An Improved Cuckoo Search Algorithm for Optimization of Artificial Neural Network Training

Artificial neural networks are widely used for solving engineering design problems of various disciplines due to its simplicity, efficiency, and adaptability. It predicts promising and accurate results. Artificial neural network solves these problems with weights and biases obtained in the training...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 55; no. 9; pp. 12093 - 12120
Main Authors Maddaiah, Pedda Nagyalla, Narayanan, Pournami Pulinthanathu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1370-4621
1573-773X
DOI10.1007/s11063-023-11411-0

Cover

Abstract Artificial neural networks are widely used for solving engineering design problems of various disciplines due to its simplicity, efficiency, and adaptability. It predicts promising and accurate results. Artificial neural network solves these problems with weights and biases obtained in the training process. In training, the weights and biases have to be updated such that the difference between predicted and actual values has to be minimized. The artificial neural network uses stochastic gradient steepest descent methods to update the weights and biases for optimizing it. These methods are good at finding the optimum solution. However, they suffer from the drawbacks of vanishing gradient at local minima and critical points and are sensitive to initial weights and biases. As a result, it falls into local minima, the training time becomes high, and accuracy becomes low. One of the best solutions to overcome these problems is to use metaheuristics algorithms instead of stochastic gradient descent methods. Among metaheuristics, the cuckoo search algorithm is widely used in many applications due to its simplicity and efficiency. In this work, we proposed an improved Cuckoo search algorithm by incorporating Voronoi diagram with Cuckoo search to strengthen the weak areas of Cuckoo search and to overcome the addressed problems of the artificial neural network. The proposed Cuckoo search algorithm performance is tested on higher dimensional benchmark functions and on benchmark data sets. Moreover, its performance is compared with variants of Cuckoo search and other metaheuristic algorithms. The proposed algorithm has shown better results in terms of the number of generations, accuracy, cross-entropy, and root mean square error (RMSE).
AbstractList Artificial neural networks are widely used for solving engineering design problems of various disciplines due to its simplicity, efficiency, and adaptability. It predicts promising and accurate results. Artificial neural network solves these problems with weights and biases obtained in the training process. In training, the weights and biases have to be updated such that the difference between predicted and actual values has to be minimized. The artificial neural network uses stochastic gradient steepest descent methods to update the weights and biases for optimizing it. These methods are good at finding the optimum solution. However, they suffer from the drawbacks of vanishing gradient at local minima and critical points and are sensitive to initial weights and biases. As a result, it falls into local minima, the training time becomes high, and accuracy becomes low. One of the best solutions to overcome these problems is to use metaheuristics algorithms instead of stochastic gradient descent methods. Among metaheuristics, the cuckoo search algorithm is widely used in many applications due to its simplicity and efficiency. In this work, we proposed an improved Cuckoo search algorithm by incorporating Voronoi diagram with Cuckoo search to strengthen the weak areas of Cuckoo search and to overcome the addressed problems of the artificial neural network. The proposed Cuckoo search algorithm performance is tested on higher dimensional benchmark functions and on benchmark data sets. Moreover, its performance is compared with variants of Cuckoo search and other metaheuristic algorithms. The proposed algorithm has shown better results in terms of the number of generations, accuracy, cross-entropy, and root mean square error (RMSE).
Author Narayanan, Pournami Pulinthanathu
Maddaiah, Pedda Nagyalla
Author_xml – sequence: 1
  givenname: Pedda Nagyalla
  surname: Maddaiah
  fullname: Maddaiah, Pedda Nagyalla
  email: pedda_p180075cs@nitc.ac.in
  organization: Department of Computer Science and Engineering, National Institute of Technology Calicut
– sequence: 2
  givenname: Pournami Pulinthanathu
  surname: Narayanan
  fullname: Narayanan, Pournami Pulinthanathu
  organization: Department of Computer Science and Engineering, National Institute of Technology Calicut
BookMark eNp9kE9LAzEQxYNUsFa_gKeA59XJZjfZPZbin0KxByuIl5Bmkzbt7qZmU0U_vWkrCB56mjm837w37xz1WtdqhK4I3BAAftsRAowmkNKEkIyQBE5Qn-ScJpzT117cKYckYyk5Q-ddtwKIWAp99DZs8bjZePehKzzaqrVz-FlLr5Z4WC-ct2HZYOM8nm6Cbey3DNa12Bk89MEaq6ys8ZPe-v0In86v8cxL29p2cYFOjaw7ffk7B-jl_m42ekwm04fxaDhJFCVlSKSSkJa8ZJwbwwulCjOHwsj5HLJMF6XOc8Oq1HCmWMUzUlIiSTWvsszwKueMDtD14W784n2ruyBWbuvbaCmiAWMlA4CoKg4q5V3XeW2EsmH_TYh5a0FA7JoUhyZFbFLsmxQ7NP2HbrxtpP86DtED1EVxu9D-L9UR6gfqQYhA
CitedBy_id crossref_primary_10_3390_sym16070866
crossref_primary_10_1155_2024_1953277
crossref_primary_10_1007_s11063_024_11636_7
crossref_primary_10_3934_mbe_2024131
crossref_primary_10_3390_electronics13050899
Cites_doi 10.1023/A:1008202821328.
10.1007/s12652-019-01373-4
10.1016/j.asoc.2017.03.019
10.3390/mi13081351
10.1007/s00366-018-0627-1
10.1371/journal.pone.0136140
10.1109/72.977323
10.1007/s10586-020-03126-x
10.1007/s10462-023-10498-0
10.3390/math10091567
10.1007/s13369-019-04008-0
10.1504/IJBIC.2013.057183
10.1016/j.neucom.2018.04.085
10.1166/jmihi.2016.1864
10.1007/s10462-020-09813-w
10.1145/3350532
10.1007/s11042-022-13437-3
10.1016/j.engstruct.2019.109637
10.1007/s12065-020-00465-x
10.1155/2014/878262
10.1145/116873.116880
10.1007/BF01840357
10.1007/s00170-016-9267-z
10.1007/s10489-016-0767-1
10.1016/j.cogsys.2020.09.001
10.1155/2016/3205396
10.1016/j.engfracmech.2022.108824
10.1016/j.amc.2006.07.025
10.1109/ACCESS.2019.2892729
10.1155/2015/608597
10.1007/s11063-022-10758-0
10.1016/j.amc.2012.04.069
10.1080/0305215X.2017.1401067
10.1111/itor.13237
10.1007/978-3-642-27443-5_88
10.1145/509907.510011
10.1109/ICNN.1995.488968
10.1007/s12046-015-0440-0
10.32604/cmc.2023.028824
10.1109/HIS.2011.6122077
10.1109/NABIC.2009.5393690
10.3389/fncom.2023.1079483
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Dec 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Dec 2023
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-023-11411-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 12120
ExternalDocumentID 10_1007_s11063_023_11411_0
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-aca02979677ff78cc8fb08fabb044e89e55f6d2f76c6d741931a1dbd44f7d5763
IEDL.DBID AGYKE
ISSN 1370-4621
IngestDate Sat Oct 18 22:49:03 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Wed Oct 01 01:56:31 EDT 2025
Fri Feb 21 02:40:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Cuckoo search
Metaheuristic
Voronoi diagram
Artificial neural network
Numerical optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-aca02979677ff78cc8fb08fabb044e89e55f6d2f76c6d741931a1dbd44f7d5763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3196696000
PQPubID 2043838
PageCount 28
ParticipantIDs proquest_journals_3196696000
crossref_citationtrail_10_1007_s11063_023_11411_0
crossref_primary_10_1007_s11063_023_11411_0
springer_journals_10_1007_s11063_023_11411_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Feng, Xu, Zhao, Han, Su, Peng (CR33) 2022; 275
Cristin, Kumar, Priya, Karthick (CR26) 2020; 53
Yu, Efe, Kaynak (CR1) 2002; 13
Chen (CR15) 2014
Liu, Ding, Li, Yang (CR5) 2017; 89
Aziz, Desai, Baluch (CR28) 2022
Mirjalili, Mohd Hashim, Moradian Sardroudi (CR7) 2012; 218
Chen, Jin, Qin, Li (CR29) 2015
CR37
CR36
Zhang, Han, Wang, Liu (CR19) 2019; 7
CR35
CR12
CR34
Zhou, Zhou, Huang, Tang (CR3) 2019; 335
Zhang, Zhang, Lok, Lyu (CR4) 2007; 185
Storn, Price (CR42) 1997; 11
Syed Mustafa, Kumaraswamy (CR24) 2016; 6
Alqahtani, Al-Makhadmeh, Tolba, Said (CR32) 2020; 23
Faris, Aljarah, Mirjalili (CR9) 2016; 45
Cheng, Wang, Xiong (CR18) 2018; 50
Cheng, Wang, Xiong (CR20) 2019; 35
CR6
Zhu, Wang (CR17) 2017; 56
Cheng, Xiong (CR43) 2022; 54
Tran-Ngoc, Khatir, De Roeck, Bui-Tien, Abdel Wahab (CR31) 2019; 199
CR27
CR46
Fan, Zhou, Tang (CR11) 2021; 14
CR23
Khan, Shah, Imran, Khan, Bangash, Shah (CR25) 2019; 10
CR45
Liu, Li, Jia, Qi, Abualigah (CR13) 2023
CR44
Heng, Wang, Zhao, Wang (CR30) 2016
Agrawal, Arora, Singh, Gupta, Khanna, Khamparia (CR8) 2020; 16
Bala, Ismail, Ibrahim, Sait, Salami (CR21) 2019; 44
CR41
Liu, Li, Jia, Qi, Abualigah, Liu (CR14) 2022; 10
CR40
Luo, Li, Zhou, Liao (CR10) 2021; 65
Chiroma, Abdul-kareem, Khan, Nawi, Gital, Shuib, Abubakar, Rahman, Herawan (CR22) 2015; 10
Wang, Zeng, Zhang, Wang (CR16) 2022; 13
Aurenhammer (CR38) 1991; 23
Trujillo-Romero (CR2) 2013; 5
Fortune (CR39) 1987; 2
H Chiroma (11411_CR22) 2015; 10
J-R Zhang (11411_CR4) 2007; 185
RM Aziz (11411_CR28) 2022
J Heng (11411_CR30) 2016
C Fan (11411_CR11) 2021; 14
R Cristin (11411_CR26) 2020; 53
A Syed Mustafa (11411_CR24) 2016; 6
A Bala (11411_CR21) 2019; 44
X Chen (11411_CR29) 2015
X Yu (11411_CR1) 2002; 13
11411_CR37
11411_CR35
G Zhou (11411_CR3) 2019; 335
11411_CR36
11411_CR12
A Khan (11411_CR25) 2019; 10
11411_CR34
J Cheng (11411_CR43) 2022; 54
X Zhu (11411_CR17) 2017; 56
C Liu (11411_CR5) 2017; 89
H Faris (11411_CR9) 2016; 45
Y-t Chen (11411_CR15) 2014
Q Liu (11411_CR14) 2022; 10
J Cheng (11411_CR18) 2018; 50
U Agrawal (11411_CR8) 2020; 16
J Cheng (11411_CR20) 2019; 35
F Alqahtani (11411_CR32) 2020; 23
W Zhang (11411_CR19) 2019; 7
R Storn (11411_CR42) 1997; 11
F Aurenhammer (11411_CR38) 1991; 23
Q Liu (11411_CR13) 2023
S Fortune (11411_CR39) 1987; 2
H Tran-Ngoc (11411_CR31) 2019; 199
11411_CR6
11411_CR27
C Feng (11411_CR33) 2022; 275
11411_CR46
H Wang (11411_CR16) 2022; 13
11411_CR44
11411_CR23
11411_CR45
11411_CR40
11411_CR41
F Trujillo-Romero (11411_CR2) 2013; 5
S Mirjalili (11411_CR7) 2012; 218
Q Luo (11411_CR10) 2021; 65
References_xml – volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  ident: CR42
  article-title: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328.
– ident: CR45
– volume: 10
  start-page: 3821
  issue: 10
  year: 2019
  end-page: 3830
  ident: CR25
  article-title: An alternative approach to neural network training based on hybrid bio meta-heuristic algorithm
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-019-01373-4
– ident: CR37
– volume: 56
  start-page: 458
  year: 2017
  end-page: 471
  ident: CR17
  article-title: Cuckoo search algorithm with membrane communication mechanism for modeling overhead crane systems using RBF neural networks
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.03.019
– ident: CR12
– volume: 13
  start-page: 1351
  issue: 8
  year: 2022
  ident: CR16
  article-title: Research on temperature compensation of multi-channel pressure scanner based on an improved cuckoo search optimizing a BP neural network
  publication-title: Micromachines
  doi: 10.3390/mi13081351
– volume: 35
  start-page: 687
  issue: 2
  year: 2019
  end-page: 702
  ident: CR20
  article-title: Cuckoo search algorithm with memory and the vibrant fault diagnosis for hydroelectric generating unit
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0627-1
– volume: 10
  start-page: 0136140
  issue: 8
  year: 2015
  ident: CR22
  article-title: Global warming: predicting opec carbon dioxide emissions from petroleum consumption using neural network and hybrid cuckoo search algorithm
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0136140
– volume: 13
  start-page: 251
  issue: 1
  year: 2002
  end-page: 254
  ident: CR1
  article-title: A general backpropagation algorithm for feedforward neural networks learning
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.977323
– ident: CR35
– ident: CR6
– volume: 23
  start-page: 1769
  issue: 3
  year: 2020
  end-page: 1780
  ident: CR32
  article-title: Internet of things-based urban waste management system for smart cities using a Cuckoo Search Algorithm
  publication-title: Cluster Comput
  doi: 10.1007/s10586-020-03126-x
– year: 2023
  ident: CR13
  article-title: A chimp-inspired remora optimization algorithm for multilevel thresholding image segmentation using cross entropy
  publication-title: Artificial Intell Rev
  doi: 10.1007/s10462-023-10498-0
– volume: 10
  start-page: 1567
  issue: 9
  year: 2022
  ident: CR14
  article-title: A hybrid arithmetic optimization and golden sine algorithm for solving industrial engineering design problems
  publication-title: Mathematics
  doi: 10.3390/math10091567
– ident: CR40
– volume: 44
  start-page: 9769
  issue: 11
  year: 2019
  end-page: 9778
  ident: CR21
  article-title: Prediction using cuckoo search optimized echo state network
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-04008-0
– ident: CR27
– volume: 5
  start-page: 289
  issue: 5
  year: 2013
  end-page: 302
  ident: CR2
  article-title: Generation of neural networks using a genetic algorithm approach
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2013.057183
– volume: 335
  start-page: 384
  year: 2019
  end-page: 399
  ident: CR3
  article-title: Functional networks and applications: a survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.085
– ident: CR23
– volume: 6
  start-page: 1641
  issue: 7
  year: 2016
  end-page: 1645
  ident: CR24
  article-title: Hybrid cuckoo optimized multi layer perceptron for hospital management information system web-services quality classification
  publication-title: J Med Imag Health Inform
  doi: 10.1166/jmihi.2016.1864
– volume: 53
  start-page: 4993
  issue: 7
  year: 2020
  end-page: 5018
  ident: CR26
  article-title: Deep neural network based Rider-Cuckoo Search Algorithm for plant disease detection
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09813-w
– volume: 16
  start-page: 37
  issue: 1s
  year: 2020
  end-page: 13720
  ident: CR8
  article-title: Hybrid Wolf-Bat algorithm for optimization of connection weights in multi-layer perceptron
  publication-title: ACM . Multimedia Comput Commun Appl
  doi: 10.1145/3350532
– ident: CR46
– ident: CR44
– year: 2022
  ident: CR28
  article-title: Computer vision model with novel cuckoo search based deep learning approach for classification of fish image
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13437-3
– volume: 199
  year: 2019
  ident: CR31
  article-title: An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109637
– volume: 14
  start-page: 1847
  issue: 4
  year: 2021
  end-page: 1867
  ident: CR11
  article-title: Neighborhood centroid opposite-based learning Harris Hawks optimization for training neural networks
  publication-title: Evol Intel
  doi: 10.1007/s12065-020-00465-x
– year: 2014
  ident: CR15
  article-title: Novel back propagation optimization by cuckoo search algorithm
  publication-title: Sci World J
  doi: 10.1155/2014/878262
– volume: 23
  start-page: 345
  issue: 3
  year: 1991
  end-page: 405
  ident: CR38
  article-title: Voronoi diagrams– a survey of a fundamental geometric data structure
  publication-title: ACM Comput Surv
  doi: 10.1145/116873.116880
– volume: 2
  start-page: 153
  issue: 1
  year: 1987
  end-page: 174
  ident: CR39
  article-title: A sweepline algorithm for Voronoi diagrams
  publication-title: Algorithmica
  doi: 10.1007/BF01840357
– volume: 89
  start-page: 2277
  issue: 5
  year: 2017
  end-page: 2285
  ident: CR5
  article-title: Prediction of high-speed grinding temperature of titanium matrix composites using BP neural network based on PSO algorithm
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-9267-z
– volume: 45
  start-page: 322
  issue: 2
  year: 2016
  end-page: 332
  ident: CR9
  article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0767-1
– ident: CR34
– ident: CR36
– volume: 65
  start-page: 1
  year: 2021
  end-page: 16
  ident: CR10
  article-title: Using spotted hyena optimizer for training feedforward neural networks
  publication-title: Cognitive Syst Res
  doi: 10.1016/j.cogsys.2020.09.001
– year: 2016
  ident: CR30
  article-title: A hybrid forecasting model based on empirical mode decomposition and the cuckoo search algorithm: a case study for power load
  publication-title: Math Problem Eng
  doi: 10.1155/2016/3205396
– volume: 275
  year: 2022
  ident: CR33
  article-title: Prediction of welded joint fatigue properties based on a novel hybrid SPDTRS-CS-ANN method
  publication-title: Eng Fracture Mech
  doi: 10.1016/j.engfracmech.2022.108824
– volume: 185
  start-page: 1026
  issue: 2
  year: 2007
  end-page: 1037
  ident: CR4
  article-title: A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.07.025
– volume: 7
  start-page: 11736
  year: 2019
  end-page: 11746
  ident: CR19
  article-title: A BP neural network prediction model based on dynamic cuckoo search optimization algorithm for industrial equipment fault prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892729
– year: 2015
  ident: CR29
  article-title: Short-term wind speed forecasting study and its application using a hybrid model optimized by cuckoo search
  publication-title: Math Problem Eng
  doi: 10.1155/2015/608597
– ident: CR41
– volume: 54
  start-page: 3173
  issue: 4
  year: 2022
  end-page: 3200
  ident: CR43
  article-title: Parameter control based cuckoo search algorithm for numerical optimization
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-022-10758-0
– volume: 218
  start-page: 11125
  issue: 22
  year: 2012
  end-page: 11137
  ident: CR7
  article-title: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2012.04.069
– volume: 50
  start-page: 1593
  issue: 9
  year: 2018
  end-page: 1608
  ident: CR18
  article-title: An improved cuckoo search algorithm and its application in vibration fault diagnosis for a hydroelectric generating unit
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2017.1401067
– volume: 65
  start-page: 1
  year: 2021
  ident: 11411_CR10
  publication-title: Cognitive Syst Res
  doi: 10.1016/j.cogsys.2020.09.001
– volume: 45
  start-page: 322
  issue: 2
  year: 2016
  ident: 11411_CR9
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0767-1
– ident: 11411_CR36
  doi: 10.1111/itor.13237
– ident: 11411_CR6
  doi: 10.1007/978-3-642-27443-5_88
– ident: 11411_CR45
  doi: 10.1145/509907.510011
– ident: 11411_CR35
– year: 2016
  ident: 11411_CR30
  publication-title: Math Problem Eng
  doi: 10.1155/2016/3205396
– year: 2015
  ident: 11411_CR29
  publication-title: Math Problem Eng
  doi: 10.1155/2015/608597
– volume: 54
  start-page: 3173
  issue: 4
  year: 2022
  ident: 11411_CR43
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-022-10758-0
– volume: 5
  start-page: 289
  issue: 5
  year: 2013
  ident: 11411_CR2
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2013.057183
– year: 2023
  ident: 11411_CR13
  publication-title: Artificial Intell Rev
  doi: 10.1007/s10462-023-10498-0
– ident: 11411_CR41
  doi: 10.1109/ICNN.1995.488968
– volume: 56
  start-page: 458
  year: 2017
  ident: 11411_CR17
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.03.019
– volume: 7
  start-page: 11736
  year: 2019
  ident: 11411_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892729
– volume: 199
  year: 2019
  ident: 11411_CR31
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109637
– volume: 23
  start-page: 1769
  issue: 3
  year: 2020
  ident: 11411_CR32
  publication-title: Cluster Comput
  doi: 10.1007/s10586-020-03126-x
– volume: 2
  start-page: 153
  issue: 1
  year: 1987
  ident: 11411_CR39
  publication-title: Algorithmica
  doi: 10.1007/BF01840357
– ident: 11411_CR44
– volume: 89
  start-page: 2277
  issue: 5
  year: 2017
  ident: 11411_CR5
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-9267-z
– volume: 10
  start-page: 1567
  issue: 9
  year: 2022
  ident: 11411_CR14
  publication-title: Mathematics
  doi: 10.3390/math10091567
– ident: 11411_CR23
  doi: 10.1007/s12046-015-0440-0
– ident: 11411_CR27
  doi: 10.32604/cmc.2023.028824
– volume: 6
  start-page: 1641
  issue: 7
  year: 2016
  ident: 11411_CR24
  publication-title: J Med Imag Health Inform
  doi: 10.1166/jmihi.2016.1864
– ident: 11411_CR46
  doi: 10.1145/509907.510011
– volume: 10
  start-page: 3821
  issue: 10
  year: 2019
  ident: 11411_CR25
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-019-01373-4
– ident: 11411_CR40
– year: 2014
  ident: 11411_CR15
  publication-title: Sci World J
  doi: 10.1155/2014/878262
– ident: 11411_CR34
  doi: 10.1109/HIS.2011.6122077
– volume: 13
  start-page: 251
  issue: 1
  year: 2002
  ident: 11411_CR1
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.977323
– volume: 275
  year: 2022
  ident: 11411_CR33
  publication-title: Eng Fracture Mech
  doi: 10.1016/j.engfracmech.2022.108824
– volume: 14
  start-page: 1847
  issue: 4
  year: 2021
  ident: 11411_CR11
  publication-title: Evol Intel
  doi: 10.1007/s12065-020-00465-x
– volume: 53
  start-page: 4993
  issue: 7
  year: 2020
  ident: 11411_CR26
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09813-w
– volume: 50
  start-page: 1593
  issue: 9
  year: 2018
  ident: 11411_CR18
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2017.1401067
– ident: 11411_CR37
  doi: 10.1109/NABIC.2009.5393690
– volume: 13
  start-page: 1351
  issue: 8
  year: 2022
  ident: 11411_CR16
  publication-title: Micromachines
  doi: 10.3390/mi13081351
– ident: 11411_CR12
  doi: 10.3389/fncom.2023.1079483
– volume: 16
  start-page: 37
  issue: 1s
  year: 2020
  ident: 11411_CR8
  publication-title: ACM . Multimedia Comput Commun Appl
  doi: 10.1145/3350532
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 11411_CR42
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328.
– volume: 185
  start-page: 1026
  issue: 2
  year: 2007
  ident: 11411_CR4
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.07.025
– volume: 35
  start-page: 687
  issue: 2
  year: 2019
  ident: 11411_CR20
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0627-1
– volume: 44
  start-page: 9769
  issue: 11
  year: 2019
  ident: 11411_CR21
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-04008-0
– volume: 335
  start-page: 384
  year: 2019
  ident: 11411_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.085
– year: 2022
  ident: 11411_CR28
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13437-3
– volume: 218
  start-page: 11125
  issue: 22
  year: 2012
  ident: 11411_CR7
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2012.04.069
– volume: 10
  start-page: 0136140
  issue: 8
  year: 2015
  ident: 11411_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0136140
– volume: 23
  start-page: 345
  issue: 3
  year: 1991
  ident: 11411_CR38
  publication-title: ACM Comput Surv
  doi: 10.1145/116873.116880
SSID ssj0010020
Score 2.3818505
Snippet Artificial neural networks are widely used for solving engineering design problems of various disciplines due to its simplicity, efficiency, and adaptability....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12093
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Back propagation
Benchmarks
Bias
Communication
Complex Systems
Computational Intelligence
Computer Science
Critical point
Design engineering
Entropy (Information theory)
Fault diagnosis
Feature selection
Heuristic methods
Minima
Mutation
Neural networks
Optimization
Optimization algorithms
Root-mean-square errors
Search algorithms
Steepest descent method
Voronoi graphs
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH9BuHjx24ii6cGbNnZja7eDMUggxAMaAwnxsqxfmggMFf5_266DaKKX7bCtyd57bX-v7-MHcJmLXLOI5FiyOMSR5DHmlBNz0Uqa7SE0GMlmWwzpYBw9TOJJDYZVLYxNq6zWRLdQy0LYM_IbayrUwG1C7hYf2LJG2ehqRaGRe2oFeetajG1BI7SdserQuO8Nn57XcQWLjpwLxgiOaBj4MpqymM54Rzam2cbGR7AHhz-3qg3-_BUydTtRfw92PIREnVLn-1BT8wPYregZkJ-th_DSmaPyzEBJ1F2J96JAZXYx6kxfzb8t32bIYFb0aJaNma_HRIV2I5eNJZDt3eFuLlkcjTyhxBGM-71Rd4A9lQIWRnBLbFRiWapSypjWLBEi0ZwkOuecRJFKUhXHmspQMyqoNCAjbQd5ILmMIs2kcUnax1CfF3N1AkgIolKd6DBVxq0W7TwmImecSxmENNGqCUEltUz4PuOW7mKabTokW0lnRtKZk3RGmnC1_mZRdtn49-1WpYzMz7ivbGMfTbiuFLR5_Pdop_-PdgbbobMJm8HSgvryc6XODQ5Z8gtvXN-KHdlL
  priority: 102
  providerName: ProQuest
Title An Improved Cuckoo Search Algorithm for Optimization of Artificial Neural Network Training
URI https://link.springer.com/article/10.1007/s11063-023-11411-0
https://www.proquest.com/docview/3196696000
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-773X
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AAJSJ
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vXjxLa4vcvCmlbTbJu2xyq6ioCIuqJfSvFTUrWj34q93kqYuigpeGmjS0Gaa5JvMzDcAO6UsDY9pGSieREGsRBIIJihejFa4PUSIkay3xRk7HsYn18m1Dwp7a73dW5OkW6knwW6ovVibYy9ADG8P9qZhxvFtdWAmP7o57X9aDywGcooWp0HMotAHy_zcy9cNaYIyvxlG3X4zmIdh-6aNm8nj_rgW-_L9G4njfz9lAeY8ACV588cswpQeLcF8m9yB-Lm-DLf5iDQnDlqRw7F8rCrS-CaT_Omuen2o758JIl5yjovOs4_mJJVxPTe0FMQyf7jCuZqTK5-OYgWGg_7V4XHgEzEEEmdoHaBAbY6rjHFuDE-lTI2gqSmFoHGs00wniWEqMpxJphCiZL2wDJVQcWy4QoWmtwqdUTXSa0CkpDozqYkyjUq57JUJlSUXQqkwYqnRXQhbaRTSs5TbZBlPxYRf2Q5egYNXuMEraBd2P595aTg6_my92Qq58PP1rbALEUNljmL1XiuzSfXvva3_r_kGzEZO7NYfZhM69etYbyGqqcU2TKeDo23_K2N50D-7uMS7wyj_AEaM798
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXaHmIhZb6ACewcBzHTg4VWvrQlpYFoa1UcQnxi0ptN6XdquLP8dsYO05XVKK3XjaHTUbReDL-xvP4AF43pvFKsIZaVXAqrC6olprhj3cWtweOGClUW4zl6EB8OiwOF-BP3wsTyip7nxgdtW1NOCN_H0xFItxm7MPZLxpYo0J2tafQaBK1gt2II8ZSY8ee-32FIdzFxu4Wrvcbzne2J5sjmlgGqEGZM4pvGwicKqmU96o0pvSalb7RmgnhysoVhZeWeyWNtLj_VnnWZFZbIbyyiNZzlHsPlkQuKgz-lj5uj79-u85jBDQWQz7FqJA8S207XfMeRmMhh5pTjEnCQeW_W-Mc795I0cadb2cZHibISoadja3Agps-hkc9HQRJ3uEJfB9OSXdG4SzZvDTHbUu6amYyPPmJupwdnRLEyOQLuqnT1P9JWh8ld4MsSJgVEi-xOJ1MEoHFUzi4E6U-g8VpO3XPgRjDXOVLzyuHYbzJm4KZRmltbcZl6d0Asl5rtUlzzQO9xkk9n8gcNF2jpuuo6ZoN4O31M2fdVI9b717tF6NOX_hFPbfHAbzrF2j-9_-lvbhd2jrcH00-79f7u-O9l_CAR_sI1TOrsDg7v3RriIFm-lUyNAI_7tq2_wKhRxce
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHbHjAzeI6iSOnRwjoCqLgEMrVVyieANESaoS_p-xk1BAgMQlOXg5zHh545l5g9BRLnPDKck9xaPAo0pEnmCCwMdoBddDABjJRlvcsN6AXg6j4acsfhft3rok65wGy9JUVJ2xMp1p4htYMtb_GHqA5-0j3yyap5YoAVb0IEg__AgWDTmTixOPssBv0mZ-nuPr1TTFm99cpO7m6a6gpQYy4rTW8Sqa0cUaWm7LMeBmd66j-7TA9RuBVvj0TT6XJa6jiXE6eignT9XjCwaMim_hmHhp8i9xadzMNZEEtlwd7ueCw3G_KSCxgQbd8_5pz2tKJ3gS9lTlgQpsVaqEcW4Mj6WMjSCxyYUglOo40VFkmAoMZ5IpABVJ6Oe-EopSwxWYIOEmmivKQm8hLCXRiYlNkGgwo2WYR0TmXAil_IDFRm8jv5VaJhtecVveYpRNGZGtpDOQdOYknZFtdPwxZlyzavzZe69VRtbssNfMHh0MzC8CzSetgqbNv8-287_uh2jh7qybXV_cXO2ixcAtFxvMsofmqsmb3gdIUokDt-reARwg1rE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Cuckoo+Search+Algorithm+for+Optimization+of+Artificial+Neural+Network+Training&rft.jtitle=Neural+processing+letters&rft.au=Maddaiah%2C+Pedda+Nagyalla&rft.au=Narayanan%2C+Pournami+Pulinthanathu&rft.date=2023-12-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=55&rft.issue=9&rft.spage=12093&rft.epage=12120&rft_id=info:doi/10.1007%2Fs11063-023-11411-0&rft.externalDocID=10_1007_s11063_023_11411_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon