Predicting the Compressive Strength of Pervious Cement Concrete based on Fast Genetic Programming Method
The primary objective of this paper is to develop an appropriate predictive formula for the compressive strength of pervious concrete, which depends on its mixture. This will allow for the improvement of the proportioning procedure that considers both the target porosity and target compressive stren...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 49; no. 4; pp. 5487 - 5504 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2193-567X 1319-8025 2191-4281 |
DOI | 10.1007/s13369-023-08396-2 |
Cover
Abstract | The primary objective of this paper is to develop an appropriate predictive formula for the compressive strength of pervious concrete, which depends on its mixture. This will allow for the improvement of the proportioning procedure that considers both the target porosity and target compressive strength. To achieve this, an effective computational strategy is first constructed and investigated for the creation of simple and easily applicable symbolic regression functions within the Genetic Programming-based Symbolic Regression framework. Recent advancements in fast logical parallelism and model-based algorithms are also applied to perform calculations on a large quantity of examples, with the aim of finding the most suitable analytical solutions at a low computational cost. Next, to assess the effectiveness of this model in predicting the compressive strength of concrete in general, computations are carried out using the well-known Yeh's dataset on conventional concrete compressive strength. This dataset has been extensively studied using both "black-box" and "white-box" machine learning algorithms. The results reveal that more suitable formulas can be generated through this computational process, compared to several scenarios discussed in the literature. Furthermore, the model is extended to pervious concrete, based on the dataset of 164 samples of 28-day compressive strength collected from 14 different sources. The findings for pervious concrete exhibited high accuracy compared to the most effective black-box models and micromechanical/empirical models, with a coefficient of determination of approximately 0.9 for simple predictive equations, thereby supporting the effectiveness of the proposed approach. |
---|---|
AbstractList | The primary objective of this paper is to develop an appropriate predictive formula for the compressive strength of pervious concrete, which depends on its mixture. This will allow for the improvement of the proportioning procedure that considers both the target porosity and target compressive strength. To achieve this, an effective computational strategy is first constructed and investigated for the creation of simple and easily applicable symbolic regression functions within the Genetic Programming-based Symbolic Regression framework. Recent advancements in fast logical parallelism and model-based algorithms are also applied to perform calculations on a large quantity of examples, with the aim of finding the most suitable analytical solutions at a low computational cost. Next, to assess the effectiveness of this model in predicting the compressive strength of concrete in general, computations are carried out using the well-known Yeh's dataset on conventional concrete compressive strength. This dataset has been extensively studied using both "black-box" and "white-box" machine learning algorithms. The results reveal that more suitable formulas can be generated through this computational process, compared to several scenarios discussed in the literature. Furthermore, the model is extended to pervious concrete, based on the dataset of 164 samples of 28-day compressive strength collected from 14 different sources. The findings for pervious concrete exhibited high accuracy compared to the most effective black-box models and micromechanical/empirical models, with a coefficient of determination of approximately 0.9 for simple predictive equations, thereby supporting the effectiveness of the proposed approach. |
Author | Vu, Viet-Hung Tran, Bao-Viet Vu, Thai-Son Nguyen, Van-Hung Le, Ba-Anh |
Author_xml | – sequence: 1 givenname: Ba-Anh surname: Le fullname: Le, Ba-Anh organization: University of Transport and Communications – sequence: 2 givenname: Bao-Viet orcidid: 0000-0001-9709-5699 surname: Tran fullname: Tran, Bao-Viet email: viettb@utc.edu.vn organization: University of Transport and Communications – sequence: 3 givenname: Thai-Son surname: Vu fullname: Vu, Thai-Son organization: Hanoi University of Civil Engineering – sequence: 4 givenname: Viet-Hung surname: Vu fullname: Vu, Viet-Hung organization: Campus in Ho Chi Minh City, University of Transport and Communications – sequence: 5 givenname: Van-Hung surname: Nguyen fullname: Nguyen, Van-Hung organization: University of Transport and Communications |
BookMark | eNp9kMtKBDEQRYMoOOr8gKuA69Y8-pEsZfAFigMquAvppLonYidjkhH8e9tpQXAxq6rFObeKe4T2ffCA0Ckl55SQ5iJRzmtZEMYLIrisC7aHZoxKWpRM0P3tzouqbl4P0Twl15JyxCpK-QytlhGsM9n5HucV4EUY1hFG6BPwU47g-7zCocNLiJ8ubBJewAA-j5w3ETLgViewOHh8rVPGN-AhO4OXMfRRD8NP7APkVbAn6KDT7wnmv_MYvVxfPS9ui_vHm7vF5X1hOJW50C0ntZS2KkVVCdJKU1eNtcZy3Uhra2MZbzqAUoLWlJUMWFcLwSwXJbGm4cfobMpdx_CxgZTVW9hEP55UnNCqLFndiJFiE2ViSClCp9bRDTp-KUrUT6lqKlWNpaptqYqNkvgnGZd1dsHnqN37bpVPahrv-B7i31c7rG-yOI6v |
CitedBy_id | crossref_primary_10_1016_j_trpro_2025_03_138 crossref_primary_10_1007_s43452_024_01007_3 crossref_primary_10_1080_10589759_2025_2468273 crossref_primary_10_1038_s41467_024_48766_4 crossref_primary_10_1088_2632_2153_ad52e8 crossref_primary_10_1016_j_nanoso_2024_101373 crossref_primary_10_1007_s41062_024_01829_3 |
Cites_doi | 10.1016/j.conbuildmat.2019.03.310 10.1016/j.conbuildmat.2016.10.114 10.1007/s00366-020-01260-z 10.1016/S0008-8846(98)00165-3 10.1016/j.conbuildmat.2016.01.051 10.1557/mrc.2019.85 10.1016/S0008-8846(03)00230-8 10.1007/s13369-021-05761-x 10.1201/9781420011326 10.1016/j.conbuildmat.2021.125279 10.1162/evco_a_00278 10.1016/j.cemconcomp.2020.103693 10.1016/j.cemconres.2003.08.018 10.1007/3-540-36599-0_7 10.1016/j.conbuildmat.2019.01.044 10.1080/14680629.2019.1648311 10.1016/j.cemconcomp.2011.06.002 10.1016/j.advengsoft.2011.09.014 10.1016/j.conbuildmat.2011.03.002 10.12989/cac.2019.23.2.145 10.1520/JAI101320 10.1201/9781420038439 10.3141/2290-21 10.1016/j.conbuildmat.2011.05.005 10.1016/j.conbuildmat.2017.02.086 10.1007/978-3-7908-1784-3_4 10.1016/j.jclepro.2018.08.065 10.1016/j.petrol.2021.108350 10.1016/j.conbuildmat.2013.09.022 10.1088/1361-651X/acaa49 10.12989/sem.2010.36.2.225 10.1007/s00500-019-04379-4 10.1016/j.cemconres.2011.01.010 10.1061/(ASCE)0887-3801(2003)17:4(290) 10.14359/13422 10.1016/j.jappgeo.2020.104226 10.1016/j.conbuildmat.2018.08.178 10.1016/j.mechrescom.2021.103791 10.1016/j.jclepro.2022.133522 10.1016/j.conbuildmat.2005.08.009 10.1145/3377929.3398099 10.1016/j.conbuildmat.2019.06.185 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-023-08396-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 5504 |
ExternalDocumentID | 10_1007_s13369_023_08396_2 |
GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c319t-ab30699d5485580b9c657ddcd3a79dd6cd237fee49eaa1242e2f6882d3840dc73 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 08:54:03 EDT 2025 Tue Jul 01 01:34:33 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Fri Feb 21 02:43:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Symbolic regression Compressive strength Pervious concrete Genetic programming Proportioning procedure Machine learning |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-ab30699d5485580b9c657ddcd3a79dd6cd237fee49eaa1242e2f6882d3840dc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9709-5699 |
PQID | 3015442678 |
PQPubID | 2044268 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3015442678 crossref_primary_10_1007_s13369_023_08396_2 crossref_citationtrail_10_1007_s13369_023_08396_2 springer_journals_10_1007_s13369_023_08396_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Lim, Yoon, Kim (CR14) 2004; 34 Elango, Revathi (CR42) 2017; 140 Zhou, Li, Abdelhady, Liang, Wang, Yang (CR47) 2019; 212 Chen (CR13) 2003; 17 Nguyen-Sy, Vu, Tran-Le, Tran, Nguyen, Nguyen (CR28) 2020 Moghaddas, Nekoei, Mohammadi Golafshani, Nehdi, Arashpour (CR8) 2022; 371 Ferguson (CR16) 2005 Vu, Tran, Le, Nguyen (CR19) 2021; 118 CR34 Yeh (CR20) 1998; 28 Wang, Li, Liang, Zhou, Xie, Dai (CR45) 2019; 202 CR31 Tran, Pham, Loc, Le (CR3) 2019; 23 Tsivolas, Gergidis, Paipetis (CR4) 2022; 31 Videla, Gaedicke (CR33) 2004; 101 Sumanasooriya, Neithalath (CR38) 2011; 33 Affenzeller, Wagner, Winkler, Beham (CR23) 2009 Lian, Zhuge, Beecham (CR36) 2011; 25 Constantinides, Ulm (CR1) 2004; 34 Asadi, Hassan, Kevern, Rupnow (CR39) 2012; 2290 CR49 Kevern, Schaefer, Wang, Suleiman (CR35) 2008; 5 CR44 Gholampour, Gandomi, Ozbakkaloglu (CR15) 2017; 130 Mousavi, Gandomi, Alavi, Vesalimahmood (CR29) 2010; 36 Yeih, Chang (CR46) 2019; 197 Xie, Zhang, Wang, Yang, Bogush, Khayrulina, Huang, Wei, Yu (CR18) 2020; 113 CR17 Virgolin, Alderliesten, Witteveen, Bosman (CR26) 2021; 29 Nunez, Marani, Flah, Nehdi (CR5) 2021; 310 Mousavi, Aminian, Gandomi, Alavi, Bolandi (CR30) 2012; 45 CR11 Keijzer, Ryan, Soule, Keijzer, Tsang, Poli, Costa (CR27) 2003 Koza (CR21) 1992 Nguyen, Nguyen, Cao, Hoang, Tran (CR6) 2022; 38 Behnood, Golafshani (CR7) 2018; 202 Pichler, Hellmich (CR2) 2011; 41 Rezaei Lori, Bayat, Azimi (CR43) 2019 Shu, Huang, Wu, Dong, Burdette (CR37) 2011; 25 Huang, Zhong, Feng, Mei, Cai (CR24) 2020; 24 Wang, Wagner, Rondinelli (CR12) 2019; 9 CR25 CR22 Ibrahim, Mahmoud, Yamin, Patibandla (CR40) 2014; 50 Zhong, Wille (CR41) 2016; 109 Özdemir (CR9) 2022; 47 Gu, Zhang, Bao (CR48) 2021; 199 Duffy, Engle-Warnick, Chen (CR10) 2002 Pala, Özbay, Öztaş, Yuce (CR32) 2007; 21 8396_CR34 W Yeih (8396_CR46) 2019; 197 8396_CR31 X Xie (8396_CR18) 2020; 113 J Kevern (8396_CR35) 2008; 5 C Videla (8396_CR33) 2004; 101 A Gholampour (8396_CR15) 2017; 130 B Ferguson (8396_CR16) 2005 MS Sumanasooriya (8396_CR38) 2011; 33 G Constantinides (8396_CR1) 2004; 34 I Nunez (8396_CR5) 2021; 310 Z Huang (8396_CR24) 2020; 24 SA Moghaddas (8396_CR8) 2022; 371 M Virgolin (8396_CR26) 2021; 29 H Wang (8396_CR45) 2019; 202 8396_CR44 R Zhong (8396_CR41) 2016; 109 I-C Yeh (8396_CR20) 1998; 28 KS Elango (8396_CR42) 2017; 140 8396_CR49 A Rezaei Lori (8396_CR43) 2019 H Nguyen (8396_CR6) 2022; 38 H Zhou (8396_CR47) 2019; 212 M Affenzeller (8396_CR23) 2009 Y Wang (8396_CR12) 2019; 9 B Pichler (8396_CR2) 2011; 41 8396_CR11 C Lian (8396_CR36) 2011; 25 S Asadi (8396_CR39) 2012; 2290 X Shu (8396_CR37) 2011; 25 Y Gu (8396_CR48) 2021; 199 J Duffy (8396_CR10) 2002 T Nguyen-Sy (8396_CR28) 2020 8396_CR17 V-H Vu (8396_CR19) 2021; 118 SM Mousavi (8396_CR29) 2010; 36 M Keijzer (8396_CR27) 2003 JR Koza (8396_CR21) 1992 8396_CR22 SM Mousavi (8396_CR30) 2012; 45 A Behnood (8396_CR7) 2018; 202 E Özdemir (8396_CR9) 2022; 47 A Ibrahim (8396_CR40) 2014; 50 B-V Tran (8396_CR3) 2019; 23 C-H Lim (8396_CR14) 2004; 34 8396_CR25 E Tsivolas (8396_CR4) 2022; 31 L Chen (8396_CR13) 2003; 17 M Pala (8396_CR32) 2007; 21 |
References_xml | – ident: CR22 – volume: 212 start-page: 130 year: 2019 end-page: 139 ident: CR47 article-title: Experimental investigation on the effect of pore characteristics on clogging risk of pervious concrete based on CT scanning publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.310 – ident: CR49 – volume: 130 start-page: 122 year: 2017 end-page: 145 ident: CR15 article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.10.114 – volume: 38 start-page: 1255 year: 2022 end-page: 1267 ident: CR6 article-title: Prediction of long-term deflections of reinforced-concrete members using a novel swarm optimized extreme gradient boosting machine publication-title: Eng. Comput. doi: 10.1007/s00366-020-01260-z – volume: 28 start-page: 1797 year: 1998 end-page: 1808 ident: CR20 article-title: Modeling of strength of high-performance concrete using artificial neural networks publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00165-3 – volume: 109 start-page: 177 year: 2016 end-page: 187 ident: CR41 article-title: Compression response of normal and high strength pervious concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.01.051 – volume: 9 start-page: 793 year: 2019 end-page: 805 ident: CR12 article-title: Symbolic regression in materials science publication-title: MRS Commun. doi: 10.1557/mrc.2019.85 – volume: 34 start-page: 67 year: 2004 end-page: 80 ident: CR1 article-title: The effect of two types of CSH on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(03)00230-8 – ident: CR25 – volume: 47 start-page: 629 year: 2022 end-page: 639 ident: CR9 article-title: A new predictive model for uniaxial compressive strength of rock using machine learning method: artificial intelligence-based age-layered population structure genetic programming (ALPS-GP) publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05761-x – year: 2009 ident: CR23 publication-title: Genetic algorithms and genetic programming: modern concepts and practical applications doi: 10.1201/9781420011326 – volume: 310 year: 2021 ident: CR5 article-title: Estimating compressive strength of modern concrete mixtures using computational intelligence: a systematic review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125279 – volume: 29 start-page: 211 year: 2021 end-page: 237 ident: CR26 article-title: Improving model-based genetic programming for symbolic regression of small expressions publication-title: Evol. Comput. doi: 10.1162/evco_a_00278 – volume: 113 year: 2020 ident: CR18 article-title: Mixture proportion design of pervious concrete based on the relationships between fundamental properties and skeleton structures publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2020.103693 – volume: 34 start-page: 409 year: 2004 end-page: 420 ident: CR14 article-title: Genetic algorithm in mix proportioning of high-performance concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2003.08.018 – start-page: 70 year: 2003 end-page: 82 ident: CR27 article-title: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling publication-title: Genetic Programming doi: 10.1007/3-540-36599-0_7 – volume: 202 start-page: 387 year: 2019 end-page: 395 ident: CR45 article-title: Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.044 – year: 2019 ident: CR43 article-title: Influence of the replacement of fine copper slag aggregate on physical properties and abrasion resistance of pervious concrete publication-title: Road Mater. Pavement Des. doi: 10.1080/14680629.2019.1648311 – ident: CR11 – volume: 33 start-page: 778 year: 2011 end-page: 787 ident: CR38 article-title: Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2011.06.002 – volume: 45 start-page: 105 year: 2012 end-page: 114 ident: CR30 article-title: A new predictive model for compressive strength of HPC using gene expression programming publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.09.014 – volume: 25 start-page: 3187 year: 2011 end-page: 3192 ident: CR37 article-title: Performance comparison of laboratory and field produced pervious concrete mixtures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.03.002 – volume: 23 start-page: 145 year: 2019 end-page: 153 ident: CR3 article-title: An adaptive approach for the chloride diffusivity of cement-based materials publication-title: Comput. Concr. doi: 10.12989/cac.2019.23.2.145 – volume: 5 start-page: 1 year: 2008 end-page: 12 ident: CR35 article-title: Pervious concrete mixture proportions for improved freeze-thaw durability publication-title: J. ASTM Int. doi: 10.1520/JAI101320 – year: 2005 ident: CR16 publication-title: Porous Pavements doi: 10.1201/9781420038439 – volume: 2290 start-page: 161 year: 2012 end-page: 167 ident: CR39 article-title: Development of photocatalytic pervious concrete pavement for air and storm water improvements publication-title: Transp. Res. Rec. doi: 10.3141/2290-21 – volume: 25 start-page: 4294 year: 2011 end-page: 4298 ident: CR36 article-title: The relationship between porosity and strength for porous concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.05.005 – volume: 140 start-page: 91 year: 2017 end-page: 99 ident: CR42 article-title: Fal-G binder pervious concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.02.086 – start-page: 61 year: 2002 end-page: 82 ident: CR10 article-title: Using Symbolic Regression to Infer Strategies from Experimental Data publication-title: Evolutionary Computation in Economics and Finance doi: 10.1007/978-3-7908-1784-3_4 – volume: 202 start-page: 54 year: 2018 end-page: 64 ident: CR7 article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.065 – volume: 199 year: 2021 ident: CR48 article-title: A new data-driven predictor, PSO-XGBoost, used for permeability of tight sandstone reservoirs: a case study of member of chang 4+5, western Jiyuan Oilfield, Ordos Basin publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.108350 – volume: 50 start-page: 524 year: 2014 end-page: 529 ident: CR40 article-title: Experimental study on Portland cement pervious concrete mechanical and hydrological properties publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.09.022 – volume: 31 year: 2022 ident: CR4 article-title: Multiscale modeling of extrinsic self healing GFRP materials publication-title: Modelling Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/acaa49 – volume: 36 start-page: 225 year: 2010 end-page: 241 ident: CR29 article-title: Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares publication-title: Struct. Eng. Mech. doi: 10.12989/sem.2010.36.2.225 – volume: 24 start-page: 7523 year: 2020 end-page: 7539 ident: CR24 article-title: A fast parallel genetic programming framework with adaptively weighted primitives for symbolic regression publication-title: Soft. Comput. doi: 10.1007/s00500-019-04379-4 – volume: 41 start-page: 467 year: 2011 end-page: 476 ident: CR2 article-title: Upscaling quasi-brittle strength of cement paste and mortar: a multi-scale engineering mechanics model publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2011.01.010 – volume: 17 start-page: 290 year: 2003 end-page: 294 ident: CR13 article-title: Study of applying macroevolutionary genetic programming to concrete strength estimation publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2003)17:4(290) – volume: 101 start-page: 365 year: 2004 end-page: 375 ident: CR33 article-title: Modeling portland blast-furnace slag cement high-performance concrete publication-title: MJ. doi: 10.14359/13422 – year: 2020 ident: CR28 article-title: Studying petrophysical properties of micritic limestones using machine learning methods publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2020.104226 – ident: CR44 – volume: 197 start-page: 813 year: 2019 end-page: 820 ident: CR46 article-title: The influences of cement type and curing condition on properties of pervious concrete made with electric arc furnace slag as aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.08.178 – ident: CR17 – ident: CR31 – volume: 118 year: 2021 ident: CR19 article-title: Prediction of the relationship between strength and porosity of pervious concrete: a micromechanical investigation publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2021.103791 – ident: CR34 – volume: 371 year: 2022 ident: CR8 article-title: Modeling carbonation depth of recycled aggregate concrete using novel automatic regression technique publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133522 – volume: 21 start-page: 384 year: 2007 end-page: 394 ident: CR32 article-title: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2005.08.009 – year: 1992 ident: CR21 publication-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection – volume: 34 start-page: 67 year: 2004 ident: 8396_CR1 publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(03)00230-8 – ident: 8396_CR25 doi: 10.1145/3377929.3398099 – volume-title: Porous Pavements year: 2005 ident: 8396_CR16 doi: 10.1201/9781420038439 – volume: 36 start-page: 225 year: 2010 ident: 8396_CR29 publication-title: Struct. Eng. Mech. doi: 10.12989/sem.2010.36.2.225 – volume: 31 year: 2022 ident: 8396_CR4 publication-title: Modelling Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/acaa49 – volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection year: 1992 ident: 8396_CR21 – ident: 8396_CR44 doi: 10.1016/j.conbuildmat.2019.06.185 – ident: 8396_CR11 – volume: 21 start-page: 384 year: 2007 ident: 8396_CR32 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2005.08.009 – volume: 202 start-page: 387 year: 2019 ident: 8396_CR45 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.044 – ident: 8396_CR34 – volume: 25 start-page: 4294 year: 2011 ident: 8396_CR36 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.05.005 – volume: 23 start-page: 145 year: 2019 ident: 8396_CR3 publication-title: Comput. Concr. doi: 10.12989/cac.2019.23.2.145 – ident: 8396_CR49 – volume: 202 start-page: 54 year: 2018 ident: 8396_CR7 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.065 – volume: 140 start-page: 91 year: 2017 ident: 8396_CR42 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.02.086 – volume: 197 start-page: 813 year: 2019 ident: 8396_CR46 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.08.178 – volume: 101 start-page: 365 year: 2004 ident: 8396_CR33 publication-title: MJ. doi: 10.14359/13422 – volume: 9 start-page: 793 year: 2019 ident: 8396_CR12 publication-title: MRS Commun. doi: 10.1557/mrc.2019.85 – volume: 34 start-page: 409 year: 2004 ident: 8396_CR14 publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2003.08.018 – volume: 113 year: 2020 ident: 8396_CR18 publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2020.103693 – volume: 47 start-page: 629 year: 2022 ident: 8396_CR9 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05761-x – volume-title: Genetic algorithms and genetic programming: modern concepts and practical applications year: 2009 ident: 8396_CR23 doi: 10.1201/9781420011326 – volume: 24 start-page: 7523 year: 2020 ident: 8396_CR24 publication-title: Soft. Comput. doi: 10.1007/s00500-019-04379-4 – ident: 8396_CR31 – volume: 28 start-page: 1797 year: 1998 ident: 8396_CR20 publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00165-3 – volume: 5 start-page: 1 year: 2008 ident: 8396_CR35 publication-title: J. ASTM Int. doi: 10.1520/JAI101320 – volume: 33 start-page: 778 year: 2011 ident: 8396_CR38 publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2011.06.002 – volume: 29 start-page: 211 year: 2021 ident: 8396_CR26 publication-title: Evol. Comput. doi: 10.1162/evco_a_00278 – volume: 310 year: 2021 ident: 8396_CR5 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125279 – volume: 199 year: 2021 ident: 8396_CR48 publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.108350 – volume: 41 start-page: 467 year: 2011 ident: 8396_CR2 publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2011.01.010 – volume: 371 year: 2022 ident: 8396_CR8 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133522 – year: 2020 ident: 8396_CR28 publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2020.104226 – volume: 118 year: 2021 ident: 8396_CR19 publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2021.103791 – volume: 2290 start-page: 161 year: 2012 ident: 8396_CR39 publication-title: Transp. Res. Rec. doi: 10.3141/2290-21 – ident: 8396_CR17 – volume: 130 start-page: 122 year: 2017 ident: 8396_CR15 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.10.114 – year: 2019 ident: 8396_CR43 publication-title: Road Mater. Pavement Des. doi: 10.1080/14680629.2019.1648311 – start-page: 70 volume-title: Genetic Programming year: 2003 ident: 8396_CR27 doi: 10.1007/3-540-36599-0_7 – volume: 109 start-page: 177 year: 2016 ident: 8396_CR41 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.01.051 – volume: 50 start-page: 524 year: 2014 ident: 8396_CR40 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.09.022 – start-page: 61 volume-title: Evolutionary Computation in Economics and Finance year: 2002 ident: 8396_CR10 doi: 10.1007/978-3-7908-1784-3_4 – volume: 25 start-page: 3187 year: 2011 ident: 8396_CR37 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.03.002 – volume: 45 start-page: 105 year: 2012 ident: 8396_CR30 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.09.014 – ident: 8396_CR22 – volume: 212 start-page: 130 year: 2019 ident: 8396_CR47 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.310 – volume: 38 start-page: 1255 year: 2022 ident: 8396_CR6 publication-title: Eng. Comput. doi: 10.1007/s00366-020-01260-z – volume: 17 start-page: 290 year: 2003 ident: 8396_CR13 publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2003)17:4(290) |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.38127 |
Snippet | The primary objective of this paper is to develop an appropriate predictive formula for the compressive strength of pervious concrete, which depends on its... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5487 |
SubjectTerms | Algorithms Black boxes Compressive strength Computing costs Concrete properties Cost analysis Datasets Effectiveness Empirical analysis Engineering Exact solutions Genetic algorithms Humanities and Social Sciences Machine learning Mathematical models multidisciplinary Research Article-Civil Engineering Science |
Title | Predicting the Compressive Strength of Pervious Cement Concrete based on Fast Genetic Programming Method |
URI | https://link.springer.com/article/10.1007/s13369-023-08396-2 https://www.proquest.com/docview/3015442678 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFMESrUHbmUje-3Y3mNSNYpQGiqRVLlZu16bVioOSp0e-uf4a8zsI3arUgGXKFo7G3nn8-zsPL4h5FOsYFOVYsh4qAIWZyJkKlOcJXGllFaKC0OxcTpPpsv4y2q46vV-dbKWto0aFLcP1pX8j1RhDOSKVbL_INndpDAA30G-8AkShs-_kvHZBsMsja94wnfbpLXelCbaXH9vLkyOG-oDTHU9Nr5ArPIDW7Epj3AL0xgumMjrxjBQI33rmU3Z-oHTnpoG010L1nRx3kikKvexbJOq6JUEOuI7JIcD9OgbjI2N2m2vtD5UNqqNc2fWRvjlmp1f2jgJ7qZt-oq8ZN9sosD51o_inWzqtJYbdo4M3s1_6ToyMUsbYye7Qhujl7HWKgtsjfSgNGOga-H4y23HF6_MLf-pA23c0cx4Muvs8nAwix_cQQJXUR1FiWBg0CB9t0hcieYduu7513yynM3yxclq8YTs8xSMN6w2X4Wtkw-Mb9Phy5oGSZiZlIfd07gqLlvLef8f71pK7fHnXsTeGEKLF-S5kzkdWTi-JL2yfkWedQT7mly0wKQATNoBJvXApOuKemBSC0zqgUkNMOm6pghM6oBJO8CkFphvyHJysjieMtfSgxXwzA2TCo6oQughchJlgRJFMky1LnQkU6F1UmgepVVZxqKUEkxPXvIqgUOgjrI40EUavSV79bou3xGaSRnIKAQDrCqQZVDAbqRCUYlAByrjaZ-EfvnywvHdY9uVq7xl6sYlz2HJc7PkOe-To91vflq2l0fvPvBSyZ1WuM4j09YPhJ71yWcvqfbyn2d7__hsH8jT9qU5IHvNZlt-BHu4UYdkfzQZj-eHBnu_AYkrse0 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Compressive+Strength+of+Pervious+Cement+Concrete+based+on+Fast+Genetic+Programming+Method&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Ba-Anh%2C+Le&rft.au=Bao-Viet%2C+Tran&rft.au=Thai-Son%2C+Vu&rft.au=Viet-Hung%2C+Vu&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=49&rft.issue=4&rft.spage=5487&rft.epage=5504&rft_id=info:doi/10.1007%2Fs13369-023-08396-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |