An ultrafast oxygen evolution reaction catalyzed by an amorphous Nickel–Dysprosium-based electrocatalyst with extraordinary spatial morphology
Oxygen evolution reaction (OER) during water splitting majorly based on the structure and nature of the electrocatalyst. Perovskite oxides (ABO 3 ) have a flexible structure and range of physicochemical features that make them interesting for the present study. Therefore, scientists are interested i...
Saved in:
Published in | Journal of sol-gel science and technology Vol. 106; no. 1; pp. 226 - 235 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0928-0707 1573-4846 |
DOI | 10.1007/s10971-023-06058-1 |
Cover
Abstract | Oxygen evolution reaction (OER) during water splitting majorly based on the structure and nature of the electrocatalyst. Perovskite oxides (ABO
3
) have a flexible structure and range of physicochemical features that make them interesting for the present study. Therefore, scientists are interested in using electrocatalyst Perovskite oxides (ABO
3
) for OER. Nanostructures and amorphous patterns can appear when cations from the perovskite matrix are leached away from the A site. One of the most challenging problems is gaining enormous active amorphous subjects from cations in the B site rather than simply dissolving cations in the A site. In the present study, the crystalline perovskite (DyNiO
3
) has been fabricated, which is converted into an amorphous nanostructured comparative to NiO, and characterized via numerous analytical characterization methods to investigate the structural, morphological, and textural characteristics. The designed substance is then investigated for electrochemical characterizations to evaluate the overpotential, Tafel slope, and durability. Among all, DyNiO
3
responses have a slight overpotential (η) of 265 mV and a low Tafel slope of 78 mV/dec with greater durability of 49 h. The efficient outcomes of the DyNiO
3
are because of the grater valence state of Ni
3+
containing edge splitting octahedral-frameworks, which are bordering by interstitial deformed octahedral Dy
3+
ion. This research improves perovskite oxides function as catalysts and can be applied to developing enhanced OER electrocatalysts and other energy applications in the near future.
Graphical Abstract
DyNiO3 was prepared and then deposited on the substrate such as nickel foam. The deposited nickel foam was then employed for the electrochemical measurements such water splitting applications. The chronoamperometric text was performed to conform the stability of the material. The material remained stable upto 84 h.
Highlights
The DyNiO
3
was fabricated via simple hydrothermal method.
The fabricated material is characterized via numerous analytical characterization.
The designed substance is then investigated for electrochemical characterizations to evaluate the overpotential, Tafel slope and durability.
The DyNiO
3
responses a low overpotential of 265 mV and a low Tafel slope of 78 mV/dec with greater durability of 49 h. |
---|---|
AbstractList | Oxygen evolution reaction (OER) during water splitting majorly based on the structure and nature of the electrocatalyst. Perovskite oxides (ABO
3
) have a flexible structure and range of physicochemical features that make them interesting for the present study. Therefore, scientists are interested in using electrocatalyst Perovskite oxides (ABO
3
) for OER. Nanostructures and amorphous patterns can appear when cations from the perovskite matrix are leached away from the A site. One of the most challenging problems is gaining enormous active amorphous subjects from cations in the B site rather than simply dissolving cations in the A site. In the present study, the crystalline perovskite (DyNiO
3
) has been fabricated, which is converted into an amorphous nanostructured comparative to NiO, and characterized via numerous analytical characterization methods to investigate the structural, morphological, and textural characteristics. The designed substance is then investigated for electrochemical characterizations to evaluate the overpotential, Tafel slope, and durability. Among all, DyNiO
3
responses have a slight overpotential (η) of 265 mV and a low Tafel slope of 78 mV/dec with greater durability of 49 h. The efficient outcomes of the DyNiO
3
are because of the grater valence state of Ni
3+
containing edge splitting octahedral-frameworks, which are bordering by interstitial deformed octahedral Dy
3+
ion. This research improves perovskite oxides function as catalysts and can be applied to developing enhanced OER electrocatalysts and other energy applications in the near future.
Graphical Abstract
DyNiO3 was prepared and then deposited on the substrate such as nickel foam. The deposited nickel foam was then employed for the electrochemical measurements such water splitting applications. The chronoamperometric text was performed to conform the stability of the material. The material remained stable upto 84 h.
Highlights
The DyNiO
3
was fabricated via simple hydrothermal method.
The fabricated material is characterized via numerous analytical characterization.
The designed substance is then investigated for electrochemical characterizations to evaluate the overpotential, Tafel slope and durability.
The DyNiO
3
responses a low overpotential of 265 mV and a low Tafel slope of 78 mV/dec with greater durability of 49 h. Oxygen evolution reaction (OER) during water splitting majorly based on the structure and nature of the electrocatalyst. Perovskite oxides (ABO3) have a flexible structure and range of physicochemical features that make them interesting for the present study. Therefore, scientists are interested in using electrocatalyst Perovskite oxides (ABO3) for OER. Nanostructures and amorphous patterns can appear when cations from the perovskite matrix are leached away from the A site. One of the most challenging problems is gaining enormous active amorphous subjects from cations in the B site rather than simply dissolving cations in the A site. In the present study, the crystalline perovskite (DyNiO3) has been fabricated, which is converted into an amorphous nanostructured comparative to NiO, and characterized via numerous analytical characterization methods to investigate the structural, morphological, and textural characteristics. The designed substance is then investigated for electrochemical characterizations to evaluate the overpotential, Tafel slope, and durability. Among all, DyNiO3 responses have a slight overpotential (η) of 265 mV and a low Tafel slope of 78 mV/dec with greater durability of 49 h. The efficient outcomes of the DyNiO3 are because of the grater valence state of Ni3+ containing edge splitting octahedral-frameworks, which are bordering by interstitial deformed octahedral Dy3+ ion. This research improves perovskite oxides function as catalysts and can be applied to developing enhanced OER electrocatalysts and other energy applications in the near future.HighlightsThe DyNiO3 was fabricated via simple hydrothermal method.The fabricated material is characterized via numerous analytical characterization.The designed substance is then investigated for electrochemical characterizations to evaluate the overpotential, Tafel slope and durability.The DyNiO3 responses a low overpotential of 265 mV and a low Tafel slope of 78 mV/dec with greater durability of 49 h. |
Author | Al-Sehemi, Abdullah G. Farid, Hafiz Muhammad Tahir Khosa, Rabia Yasmin Nisa, Mehar Un Abdelmohsen, Shaimaa A. M. Aman, Salma Alanazi, Meznah M. Manzoor, Sumaira Abid, Abdul Ghafoor |
Author_xml | – sequence: 1 givenname: Salma surname: Aman fullname: Aman, Salma email: salma.physics.kfu@gmail.com organization: Department of Physics, Government Graduate college – sequence: 2 givenname: Meznah M. surname: Alanazi fullname: Alanazi, Meznah M. organization: Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428 – sequence: 3 givenname: Shaimaa A. M. surname: Abdelmohsen fullname: Abdelmohsen, Shaimaa A. M. organization: Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428 – sequence: 4 givenname: Abdul Ghafoor surname: Abid fullname: Abid, Abdul Ghafoor organization: Institute of Chemical Sciences, Bahauddin Zakariya University – sequence: 5 givenname: Rabia Yasmin surname: Khosa fullname: Khosa, Rabia Yasmin organization: University of Education, Lahore, Dera Ghazi Khan Campus – sequence: 6 givenname: Sumaira surname: Manzoor fullname: Manzoor, Sumaira organization: Institute of Chemical Sciences, Bahauddin Zakariya University – sequence: 7 givenname: Mehar Un surname: Nisa fullname: Nisa, Mehar Un organization: Institute of Chemical Sciences, Bahauddin Zakariya University – sequence: 8 givenname: Abdullah G. surname: Al-Sehemi fullname: Al-Sehemi, Abdullah G. organization: Department of Chemistry, College of Science, King Khalid University – sequence: 9 givenname: Hafiz Muhammad Tahir surname: Farid fullname: Farid, Hafiz Muhammad Tahir email: tahirfaridbzu@gmail.com organization: Department of Physics, Government Graduate college |
BookMark | eNp9kLtuFDEUhi0UJDYJL0BlidpwPDM79pRRuAQpgobUlq8bB6-92B7IUOURkHhDngQng4REkcou_u8_53zH6CimaBF6QeEVBWCvC4WJUQJdT2CELSf0CdrQLevJwIfxCG1g6jgBBuwZOi7lBgC2A2Ub9PMs4jnULJ0sFafbZWcjtt9SmKtPEWcr9cNHyyrD8sMarBYsI5b7lA_XaS74o9dfbPh99-vNUg45FT_viZKlJW2wuua0oq39u6_X2N62YSkbH2VecDnI6mXAa1tIu-UUPXUyFPv873uCrt69_Xx-QS4_vf9wfnZJdE-nSiQ3FBTrnLEcmGbOjs4oa52jioMe1dCryYw9NzA4CUZqx6U2ikm31aD6_gS9XHvbzl9nW6q4SXOObaTo2AQddJSPLdWtKd0uK9k6cch-3zYXFMS9ebGaF828eDAvaIP4f5D2Vd5rbKf78Djar2hT6ePO5n9bPUL9AS5Yofo |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_05_319 crossref_primary_10_1002_tcr_202400151 crossref_primary_10_1039_D3DT02492J crossref_primary_10_1016_j_jpcs_2024_111973 crossref_primary_10_1016_j_est_2023_110289 crossref_primary_10_1016_j_ijhydene_2025_03_049 crossref_primary_10_1016_j_diamond_2025_112070 crossref_primary_10_1016_j_ccr_2025_216573 |
Cites_doi | 10.1016/j.apcatb.2021.120611 10.1021/acs.chemmater.6b01522 10.1016/j.ijhydene.2016.07.268 10.1021/acscatal.9b05248 10.1039/C9NR05919A 10.1002/aenm.201500091 10.1021/acs.chemmater.8b03776 10.1039/C9TA14256H 10.1002/adfm.201303600 10.1002/adma.201900883 10.1007/s40843-018-9283-1 10.1021/acscatal.7b01800 10.1002/celc.202000451 10.1016/j.ceramint.2021.06.251 10.1088/0959-5309/57/2/306 10.1016/S1872-2067(20)63606-3 10.1007/s12598-021-01851-9 10.1039/C9RA05195C 10.1149/09707.0575ecst 10.1016/j.matchemphys.2012.06.059 10.1021/acscatal.5b01638 10.1016/j.ijhydene.2021.06.014 10.1016/j.jallcom.2022.165948 10.3762/bjnano.5.96 10.1002/adfm.201505509 10.1016/j.jcat.2017.12.020 10.1039/C6EE03088B 10.1007/s10008-022-05202-1 10.1007/s41204-022-00266-w 10.1007/s10008-022-05232-9 10.1021/acsami.2c02861 10.1002/tcr.202200070 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s10971-023-06058-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1573-4846 |
EndPage | 235 |
ExternalDocumentID | 10_1007_s10971_023_06058_1 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF- PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8S Z8W Z8Z Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-a8d10b72fde807c7fe6fdbeeff1b80c6b43b9d638d04fa0dacf8acdb7af5c0b33 |
IEDL.DBID | AGYKE |
ISSN | 0928-0707 |
IngestDate | Fri Jul 25 11:04:50 EDT 2025 Tue Jul 01 00:24:51 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Fri Feb 21 02:43:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Perovskite DyNiO Electrocatalyst Water splitting Co-precipitation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-a8d10b72fde807c7fe6fdbeeff1b80c6b43b9d638d04fa0dacf8acdb7af5c0b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2790202186 |
PQPubID | 2043844 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2790202186 crossref_primary_10_1007_s10971_023_06058_1 crossref_citationtrail_10_1007_s10971_023_06058_1 springer_journals_10_1007_s10971_023_06058_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230400 2023-04-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 4 year: 2023 text: 20230400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of sol-gel science and technology |
PublicationTitleAbbrev | J Sol-Gel Sci Technol |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Ma, Mu, Miao, Lin, Xu, Xie, Zeng (CR34) 2022; 41 Rodney, Deepapriya, Das, Robinson, Perumal, Katlakunta, Sivakumar, Jung, Raj (CR35) 2022; 921 Srinivasa, Shreenivasa, Adarakatti, Hughes, Rowley-Neale, Banks, Ashoka (CR24) 2019; 9 Liu, Zhao, Jiang, Kang, Zhou, Wang, Zhou (CR3) 2020; 8 Khan, Tareen, Aslam, Zhang, Wang, Ouyang, Gou, Zhang (CR1) 2019; 11 Quaino, Juarez, Santos, Schmickler (CR5) 2014; 5 Rashid, Abid, Manzoor, Mera, Al-Muhimeed, AlObaid, Shah, Ashiq, Imran, Najam-Ul-Haq (CR7) 2021; 47 Dias, Andrade, Santos, Morelli, Mascaro (CR19) 2020; 7 Taylor, Sinclair (CR26) 1945; 57 CR16 CR15 Fominykh, Feckl, Sicklinger, Döblinger, Böcklein, Ziegler, Peter, Rathousky, Scheidt, Bein (CR37) 2014; 24 CR12 Wu, Zou, Huang, Gao (CR29) 2018; 358 Wang, Hsu, Chen, Chan, Chen, Liu (CR11) 2015; 5 Chen, Zhu, Chen, Hu, Hung, Ma, Dai, Lin, Chen, Zhou (CR21) 2019; 31 Li, Achenie, Xin (CR2) 2020; 10 Vij, Sultan, Harzandi, Meena, Tiwari, Lee, Yoon, Kim (CR14) 2017; 7 Fu, Wen, Xi, Chen, Li, Zhang, Tadich, Wu, Qi, Du (CR18) 2018; 31 Li, Zhao (CR13) 2016; 28 Samoila, Slatineanu, Postolache, Iordan, Palamaru (CR27) 2012; 136 Wan, He, Chen, Isimjan, Wang, Yang (CR31) 2020; 41 CR6 Lei, Zhou, Feng, Lei, Zhang, Chen, Qin (CR9) 2019; 11 Zhang, Lv, Chen, Lv, Wu, Guo, Jia (CR36) 2021; 298 Weng, Xu, Wang, Meng, Grice, Yan (CR33) 2017; 10 CR28 Wang, Li, Xiong, Petrovykh, Liu (CR17) 2016; 26 CR25 He, Matta, Will, Du (CR10) 2019; 3 Zeng, Cui, Shi (CR23) 2018; 61 Liu, Gao, Wang, He, Li (CR30) 2016; 41 CR20 Chu, Li (CR22) 2020; 97 Nisa, Manzoor, Abid, Tamam, Abdullah, Najam-Ul-Haq, Al-Buriahi, Alrowaili, Mahmoud, Ashiq (CR4) 2022; 321 Diaz-Morales, Ledezma-Yanez, Koper, Calle-Vallejo (CR8) 2015; 5 Rodney, Deepapriya, Robinson, Raj, Perumal, Kim, Krishnan, Das (CR32) 2021; 46 JD Rodney (6058_CR32) 2021; 46 L Zeng (6058_CR23) 2018; 61 Y Ma (6058_CR34) 2022; 41 G Liu (6058_CR30) 2016; 41 JA Dias (6058_CR19) 2020; 7 D Chu (6058_CR22) 2020; 97 6058_CR12 K Fominykh (6058_CR37) 2014; 24 O Diaz-Morales (6058_CR8) 2015; 5 A Taylor (6058_CR26) 1945; 57 6058_CR16 X Wang (6058_CR17) 2016; 26 6058_CR15 V Vij (6058_CR14) 2017; 7 Y Li (6058_CR13) 2016; 28 G Chen (6058_CR21) 2019; 31 AR Rashid (6058_CR7) 2021; 47 T He (6058_CR10) 2019; 3 6058_CR6 P Samoila (6058_CR27) 2012; 136 Z Wan (6058_CR31) 2020; 41 MU Nisa (6058_CR4) 2022; 321 6058_CR28 Z Wu (6058_CR29) 2018; 358 Z Li (6058_CR2) 2020; 10 JD Rodney (6058_CR35) 2022; 921 Q Liu (6058_CR3) 2020; 8 G Fu (6058_CR18) 2018; 31 6058_CR25 K Khan (6058_CR1) 2019; 11 6058_CR20 B Weng (6058_CR33) 2017; 10 H Zhang (6058_CR36) 2021; 298 P Quaino (6058_CR5) 2014; 5 N Srinivasa (6058_CR24) 2019; 9 C Lei (6058_CR9) 2019; 11 HY Wang (6058_CR11) 2015; 5 |
References_xml | – volume: 298 start-page: 120611 year: 2021 ident: CR36 article-title: Inter-doped ruthenium–nickel oxide heterostructure nanosheets with dual active centers for electrochemical-/solar-driven overall water splitting publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2021.120611 – volume: 28 start-page: 5659 year: 2016 end-page: 5666 ident: CR13 article-title: Iron-doped nickel phosphate as synergistic electrocatalyst for water oxidation publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b01522 – volume: 321 start-page: 124086 year: 2022 ident: CR4 article-title: CdSe supported SnO nanocomposite with strongly hydrophilic surface for enhanced overall water splitting publication-title: Surf Interface – ident: CR16 – volume: 41 start-page: 17976 year: 2016 end-page: 17986 ident: CR30 article-title: Uniformly mesoporous NiO/NiFe O biphasic nanorods as efficient oxygen evolving catalyst for water splitting publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2016.07.268 – volume: 10 start-page: 4377 year: 2020 end-page: 4384 ident: CR2 article-title: An adaptive machine learning strategy for accelerating discovery of perovskite electrocatalysts publication-title: ACS Catal doi: 10.1021/acscatal.9b05248 – ident: CR12 – volume: 11 start-page: 21622 year: 2019 end-page: 21678 ident: CR1 article-title: Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications publication-title: Nanoscale doi: 10.1039/C9NR05919A – volume: 5 start-page: 1500091 year: 2015 ident: CR11 article-title: Ni ‐induced formation of active NiOOH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction publication-title: Adv Energy Mater doi: 10.1002/aenm.201500091 – volume: 31 start-page: 419 year: 2018 end-page: 428 ident: CR18 article-title: Tuning the electronic structure of NiO via Li doping for the fast oxygen evolution reaction publication-title: Chem Mater doi: 10.1021/acs.chemmater.8b03776 – volume: 8 start-page: 13638 year: 2020 end-page: 13645 ident: CR3 article-title: Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires publication-title: J Mater Chem A doi: 10.1039/C9TA14256H – volume: 24 start-page: 3123 year: 2014 end-page: 3129 ident: CR37 article-title: Ultrasmall dispersible crystalline nickel oxide nanoparticles as high‐performance catalysts for electrochemical water splitting publication-title: Adv Funct Mater doi: 10.1002/adfm.201303600 – volume: 31 start-page: 1900883 year: 2019 ident: CR21 article-title: An amorphous nickel–iron‐based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction publication-title: Adv Mater doi: 10.1002/adma.201900883 – ident: CR6 – volume: 61 start-page: 1557 year: 2018 end-page: 1566 ident: CR23 article-title: A facile strategy for ultrasmall Pt NPs being partially-embedded in N-doped carbon nanosheet structure for efficient electrocatalysis publication-title: Sci China Mater doi: 10.1007/s40843-018-9283-1 – volume: 7 start-page: 7196 year: 2017 end-page: 7225 ident: CR14 article-title: Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions publication-title: Acs Catal doi: 10.1021/acscatal.7b01800 – volume: 7 start-page: 3173 year: 2020 end-page: 3192 ident: CR19 article-title: Lanthanum‐based perovskites for catalytic oxygen evolution reaction publication-title: ChemElectroChem doi: 10.1002/celc.202000451 – ident: CR25 – volume: 47 start-page: 28338 year: 2021 end-page: 28347 ident: CR7 article-title: Inductive effect in Mn-doped ZnO nanoribon arrays grown on Ni foam: A promising key for boosted capacitive and high specific energy supercapacitors publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.06.251 – volume: 57 start-page: 126 year: 1945 ident: CR26 article-title: On the determination of lattice parameters by the Debye-Scherrer method publication-title: Proc Phys Soc (1926-1948) doi: 10.1088/0959-5309/57/2/306 – volume: 41 start-page: 1745 year: 2020 end-page: 1753 ident: CR31 article-title: Dissolution-regrowth of hierarchical Fe-Dy oxide modulates the electronic structure of nickel-organic frameworks as highly active and stable water splitting electrocatalysts publication-title: Chin J Catal doi: 10.1016/S1872-2067(20)63606-3 – volume: 41 start-page: 844 year: 2022 end-page: 850 ident: CR34 article-title: Hydrangea flower-like nanostructure of dysprosium-doped Fe-MOF for highly efficient oxygen evolution reaction publication-title: Rare Met doi: 10.1007/s12598-021-01851-9 – volume: 9 start-page: 24995 year: 2019 end-page: 25002 ident: CR24 article-title: In situ addition of graphitic carbon into a NiCo O /CoO composite: enhanced catalysis toward the oxygen evolution reaction publication-title: RSC Adv doi: 10.1039/C9RA05195C – volume: 97 start-page: 575 year: 2020 ident: CR22 article-title: Earth-Abundant Ni-Mo-S based bifunctional electrocatalyst for efficient water splitting publication-title: ECS Trans doi: 10.1149/09707.0575ecst – volume: 11 start-page: 1 year: 2019 end-page: 10 ident: CR9 article-title: Charge engineering of Mo C@ defect-rich N-doped carbon nanosheets for efficient electrocatalytic H evolution publication-title: Nanomicro Lett – volume: 136 start-page: 241 year: 2012 end-page: 246 ident: CR27 article-title: The effect of chelating/combustion agent on catalytic activity and magnetic properties of Dy doped Ni–Zn ferrite publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2012.06.059 – ident: CR15 – volume: 5 start-page: 5380 year: 2015 end-page: 5387 ident: CR8 article-title: Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: ACS Catal doi: 10.1021/acscatal.5b01638 – volume: 46 start-page: 27585 year: 2021 end-page: 27596 ident: CR32 article-title: Dysprosium doped copper oxide (Cu Dy O) nanoparticles enabled bifunctional electrode for overall water splitting publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2021.06.014 – volume: 921 start-page: 165948 year: 2022 ident: CR35 article-title: Boosting overall electrochemical water splitting via rare earth doped cupric oxide nanoparticles obtained by co-precipitation technique publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2022.165948 – volume: 5 start-page: 846 year: 2014 end-page: 854 ident: CR5 article-title: Volcano plots in hydrogen electrocatalysis–uses and abuses publication-title: Beilstein J Nanotechnol doi: 10.3762/bjnano.5.96 – volume: 26 start-page: 4067 year: 2016 end-page: 4077 ident: CR17 article-title: Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting publication-title: Adv Funct Mater doi: 10.1002/adfm.201505509 – volume: 358 start-page: 243 year: 2018 end-page: 252 ident: CR29 article-title: Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting publication-title: J Catal doi: 10.1016/j.jcat.2017.12.020 – volume: 10 start-page: 121 year: 2017 end-page: 128 ident: CR33 article-title: A layered Na Ni Fe O double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting publication-title: Energy Environ Sci doi: 10.1039/C6EE03088B – ident: CR28 – ident: CR20 – volume: 3 start-page: 1800419 year: 2019 ident: CR10 article-title: Transition‐metal single atoms anchored on graphdiyne as high‐efficiency electrocatalysts for water splitting and oxygen reduction, Small publication-title: Methods – volume: 3 start-page: 1800419 year: 2019 ident: 6058_CR10 publication-title: Methods – volume: 10 start-page: 4377 year: 2020 ident: 6058_CR2 publication-title: ACS Catal doi: 10.1021/acscatal.9b05248 – volume: 11 start-page: 1 year: 2019 ident: 6058_CR9 publication-title: Nanomicro Lett – ident: 6058_CR25 doi: 10.1007/s10008-022-05202-1 – volume: 31 start-page: 1900883 year: 2019 ident: 6058_CR21 publication-title: Adv Mater doi: 10.1002/adma.201900883 – volume: 41 start-page: 17976 year: 2016 ident: 6058_CR30 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2016.07.268 – volume: 358 start-page: 243 year: 2018 ident: 6058_CR29 publication-title: J Catal doi: 10.1016/j.jcat.2017.12.020 – volume: 11 start-page: 21622 year: 2019 ident: 6058_CR1 publication-title: Nanoscale doi: 10.1039/C9NR05919A – ident: 6058_CR28 doi: 10.1007/s41204-022-00266-w – volume: 9 start-page: 24995 year: 2019 ident: 6058_CR24 publication-title: RSC Adv doi: 10.1039/C9RA05195C – volume: 8 start-page: 13638 year: 2020 ident: 6058_CR3 publication-title: J Mater Chem A doi: 10.1039/C9TA14256H – ident: 6058_CR6 doi: 10.1007/s10008-022-05232-9 – volume: 28 start-page: 5659 year: 2016 ident: 6058_CR13 publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b01522 – ident: 6058_CR12 – volume: 57 start-page: 126 year: 1945 ident: 6058_CR26 publication-title: Proc Phys Soc (1926-1948) doi: 10.1088/0959-5309/57/2/306 – volume: 921 start-page: 165948 year: 2022 ident: 6058_CR35 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2022.165948 – volume: 26 start-page: 4067 year: 2016 ident: 6058_CR17 publication-title: Adv Funct Mater doi: 10.1002/adfm.201505509 – volume: 41 start-page: 844 year: 2022 ident: 6058_CR34 publication-title: Rare Met doi: 10.1007/s12598-021-01851-9 – volume: 136 start-page: 241 year: 2012 ident: 6058_CR27 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2012.06.059 – volume: 24 start-page: 3123 year: 2014 ident: 6058_CR37 publication-title: Adv Funct Mater doi: 10.1002/adfm.201303600 – volume: 47 start-page: 28338 year: 2021 ident: 6058_CR7 publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.06.251 – ident: 6058_CR20 doi: 10.1021/acsami.2c02861 – volume: 10 start-page: 121 year: 2017 ident: 6058_CR33 publication-title: Energy Environ Sci doi: 10.1039/C6EE03088B – volume: 5 start-page: 5380 year: 2015 ident: 6058_CR8 publication-title: ACS Catal doi: 10.1021/acscatal.5b01638 – volume: 321 start-page: 124086 year: 2022 ident: 6058_CR4 publication-title: Surf Interface – volume: 61 start-page: 1557 year: 2018 ident: 6058_CR23 publication-title: Sci China Mater doi: 10.1007/s40843-018-9283-1 – volume: 97 start-page: 575 year: 2020 ident: 6058_CR22 publication-title: ECS Trans doi: 10.1149/09707.0575ecst – volume: 46 start-page: 27585 year: 2021 ident: 6058_CR32 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2021.06.014 – volume: 298 start-page: 120611 year: 2021 ident: 6058_CR36 publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2021.120611 – ident: 6058_CR15 – volume: 7 start-page: 3173 year: 2020 ident: 6058_CR19 publication-title: ChemElectroChem doi: 10.1002/celc.202000451 – volume: 31 start-page: 419 year: 2018 ident: 6058_CR18 publication-title: Chem Mater doi: 10.1021/acs.chemmater.8b03776 – ident: 6058_CR16 doi: 10.1002/tcr.202200070 – volume: 7 start-page: 7196 year: 2017 ident: 6058_CR14 publication-title: Acs Catal doi: 10.1021/acscatal.7b01800 – volume: 5 start-page: 846 year: 2014 ident: 6058_CR5 publication-title: Beilstein J Nanotechnol doi: 10.3762/bjnano.5.96 – volume: 5 start-page: 1500091 year: 2015 ident: 6058_CR11 publication-title: Adv Energy Mater doi: 10.1002/aenm.201500091 – volume: 41 start-page: 1745 year: 2020 ident: 6058_CR31 publication-title: Chin J Catal doi: 10.1016/S1872-2067(20)63606-3 |
SSID | ssj0005417 |
Score | 2.4168828 |
Snippet | Oxygen evolution reaction (OER) during water splitting majorly based on the structure and nature of the electrocatalyst. Perovskite oxides (ABO
3
) have a... Oxygen evolution reaction (OER) during water splitting majorly based on the structure and nature of the electrocatalyst. Perovskite oxides (ABO3) have a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 226 |
SubjectTerms | Cations Ceramics Chemistry and Materials Science Composites Durability Dysprosium Electrocatalysts Electrodes Evolution Flexible structures Glass Inorganic Chemistry Materials Science Morphology Nanotechnology Natural Materials Nickel Optical and Electronic Materials Original Paper: Sol-gel and hybrid materials with surface modification for applications Oxides Oxygen evolution reactions Perovskites Phase transitions Physics Science Valence Water splitting |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66IuhBfOLqKjl402DabZv2JKKuIuhJwVvJE8S11W1XXE_-BMF_6C9xks1aFfRY2oSS-ZJ5ZGY-hHaSkBomQ06E4ZxEoKBIKqQggOeU2XYnIbX1zheXydl1dH4T3_iAW-XTKidnojuoVSltjHw_ZBlYNpZB6eDhkVjWKHu76ik0ptFMEAKSbKV477RJ8Ygc4y7NbBdmRpkvmvGlcxkDRzq03AY0Bk_qp2JqrM1fF6RO7_QW0YI3GPHhWMJLaEoXy2j-WxvBZTTr0jhltYLeDgs87NcDbnhV4_J5BPDA-snDC4OB6MoYsAvajF60wmKEeYH5fQnrXQ4rDMi40_2P1_fjEfxRWd0O74nVdAp7wpzxUJjdRnAxHO0DDv6rq-rFlU3Php8dz2bj9avoundydXRGPOcCkbAZa8JTFVDBQqN0SplkRidGCa2NCURKZSKirsgULLWikeFUcWlSLpVg3MSSim53DbWKstDrCMMTaEhlAgkun4pTnigeGB4nGTgpQSTbKJgseC59Q3LLi9HPm1bKVkg5CCl3QsqDNtr9GvMwbsfx79ediRxzvzWrvAFSG-1NZNu8_nu2jf9n20RzoYOTzerpoFY9GOotMFhqse1Q-QkPzOwg priority: 102 providerName: ProQuest |
Title | An ultrafast oxygen evolution reaction catalyzed by an amorphous Nickel–Dysprosium-based electrocatalyst with extraordinary spatial morphology |
URI | https://link.springer.com/article/10.1007/s10971-023-06058-1 https://www.proquest.com/docview/2790202186 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-4846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005417 issn: 0928-0707 databaseCode: AFBBN dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-4846 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0005417 issn: 0928-0707 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-4846 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0005417 issn: 0928-0707 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-4846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005417 issn: 0928-0707 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-4846 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005417 issn: 0928-0707 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS9xAEB_0pFAfbGtbPKuyD31rI5tckk0er3qnWCql9MA-hf0L4pkrl0Q4n_wIgt-wn6Szm01PpS34FJLsDpPd2czM7sxvAN6nETVMRjwQhvMgRgUVZEKKAOU5YxbuJKI23_nLaXo8iU_OkjOfFFZ10e7dkaT7U99LdssZur6RrUZAE_R9VmEtsQ5KD9aGRz8-j5ahHbGrtEtzi77MKPPJMn-n8lAhLa3MRwejTt-MX8Ck47QNM7nYb2qxL68fgTg-9VNewoY3QMmwlZhXsKLLTVi_B0u4Cc9cWKisXsPtsCTNtJ5zw6uaICcobkRfeXElaHC6tAjiNoEW11oRsSC8JPxyhvM3ayqCknahp79u7g4XyOSsOm8uA6s5FfEFeNquSN3uCBNUFXOO_rDLEiaVDfdGZltqdv__DUzGo-8Hx4Gv4RBIXNx1wDMVUsEio3RGmWRGp0YJrY0JRUZlKuKByBX-BBSNDaeKS5NxqQTjJpFUDAZvoVfOSr0FBO9Q4yoTSnQhVZLxVPHQ8CTN0ekJY9mHsJvIQnqAc1tnY1osoZntuBc47oUb9yLsw4c_fX628B7_bb3TyUfhl3pVRCxHk9uW9urDx266l6__TW37ac3fwfPISYyNGtqBXj1v9C4aRLXYg9VsfLTnVwFeP41Ov37Dp5No-BsLWAmB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQcEBQQCwV8gBNYON4kTg4IVZRlSx-nVuot-ClVbJOyyQLhxE9A4n_wo_glzDgJASR66zFKPLI8X-bleRDyOBXcSyMU014pFoOCYpk2mgGeM4ntTgTHeuf9g3R-FL89To7XyI-hFgbTKgeZGAS1rQzGyJ8LmYNlgxOUXp59YDg1Cm9XhxEaHSx2XfsJXLb6xc428PeJELPXh6_mrJ8qwAzArWEqsxHXUnjrMi6N9C71VjvnfaQzblIdT3VuAZaWx15xq4zPlLFaKp8YrjEACiL_UjydTrFXfzZ7M6aUxGHCL8-x67Pksi_S6Uv1cgmOu8BZCjwBz-1vRThat_9cyAY9N7tBrvcGKt3qEHWTrLlyg1z7o23hBrkc0kZNfYt82yrpatEslVd1Q6vPLcCRuo89nCkYpKFsgoYgUfvFWapbqkqqTivgb7WqKSDxvVv8_Pp9u4UdVfXJ6pShZrW0H9DTLQXqGDGmoEqWCg4_VBHTGtPBYbMdNbwfuE2OLoQbd8h6WZXuLqHwBBrZ-siAi2mTTKVWRV4laQ5OURSbCYmGAy9M3wAd53AsirF1MzKpACYVgUlFNCFPf68569p_nPv15sDHohcFdTECd0KeDbwdX_-f2r3zqT0iV-aH-3vF3s7B7n1yVQRoYUbRJllvliv3AIylRj8MCKXk3UX_Er8ACy4tQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEB7RoFZwQEBBBALdQ2-txdqxvfYxAiKgLeLQSNys_ZUQwUaxgwgnHgGJN-RJmF07JFSlUo-WvaPVzqxnZne-bwC-xgE1TAbcE4ZzL0QH5SVCCg_tOWGW7iSgFu_86yw-HoSnF9HFHIrfVbtPryRrTINlacqr_Rtl9ueAbynDNDiwnQlohHnQB1gM0Vfb9GsQ9GZFHqHruUtTy8PMKGtgM3-X8dY1zeLNP65Inefpr8JKEzKSXq3jNVjQ-ToszxEJrsNHV8gpy8_w2MvJeFiNuOFlRYq7CRoI0beNgREMER2Qgbhjm8m9VkRMCM8Jvy5wxYtxSdA2rvTw-eHpcIIzKsrL8bVnfZ0iTcuceihKt2e4BH_uI44ZrMP1ktIWaONka2n2xH4DBv2j3wfHXtN1wZO4HSuPJ8qnggVG6YQyyYyOjRJaG-OLhMpYhF2RKty2ioaGU8WlSbhUgnETSSq63U1o5UWut4DgE_pIZXyJSZ-KEh4r7hsexSmmKX4o2-BPFzyTDSW57YwxzGZkylZJGSopc0rK_DZ8ex1zUxNy_PPrzlSPWbM5yyxgKQbJthlXG75PdTt7_b607f_7_At8Oj_sZz9Pzn7swFLgLM2W_HSgVY3GehejmUrsOYN9AX0Q8EM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ultrafast+oxygen+evolution+reaction+catalyzed+by+an+amorphous+Nickel%E2%80%93Dysprosium-based+electrocatalyst+with+extraordinary+spatial+morphology&rft.jtitle=Journal+of+sol-gel+science+and+technology&rft.au=Aman%2C+Salma&rft.au=Alanazi%2C+Meznah+M.&rft.au=Abdelmohsen%2C+Shaimaa+A.+M.&rft.au=Abid%2C+Abdul+Ghafoor&rft.date=2023-04-01&rft.pub=Springer+US&rft.issn=0928-0707&rft.eissn=1573-4846&rft.volume=106&rft.issue=1&rft.spage=226&rft.epage=235&rft_id=info:doi/10.1007%2Fs10971-023-06058-1&rft.externalDocID=10_1007_s10971_023_06058_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0707&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0707&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0707&client=summon |