Predicting the Compressive Strength of Pervious Cement Concrete based on Fast Genetic Programming Method

The primary objective of this paper is to develop an appropriate predictive formula for the compressive strength of pervious concrete, which depends on its mixture. This will allow for the improvement of the proportioning procedure that considers both the target porosity and target compressive stren...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 49; no. 4; pp. 5487 - 5504
Main Authors Le, Ba-Anh, Tran, Bao-Viet, Vu, Thai-Son, Vu, Viet-Hung, Nguyen, Van-Hung
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
DOI10.1007/s13369-023-08396-2

Cover

Abstract The primary objective of this paper is to develop an appropriate predictive formula for the compressive strength of pervious concrete, which depends on its mixture. This will allow for the improvement of the proportioning procedure that considers both the target porosity and target compressive strength. To achieve this, an effective computational strategy is first constructed and investigated for the creation of simple and easily applicable symbolic regression functions within the Genetic Programming-based Symbolic Regression framework. Recent advancements in fast logical parallelism and model-based algorithms are also applied to perform calculations on a large quantity of examples, with the aim of finding the most suitable analytical solutions at a low computational cost. Next, to assess the effectiveness of this model in predicting the compressive strength of concrete in general, computations are carried out using the well-known Yeh's dataset on conventional concrete compressive strength. This dataset has been extensively studied using both "black-box" and "white-box" machine learning algorithms. The results reveal that more suitable formulas can be generated through this computational process, compared to several scenarios discussed in the literature. Furthermore, the model is extended to pervious concrete, based on the dataset of 164 samples of 28-day compressive strength collected from 14 different sources. The findings for pervious concrete exhibited high accuracy compared to the most effective black-box models and micromechanical/empirical models, with a coefficient of determination of approximately 0.9 for simple predictive equations, thereby supporting the effectiveness of the proposed approach.
AbstractList The primary objective of this paper is to develop an appropriate predictive formula for the compressive strength of pervious concrete, which depends on its mixture. This will allow for the improvement of the proportioning procedure that considers both the target porosity and target compressive strength. To achieve this, an effective computational strategy is first constructed and investigated for the creation of simple and easily applicable symbolic regression functions within the Genetic Programming-based Symbolic Regression framework. Recent advancements in fast logical parallelism and model-based algorithms are also applied to perform calculations on a large quantity of examples, with the aim of finding the most suitable analytical solutions at a low computational cost. Next, to assess the effectiveness of this model in predicting the compressive strength of concrete in general, computations are carried out using the well-known Yeh's dataset on conventional concrete compressive strength. This dataset has been extensively studied using both "black-box" and "white-box" machine learning algorithms. The results reveal that more suitable formulas can be generated through this computational process, compared to several scenarios discussed in the literature. Furthermore, the model is extended to pervious concrete, based on the dataset of 164 samples of 28-day compressive strength collected from 14 different sources. The findings for pervious concrete exhibited high accuracy compared to the most effective black-box models and micromechanical/empirical models, with a coefficient of determination of approximately 0.9 for simple predictive equations, thereby supporting the effectiveness of the proposed approach.
Author Vu, Viet-Hung
Tran, Bao-Viet
Vu, Thai-Son
Nguyen, Van-Hung
Le, Ba-Anh
Author_xml – sequence: 1
  givenname: Ba-Anh
  surname: Le
  fullname: Le, Ba-Anh
  organization: University of Transport and Communications
– sequence: 2
  givenname: Bao-Viet
  orcidid: 0000-0001-9709-5699
  surname: Tran
  fullname: Tran, Bao-Viet
  email: viettb@utc.edu.vn
  organization: University of Transport and Communications
– sequence: 3
  givenname: Thai-Son
  surname: Vu
  fullname: Vu, Thai-Son
  organization: Hanoi University of Civil Engineering
– sequence: 4
  givenname: Viet-Hung
  surname: Vu
  fullname: Vu, Viet-Hung
  organization: Campus in Ho Chi Minh City, University of Transport and Communications
– sequence: 5
  givenname: Van-Hung
  surname: Nguyen
  fullname: Nguyen, Van-Hung
  organization: University of Transport and Communications
BookMark eNp9kMtKBDEQRYMoOOr8gKuA69Y8-pEsZfAFigMquAvppLonYidjkhH8e9tpQXAxq6rFObeKe4T2ffCA0Ckl55SQ5iJRzmtZEMYLIrisC7aHZoxKWpRM0P3tzouqbl4P0Twl15JyxCpK-QytlhGsM9n5HucV4EUY1hFG6BPwU47g-7zCocNLiJ8ubBJewAA-j5w3ETLgViewOHh8rVPGN-AhO4OXMfRRD8NP7APkVbAn6KDT7wnmv_MYvVxfPS9ui_vHm7vF5X1hOJW50C0ntZS2KkVVCdJKU1eNtcZy3Uhra2MZbzqAUoLWlJUMWFcLwSwXJbGm4cfobMpdx_CxgZTVW9hEP55UnNCqLFndiJFiE2ViSClCp9bRDTp-KUrUT6lqKlWNpaptqYqNkvgnGZd1dsHnqN37bpVPahrv-B7i31c7rG-yOI6v
CitedBy_id crossref_primary_10_1016_j_trpro_2025_03_138
crossref_primary_10_1007_s43452_024_01007_3
crossref_primary_10_1080_10589759_2025_2468273
crossref_primary_10_1038_s41467_024_48766_4
crossref_primary_10_1088_2632_2153_ad52e8
crossref_primary_10_1016_j_nanoso_2024_101373
crossref_primary_10_1007_s41062_024_01829_3
Cites_doi 10.1016/j.conbuildmat.2019.03.310
10.1016/j.conbuildmat.2016.10.114
10.1007/s00366-020-01260-z
10.1016/S0008-8846(98)00165-3
10.1016/j.conbuildmat.2016.01.051
10.1557/mrc.2019.85
10.1016/S0008-8846(03)00230-8
10.1007/s13369-021-05761-x
10.1201/9781420011326
10.1016/j.conbuildmat.2021.125279
10.1162/evco_a_00278
10.1016/j.cemconcomp.2020.103693
10.1016/j.cemconres.2003.08.018
10.1007/3-540-36599-0_7
10.1016/j.conbuildmat.2019.01.044
10.1080/14680629.2019.1648311
10.1016/j.cemconcomp.2011.06.002
10.1016/j.advengsoft.2011.09.014
10.1016/j.conbuildmat.2011.03.002
10.12989/cac.2019.23.2.145
10.1520/JAI101320
10.1201/9781420038439
10.3141/2290-21
10.1016/j.conbuildmat.2011.05.005
10.1016/j.conbuildmat.2017.02.086
10.1007/978-3-7908-1784-3_4
10.1016/j.jclepro.2018.08.065
10.1016/j.petrol.2021.108350
10.1016/j.conbuildmat.2013.09.022
10.1088/1361-651X/acaa49
10.12989/sem.2010.36.2.225
10.1007/s00500-019-04379-4
10.1016/j.cemconres.2011.01.010
10.1061/(ASCE)0887-3801(2003)17:4(290)
10.14359/13422
10.1016/j.jappgeo.2020.104226
10.1016/j.conbuildmat.2018.08.178
10.1016/j.mechrescom.2021.103791
10.1016/j.jclepro.2022.133522
10.1016/j.conbuildmat.2005.08.009
10.1145/3377929.3398099
10.1016/j.conbuildmat.2019.06.185
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13369-023-08396-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 5504
ExternalDocumentID 10_1007_s13369_023_08396_2
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-ab30699d5485580b9c657ddcd3a79dd6cd237fee49eaa1242e2f6882d3840dc73
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 08:54:03 EDT 2025
Tue Jul 01 01:34:33 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Fri Feb 21 02:43:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Symbolic regression
Compressive strength
Pervious concrete
Genetic programming
Proportioning procedure
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-ab30699d5485580b9c657ddcd3a79dd6cd237fee49eaa1242e2f6882d3840dc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9709-5699
PQID 3015442678
PQPubID 2044268
PageCount 18
ParticipantIDs proquest_journals_3015442678
crossref_primary_10_1007_s13369_023_08396_2
crossref_citationtrail_10_1007_s13369_023_08396_2
springer_journals_10_1007_s13369_023_08396_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lim, Yoon, Kim (CR14) 2004; 34
Elango, Revathi (CR42) 2017; 140
Zhou, Li, Abdelhady, Liang, Wang, Yang (CR47) 2019; 212
Chen (CR13) 2003; 17
Nguyen-Sy, Vu, Tran-Le, Tran, Nguyen, Nguyen (CR28) 2020
Moghaddas, Nekoei, Mohammadi Golafshani, Nehdi, Arashpour (CR8) 2022; 371
Ferguson (CR16) 2005
Vu, Tran, Le, Nguyen (CR19) 2021; 118
CR34
Yeh (CR20) 1998; 28
Wang, Li, Liang, Zhou, Xie, Dai (CR45) 2019; 202
CR31
Tran, Pham, Loc, Le (CR3) 2019; 23
Tsivolas, Gergidis, Paipetis (CR4) 2022; 31
Videla, Gaedicke (CR33) 2004; 101
Sumanasooriya, Neithalath (CR38) 2011; 33
Affenzeller, Wagner, Winkler, Beham (CR23) 2009
Lian, Zhuge, Beecham (CR36) 2011; 25
Constantinides, Ulm (CR1) 2004; 34
Asadi, Hassan, Kevern, Rupnow (CR39) 2012; 2290
CR49
Kevern, Schaefer, Wang, Suleiman (CR35) 2008; 5
CR44
Gholampour, Gandomi, Ozbakkaloglu (CR15) 2017; 130
Mousavi, Gandomi, Alavi, Vesalimahmood (CR29) 2010; 36
Yeih, Chang (CR46) 2019; 197
Xie, Zhang, Wang, Yang, Bogush, Khayrulina, Huang, Wei, Yu (CR18) 2020; 113
CR17
Virgolin, Alderliesten, Witteveen, Bosman (CR26) 2021; 29
Nunez, Marani, Flah, Nehdi (CR5) 2021; 310
Mousavi, Aminian, Gandomi, Alavi, Bolandi (CR30) 2012; 45
CR11
Keijzer, Ryan, Soule, Keijzer, Tsang, Poli, Costa (CR27) 2003
Koza (CR21) 1992
Nguyen, Nguyen, Cao, Hoang, Tran (CR6) 2022; 38
Behnood, Golafshani (CR7) 2018; 202
Pichler, Hellmich (CR2) 2011; 41
Rezaei Lori, Bayat, Azimi (CR43) 2019
Shu, Huang, Wu, Dong, Burdette (CR37) 2011; 25
Huang, Zhong, Feng, Mei, Cai (CR24) 2020; 24
Wang, Wagner, Rondinelli (CR12) 2019; 9
CR25
CR22
Ibrahim, Mahmoud, Yamin, Patibandla (CR40) 2014; 50
Zhong, Wille (CR41) 2016; 109
Özdemir (CR9) 2022; 47
Gu, Zhang, Bao (CR48) 2021; 199
Duffy, Engle-Warnick, Chen (CR10) 2002
Pala, Özbay, Öztaş, Yuce (CR32) 2007; 21
8396_CR34
W Yeih (8396_CR46) 2019; 197
8396_CR31
X Xie (8396_CR18) 2020; 113
J Kevern (8396_CR35) 2008; 5
C Videla (8396_CR33) 2004; 101
A Gholampour (8396_CR15) 2017; 130
B Ferguson (8396_CR16) 2005
MS Sumanasooriya (8396_CR38) 2011; 33
G Constantinides (8396_CR1) 2004; 34
I Nunez (8396_CR5) 2021; 310
Z Huang (8396_CR24) 2020; 24
SA Moghaddas (8396_CR8) 2022; 371
M Virgolin (8396_CR26) 2021; 29
H Wang (8396_CR45) 2019; 202
8396_CR44
R Zhong (8396_CR41) 2016; 109
I-C Yeh (8396_CR20) 1998; 28
KS Elango (8396_CR42) 2017; 140
8396_CR49
A Rezaei Lori (8396_CR43) 2019
H Nguyen (8396_CR6) 2022; 38
H Zhou (8396_CR47) 2019; 212
M Affenzeller (8396_CR23) 2009
Y Wang (8396_CR12) 2019; 9
B Pichler (8396_CR2) 2011; 41
8396_CR11
C Lian (8396_CR36) 2011; 25
S Asadi (8396_CR39) 2012; 2290
X Shu (8396_CR37) 2011; 25
Y Gu (8396_CR48) 2021; 199
J Duffy (8396_CR10) 2002
T Nguyen-Sy (8396_CR28) 2020
8396_CR17
V-H Vu (8396_CR19) 2021; 118
SM Mousavi (8396_CR29) 2010; 36
M Keijzer (8396_CR27) 2003
JR Koza (8396_CR21) 1992
8396_CR22
SM Mousavi (8396_CR30) 2012; 45
A Behnood (8396_CR7) 2018; 202
E Özdemir (8396_CR9) 2022; 47
A Ibrahim (8396_CR40) 2014; 50
B-V Tran (8396_CR3) 2019; 23
C-H Lim (8396_CR14) 2004; 34
8396_CR25
E Tsivolas (8396_CR4) 2022; 31
L Chen (8396_CR13) 2003; 17
M Pala (8396_CR32) 2007; 21
References_xml – ident: CR22
– volume: 212
  start-page: 130
  year: 2019
  end-page: 139
  ident: CR47
  article-title: Experimental investigation on the effect of pore characteristics on clogging risk of pervious concrete based on CT scanning
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.310
– ident: CR49
– volume: 130
  start-page: 122
  year: 2017
  end-page: 145
  ident: CR15
  article-title: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.114
– volume: 38
  start-page: 1255
  year: 2022
  end-page: 1267
  ident: CR6
  article-title: Prediction of long-term deflections of reinforced-concrete members using a novel swarm optimized extreme gradient boosting machine
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01260-z
– volume: 28
  start-page: 1797
  year: 1998
  end-page: 1808
  ident: CR20
  article-title: Modeling of strength of high-performance concrete using artificial neural networks
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00165-3
– volume: 109
  start-page: 177
  year: 2016
  end-page: 187
  ident: CR41
  article-title: Compression response of normal and high strength pervious concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.01.051
– volume: 9
  start-page: 793
  year: 2019
  end-page: 805
  ident: CR12
  article-title: Symbolic regression in materials science
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.85
– volume: 34
  start-page: 67
  year: 2004
  end-page: 80
  ident: CR1
  article-title: The effect of two types of CSH on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(03)00230-8
– ident: CR25
– volume: 47
  start-page: 629
  year: 2022
  end-page: 639
  ident: CR9
  article-title: A new predictive model for uniaxial compressive strength of rock using machine learning method: artificial intelligence-based age-layered population structure genetic programming (ALPS-GP)
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05761-x
– year: 2009
  ident: CR23
  publication-title: Genetic algorithms and genetic programming: modern concepts and practical applications
  doi: 10.1201/9781420011326
– volume: 310
  year: 2021
  ident: CR5
  article-title: Estimating compressive strength of modern concrete mixtures using computational intelligence: a systematic review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125279
– volume: 29
  start-page: 211
  year: 2021
  end-page: 237
  ident: CR26
  article-title: Improving model-based genetic programming for symbolic regression of small expressions
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00278
– volume: 113
  year: 2020
  ident: CR18
  article-title: Mixture proportion design of pervious concrete based on the relationships between fundamental properties and skeleton structures
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2020.103693
– volume: 34
  start-page: 409
  year: 2004
  end-page: 420
  ident: CR14
  article-title: Genetic algorithm in mix proportioning of high-performance concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2003.08.018
– start-page: 70
  year: 2003
  end-page: 82
  ident: CR27
  article-title: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling
  publication-title: Genetic Programming
  doi: 10.1007/3-540-36599-0_7
– volume: 202
  start-page: 387
  year: 2019
  end-page: 395
  ident: CR45
  article-title: Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.044
– year: 2019
  ident: CR43
  article-title: Influence of the replacement of fine copper slag aggregate on physical properties and abrasion resistance of pervious concrete
  publication-title: Road Mater. Pavement Des.
  doi: 10.1080/14680629.2019.1648311
– ident: CR11
– volume: 33
  start-page: 778
  year: 2011
  end-page: 787
  ident: CR38
  article-title: Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2011.06.002
– volume: 45
  start-page: 105
  year: 2012
  end-page: 114
  ident: CR30
  article-title: A new predictive model for compressive strength of HPC using gene expression programming
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.09.014
– volume: 25
  start-page: 3187
  year: 2011
  end-page: 3192
  ident: CR37
  article-title: Performance comparison of laboratory and field produced pervious concrete mixtures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.03.002
– volume: 23
  start-page: 145
  year: 2019
  end-page: 153
  ident: CR3
  article-title: An adaptive approach for the chloride diffusivity of cement-based materials
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2019.23.2.145
– volume: 5
  start-page: 1
  year: 2008
  end-page: 12
  ident: CR35
  article-title: Pervious concrete mixture proportions for improved freeze-thaw durability
  publication-title: J. ASTM Int.
  doi: 10.1520/JAI101320
– year: 2005
  ident: CR16
  publication-title: Porous Pavements
  doi: 10.1201/9781420038439
– volume: 2290
  start-page: 161
  year: 2012
  end-page: 167
  ident: CR39
  article-title: Development of photocatalytic pervious concrete pavement for air and storm water improvements
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2290-21
– volume: 25
  start-page: 4294
  year: 2011
  end-page: 4298
  ident: CR36
  article-title: The relationship between porosity and strength for porous concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.05.005
– volume: 140
  start-page: 91
  year: 2017
  end-page: 99
  ident: CR42
  article-title: Fal-G binder pervious concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.02.086
– start-page: 61
  year: 2002
  end-page: 82
  ident: CR10
  article-title: Using Symbolic Regression to Infer Strategies from Experimental Data
  publication-title: Evolutionary Computation in Economics and Finance
  doi: 10.1007/978-3-7908-1784-3_4
– volume: 202
  start-page: 54
  year: 2018
  end-page: 64
  ident: CR7
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.065
– volume: 199
  year: 2021
  ident: CR48
  article-title: A new data-driven predictor, PSO-XGBoost, used for permeability of tight sandstone reservoirs: a case study of member of chang 4+5, western Jiyuan Oilfield, Ordos Basin
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108350
– volume: 50
  start-page: 524
  year: 2014
  end-page: 529
  ident: CR40
  article-title: Experimental study on Portland cement pervious concrete mechanical and hydrological properties
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.09.022
– volume: 31
  year: 2022
  ident: CR4
  article-title: Multiscale modeling of extrinsic self healing GFRP materials
  publication-title: Modelling Simul. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/acaa49
– volume: 36
  start-page: 225
  year: 2010
  end-page: 241
  ident: CR29
  article-title: Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2010.36.2.225
– volume: 24
  start-page: 7523
  year: 2020
  end-page: 7539
  ident: CR24
  article-title: A fast parallel genetic programming framework with adaptively weighted primitives for symbolic regression
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-019-04379-4
– volume: 41
  start-page: 467
  year: 2011
  end-page: 476
  ident: CR2
  article-title: Upscaling quasi-brittle strength of cement paste and mortar: a multi-scale engineering mechanics model
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2011.01.010
– volume: 17
  start-page: 290
  year: 2003
  end-page: 294
  ident: CR13
  article-title: Study of applying macroevolutionary genetic programming to concrete strength estimation
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(290)
– volume: 101
  start-page: 365
  year: 2004
  end-page: 375
  ident: CR33
  article-title: Modeling portland blast-furnace slag cement high-performance concrete
  publication-title: MJ.
  doi: 10.14359/13422
– year: 2020
  ident: CR28
  article-title: Studying petrophysical properties of micritic limestones using machine learning methods
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2020.104226
– ident: CR44
– volume: 197
  start-page: 813
  year: 2019
  end-page: 820
  ident: CR46
  article-title: The influences of cement type and curing condition on properties of pervious concrete made with electric arc furnace slag as aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.08.178
– ident: CR17
– ident: CR31
– volume: 118
  year: 2021
  ident: CR19
  article-title: Prediction of the relationship between strength and porosity of pervious concrete: a micromechanical investigation
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2021.103791
– ident: CR34
– volume: 371
  year: 2022
  ident: CR8
  article-title: Modeling carbonation depth of recycled aggregate concrete using novel automatic regression technique
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133522
– volume: 21
  start-page: 384
  year: 2007
  end-page: 394
  ident: CR32
  article-title: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2005.08.009
– year: 1992
  ident: CR21
  publication-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
– volume: 34
  start-page: 67
  year: 2004
  ident: 8396_CR1
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(03)00230-8
– ident: 8396_CR25
  doi: 10.1145/3377929.3398099
– volume-title: Porous Pavements
  year: 2005
  ident: 8396_CR16
  doi: 10.1201/9781420038439
– volume: 36
  start-page: 225
  year: 2010
  ident: 8396_CR29
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2010.36.2.225
– volume: 31
  year: 2022
  ident: 8396_CR4
  publication-title: Modelling Simul. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/acaa49
– volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
  year: 1992
  ident: 8396_CR21
– ident: 8396_CR44
  doi: 10.1016/j.conbuildmat.2019.06.185
– ident: 8396_CR11
– volume: 21
  start-page: 384
  year: 2007
  ident: 8396_CR32
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2005.08.009
– volume: 202
  start-page: 387
  year: 2019
  ident: 8396_CR45
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.044
– ident: 8396_CR34
– volume: 25
  start-page: 4294
  year: 2011
  ident: 8396_CR36
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.05.005
– volume: 23
  start-page: 145
  year: 2019
  ident: 8396_CR3
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2019.23.2.145
– ident: 8396_CR49
– volume: 202
  start-page: 54
  year: 2018
  ident: 8396_CR7
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.065
– volume: 140
  start-page: 91
  year: 2017
  ident: 8396_CR42
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.02.086
– volume: 197
  start-page: 813
  year: 2019
  ident: 8396_CR46
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.08.178
– volume: 101
  start-page: 365
  year: 2004
  ident: 8396_CR33
  publication-title: MJ.
  doi: 10.14359/13422
– volume: 9
  start-page: 793
  year: 2019
  ident: 8396_CR12
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2019.85
– volume: 34
  start-page: 409
  year: 2004
  ident: 8396_CR14
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2003.08.018
– volume: 113
  year: 2020
  ident: 8396_CR18
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2020.103693
– volume: 47
  start-page: 629
  year: 2022
  ident: 8396_CR9
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05761-x
– volume-title: Genetic algorithms and genetic programming: modern concepts and practical applications
  year: 2009
  ident: 8396_CR23
  doi: 10.1201/9781420011326
– volume: 24
  start-page: 7523
  year: 2020
  ident: 8396_CR24
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-019-04379-4
– ident: 8396_CR31
– volume: 28
  start-page: 1797
  year: 1998
  ident: 8396_CR20
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00165-3
– volume: 5
  start-page: 1
  year: 2008
  ident: 8396_CR35
  publication-title: J. ASTM Int.
  doi: 10.1520/JAI101320
– volume: 33
  start-page: 778
  year: 2011
  ident: 8396_CR38
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2011.06.002
– volume: 29
  start-page: 211
  year: 2021
  ident: 8396_CR26
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00278
– volume: 310
  year: 2021
  ident: 8396_CR5
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125279
– volume: 199
  year: 2021
  ident: 8396_CR48
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108350
– volume: 41
  start-page: 467
  year: 2011
  ident: 8396_CR2
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2011.01.010
– volume: 371
  year: 2022
  ident: 8396_CR8
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133522
– year: 2020
  ident: 8396_CR28
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2020.104226
– volume: 118
  year: 2021
  ident: 8396_CR19
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2021.103791
– volume: 2290
  start-page: 161
  year: 2012
  ident: 8396_CR39
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2290-21
– ident: 8396_CR17
– volume: 130
  start-page: 122
  year: 2017
  ident: 8396_CR15
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.114
– year: 2019
  ident: 8396_CR43
  publication-title: Road Mater. Pavement Des.
  doi: 10.1080/14680629.2019.1648311
– start-page: 70
  volume-title: Genetic Programming
  year: 2003
  ident: 8396_CR27
  doi: 10.1007/3-540-36599-0_7
– volume: 109
  start-page: 177
  year: 2016
  ident: 8396_CR41
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.01.051
– volume: 50
  start-page: 524
  year: 2014
  ident: 8396_CR40
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.09.022
– start-page: 61
  volume-title: Evolutionary Computation in Economics and Finance
  year: 2002
  ident: 8396_CR10
  doi: 10.1007/978-3-7908-1784-3_4
– volume: 25
  start-page: 3187
  year: 2011
  ident: 8396_CR37
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.03.002
– volume: 45
  start-page: 105
  year: 2012
  ident: 8396_CR30
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.09.014
– ident: 8396_CR22
– volume: 212
  start-page: 130
  year: 2019
  ident: 8396_CR47
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.310
– volume: 38
  start-page: 1255
  year: 2022
  ident: 8396_CR6
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01260-z
– volume: 17
  start-page: 290
  year: 2003
  ident: 8396_CR13
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(290)
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.38127
Snippet The primary objective of this paper is to develop an appropriate predictive formula for the compressive strength of pervious concrete, which depends on its...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5487
SubjectTerms Algorithms
Black boxes
Compressive strength
Computing costs
Concrete properties
Cost analysis
Datasets
Effectiveness
Empirical analysis
Engineering
Exact solutions
Genetic algorithms
Humanities and Social Sciences
Machine learning
Mathematical models
multidisciplinary
Research Article-Civil Engineering
Science
Title Predicting the Compressive Strength of Pervious Cement Concrete based on Fast Genetic Programming Method
URI https://link.springer.com/article/10.1007/s13369-023-08396-2
https://www.proquest.com/docview/3015442678
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFMESrUHbmUje-3Y3mNSNYpQGiqRVLlZu16bVioOSp0e-uf4a8zsI3arUgGXKFo7G3nn8-zsPL4h5FOsYFOVYsh4qAIWZyJkKlOcJXGllFaKC0OxcTpPpsv4y2q46vV-dbKWto0aFLcP1pX8j1RhDOSKVbL_INndpDAA30G-8AkShs-_kvHZBsMsja94wnfbpLXelCbaXH9vLkyOG-oDTHU9Nr5ArPIDW7Epj3AL0xgumMjrxjBQI33rmU3Z-oHTnpoG010L1nRx3kikKvexbJOq6JUEOuI7JIcD9OgbjI2N2m2vtD5UNqqNc2fWRvjlmp1f2jgJ7qZt-oq8ZN9sosD51o_inWzqtJYbdo4M3s1_6ToyMUsbYye7Qhujl7HWKgtsjfSgNGOga-H4y23HF6_MLf-pA23c0cx4Muvs8nAwix_cQQJXUR1FiWBg0CB9t0hcieYduu7513yynM3yxclq8YTs8xSMN6w2X4Wtkw-Mb9Phy5oGSZiZlIfd07gqLlvLef8f71pK7fHnXsTeGEKLF-S5kzkdWTi-JL2yfkWedQT7mly0wKQATNoBJvXApOuKemBSC0zqgUkNMOm6pghM6oBJO8CkFphvyHJysjieMtfSgxXwzA2TCo6oQughchJlgRJFMky1LnQkU6F1UmgepVVZxqKUEkxPXvIqgUOgjrI40EUavSV79bou3xGaSRnIKAQDrCqQZVDAbqRCUYlAByrjaZ-EfvnywvHdY9uVq7xl6sYlz2HJc7PkOe-To91vflq2l0fvPvBSyZ1WuM4j09YPhJ71yWcvqfbyn2d7__hsH8jT9qU5IHvNZlt-BHu4UYdkfzQZj-eHBnu_AYkrse0
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Compressive+Strength+of+Pervious+Cement+Concrete+based+on+Fast+Genetic+Programming+Method&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Ba-Anh%2C+Le&rft.au=Bao-Viet%2C+Tran&rft.au=Thai-Son%2C+Vu&rft.au=Viet-Hung%2C+Vu&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=49&rft.issue=4&rft.spage=5487&rft.epage=5504&rft_id=info:doi/10.1007%2Fs13369-023-08396-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon