Memristor Crossbar Array Based ACO For Image Edge Detection

Memristor provides an available way to design and deploy swarm intelligence. As a typical swarm intelligence algorithm, ant colony optimization is implemented by the memristor crossbar array to make image edge detection in this paper. Firstly, a non-linear voltage-controlled memristor model with a r...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 51; no. 2; pp. 1891 - 1905
Main Authors Yu, Yongbin, Deng, Quanxin, Ren, Liyong, Tashi, Nyima
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1370-4621
1573-773X
DOI10.1007/s11063-019-10179-6

Cover

Abstract Memristor provides an available way to design and deploy swarm intelligence. As a typical swarm intelligence algorithm, ant colony optimization is implemented by the memristor crossbar array to make image edge detection in this paper. Firstly, a non-linear voltage-controlled memristor model with a relaxation term is proposed. Then, an improved ant colony optimization with padding strategy is designed. Thirdly, a memristor crossbar array with external control circuits is designed to implement ant colony optimization for image edge detection, which offers high device density and parallel computing. In the course of ant colony optimization based image edge detection deployed by memristor crossbar array, the threshold to generating edges can be directly chosen as the mean of the final conductance matrix. On the one hand, experiment results show that more delicate edges can be detected by proposed method compared to holistically-nested edge detection based on neural networks. On the other hand, Figure of merit of proposed method is better than that of Sobel operator.
AbstractList Memristor provides an available way to design and deploy swarm intelligence. As a typical swarm intelligence algorithm, ant colony optimization is implemented by the memristor crossbar array to make image edge detection in this paper. Firstly, a non-linear voltage-controlled memristor model with a relaxation term is proposed. Then, an improved ant colony optimization with padding strategy is designed. Thirdly, a memristor crossbar array with external control circuits is designed to implement ant colony optimization for image edge detection, which offers high device density and parallel computing. In the course of ant colony optimization based image edge detection deployed by memristor crossbar array, the threshold to generating edges can be directly chosen as the mean of the final conductance matrix. On the one hand, experiment results show that more delicate edges can be detected by proposed method compared to holistically-nested edge detection based on neural networks. On the other hand, Figure of merit of proposed method is better than that of Sobel operator.
Author Ren, Liyong
Yu, Yongbin
Deng, Quanxin
Tashi, Nyima
Author_xml – sequence: 1
  givenname: Yongbin
  orcidid: 0000-0001-6022-7504
  surname: Yu
  fullname: Yu, Yongbin
  email: ybyu@uestc.edu.cn
  organization: School of Information and Software Engineering, University of Electronic Science and Technology of China
– sequence: 2
  givenname: Quanxin
  surname: Deng
  fullname: Deng, Quanxin
  organization: School of Information and Software Engineering, University of Electronic Science and Technology of China
– sequence: 3
  givenname: Liyong
  surname: Ren
  fullname: Ren, Liyong
  organization: School of Information and Software Engineering, University of Electronic Science and Technology of China
– sequence: 4
  givenname: Nyima
  surname: Tashi
  fullname: Tashi, Nyima
  organization: School of Information Science and Technology, Tibet University
BookMark eNp9kMFPwjAUxhuDiYD-A56WeK729Y12iyecoCQYLhy8Nd3akhHYsB0H_ns7MTHxwOX1Jf1-_b5-IzJo2sYScg_sERiTTwGACaQMcgoMZE7FFRnCRCKVEj8HcUfJaCo43JBRCFvGIsbZkDx_2L2vQ9f6pPBtCKX2ydR7fUpedLAmmRarZB4vF3u9scnMxPFqO1t1ddvckmund8He_Z5jsp7P1sU7Xa7eFsV0SSuEvKNaW4cGHYIRIkPtTKWlzFJXgnAwQbQmS7kWpSkxcyyVeR7DiUoYzdNc4Jg8nJ89-PbraEOntu3RN9FR8RwyTLkAHlXZWVX13_DWqarudB-z87reKWCqb0qdm1KxKfXTlOoN-D_04Ou99qfLEJ6hEMXNxvq_VBeobyEhe2E
CitedBy_id crossref_primary_10_1016_j_jnlest_2022_100158
crossref_primary_10_1016_j_mejo_2022_105639
crossref_primary_10_1360_SSI_2022_0027
crossref_primary_10_1039_D4TC03155E
crossref_primary_10_1088_1361_6528_ad0056
crossref_primary_10_3390_math8061040
crossref_primary_10_7498_aps_71_20220463
crossref_primary_10_1109_TEVC_2022_3144419
crossref_primary_10_3897_j_moem_10_1_113631
Cites_doi 10.1109/TCYB.2014.2336697
10.1063/1.3294625
10.1038/nature14441
10.1109/CVPR.2016.91
10.1109/TIA.2008.2002171
10.1109/TPAMI.2007.1153
10.1038/s41928-018-0074-4
10.1109/TPAMI.2019.2932058
10.1109/TIP.2017.2787262
10.1109/IEDM.2016.7838435
10.1109/JPROC.2012.2190814
10.1109/TCT.1971.1083337
10.1109/TCAD.2017.2775227
10.1109/CEC.2008.4630880
10.1038/ncomms3072
10.1038/nnano.2017.83
10.1021/acs.nanolett.7b00552
10.1007/978-3-540-85152-3
10.1002/adma.201702770
10.1109/TIP.2015.2487860
10.1016/j.tcs.2005.05.020
10.1002/adfm.201600680
10.1007/s11263-017-1004-z
10.1007/s11063-016-9497-y
10.1016/S0031-3203(00)00023-6
10.1038/nnano.2012.240
10.1088/0957-4484/22/48/485203
10.1109/TIFS.2016.2636090
10.1038/s41928-017-0006-8
10.1007/978-3-319-46448-0_2
10.1109/IEDM.2011.6131652
10.1109/LED.2016.2623906
10.1021/nl1017157
10.1038/srep18863
10.1109/TNNLS.2019.2908982
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Copyright Springer Nature B.V. Apr 2020
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Copyright Springer Nature B.V. Apr 2020
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-019-10179-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 1905
ExternalDocumentID 10_1007_s11063_019_10179_6
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61550110248
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-aaef3d3f31d6683afdca7784fb16f1533ed842a6bdb38f047991006c6da24963
IEDL.DBID U2A
ISSN 1370-4621
IngestDate Sat Oct 18 22:45:14 EDT 2025
Thu Apr 24 23:14:47 EDT 2025
Wed Oct 01 01:56:24 EDT 2025
Fri Feb 21 02:36:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Ant colony optimization
Memristor
Crossbar array
Image edge detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-aaef3d3f31d6683afdca7784fb16f1533ed842a6bdb38f047991006c6da24963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6022-7504
PQID 2918342612
PQPubID 2043838
PageCount 15
ParticipantIDs proquest_journals_2918342612
crossref_citationtrail_10_1007_s11063_019_10179_6
crossref_primary_10_1007_s11063_019_10179_6
springer_journals_10_1007_s11063_019_10179_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200400
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BaterinaAOppusCImage edge detection using ant colony optimizationWSEAS Trans Signal Process201065867
DingLGoshtasbyAOn the canny edge detectorPattern Recognit20003472172510.1016/S0031-3203(00)00023-6
DorigoMBlumCAnt colony optimization theory: a surveyTheor Comput Sci2005344243278217885510.1016/j.tcs.2005.05.020
PajouhiZRoyKImage edge detection based on swarm intelligence using memristive networksIEEE Trans Comput Aided Des Integr Circuits Syst20183791774178710.1109/TCAD.2017.277522709
ZidanMAOmranHNaousRSultanAFahmyHAHLuWDSalamaKNSingle-readout high-density memristor crossbarSci Rep2016611886310.1038/srep18863
ZhouJCaiFWangQChenBGabaSWeiLVery low programming-current RRAM with self-rectifying characteristicsIEEE Electron Device Lett2016371110.1109/LED.2016.2623906
PereiraFTavaresJBio-inspired algorithms for the vehicle routing problem2009BerlinSpringer10.1007/978-3-540-85152-3
LeeJWeiLOn-demand reconfiguration of nanomaterials: when electronics meets ionicsAdv Mater201730170277010.1002/adma.201702770
SheridanPCaiFChaoDMaWZhangZWeiLSparse coding with memristor networksNat Nanotechnol20171278410.1038/nnano.2017.83
Hong C, Yu J (2017) Multi-modal face pose estimation with multi-task manifold deep learning. arXiv:abs/1712.06467
ChuaLMemristor-the missing circuit elementIEEE Trans Circuit Theory197118550751910.1109/TCT.1971.1083337
YuJTaoDWangMRuiYLearning to rank using user clicks and visual features for image retrievalIEEE Trans Cybern201545476777910.1109/TCYB.2014.2336697
YuJZhangBKuangZLinDFanJiprivacy: image privacy protection by identifying sensitive objects via deep multi-task learningIEEE Trans Inf Forensics Secur20171251005101610.1109/TIFS.2016.263609005
XieSTuZHolistically-nested edge detectionInt J Comput Vis20171251318371783310.1007/s11263-017-1004-z
PreziosoMMerrikh-BayatFHoskinsBAdamGLikharevKStrukovDTraining and operation of an integrated neuromorphic network based on metal-oxide memristorsNature20145216110.1038/nature14441
Govoreanu B, Kar G, Chen YY, Paraschiv V, Kubicek S, Fantini A, Radu I, Goux L, Clima S, Degraeve R, Jossart N, Richard O (2011) 10×10nm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\times 10~\text{nm}^{2}$$\end{document} hf/hfox crossbar resistive ram with excellent performance, reliability and low-energy operation. In: 2011 IEEE international electron devices meeting (IEDM)
ChuaLOHow we predicted the memristorNat Electron20181532232210.1038/s41928-018-0074-4
PandeSBhadouriaVGhoshalDA study on edge marking scheme of various standard edge detectorsInt J Comput Appl2012443337
ZhangJJunYTaoDLocal deep-feature alignment for unsupervised dimension reductionIEEE Trans Image Process2018271376957910.1109/TIP.2017.2787262
PershinYDi VentraMMemcomputing implementation of ant colony optimizationNeural Process Lett20164426527710.1007/s11063-016-9497-y
KeysersDDeselaersTGollanCNeyHDeformation models for image recognitionIEEE Trans Pattern Anal Mach Intell20072981422143510.1109/TPAMI.2007.115308
ChoiBJTorrezanAStrachanJWKotulaPLohnAMarinellaMLiZWilliamsSYangJJHigh-speed and low-energy nitride memristorsAdv Funct Mater201626295290529610.1002/adfm.201600680
TorrezanAStrachanJWMedeiros-RibeiroGWilliamsSSub-nanosecond switching of a tantalum oxide memristorNanotechnology20112248520310.1088/0957-4484/22/48/485203
TianJWeiyuYChenLMaLImage edge detection using variation-adaptive ant colony optimizationTrans Comput Collective Intell201152740
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 779–788
ChuaLOThe fourth elementProceedings IEEE201210061920192710.1109/JPROC.2012.2190814
Liu W et al (2016) SSD: single shot multiBox detector. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision - ECCV 2016. ECCV 2016. Lecture notes in computer science, vol 9905. Springer, Cham. https://doi.org/10.1007/978-3-319-46448-0_2
XiaQYangJJWeiWLiXWilliamsSSelf-aligned memristor cross-point arrays fabricated with one nanoimprint lithography stepNano Lett20101029091410.1021/nl1017157
HongCYuJWanJTaoDWangMMultimodal deep autoencoder for human pose recoveryIEEE Trans Image Process2015241256595670341784810.1109/TIP.2015.2487860
YuJZhuCZhangJHuangQTaoDSpatial pyramid-enhanced NetVLAD with weighted triplet loss for place recognitionIEEE Trans Neural Netw Learn Syst201910.1109/TNNLS.2019.2908982
KimK-HJoSGabaSWeiLNanoscale resistive memory with intrinsic diode characteristics and long enduranceAppl Phys Lett20109605310605310610.1063/1.3294625
DasTKVenayagamoorthyGKAliyuUOBio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFAIEEE Trans Ind Appl20084451445145710.1109/TIA.2008.2002171
Tian J, Yu W, Xie S (2008) An ant colony optimization algorithm for image edge detection. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence), Hong Kong, pp 751–756. https://doi.org/10.1109/CEC.2008.4630880
YangJJStrukovDStewartDMemristive devices for computingNat Nanotechnol20138132410.1038/nnano.2012.240
YuJTanMZhangHTaoDRuiYHierarchical deep click feature prediction for fine-grained image recognitionIEEE Trans Pattern Anal Mach Intell201910.1109/TPAMI.2019.2932058
Milo V et al (2016) Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity. In: 2016 IEEE international electron devices meeting (IEDM), San Francisco, CA, pp 16.8.1–16.8.4. https://doi.org/10.1109/IEDM.2016.7838435
ZidanMAStrachanJPLuWDThe future of electronics based on memristive systemsNat Electron201811222910.1038/s41928-017-0006-8
ChoiSShinJLeeJSheridanPWeiLExperimental demonstration of feature extraction and dimensionality reduction using memristor networksNano Lett2017173113311810.1021/acs.nanolett.7b00552
GaoWZhangXYangLLiuHAn improved sobel edge detection201056771
AlibartFZamanidoostEStrukovDBPattern classification by memristive crossbar circuits using ex situ and in situ trainingNat Commun201341207210.1038/ncomms3072
TK Das (10179_CR2) 2008; 44
LO Chua (10179_CR8) 2012; 100
MA Zidan (10179_CR10) 2018; 1
Z Pajouhi (10179_CR26) 2018; 37
S Pande (10179_CR40) 2012; 44
M Dorigo (10179_CR3) 2005; 344
10179_CR30
10179_CR31
C Hong (10179_CR33) 2015; 24
10179_CR32
L Ding (10179_CR37) 2000; 34
J Zhou (10179_CR17) 2016; 37
10179_CR13
J Tian (10179_CR6) 2011; 5
L Chua (10179_CR7) 1971; 18
A Baterina (10179_CR5) 2010; 6
J Yu (10179_CR34) 2017; 12
J Zhang (10179_CR36) 2018; 27
LO Chua (10179_CR9) 2018; 1
MA Zidan (10179_CR19) 2016; 6
S Choi (10179_CR24) 2017; 17
J Yu (10179_CR29) 2019
F Alibart (10179_CR21) 2013; 4
S Xie (10179_CR39) 2017; 125
M Prezioso (10179_CR22) 2014; 521
Y Pershin (10179_CR25) 2016; 44
J Lee (10179_CR11) 2017; 30
10179_CR20
K-H Kim (10179_CR12) 2010; 96
BJ Choi (10179_CR15) 2016; 26
A Torrezan (10179_CR14) 2011; 22
P Sheridan (10179_CR23) 2017; 12
F Pereira (10179_CR1) 2009
10179_CR4
JJ Yang (10179_CR16) 2013; 8
Q Xia (10179_CR18) 2010; 10
D Keysers (10179_CR28) 2007; 29
J Yu (10179_CR27) 2019
W Gao (10179_CR38) 2010; 5
J Yu (10179_CR35) 2015; 45
References_xml – reference: ChuaLOThe fourth elementProceedings IEEE201210061920192710.1109/JPROC.2012.2190814
– reference: AlibartFZamanidoostEStrukovDBPattern classification by memristive crossbar circuits using ex situ and in situ trainingNat Commun201341207210.1038/ncomms3072
– reference: PreziosoMMerrikh-BayatFHoskinsBAdamGLikharevKStrukovDTraining and operation of an integrated neuromorphic network based on metal-oxide memristorsNature20145216110.1038/nature14441
– reference: Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 779–788
– reference: ChuaLMemristor-the missing circuit elementIEEE Trans Circuit Theory197118550751910.1109/TCT.1971.1083337
– reference: Govoreanu B, Kar G, Chen YY, Paraschiv V, Kubicek S, Fantini A, Radu I, Goux L, Clima S, Degraeve R, Jossart N, Richard O (2011) 10×10nm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\times 10~\text{nm}^{2}$$\end{document} hf/hfox crossbar resistive ram with excellent performance, reliability and low-energy operation. In: 2011 IEEE international electron devices meeting (IEDM)
– reference: KimK-HJoSGabaSWeiLNanoscale resistive memory with intrinsic diode characteristics and long enduranceAppl Phys Lett20109605310605310610.1063/1.3294625
– reference: ZhangJJunYTaoDLocal deep-feature alignment for unsupervised dimension reductionIEEE Trans Image Process2018271376957910.1109/TIP.2017.2787262
– reference: Hong C, Yu J (2017) Multi-modal face pose estimation with multi-task manifold deep learning. arXiv:abs/1712.06467
– reference: KeysersDDeselaersTGollanCNeyHDeformation models for image recognitionIEEE Trans Pattern Anal Mach Intell20072981422143510.1109/TPAMI.2007.115308
– reference: ZidanMAStrachanJPLuWDThe future of electronics based on memristive systemsNat Electron201811222910.1038/s41928-017-0006-8
– reference: PershinYDi VentraMMemcomputing implementation of ant colony optimizationNeural Process Lett20164426527710.1007/s11063-016-9497-y
– reference: Tian J, Yu W, Xie S (2008) An ant colony optimization algorithm for image edge detection. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence), Hong Kong, pp 751–756. https://doi.org/10.1109/CEC.2008.4630880
– reference: ZidanMAOmranHNaousRSultanAFahmyHAHLuWDSalamaKNSingle-readout high-density memristor crossbarSci Rep2016611886310.1038/srep18863
– reference: YuJTaoDWangMRuiYLearning to rank using user clicks and visual features for image retrievalIEEE Trans Cybern201545476777910.1109/TCYB.2014.2336697
– reference: DingLGoshtasbyAOn the canny edge detectorPattern Recognit20003472172510.1016/S0031-3203(00)00023-6
– reference: BaterinaAOppusCImage edge detection using ant colony optimizationWSEAS Trans Signal Process201065867
– reference: ChuaLOHow we predicted the memristorNat Electron20181532232210.1038/s41928-018-0074-4
– reference: HongCYuJWanJTaoDWangMMultimodal deep autoencoder for human pose recoveryIEEE Trans Image Process2015241256595670341784810.1109/TIP.2015.2487860
– reference: DorigoMBlumCAnt colony optimization theory: a surveyTheor Comput Sci2005344243278217885510.1016/j.tcs.2005.05.020
– reference: ZhouJCaiFWangQChenBGabaSWeiLVery low programming-current RRAM with self-rectifying characteristicsIEEE Electron Device Lett2016371110.1109/LED.2016.2623906
– reference: XiaQYangJJWeiWLiXWilliamsSSelf-aligned memristor cross-point arrays fabricated with one nanoimprint lithography stepNano Lett20101029091410.1021/nl1017157
– reference: PereiraFTavaresJBio-inspired algorithms for the vehicle routing problem2009BerlinSpringer10.1007/978-3-540-85152-3
– reference: TianJWeiyuYChenLMaLImage edge detection using variation-adaptive ant colony optimizationTrans Comput Collective Intell201152740
– reference: GaoWZhangXYangLLiuHAn improved sobel edge detection201056771
– reference: PandeSBhadouriaVGhoshalDA study on edge marking scheme of various standard edge detectorsInt J Comput Appl2012443337
– reference: Milo V et al (2016) Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity. In: 2016 IEEE international electron devices meeting (IEDM), San Francisco, CA, pp 16.8.1–16.8.4. https://doi.org/10.1109/IEDM.2016.7838435
– reference: YuJZhangBKuangZLinDFanJiprivacy: image privacy protection by identifying sensitive objects via deep multi-task learningIEEE Trans Inf Forensics Secur20171251005101610.1109/TIFS.2016.263609005
– reference: XieSTuZHolistically-nested edge detectionInt J Comput Vis20171251318371783310.1007/s11263-017-1004-z
– reference: DasTKVenayagamoorthyGKAliyuUOBio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFAIEEE Trans Ind Appl20084451445145710.1109/TIA.2008.2002171
– reference: TorrezanAStrachanJWMedeiros-RibeiroGWilliamsSSub-nanosecond switching of a tantalum oxide memristorNanotechnology20112248520310.1088/0957-4484/22/48/485203
– reference: SheridanPCaiFChaoDMaWZhangZWeiLSparse coding with memristor networksNat Nanotechnol20171278410.1038/nnano.2017.83
– reference: YuJZhuCZhangJHuangQTaoDSpatial pyramid-enhanced NetVLAD with weighted triplet loss for place recognitionIEEE Trans Neural Netw Learn Syst201910.1109/TNNLS.2019.2908982
– reference: PajouhiZRoyKImage edge detection based on swarm intelligence using memristive networksIEEE Trans Comput Aided Des Integr Circuits Syst20183791774178710.1109/TCAD.2017.277522709
– reference: YangJJStrukovDStewartDMemristive devices for computingNat Nanotechnol20138132410.1038/nnano.2012.240
– reference: Liu W et al (2016) SSD: single shot multiBox detector. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision - ECCV 2016. ECCV 2016. Lecture notes in computer science, vol 9905. Springer, Cham. https://doi.org/10.1007/978-3-319-46448-0_2
– reference: YuJTanMZhangHTaoDRuiYHierarchical deep click feature prediction for fine-grained image recognitionIEEE Trans Pattern Anal Mach Intell201910.1109/TPAMI.2019.2932058
– reference: LeeJWeiLOn-demand reconfiguration of nanomaterials: when electronics meets ionicsAdv Mater201730170277010.1002/adma.201702770
– reference: ChoiBJTorrezanAStrachanJWKotulaPLohnAMarinellaMLiZWilliamsSYangJJHigh-speed and low-energy nitride memristorsAdv Funct Mater201626295290529610.1002/adfm.201600680
– reference: ChoiSShinJLeeJSheridanPWeiLExperimental demonstration of feature extraction and dimensionality reduction using memristor networksNano Lett2017173113311810.1021/acs.nanolett.7b00552
– volume: 45
  start-page: 767
  issue: 4
  year: 2015
  ident: 10179_CR35
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2336697
– volume: 96
  start-page: 053106
  year: 2010
  ident: 10179_CR12
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3294625
– volume: 521
  start-page: 61
  year: 2014
  ident: 10179_CR22
  publication-title: Nature
  doi: 10.1038/nature14441
– ident: 10179_CR30
  doi: 10.1109/CVPR.2016.91
– volume: 44
  start-page: 1445
  issue: 5
  year: 2008
  ident: 10179_CR2
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2008.2002171
– volume: 29
  start-page: 1422
  issue: 8
  year: 2007
  ident: 10179_CR28
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.1153
– volume: 1
  start-page: 322
  issue: 5
  year: 2018
  ident: 10179_CR9
  publication-title: Nat Electron
  doi: 10.1038/s41928-018-0074-4
– year: 2019
  ident: 10179_CR27
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2932058
– volume: 27
  start-page: 1
  year: 2018
  ident: 10179_CR36
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2787262
– volume: 5
  start-page: 27
  year: 2011
  ident: 10179_CR6
  publication-title: Trans Comput Collective Intell
– ident: 10179_CR20
  doi: 10.1109/IEDM.2016.7838435
– volume: 100
  start-page: 1920
  issue: 6
  year: 2012
  ident: 10179_CR8
  publication-title: Proceedings IEEE
  doi: 10.1109/JPROC.2012.2190814
– volume: 18
  start-page: 507
  issue: 5
  year: 1971
  ident: 10179_CR7
  publication-title: IEEE Trans Circuit Theory
  doi: 10.1109/TCT.1971.1083337
– volume: 44
  start-page: 33
  year: 2012
  ident: 10179_CR40
  publication-title: Int J Comput Appl
– volume: 37
  start-page: 1774
  issue: 9
  year: 2018
  ident: 10179_CR26
  publication-title: IEEE Trans Comput Aided Des Integr Circuits Syst
  doi: 10.1109/TCAD.2017.2775227
– ident: 10179_CR4
  doi: 10.1109/CEC.2008.4630880
– volume: 4
  start-page: 2072
  issue: 1
  year: 2013
  ident: 10179_CR21
  publication-title: Nat Commun
  doi: 10.1038/ncomms3072
– volume: 12
  start-page: 784
  year: 2017
  ident: 10179_CR23
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2017.83
– ident: 10179_CR32
– volume: 5
  start-page: 67
  year: 2010
  ident: 10179_CR38
  publication-title: An improved sobel edge detection
– volume: 17
  start-page: 3113
  year: 2017
  ident: 10179_CR24
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.7b00552
– volume-title: Bio-inspired algorithms for the vehicle routing problem
  year: 2009
  ident: 10179_CR1
  doi: 10.1007/978-3-540-85152-3
– volume: 30
  start-page: 1702770
  year: 2017
  ident: 10179_CR11
  publication-title: Adv Mater
  doi: 10.1002/adma.201702770
– volume: 24
  start-page: 5659
  issue: 12
  year: 2015
  ident: 10179_CR33
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2487860
– volume: 344
  start-page: 243
  year: 2005
  ident: 10179_CR3
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2005.05.020
– volume: 26
  start-page: 5290
  issue: 29
  year: 2016
  ident: 10179_CR15
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201600680
– volume: 6
  start-page: 58
  year: 2010
  ident: 10179_CR5
  publication-title: WSEAS Trans Signal Process
– volume: 125
  start-page: 3
  issue: 1
  year: 2017
  ident: 10179_CR39
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-017-1004-z
– volume: 44
  start-page: 265
  year: 2016
  ident: 10179_CR25
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-016-9497-y
– volume: 34
  start-page: 721
  year: 2000
  ident: 10179_CR37
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(00)00023-6
– volume: 8
  start-page: 13
  year: 2013
  ident: 10179_CR16
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2012.240
– volume: 22
  start-page: 485203
  year: 2011
  ident: 10179_CR14
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/48/485203
– volume: 12
  start-page: 1005
  issue: 5
  year: 2017
  ident: 10179_CR34
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2016.2636090
– volume: 1
  start-page: 22
  issue: 1
  year: 2018
  ident: 10179_CR10
  publication-title: Nat Electron
  doi: 10.1038/s41928-017-0006-8
– ident: 10179_CR31
  doi: 10.1007/978-3-319-46448-0_2
– ident: 10179_CR13
  doi: 10.1109/IEDM.2011.6131652
– volume: 37
  start-page: 1
  year: 2016
  ident: 10179_CR17
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/LED.2016.2623906
– volume: 10
  start-page: 2909
  year: 2010
  ident: 10179_CR18
  publication-title: Nano Lett
  doi: 10.1021/nl1017157
– volume: 6
  start-page: 18863
  issue: 1
  year: 2016
  ident: 10179_CR19
  publication-title: Sci Rep
  doi: 10.1038/srep18863
– year: 2019
  ident: 10179_CR29
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2908982
SSID ssj0010020
Score 2.2863753
Snippet Memristor provides an available way to design and deploy swarm intelligence. As a typical swarm intelligence algorithm, ant colony optimization is implemented...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1891
SubjectTerms Algorithms
Ant colony optimization
Arrays
Artificial Intelligence
Circuit design
Complex Systems
Computational Intelligence
Computer Science
Edge detection
Figure of merit
Heuristic
Memristors
Neural networks
Nonlinear control
Optimization
Pheromones
Swarm intelligence
Traveling salesman problem
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED2VdmHhG1EoyAMbWCROcGIhhNrSqiC1IFQktsiO7YmmJYSBf4_tJo1AoksWx45057t7F5_fAZwrxhThjOCUxxQb_B9hbgIBJiI1eEBS4bnanPGEjl7Dx7frtwZMqrswtqyy8onOUct5av-RXxFmNp_F--Ru8YFt1yh7ulq10OBlawV56yjGNqBFLDNWE1q9weT5ZXWuYNGRS8EiD4eU-OU1muVlOpMd2doiht02xfR3qKrx558jUxeJhjuwVUJI1F3qfBcaKtuD7ao9AyqtdR9uxmrmmANy1LcfEDw3k3L-jXomdEnU7T-hoRl8mBmfggbSPO5V4UqzsgOYDgfT_giXvRJwaoyowJwrHchAB76kNA64limPojjUwqfaYjol45BwKqQIYm155Q1O8GhKJTcJGA0OoZnNM3UESLNAe0JaAnMeKoNnpOXQU0xEmoUpE23wK6kkackjbttZvCc1A7KVZGIkmThJJrQNF6s5iyWLxtq3O5Wwk9KiPpNa_224rBRQD_-_2vH61U5gk9gU2hXjdKBZ5F_q1OCMQpyVm-cHlVjK4g
  priority: 102
  providerName: ProQuest
Title Memristor Crossbar Array Based ACO For Image Edge Detection
URI https://link.springer.com/article/10.1007/s11063-019-10179-6
https://www.proquest.com/docview/2918342612
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-773X
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AAJSJ
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXLz4NqJI9uBNm0B36W7jCXAX1IDGQIKnTbttT4IG8OC_d1p2IRo18bI99LHJtDPzTWb6FeBCc66p4JRkImIE8X9IBDoCQmWGeEAx2XC1OYMh64-Du0lrkl8KWxTV7kVK0lnqzWU3jF5s7Q8n7hgRVoJKy9J54Ske0_Y6d2ARkAuzwgYJGG3mV2V-XuOrO9pgzG9pUedtkj3YyWGi117t6z5s6dkB7BZPMHi5Rh7C9UBPHTvA3OvaH0gxx0lz8eF10D0pr9198BLsvJ2i3fBihZ8bvXTlV7MjGCXxqNsn-XsIJENFWRIhtPGVb_ymYizyhVGZCMMoMLLJjMVtWkUBFUwq6UfGcscjFmiwjCmBQRbzj6E8e53pE_AM901DKktSLgKNmEVZnjzNZWh4kHFZhWYhlTTLucLtkxUv6Ybl2EoyRUmmTpIpq8Lles7biinjz9G1QthprjWLlHI0MDamo1W4KjZg0_37aqf_G34G29SGza4Apwbl5fxdnyO2WMo6lKKkV4dKu_d8H2PbiYePT3V3wD4B2mvFYg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RcqAXyqOIUB4-wAksEu_WuxZCKAmJEiChqlKJm2Wv7RMEGoIqflz_G2PHSwQS3HLZi9deaTye-WY98w3AvhXCMiUYLVTOKeL_jCp0BJTpAvGA4boWcnP6A979k17c_LxZgP9lLYxPqyxtYjDU5r7w_8iPmUDl83ifnT38pb5rlL9dLVtoqNhawZwGirFY2HFpn_9hCPd42jvH_T5grNMetro0dhmgBarfhCplXWISl9QN53minClUluWp03XuPBqyJk-Z4troJHeekR09bI0X3CgMXXiCy36BSpqkAmO_SrM9-PX79RrDg7EQ8WU1mnJWj1U709o9DMZ8KpOg4VRQ_tYzzuDuuxva4Pg6K7AcEStpTFVsFRbsaA2-ld0gSDQO63DSt3eBqGBMWv4DWo1x0lg9kyZ6SkMarWvSwcHeHZow0jb4OLeTkAk2-g7DeQhtAxZH9yO7CcSJxNW08XzpKrUIn4yn7LNCZ06khdBVqJdSkUWkLffdM27ljHDZS1KiJGWQpORVOHyd8zAl7fj07e1S2DIe4Ec5U7cqHJUbMBv-eLWtz1fbg6XusH8lr3qDyx_wlfnoPeQBbcPiZPxkdxDiTPRuVCQCcs6q-wJTDwet
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQIAMbWE2c4MRiKi1RC7QwtFK3yI7tiYYqhIF_z9lNGkCAxJLFj0jnO9938t13CJ0rxhThjOCURxQD_g8xB0eAiUgBD0gqXJubMxzR_iS4m15NP1Xx22z36klyUdNgWJqyoj2Xul0XvkEkY_KAGLYqhekqWgsMUQJo9IR0lu8IBg3ZkCt0cUCJV5bN_LzHV9dU481vT6TW88TbaLOEjE5nccY7aEVlu2irasfglNa5h66HamaZAnKna34geA6Lcv7u3ICrkk6n--jEMDiYwR3i3Er49FRhU7GyfTSOb8fdPi57I-AUjKbAnCvtS1_7nqQ08rmWKQ_DKNDCo9pgOCWjgHAqpPAjbXjkARe4NKWSQ8BF_QPUyF4ydYgczXztCmkIy3mgAL9Iw5mnmAg1C1ImmsirpJKkJW-4aV_xnNSMx0aSCUgysZJMaBNdLNfMF6wZf85uVcJOSgt6TQiDy8bEd6SJLqsDqId_3-3of9PP0PpTL04eBqP7Y7RBTDRt83JaqFHkb-oEIEchTq1WfQAbn8h2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memristor+Crossbar+Array+Based+ACO+For+Image+Edge+Detection&rft.jtitle=Neural+processing+letters&rft.au=Yu%2C+Yongbin&rft.au=Deng%2C+Quanxin&rft.au=Ren%2C+Liyong&rft.au=Tashi%2C+Nyima&rft.date=2020-04-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=51&rft.issue=2&rft.spage=1891&rft.epage=1905&rft_id=info:doi/10.1007%2Fs11063-019-10179-6&rft.externalDocID=10_1007_s11063_019_10179_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon