident: 1564_CR10 publication-title: Cogn. Sci. doi: 10.1111/cogs.12506 – volume: 24 start-page: 593 issue: 4 year: 2014 ident: 1564_CR4 publication-title: Pattern Recognit. Image Anal. doi: 10.1134/S1054661814040166 – volume: 12 start-page: 1447 issue: 8 year: 2018 ident: 1564_CR19 publication-title: Signal Image Video Process. doi: 10.1007/s11760-018-1298-5 |
| SSID | ssj0000327868 |
| Score | 2.2509344 |
| Snippet | Diagnosis of Parkinson’s disease (PD) in the early stages is very critical for effective treatments. In this paper, we propose a simple and low-cost biomarker... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 397 |
| SubjectTerms | Biomarkers Brain Computer Imaging Computer Science Diagnostic systems Electroencephalography Error detection Ganglia Image Processing and Computer Vision Multimedia Information Systems Original Paper Parkinson's disease Pattern Recognition and Graphics Power spectral density Signal,Image and Speech Processing Spatial analysis Spectrum analysis Vision |
| Title | Spatial analysis of EEG signals for Parkinson’s disease stage detection |
| URI | https://link.springer.com/article/10.1007/s11760-019-01564-8 https://www.proquest.com/docview/2360148620 |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: AFBBN dateStart: 20070401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: U2A dateStart: 20070401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG0RKnMRJxhb1AUidqFSmyE8WlCIadv4Gf49fwjl1WkCAxJQhjiOd7-Lv4u--AzjPlBImEcZLlWRexHzjCR0bDyOJJlzJ1JiKIDth42l0M4tnrihsUbPd6yPJ6ku9LnYLEmZJVJbfE7PISzehGVs5L_TiKe2t_qz4IU3SZQ1cyqz-ph-6apmfp_m6I61h5reT0WrDGe7BjkOKpLdc2n3Y0EULdusuDMQFZQu2P0kKHsC17TGMPkW4Uxshc0MGgxGxRA10NYIgldhS56rq6_31bUHcGQ1BnPigidJlxc4qDmE6HNxdjT3XLsGTGEelJ6iIqE6V4RLN71OVcob5TCBjHVgFABMxmmkLIVQQchpJrbgREY-okIHIeHgEjWJe6GPAVyEOEhxT5wwjPMky4UuJiYlGtBjrOGtDUJssl05L3La0eMzXKsjWzDmaOa_MnKdtuFg987RU0vhzdKdeidxF1SKnIbM_QBn123BZr8769u-znfxv-ClsUZtWV1SzDjTK5xd9htijFF1o9ob9_sReR_e3g27leh-9ktOT |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG0RKHMdJxgq1tFA6tVK3yJ8sKEU07PwN_h6_BNt1KCBAYo7jSOe7-J397h3AeS4l1ynXQSYFDQgNdcBVogMTSThlUmRaO4LsiPYn5GaaTH1R2Lxmu9dXku5PvSx2i1JqSVSW35NQEmSrsGYFrKxi_gR3Pk5Wwhin2aIGLqNWfzOMfbXMz9N83ZGWMPPbzajbcHo7sOWRIuoslnYXVlTZhO26CwPyQdmEzU-SgnswsD2GjU8h5tVG0EyjbvcaWaKGcTVkQCqypc6u6uvt5XWO_B0NMjjxXiGpKsfOKvdh0uuOr_qBb5cQCBNHVcAxJ1hlUjNhzB9imTFq8plIJCqyCgCaUJwrCyFkFDNMhJJMc8II5iLiOYsPoFHOSnUI5lMGB3FmUufcRHia5zwUwiQmyqDFRCV5C6LaZIXwWuK2pcVDsVRBtmYujJkLZ-Yia8HFxzuPCyWNP0e365UofFTNCxxTewBKcdiCy3p1lo9_n-3of8PPYL0_vhsWw8Ho9hg2sE2xHe2sDY3q6VmdGBxS8VPndu-IZtNv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xSAgO7Iiy-sANoiaO4yTHClrKIsSBStwir1xQWkG48xv8Hl_COEsDCJA4x3GkWeQ38bw3AEep1tLG0nqJVtxj3LeeNJH1MJNoLLRKrC0bZG_4cMQu76P7Tyz-stu9uZKsOA1OpSkvuhNtuy3xLYi5a6hyvT4RZ14yC_PMCSVgRI9ob_qXxQ9pnFR8uIQ7LU4_rJkzP2_z9XRqIee3W9Ly8BmswnKNGkmvcvMazJh8HVaaiQykTtB1WPokL7gBF27eMMYXEbXyCBlb0u-fE9e0gWFHELASR3suGWDvr2_PpL6vIYgZHwzRpig7tfJNGA36d6dDrx6d4CnMqcKTVDJqEm2FQlf4VCeCY20TqMgETg3AMk5T4-CEDkJBmTJaWMkEo1IFMhXhFszl49xsA34KMZEUWEanmO1xmkpfKSxSDCLHyERpB4LGZJmqdcXdeIvHrFVEdmbO0MxZaeYs6cDx9J1Jparx5-q9xhNZnWHPGQ25-xnKqd-Bk8Y77ePfd9v53_JDWLg9G2TXFzdXu7BIXbVddqDtwVzx9GL2EZIU8qCMug_3ater |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+analysis+of+EEG+signals+for+Parkinson%E2%80%99s+disease+stage+detection&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Naghsh%2C+Erfan&rft.au=Sabahi%2C+Mohamad+Farzan&rft.au=Beheshti%2C+Soosan&rft.date=2020-03-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=14&rft.issue=2&rft.spage=397&rft.epage=405&rft_id=info:doi/10.1007%2Fs11760-019-01564-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_019_01564_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |