Particle swarm optimization-based subsea cable electromagnetic detection by autonomous underwater vehicle
Subsea cables are widely used for power and information transmission in offshore infrastructure such as global communication networks and offshore wind farms. The precise positioning of subsea cables is an important prerequisite for maintenance and repair. However, the small diameter and burial dept...
Saved in:
| Published in | Neural computing & applications Vol. 37; no. 21; pp. 15995 - 16012 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.07.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-023-09060-4 |
Cover
| Abstract | Subsea cables are widely used for power and information transmission in offshore infrastructure such as global communication networks and offshore wind farms. The precise positioning of subsea cables is an important prerequisite for maintenance and repair. However, the small diameter and burial depth of 3–5 m below the seabed make locating and detecting the subsea cable technically challenging. This paper investigates the localization and intelligent tracking detection of subsea cables based on autonomous underwater vehicle (AUV) and particle swarm optimization (PSO) algorithm. First, an autonomous electromagnetic localization and tracking topology of subsea cable is designed based on AUV architecture and PSO algorithm. The basic principle of locating the horizontal position and depth of a subsea cable based on horizontal survey line measurement is illustrated. Second, the PSO algorithm is retrofitted with electromagnetic localization. Specifically, the subsea cable localization flow diagram, region of interest (ROI) and fitness function are constructed, respectively. Third, an online swath path planning method for subsea cable detection is designed based on the PSO localization results. Finally, the effectiveness of the PSO submarine cable location algorithm and the online planning method for detection paths is verified through multiple controlled simulation tests. |
|---|---|
| AbstractList | Subsea cables are widely used for power and information transmission in offshore infrastructure such as global communication networks and offshore wind farms. The precise positioning of subsea cables is an important prerequisite for maintenance and repair. However, the small diameter and burial depth of 3–5 m below the seabed make locating and detecting the subsea cable technically challenging. This paper investigates the localization and intelligent tracking detection of subsea cables based on autonomous underwater vehicle (AUV) and particle swarm optimization (PSO) algorithm. First, an autonomous electromagnetic localization and tracking topology of subsea cable is designed based on AUV architecture and PSO algorithm. The basic principle of locating the horizontal position and depth of a subsea cable based on horizontal survey line measurement is illustrated. Second, the PSO algorithm is retrofitted with electromagnetic localization. Specifically, the subsea cable localization flow diagram, region of interest (ROI) and fitness function are constructed, respectively. Third, an online swath path planning method for subsea cable detection is designed based on the PSO localization results. Finally, the effectiveness of the PSO submarine cable location algorithm and the online planning method for detection paths is verified through multiple controlled simulation tests. |
| Author | Tao, Bo Xiang, Xianbo Zhang, Qin Zhang, Jialei |
| Author_xml | – sequence: 1 givenname: Jialei surname: Zhang fullname: Zhang, Jialei organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology – sequence: 2 givenname: Xianbo orcidid: 0000-0002-6215-9864 surname: Xiang fullname: Xiang, Xianbo email: xbxiang@hust.edu.cn organization: School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology – sequence: 3 givenname: Qin surname: Zhang fullname: Zhang, Qin organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology – sequence: 4 givenname: Bo surname: Tao fullname: Tao, Bo organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology |
| BookMark | eNp9kE1LxDAQhoMouLv6BzwFPFcnTT-PsvgFC3rQc5ikU61smzVJXdZfb7SC4GFPgcnzzJu8c3Y42IEYOxNwIQDKSw-QpyKBVCZQQwFJdsBmIpMykZBXh2wGdRavi0wes7n3bwCQFVU-Y90jutCZNXG_Rddzuwld331i6OyQaPTUcD9qT8gN6kjRmkxwtseXgaLHGwpxEGGudxzHYAfb29HzcWjIbTGQ4x_0-h1wwo5aXHs6_T0X7Pnm-ml5l6webu-XV6vESFGHBAtooNAtVLkWggBLAF0IbHLUBtu0rZrMZLU2pdYE0MpCU01lS0LnKbUgF-x82rtx9n0kH9SbHd0QI5VMY0RZ5aKMVDVRxlnvHbXKdOHn18Fht1YC1HexaipWxWLVT7Eqi2r6T924rke32y_JSfIRHl7I_b1qj_UF1IaQjg |
| CitedBy_id | crossref_primary_10_36548_jsws_2024_3_007 |
| Cites_doi | 10.1016/j.asoc.2017.10.025 10.1016/j.apor.2020.102231 10.1007/s00138-009-0199-6 10.1007/s00773-019-00629-0 10.3723/ut.31.123 10.1016/j.oceaneng.2015.10.007 10.1109/JSEN.2021.3129286 10.3723/ut.31.133 10.3723/ut.32.217 10.1016/j.oceaneng.2018.03.037 10.1016/j.oceaneng.2020.107693 10.1109/TAP.2004.823969 10.1016/j.oceaneng.2015.09.007 10.1016/j.conengprac.2020.104657 10.1109/OCEANSSYD.2010.5603675 10.1371/journal.pone.0148543 10.1155/2018/9528313 10.1109/OCEANSKOBE.2008.4531060 10.1109/MHS.1995.494215 10.1109/4235.985692 10.1007/s40815-022-01424-7 10.3389/feart.2021.775544 10.4031/MTSJ.44.1.7 10.1111/csp2.436 10.1109/UT.2011.5774119 10.1016/j.neucom.2021.03.136 10.1163/156855302317413727 10.1016/j.oceaneng.2022.113300 10.1016/j.oceaneng.2022.113232 10.1109/TMECH.2023.3256707 10.5194/wes-2020-56 10.1109/48.989889 10.1109/JOE.2017.2768105 10.1109/OCEANSKOBE.2008.4531082 10.1109/CEC.2001.934374 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-023-09060-4 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 16012 |
| ExternalDocumentID | 10_1007_s00521_023_09060_4 |
| GrantInformation_xml | – fundername: Shenzhen Science and Technology Plan Project grantid: JCYJ20170413113054658 – fundername: National Natural Science Foundation of China grantid: 52071153 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Hubei Provincial Natural Science Foundation for Innovation Groups grantid: 2021CFA026 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX CITATION PUEGO |
| ID | FETCH-LOGICAL-c319t-a60d06bf085b11e0a700b61ad5abcaf2f8d4c49bc7bbe00f36be9e7fe1b52ef03 |
| IEDL.DBID | U2A |
| ISSN | 0941-0643 |
| IngestDate | Sat Aug 23 13:19:28 EDT 2025 Wed Oct 01 05:23:56 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Tue Jul 22 01:11:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | Electromagnetic detection Subsea cables Particle swarm optimization Autonomous underwater vehicle |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a60d06bf085b11e0a700b61ad5abcaf2f8d4c49bc7bbe00f36be9e7fe1b52ef03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6215-9864 |
| PQID | 3231978517 |
| PQPubID | 2043988 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3231978517 crossref_citationtrail_10_1007_s00521_023_09060_4 crossref_primary_10_1007_s00521_023_09060_4 springer_journals_10_1007_s00521_023_09060_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250700 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | T Szyrowski (9060_CR5) 2013; 31 J Li (9060_CR33) 2022; 484 H Chen (9060_CR14) 2015; 109 P James (9060_CR34) 2010; 44 Z Zeng (9060_CR39) 2020; 25 9060_CR36 J Robinson (9060_CR37) 2004; 52 9060_CR38 AP Klimley (9060_CR3) 2021; 3 M Clerc (9060_CR41) 2002; 6 9060_CR20 Z Zeng (9060_CR7) 2015; 110 9060_CR21 9060_CR22 9060_CR24 Y Zhong (9060_CR10) 2023; 25 J Kojima (9060_CR23) 1998; 1 M Li (9060_CR18) 2023; 267 T Szyrowski (9060_CR28) 2015; 32 X Sun (9060_CR30) 2014; 50 K Asakawa (9060_CR26) 2002; 16 Q Zhang (9060_CR8) 2018; 2018 Z Wang (9060_CR19) 2021; 106 GL Foresti (9060_CR11) 2002; 27 F Ahmed (9060_CR9) 2023; 268 9060_CR27 C Kraus (9060_CR4) 2018; 157 A Ortiz (9060_CR15) 2011; 22 J Zhang (9060_CR16) 2023; 23 C Yu (9060_CR25) 2018; 43 9060_CR2 R Kavet (9060_CR29) 2016; 11 X Guo (9060_CR32) 2020; 216 T Szyrowski (9060_CR17) 2013; 31 9060_CR12 9060_CR13 9060_CR35 EY Bejarbaneh (9060_CR31) 2020; 101 S MahmoudZadeh (9060_CR40) 2018; 70 9060_CR6 BM Howe (9060_CR1) 2022; 9 |
| References_xml | – volume: 70 start-page: 929 year: 2018 ident: 9060_CR40 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.10.025 – volume: 1 start-page: 113 year: 1998 ident: 9060_CR23 publication-title: Conf Proceed IEEE – volume: 101 year: 2020 ident: 9060_CR31 publication-title: Appl Ocean Res doi: 10.1016/j.apor.2020.102231 – volume: 22 start-page: 283 issue: 2 year: 2011 ident: 9060_CR15 publication-title: Mach Vis Appl doi: 10.1007/s00138-009-0199-6 – volume: 25 start-page: 26 year: 2020 ident: 9060_CR39 publication-title: J Mar Sci Technol doi: 10.1007/s00773-019-00629-0 – volume: 31 start-page: 123 issue: 3 year: 2013 ident: 9060_CR5 publication-title: Int J Soc Underw Technol doi: 10.3723/ut.31.123 – volume: 110 start-page: 303 year: 2015 ident: 9060_CR7 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2015.10.007 – volume: 23 start-page: 4312 issue: 5 year: 2023 ident: 9060_CR16 publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3129286 – volume: 31 start-page: 133 issue: 3 year: 2013 ident: 9060_CR17 publication-title: Int J Soc Underw Technol doi: 10.3723/ut.31.133 – volume: 32 start-page: 217 issue: 4 year: 2015 ident: 9060_CR28 publication-title: Underw Technol doi: 10.3723/ut.32.217 – volume: 50 start-page: 1 issue: 7 year: 2014 ident: 9060_CR30 publication-title: IEEE Trans Magn – volume: 157 start-page: 251 year: 2018 ident: 9060_CR4 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2018.03.037 – ident: 9060_CR6 – volume: 216 year: 2020 ident: 9060_CR32 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107693 – volume: 52 start-page: 397 issue: 2 year: 2004 ident: 9060_CR37 publication-title: IEEE Trans Antennas Propag doi: 10.1109/TAP.2004.823969 – volume: 109 start-page: 20 issue: 15 year: 2015 ident: 9060_CR14 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2015.09.007 – volume: 106 year: 2021 ident: 9060_CR19 publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2020.104657 – ident: 9060_CR13 doi: 10.1109/OCEANSSYD.2010.5603675 – volume: 11 start-page: 1 issue: 2 year: 2016 ident: 9060_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0148543 – volume: 2018 start-page: 9528313 year: 2018 ident: 9060_CR8 publication-title: Complexity doi: 10.1155/2018/9528313 – ident: 9060_CR20 doi: 10.1109/OCEANSKOBE.2008.4531060 – ident: 9060_CR36 doi: 10.1109/MHS.1995.494215 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 9060_CR41 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.985692 – volume: 25 start-page: 369 year: 2023 ident: 9060_CR10 publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-022-01424-7 – volume: 9 start-page: 1465 year: 2022 ident: 9060_CR1 publication-title: Front Earth Sci doi: 10.3389/feart.2021.775544 – volume: 44 start-page: 52 issue: 1 year: 2010 ident: 9060_CR34 publication-title: Mar Technol Soc J doi: 10.4031/MTSJ.44.1.7 – volume: 3 issue: 7 year: 2021 ident: 9060_CR3 publication-title: Conserv Sci Pract doi: 10.1111/csp2.436 – ident: 9060_CR22 – ident: 9060_CR12 doi: 10.1109/UT.2011.5774119 – ident: 9060_CR24 – volume: 484 start-page: 1 year: 2022 ident: 9060_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.136 – volume: 16 start-page: 27 issue: 1 year: 2002 ident: 9060_CR26 publication-title: Adv Robot doi: 10.1163/156855302317413727 – volume: 268 year: 2023 ident: 9060_CR9 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113300 – volume: 267 year: 2023 ident: 9060_CR18 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113232 – ident: 9060_CR27 doi: 10.1109/TMECH.2023.3256707 – ident: 9060_CR2 doi: 10.5194/wes-2020-56 – volume: 27 start-page: 66 issue: 1 year: 2002 ident: 9060_CR11 publication-title: IEEE J Oceanic Eng doi: 10.1109/48.989889 – volume: 43 start-page: 311 issue: 2 year: 2018 ident: 9060_CR25 publication-title: IEEE J Oceanic Eng doi: 10.1109/JOE.2017.2768105 – ident: 9060_CR35 – ident: 9060_CR21 doi: 10.1109/OCEANSKOBE.2008.4531082 – ident: 9060_CR38 doi: 10.1109/CEC.2001.934374 |
| SSID | ssj0004685 |
| Score | 2.3931496 |
| Snippet | Subsea cables are widely used for power and information transmission in offshore infrastructure such as global communication networks and offshore wind farms.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15995 |
| SubjectTerms | Algorithms Artificial Intelligence Autonomous underwater vehicles Cables Communication networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Control algorithms Control of Unmanned Marine Systems: Machine Learning and Computational Intelligence Solutions Data Mining and Knowledge Discovery Economic value added Electromagnetism Guidance Horizontal orientation Image Processing and Computer Vision Localization Ocean bottom Ocean floor Offshore energy sources Particle swarm optimization Probability and Statistics in Computer Science Retrofitting S.I.: Machine Learning/Computational Intelligence in Unmanned Marine Systems Sensors Special Issue on Advances in Navigation Submarine cables Topology Tracking Wind power |
| Title | Particle swarm optimization-based subsea cable electromagnetic detection by autonomous underwater vehicle |
| URI | https://link.springer.com/article/10.1007/s00521-023-09060-4 https://www.proquest.com/docview/3231978517 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4IwoFeWADS44TJ81YoRYEAjFQqUyRH2dAoilqUir-PXbqtIAAiSVL_JDufPZ39n13CJ0wkcSGQUSo-0Sp1CQNlSZC6VR2LMBPlSMK39zGl4PoasiHnhRW1NHu9ZNktVMvyG7uBtO6vix0dwsxJdEqanKXzsuu4gHrfmJDVoU4rd_iYnqi0FNlfh7j63G0xJjfnkWr06a_idY9TMTduV630Ark22ijLsGAvUXuoOc7r3pczMRkhMd2Bxh5aiVxJ5TGhd0aQGDlOFLYV70ZicfcsRexhrKKxcqxfMdiWjqKw3haYEctm8yEm-sNntwEu2jQ792fXxJfPYEoa1YlETHVNJbGYioZBEBFQqmMA6G5kEoYZjo6UlY5KpESKDVhLCGFxEAgOQNDwz3UyMc57CNMUzDWTVS6wy18UiAAGJexTg0XLExMCwW1EDPlU4u7Chcv2SIpciX4zAo-qwSfRS10uujzOk-s8Wfrdq2bzBtZkYUWm1onmAdJC53V-lr-_n20g_81P0RrzFX9rYJ026hRTqZwZKFIKY9Rs3vxcN07rlbgB_IL2UY |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGCDSI6TOM1YIVCBtmJopW6RH2dAoilqUir-PXbqtIAAiSVLHFu6y52_s--7Q-ic8phpCqFH7CNMhPKSQCqPS5WIpgH4ibRE4W6PtQfh3TAaOlJYXmW7V1eSpadekN3sCaYJfWlgzxYY8cJVtGYLWNmK-QPa-sSGLBtxmrjF5vSEgaPK_DzH1-1oiTG_XYuWu83NNtp0MBG35nrdQSuQ7aKtqgUDdha5h54fnOpxPuOTER4bDzBy1ErP7lAK58Y1AMfScqSw63oz4o-ZZS9iBUWZi5Vh8Y75tLAUh_E0x5ZaNplxu9YbPNkF9tHg5rp_1fZc9wRPGrMqPM6IIkxog6mE7wPhMSGC-VxFXEiuqW6qUBrlyFgIIEQHTEACsQZfRBQ0CQ5QLRtncIgwSUCbMFGqZmTgkwQOQCPBVKIjToNY15FfCTGVrrS47XDxki6KIpeCT43g01LwaVhHF4tvXueFNf4c3ah0kzojy9PAYFMTBEd-XEeXlb6Wr3-f7eh_w8_Qervf7aSd2979MdqgtgNwmbDbQLViMoUTA0sKcVr-hR9wUdqe |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE-PFtxFF7cGbbuh2X-yRqARfhIMk3DZ9TNVEFsIuEv-97dIFNGriZS_bRzIzbb9p55tB6JyyKFQUfIeYjx9z6cSekA4TMuYNDfBjYYjCj52w3fPv-kF_icVfRLuXT5IzToPJ0pTm9ZFU9TnxzdxmajeYeuaeISSOv4rWfJMoQVt0jzaXmJFFUU7tw5j4Ht-ztJmfx_h6NC3w5rcn0uLkaW2jTQsZcXOm4x20Auku2irLMWC7OvfQa9eaAc6mbDzAQ70bDCzN0jGnlcSZ3iaAYWH4UthWwBmw59QwGbGEvIjLSjH_wGySG7rDcJJhQzMbT5mZ6x1ezAT7qNe6ebpqO7aSgiP0EssdFhJJQq40vuKuC4RFhPDQZTJgXDBFVUP6QitKRJwDIcoLOcQQKXB5QEER7wBV0mEKhwiTGJR2GYVsBBpKCWAANOChjFXAqBepKnJLISbCphk31S7eknmC5ELwiRZ8Ugg-8avoYt5nNEuy8WfrWqmbxC64LPE0TtUOceBGVXRZ6mvx-_fRjv7X_Aytd69bycNt5_4YbVBTDLiI3a2hSj6ewIlGKDk_LYzwEw-O3to |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization-based+subsea+cable+electromagnetic+detection+by+autonomous+underwater+vehicle&rft.jtitle=Neural+computing+%26+applications&rft.au=Zhang%2C+Jialei&rft.au=Xiang%2C+Xianbo&rft.au=Zhang%2C+Qin&rft.au=Tao%2C+Bo&rft.date=2025-07-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=21&rft.spage=15995&rft.epage=16012&rft_id=info:doi/10.1007%2Fs00521-023-09060-4&rft.externalDocID=10_1007_s00521_023_09060_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |