An Improved Cuckoo Search Algorithm for Optimization of Artificial Neural Network Training
Artificial neural networks are widely used for solving engineering design problems of various disciplines due to its simplicity, efficiency, and adaptability. It predicts promising and accurate results. Artificial neural network solves these problems with weights and biases obtained in the training...
Saved in:
| Published in | Neural processing letters Vol. 55; no. 9; pp. 12093 - 12120 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1370-4621 1573-773X |
| DOI | 10.1007/s11063-023-11411-0 |
Cover
| Abstract | Artificial neural networks are widely used for solving engineering design problems of various disciplines due to its simplicity, efficiency, and adaptability. It predicts promising and accurate results. Artificial neural network solves these problems with weights and biases obtained in the training process. In training, the weights and biases have to be updated such that the difference between predicted and actual values has to be minimized. The artificial neural network uses stochastic gradient steepest descent methods to update the weights and biases for optimizing it. These methods are good at finding the optimum solution. However, they suffer from the drawbacks of vanishing gradient at local minima and critical points and are sensitive to initial weights and biases. As a result, it falls into local minima, the training time becomes high, and accuracy becomes low. One of the best solutions to overcome these problems is to use metaheuristics algorithms instead of stochastic gradient descent methods. Among metaheuristics, the cuckoo search algorithm is widely used in many applications due to its simplicity and efficiency. In this work, we proposed an improved Cuckoo search algorithm by incorporating Voronoi diagram with Cuckoo search to strengthen the weak areas of Cuckoo search and to overcome the addressed problems of the artificial neural network. The proposed Cuckoo search algorithm performance is tested on higher dimensional benchmark functions and on benchmark data sets. Moreover, its performance is compared with variants of Cuckoo search and other metaheuristic algorithms. The proposed algorithm has shown better results in terms of the number of generations, accuracy, cross-entropy, and root mean square error (RMSE). |
|---|---|
| AbstractList | Artificial neural networks are widely used for solving engineering design problems of various disciplines due to its simplicity, efficiency, and adaptability. It predicts promising and accurate results. Artificial neural network solves these problems with weights and biases obtained in the training process. In training, the weights and biases have to be updated such that the difference between predicted and actual values has to be minimized. The artificial neural network uses stochastic gradient steepest descent methods to update the weights and biases for optimizing it. These methods are good at finding the optimum solution. However, they suffer from the drawbacks of vanishing gradient at local minima and critical points and are sensitive to initial weights and biases. As a result, it falls into local minima, the training time becomes high, and accuracy becomes low. One of the best solutions to overcome these problems is to use metaheuristics algorithms instead of stochastic gradient descent methods. Among metaheuristics, the cuckoo search algorithm is widely used in many applications due to its simplicity and efficiency. In this work, we proposed an improved Cuckoo search algorithm by incorporating Voronoi diagram with Cuckoo search to strengthen the weak areas of Cuckoo search and to overcome the addressed problems of the artificial neural network. The proposed Cuckoo search algorithm performance is tested on higher dimensional benchmark functions and on benchmark data sets. Moreover, its performance is compared with variants of Cuckoo search and other metaheuristic algorithms. The proposed algorithm has shown better results in terms of the number of generations, accuracy, cross-entropy, and root mean square error (RMSE). |
| Author | Narayanan, Pournami Pulinthanathu Maddaiah, Pedda Nagyalla |
| Author_xml | – sequence: 1 givenname: Pedda Nagyalla surname: Maddaiah fullname: Maddaiah, Pedda Nagyalla email: pedda_p180075cs@nitc.ac.in organization: Department of Computer Science and Engineering, National Institute of Technology Calicut – sequence: 2 givenname: Pournami Pulinthanathu surname: Narayanan fullname: Narayanan, Pournami Pulinthanathu organization: Department of Computer Science and Engineering, National Institute of Technology Calicut |
| BookMark | eNp9kE9LAzEQxYNUsFa_gKeA59XJZjfZPZbin0KxByuIl5Bmkzbt7qZmU0U_vWkrCB56mjm837w37xz1WtdqhK4I3BAAftsRAowmkNKEkIyQBE5Qn-ScJpzT117cKYckYyk5Q-ddtwKIWAp99DZs8bjZePehKzzaqrVz-FlLr5Z4WC-ct2HZYOM8nm6Cbey3DNa12Bk89MEaq6ys8ZPe-v0In86v8cxL29p2cYFOjaw7ffk7B-jl_m42ekwm04fxaDhJFCVlSKSSkJa8ZJwbwwulCjOHwsj5HLJMF6XOc8Oq1HCmWMUzUlIiSTWvsszwKueMDtD14W784n2ruyBWbuvbaCmiAWMlA4CoKg4q5V3XeW2EsmH_TYh5a0FA7JoUhyZFbFLsmxQ7NP2HbrxtpP86DtED1EVxu9D-L9UR6gfqQYhA |
| CitedBy_id | crossref_primary_10_3390_sym16070866 crossref_primary_10_1155_2024_1953277 crossref_primary_10_1007_s11063_024_11636_7 crossref_primary_10_3934_mbe_2024131 crossref_primary_10_3390_electronics13050899 |
| Cites_doi | 10.1023/A:1008202821328. 10.1007/s12652-019-01373-4 10.1016/j.asoc.2017.03.019 10.3390/mi13081351 10.1007/s00366-018-0627-1 10.1371/journal.pone.0136140 10.1109/72.977323 10.1007/s10586-020-03126-x 10.1007/s10462-023-10498-0 10.3390/math10091567 10.1007/s13369-019-04008-0 10.1504/IJBIC.2013.057183 10.1016/j.neucom.2018.04.085 10.1166/jmihi.2016.1864 10.1007/s10462-020-09813-w 10.1145/3350532 10.1007/s11042-022-13437-3 10.1016/j.engstruct.2019.109637 10.1007/s12065-020-00465-x 10.1155/2014/878262 10.1145/116873.116880 10.1007/BF01840357 10.1007/s00170-016-9267-z 10.1007/s10489-016-0767-1 10.1016/j.cogsys.2020.09.001 10.1155/2016/3205396 10.1016/j.engfracmech.2022.108824 10.1016/j.amc.2006.07.025 10.1109/ACCESS.2019.2892729 10.1155/2015/608597 10.1007/s11063-022-10758-0 10.1016/j.amc.2012.04.069 10.1080/0305215X.2017.1401067 10.1111/itor.13237 10.1007/978-3-642-27443-5_88 10.1145/509907.510011 10.1109/ICNN.1995.488968 10.1007/s12046-015-0440-0 10.32604/cmc.2023.028824 10.1109/HIS.2011.6122077 10.1109/NABIC.2009.5393690 10.3389/fncom.2023.1079483 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Dec 2023 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Dec 2023 |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ |
| DOI | 10.1007/s11063-023-11411-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-773X |
| EndPage | 12120 |
| ExternalDocumentID | 10_1007_s11063_023_11411_0 |
| GroupedDBID | -4Z -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PSYQQ PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8M Z8R Z8U Z8W Z92 ZMTXR ~EX 77I AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-aca02979677ff78cc8fb08fabb044e89e55f6d2f76c6d741931a1dbd44f7d5763 |
| IEDL.DBID | AGYKE |
| ISSN | 1370-4621 |
| IngestDate | Sat Oct 18 22:49:03 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Wed Oct 01 01:56:31 EDT 2025 Fri Feb 21 02:40:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Cuckoo search Metaheuristic Voronoi diagram Artificial neural network Numerical optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-aca02979677ff78cc8fb08fabb044e89e55f6d2f76c6d741931a1dbd44f7d5763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3196696000 |
| PQPubID | 2043838 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_3196696000 crossref_citationtrail_10_1007_s11063_023_11411_0 crossref_primary_10_1007_s11063_023_11411_0 springer_journals_10_1007_s11063_023_11411_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231200 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Neural processing letters |
| PublicationTitleAbbrev | Neural Process Lett |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Feng, Xu, Zhao, Han, Su, Peng (CR33) 2022; 275 Cristin, Kumar, Priya, Karthick (CR26) 2020; 53 Yu, Efe, Kaynak (CR1) 2002; 13 Chen (CR15) 2014 Liu, Ding, Li, Yang (CR5) 2017; 89 Aziz, Desai, Baluch (CR28) 2022 Mirjalili, Mohd Hashim, Moradian Sardroudi (CR7) 2012; 218 Chen, Jin, Qin, Li (CR29) 2015 CR37 CR36 Zhang, Han, Wang, Liu (CR19) 2019; 7 CR35 CR12 CR34 Zhou, Zhou, Huang, Tang (CR3) 2019; 335 Zhang, Zhang, Lok, Lyu (CR4) 2007; 185 Storn, Price (CR42) 1997; 11 Syed Mustafa, Kumaraswamy (CR24) 2016; 6 Alqahtani, Al-Makhadmeh, Tolba, Said (CR32) 2020; 23 Faris, Aljarah, Mirjalili (CR9) 2016; 45 Cheng, Wang, Xiong (CR18) 2018; 50 Cheng, Wang, Xiong (CR20) 2019; 35 CR6 Zhu, Wang (CR17) 2017; 56 Cheng, Xiong (CR43) 2022; 54 Tran-Ngoc, Khatir, De Roeck, Bui-Tien, Abdel Wahab (CR31) 2019; 199 CR27 CR46 Fan, Zhou, Tang (CR11) 2021; 14 CR23 Khan, Shah, Imran, Khan, Bangash, Shah (CR25) 2019; 10 CR45 Liu, Li, Jia, Qi, Abualigah (CR13) 2023 CR44 Heng, Wang, Zhao, Wang (CR30) 2016 Agrawal, Arora, Singh, Gupta, Khanna, Khamparia (CR8) 2020; 16 Bala, Ismail, Ibrahim, Sait, Salami (CR21) 2019; 44 CR41 Liu, Li, Jia, Qi, Abualigah, Liu (CR14) 2022; 10 CR40 Luo, Li, Zhou, Liao (CR10) 2021; 65 Chiroma, Abdul-kareem, Khan, Nawi, Gital, Shuib, Abubakar, Rahman, Herawan (CR22) 2015; 10 Wang, Zeng, Zhang, Wang (CR16) 2022; 13 Aurenhammer (CR38) 1991; 23 Trujillo-Romero (CR2) 2013; 5 Fortune (CR39) 1987; 2 H Chiroma (11411_CR22) 2015; 10 J-R Zhang (11411_CR4) 2007; 185 RM Aziz (11411_CR28) 2022 J Heng (11411_CR30) 2016 C Fan (11411_CR11) 2021; 14 R Cristin (11411_CR26) 2020; 53 A Syed Mustafa (11411_CR24) 2016; 6 A Bala (11411_CR21) 2019; 44 X Chen (11411_CR29) 2015 X Yu (11411_CR1) 2002; 13 11411_CR37 11411_CR35 G Zhou (11411_CR3) 2019; 335 11411_CR36 11411_CR12 A Khan (11411_CR25) 2019; 10 11411_CR34 J Cheng (11411_CR43) 2022; 54 X Zhu (11411_CR17) 2017; 56 C Liu (11411_CR5) 2017; 89 H Faris (11411_CR9) 2016; 45 Y-t Chen (11411_CR15) 2014 Q Liu (11411_CR14) 2022; 10 J Cheng (11411_CR18) 2018; 50 U Agrawal (11411_CR8) 2020; 16 J Cheng (11411_CR20) 2019; 35 F Alqahtani (11411_CR32) 2020; 23 W Zhang (11411_CR19) 2019; 7 R Storn (11411_CR42) 1997; 11 F Aurenhammer (11411_CR38) 1991; 23 Q Liu (11411_CR13) 2023 S Fortune (11411_CR39) 1987; 2 H Tran-Ngoc (11411_CR31) 2019; 199 11411_CR6 11411_CR27 C Feng (11411_CR33) 2022; 275 11411_CR46 H Wang (11411_CR16) 2022; 13 11411_CR44 11411_CR23 11411_CR45 11411_CR40 11411_CR41 F Trujillo-Romero (11411_CR2) 2013; 5 S Mirjalili (11411_CR7) 2012; 218 Q Luo (11411_CR10) 2021; 65 |
| References_xml | – volume: 11 start-page: 341 issue: 4 year: 1997 end-page: 359 ident: CR42 article-title: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Global Optim doi: 10.1023/A:1008202821328. – ident: CR45 – volume: 10 start-page: 3821 issue: 10 year: 2019 end-page: 3830 ident: CR25 article-title: An alternative approach to neural network training based on hybrid bio meta-heuristic algorithm publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-019-01373-4 – ident: CR37 – volume: 56 start-page: 458 year: 2017 end-page: 471 ident: CR17 article-title: Cuckoo search algorithm with membrane communication mechanism for modeling overhead crane systems using RBF neural networks publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.03.019 – ident: CR12 – volume: 13 start-page: 1351 issue: 8 year: 2022 ident: CR16 article-title: Research on temperature compensation of multi-channel pressure scanner based on an improved cuckoo search optimizing a BP neural network publication-title: Micromachines doi: 10.3390/mi13081351 – volume: 35 start-page: 687 issue: 2 year: 2019 end-page: 702 ident: CR20 article-title: Cuckoo search algorithm with memory and the vibrant fault diagnosis for hydroelectric generating unit publication-title: Eng Comput doi: 10.1007/s00366-018-0627-1 – volume: 10 start-page: 0136140 issue: 8 year: 2015 ident: CR22 article-title: Global warming: predicting opec carbon dioxide emissions from petroleum consumption using neural network and hybrid cuckoo search algorithm publication-title: PLoS ONE doi: 10.1371/journal.pone.0136140 – volume: 13 start-page: 251 issue: 1 year: 2002 end-page: 254 ident: CR1 article-title: A general backpropagation algorithm for feedforward neural networks learning publication-title: IEEE Trans Neural Netw doi: 10.1109/72.977323 – ident: CR35 – ident: CR6 – volume: 23 start-page: 1769 issue: 3 year: 2020 end-page: 1780 ident: CR32 article-title: Internet of things-based urban waste management system for smart cities using a Cuckoo Search Algorithm publication-title: Cluster Comput doi: 10.1007/s10586-020-03126-x – year: 2023 ident: CR13 article-title: A chimp-inspired remora optimization algorithm for multilevel thresholding image segmentation using cross entropy publication-title: Artificial Intell Rev doi: 10.1007/s10462-023-10498-0 – volume: 10 start-page: 1567 issue: 9 year: 2022 ident: CR14 article-title: A hybrid arithmetic optimization and golden sine algorithm for solving industrial engineering design problems publication-title: Mathematics doi: 10.3390/math10091567 – ident: CR40 – volume: 44 start-page: 9769 issue: 11 year: 2019 end-page: 9778 ident: CR21 article-title: Prediction using cuckoo search optimized echo state network publication-title: Arab J Sci Eng doi: 10.1007/s13369-019-04008-0 – ident: CR27 – volume: 5 start-page: 289 issue: 5 year: 2013 end-page: 302 ident: CR2 article-title: Generation of neural networks using a genetic algorithm approach publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2013.057183 – volume: 335 start-page: 384 year: 2019 end-page: 399 ident: CR3 article-title: Functional networks and applications: a survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.085 – ident: CR23 – volume: 6 start-page: 1641 issue: 7 year: 2016 end-page: 1645 ident: CR24 article-title: Hybrid cuckoo optimized multi layer perceptron for hospital management information system web-services quality classification publication-title: J Med Imag Health Inform doi: 10.1166/jmihi.2016.1864 – volume: 53 start-page: 4993 issue: 7 year: 2020 end-page: 5018 ident: CR26 article-title: Deep neural network based Rider-Cuckoo Search Algorithm for plant disease detection publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09813-w – volume: 16 start-page: 37 issue: 1s year: 2020 end-page: 13720 ident: CR8 article-title: Hybrid Wolf-Bat algorithm for optimization of connection weights in multi-layer perceptron publication-title: ACM . Multimedia Comput Commun Appl doi: 10.1145/3350532 – ident: CR46 – ident: CR44 – year: 2022 ident: CR28 article-title: Computer vision model with novel cuckoo search based deep learning approach for classification of fish image publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13437-3 – volume: 199 year: 2019 ident: CR31 article-title: An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109637 – volume: 14 start-page: 1847 issue: 4 year: 2021 end-page: 1867 ident: CR11 article-title: Neighborhood centroid opposite-based learning Harris Hawks optimization for training neural networks publication-title: Evol Intel doi: 10.1007/s12065-020-00465-x – year: 2014 ident: CR15 article-title: Novel back propagation optimization by cuckoo search algorithm publication-title: Sci World J doi: 10.1155/2014/878262 – volume: 23 start-page: 345 issue: 3 year: 1991 end-page: 405 ident: CR38 article-title: Voronoi diagrams– a survey of a fundamental geometric data structure publication-title: ACM Comput Surv doi: 10.1145/116873.116880 – volume: 2 start-page: 153 issue: 1 year: 1987 end-page: 174 ident: CR39 article-title: A sweepline algorithm for Voronoi diagrams publication-title: Algorithmica doi: 10.1007/BF01840357 – volume: 89 start-page: 2277 issue: 5 year: 2017 end-page: 2285 ident: CR5 article-title: Prediction of high-speed grinding temperature of titanium matrix composites using BP neural network based on PSO algorithm publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9267-z – volume: 45 start-page: 322 issue: 2 year: 2016 end-page: 332 ident: CR9 article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems publication-title: Appl Intell doi: 10.1007/s10489-016-0767-1 – ident: CR34 – ident: CR36 – volume: 65 start-page: 1 year: 2021 end-page: 16 ident: CR10 article-title: Using spotted hyena optimizer for training feedforward neural networks publication-title: Cognitive Syst Res doi: 10.1016/j.cogsys.2020.09.001 – year: 2016 ident: CR30 article-title: A hybrid forecasting model based on empirical mode decomposition and the cuckoo search algorithm: a case study for power load publication-title: Math Problem Eng doi: 10.1155/2016/3205396 – volume: 275 year: 2022 ident: CR33 article-title: Prediction of welded joint fatigue properties based on a novel hybrid SPDTRS-CS-ANN method publication-title: Eng Fracture Mech doi: 10.1016/j.engfracmech.2022.108824 – volume: 185 start-page: 1026 issue: 2 year: 2007 end-page: 1037 ident: CR4 article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.07.025 – volume: 7 start-page: 11736 year: 2019 end-page: 11746 ident: CR19 article-title: A BP neural network prediction model based on dynamic cuckoo search optimization algorithm for industrial equipment fault prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892729 – year: 2015 ident: CR29 article-title: Short-term wind speed forecasting study and its application using a hybrid model optimized by cuckoo search publication-title: Math Problem Eng doi: 10.1155/2015/608597 – ident: CR41 – volume: 54 start-page: 3173 issue: 4 year: 2022 end-page: 3200 ident: CR43 article-title: Parameter control based cuckoo search algorithm for numerical optimization publication-title: Neural Process Lett doi: 10.1007/s11063-022-10758-0 – volume: 218 start-page: 11125 issue: 22 year: 2012 end-page: 11137 ident: CR7 article-title: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm publication-title: Appl Math Comput doi: 10.1016/j.amc.2012.04.069 – volume: 50 start-page: 1593 issue: 9 year: 2018 end-page: 1608 ident: CR18 article-title: An improved cuckoo search algorithm and its application in vibration fault diagnosis for a hydroelectric generating unit publication-title: Eng Optim doi: 10.1080/0305215X.2017.1401067 – volume: 65 start-page: 1 year: 2021 ident: 11411_CR10 publication-title: Cognitive Syst Res doi: 10.1016/j.cogsys.2020.09.001 – volume: 45 start-page: 322 issue: 2 year: 2016 ident: 11411_CR9 publication-title: Appl Intell doi: 10.1007/s10489-016-0767-1 – ident: 11411_CR36 doi: 10.1111/itor.13237 – ident: 11411_CR6 doi: 10.1007/978-3-642-27443-5_88 – ident: 11411_CR45 doi: 10.1145/509907.510011 – ident: 11411_CR35 – year: 2016 ident: 11411_CR30 publication-title: Math Problem Eng doi: 10.1155/2016/3205396 – year: 2015 ident: 11411_CR29 publication-title: Math Problem Eng doi: 10.1155/2015/608597 – volume: 54 start-page: 3173 issue: 4 year: 2022 ident: 11411_CR43 publication-title: Neural Process Lett doi: 10.1007/s11063-022-10758-0 – volume: 5 start-page: 289 issue: 5 year: 2013 ident: 11411_CR2 publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2013.057183 – year: 2023 ident: 11411_CR13 publication-title: Artificial Intell Rev doi: 10.1007/s10462-023-10498-0 – ident: 11411_CR41 doi: 10.1109/ICNN.1995.488968 – volume: 56 start-page: 458 year: 2017 ident: 11411_CR17 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.03.019 – volume: 7 start-page: 11736 year: 2019 ident: 11411_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892729 – volume: 199 year: 2019 ident: 11411_CR31 publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109637 – volume: 23 start-page: 1769 issue: 3 year: 2020 ident: 11411_CR32 publication-title: Cluster Comput doi: 10.1007/s10586-020-03126-x – volume: 2 start-page: 153 issue: 1 year: 1987 ident: 11411_CR39 publication-title: Algorithmica doi: 10.1007/BF01840357 – ident: 11411_CR44 – volume: 89 start-page: 2277 issue: 5 year: 2017 ident: 11411_CR5 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9267-z – volume: 10 start-page: 1567 issue: 9 year: 2022 ident: 11411_CR14 publication-title: Mathematics doi: 10.3390/math10091567 – ident: 11411_CR23 doi: 10.1007/s12046-015-0440-0 – ident: 11411_CR27 doi: 10.32604/cmc.2023.028824 – volume: 6 start-page: 1641 issue: 7 year: 2016 ident: 11411_CR24 publication-title: J Med Imag Health Inform doi: 10.1166/jmihi.2016.1864 – ident: 11411_CR46 doi: 10.1145/509907.510011 – volume: 10 start-page: 3821 issue: 10 year: 2019 ident: 11411_CR25 publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-019-01373-4 – ident: 11411_CR40 – year: 2014 ident: 11411_CR15 publication-title: Sci World J doi: 10.1155/2014/878262 – ident: 11411_CR34 doi: 10.1109/HIS.2011.6122077 – volume: 13 start-page: 251 issue: 1 year: 2002 ident: 11411_CR1 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.977323 – volume: 275 year: 2022 ident: 11411_CR33 publication-title: Eng Fracture Mech doi: 10.1016/j.engfracmech.2022.108824 – volume: 14 start-page: 1847 issue: 4 year: 2021 ident: 11411_CR11 publication-title: Evol Intel doi: 10.1007/s12065-020-00465-x – volume: 53 start-page: 4993 issue: 7 year: 2020 ident: 11411_CR26 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09813-w – volume: 50 start-page: 1593 issue: 9 year: 2018 ident: 11411_CR18 publication-title: Eng Optim doi: 10.1080/0305215X.2017.1401067 – ident: 11411_CR37 doi: 10.1109/NABIC.2009.5393690 – volume: 13 start-page: 1351 issue: 8 year: 2022 ident: 11411_CR16 publication-title: Micromachines doi: 10.3390/mi13081351 – ident: 11411_CR12 doi: 10.3389/fncom.2023.1079483 – volume: 16 start-page: 37 issue: 1s year: 2020 ident: 11411_CR8 publication-title: ACM . Multimedia Comput Commun Appl doi: 10.1145/3350532 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 11411_CR42 publication-title: J Global Optim doi: 10.1023/A:1008202821328. – volume: 185 start-page: 1026 issue: 2 year: 2007 ident: 11411_CR4 publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.07.025 – volume: 35 start-page: 687 issue: 2 year: 2019 ident: 11411_CR20 publication-title: Eng Comput doi: 10.1007/s00366-018-0627-1 – volume: 44 start-page: 9769 issue: 11 year: 2019 ident: 11411_CR21 publication-title: Arab J Sci Eng doi: 10.1007/s13369-019-04008-0 – volume: 335 start-page: 384 year: 2019 ident: 11411_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.085 – year: 2022 ident: 11411_CR28 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-13437-3 – volume: 218 start-page: 11125 issue: 22 year: 2012 ident: 11411_CR7 publication-title: Appl Math Comput doi: 10.1016/j.amc.2012.04.069 – volume: 10 start-page: 0136140 issue: 8 year: 2015 ident: 11411_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0136140 – volume: 23 start-page: 345 issue: 3 year: 1991 ident: 11411_CR38 publication-title: ACM Comput Surv doi: 10.1145/116873.116880 |
| SSID | ssj0010020 |
| Score | 2.3818505 |
| Snippet | Artificial neural networks are widely used for solving engineering design problems of various disciplines due to its simplicity, efficiency, and adaptability.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12093 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural networks Back propagation Benchmarks Bias Communication Complex Systems Computational Intelligence Computer Science Critical point Design engineering Entropy (Information theory) Fault diagnosis Feature selection Heuristic methods Minima Mutation Neural networks Optimization Optimization algorithms Root-mean-square errors Search algorithms Steepest descent method Voronoi graphs |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH9BuHjx24ii6cGbNnZja7eDMUggxAMaAwnxsqxfmggMFf5_266DaKKX7bCtyd57bX-v7-MHcJmLXLOI5FiyOMSR5DHmlBNz0Uqa7SE0GMlmWwzpYBw9TOJJDYZVLYxNq6zWRLdQy0LYM_IbayrUwG1C7hYf2LJG2ehqRaGRe2oFeetajG1BI7SdserQuO8Nn57XcQWLjpwLxgiOaBj4MpqymM54Rzam2cbGR7AHhz-3qg3-_BUydTtRfw92PIREnVLn-1BT8wPYregZkJ-th_DSmaPyzEBJ1F2J96JAZXYx6kxfzb8t32bIYFb0aJaNma_HRIV2I5eNJZDt3eFuLlkcjTyhxBGM-71Rd4A9lQIWRnBLbFRiWapSypjWLBEi0ZwkOuecRJFKUhXHmspQMyqoNCAjbQd5ILmMIs2kcUnax1CfF3N1AkgIolKd6DBVxq0W7TwmImecSxmENNGqCUEltUz4PuOW7mKabTokW0lnRtKZk3RGmnC1_mZRdtn49-1WpYzMz7ivbGMfTbiuFLR5_Pdop_-PdgbbobMJm8HSgvryc6XODQ5Z8gtvXN-KHdlL priority: 102 providerName: ProQuest |
| Title | An Improved Cuckoo Search Algorithm for Optimization of Artificial Neural Network Training |
| URI | https://link.springer.com/article/10.1007/s11063-023-11411-0 https://www.proquest.com/docview/3196696000 |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-773X dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AAJSJ dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vXjxLa4vcvCmlbTbJu2xyq6ioCIuqJfSvFTUrWj34q93kqYuigpeGmjS0Gaa5JvMzDcAO6UsDY9pGSieREGsRBIIJihejFa4PUSIkay3xRk7HsYn18m1Dwp7a73dW5OkW6knwW6ovVibYy9ADG8P9qZhxvFtdWAmP7o57X9aDywGcooWp0HMotAHy_zcy9cNaYIyvxlG3X4zmIdh-6aNm8nj_rgW-_L9G4njfz9lAeY8ACV588cswpQeLcF8m9yB-Lm-DLf5iDQnDlqRw7F8rCrS-CaT_Omuen2o758JIl5yjovOs4_mJJVxPTe0FMQyf7jCuZqTK5-OYgWGg_7V4XHgEzEEEmdoHaBAbY6rjHFuDE-lTI2gqSmFoHGs00wniWEqMpxJphCiZL2wDJVQcWy4QoWmtwqdUTXSa0CkpDozqYkyjUq57JUJlSUXQqkwYqnRXQhbaRTSs5TbZBlPxYRf2Q5egYNXuMEraBd2P595aTg6_my92Qq58PP1rbALEUNljmL1XiuzSfXvva3_r_kGzEZO7NYfZhM69etYbyGqqcU2TKeDo23_K2N50D-7uMS7wyj_AEaM798 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXaHmIhZb6ACewcBzHTg4VWvrQlpYFoa1UcQnxi0ptN6XdquLP8dsYO05XVKK3XjaHTUbReDL-xvP4AF43pvFKsIZaVXAqrC6olprhj3cWtweOGClUW4zl6EB8OiwOF-BP3wsTyip7nxgdtW1NOCN_H0xFItxm7MPZLxpYo0J2tafQaBK1gt2II8ZSY8ee-32FIdzFxu4Wrvcbzne2J5sjmlgGqEGZM4pvGwicKqmU96o0pvSalb7RmgnhysoVhZeWeyWNtLj_VnnWZFZbIbyyiNZzlHsPlkQuKgz-lj5uj79-u85jBDQWQz7FqJA8S207XfMeRmMhh5pTjEnCQeW_W-Mc795I0cadb2cZHibISoadja3Agps-hkc9HQRJ3uEJfB9OSXdG4SzZvDTHbUu6amYyPPmJupwdnRLEyOQLuqnT1P9JWh8ld4MsSJgVEi-xOJ1MEoHFUzi4E6U-g8VpO3XPgRjDXOVLzyuHYbzJm4KZRmltbcZl6d0Asl5rtUlzzQO9xkk9n8gcNF2jpuuo6ZoN4O31M2fdVI9b717tF6NOX_hFPbfHAbzrF2j-9_-lvbhd2jrcH00-79f7u-O9l_CAR_sI1TOrsDg7v3RriIFm-lUyNAI_7tq2_wKhRxce |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHbHjAzeI6iSOnRwjoCqLgEMrVVyieANESaoS_p-xk1BAgMQlOXg5zHh545l5g9BRLnPDKck9xaPAo0pEnmCCwMdoBddDABjJRlvcsN6AXg6j4acsfhft3rok65wGy9JUVJ2xMp1p4htYMtb_GHqA5-0j3yyap5YoAVb0IEg__AgWDTmTixOPssBv0mZ-nuPr1TTFm99cpO7m6a6gpQYy4rTW8Sqa0cUaWm7LMeBmd66j-7TA9RuBVvj0TT6XJa6jiXE6eignT9XjCwaMim_hmHhp8i9xadzMNZEEtlwd7ueCw3G_KSCxgQbd8_5pz2tKJ3gS9lTlgQpsVaqEcW4Mj6WMjSCxyYUglOo40VFkmAoMZ5IpABVJ6Oe-EopSwxWYIOEmmivKQm8hLCXRiYlNkGgwo2WYR0TmXAil_IDFRm8jv5VaJhtecVveYpRNGZGtpDOQdOYknZFtdPwxZlyzavzZe69VRtbssNfMHh0MzC8CzSetgqbNv8-287_uh2jh7qybXV_cXO2ixcAtFxvMsofmqsmb3gdIUokDt-reARwg1rE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Cuckoo+Search+Algorithm+for+Optimization+of+Artificial+Neural+Network+Training&rft.jtitle=Neural+processing+letters&rft.au=Maddaiah%2C+Pedda+Nagyalla&rft.au=Narayanan%2C+Pournami+Pulinthanathu&rft.date=2023-12-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=55&rft.issue=9&rft.spage=12093&rft.epage=12120&rft_id=info:doi/10.1007%2Fs11063-023-11411-0&rft.externalDocID=10_1007_s11063_023_11411_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon |