Solving discounted {0-1} knapsack problems by a discrete hybrid teaching-learning-based optimization algorithm

The discounted {0–1} knapsack problem (D{0–1}KP) is a kind of knapsack problem with group structure and discount relationships among items. It is more challenging than the classical 0–1 knapsack problem. A more effective hybrid algorithm, the discrete hybrid teaching-learning-based optimization algo...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 50; no. 6; pp. 1872 - 1888
Main Authors Wu, Congcong, Zhao, Jianli, Feng, Yanhong, Lee, Malrey
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-020-01652-0

Cover

Abstract The discounted {0–1} knapsack problem (D{0–1}KP) is a kind of knapsack problem with group structure and discount relationships among items. It is more challenging than the classical 0–1 knapsack problem. A more effective hybrid algorithm, the discrete hybrid teaching-learning-based optimization algorithm (HTLBO), is proposed to solve D{0–1}KP in this paper. HTLBO is based on the framework of the teaching-learning-based optimization (TLBO) algorithm. A two-tuple consisting of a quaternary vector and a real vector is used to represent an individual in HTLBO and that allows TLBO to effectively solve discrete optimization problems. We enhanced the optimization ability of HTLBO from three aspects. The learning strategy in the Learner phase is modified to extend the exploration capability of HTLBO. Inspired by the human learning process, self-learning factors are incorporated into the Teacher and Learner phases, which balances the exploitation and exploration of the algorithm. Two types of crossover operators are designed to enhance the global search capability of HTLBO. Finally, we conducted extensive experiments on eight sets of 80 instances using our proposed approach. The experiment results show that the new algorithm has higher accuracy and better stability than do previous methods. Overall, HTLBO is an excellent approach for solving the D{0–1}KP.
AbstractList The discounted {0–1} knapsack problem (D{0–1}KP) is a kind of knapsack problem with group structure and discount relationships among items. It is more challenging than the classical 0–1 knapsack problem. A more effective hybrid algorithm, the discrete hybrid teaching-learning-based optimization algorithm (HTLBO), is proposed to solve D{0–1}KP in this paper. HTLBO is based on the framework of the teaching-learning-based optimization (TLBO) algorithm. A two-tuple consisting of a quaternary vector and a real vector is used to represent an individual in HTLBO and that allows TLBO to effectively solve discrete optimization problems. We enhanced the optimization ability of HTLBO from three aspects. The learning strategy in the Learner phase is modified to extend the exploration capability of HTLBO. Inspired by the human learning process, self-learning factors are incorporated into the Teacher and Learner phases, which balances the exploitation and exploration of the algorithm. Two types of crossover operators are designed to enhance the global search capability of HTLBO. Finally, we conducted extensive experiments on eight sets of 80 instances using our proposed approach. The experiment results show that the new algorithm has higher accuracy and better stability than do previous methods. Overall, HTLBO is an excellent approach for solving the D{0–1}KP.
Author Feng, Yanhong
Zhao, Jianli
Lee, Malrey
Wu, Congcong
Author_xml – sequence: 1
  givenname: Congcong
  surname: Wu
  fullname: Wu, Congcong
  email: hebwucongcong@126.com
  organization: School of Economics and Management, China University of Geosciences, College of Information Engineering, Hebei GEO University
– sequence: 2
  givenname: Jianli
  surname: Zhao
  fullname: Zhao, Jianli
  organization: College of Information Engineering, Hebei GEO University, Center for Advanced Image and Information Technology, School of Electronics and Information Engineering, ChonBuk National University
– sequence: 3
  givenname: Yanhong
  surname: Feng
  fullname: Feng, Yanhong
  organization: College of Information Engineering, Hebei GEO University
– sequence: 4
  givenname: Malrey
  surname: Lee
  fullname: Lee, Malrey
  organization: Center for Advanced Image and Information Technology, School of Electronics and Information Engineering, ChonBuk National University
BookMark eNp9kE9rGzEQxUVxoHbSL9CToGclM5J21zqW0PyBQA5pITcxu6u1lawlV5IDbul3z8YuFHrIaebwfu_NvAWbhRgcY58RzhGgucgIemkESBCAdSUFfGBzrBolGm2aGZuDkVrUtXn8yBY5PwGAUoBzFh7i-OLDivc-d3EXiuv5bxD4hz8H2mbqnvk2xXZ0m8zbPaeDLrni-HrfJt_z4qhbTwZidJTC29JSnkzitviN_0XFx8BpXMXky3pzxk4GGrP79Heesh9X375f3oi7--vby693olNoiiBdVYMyqPvBdNRgVbeDkXWnlUQClEovB9WTMW3fa7lEg0QIjakqV9cVojplX46-0_E_dy4X-xR3KUyRVipjagVG6Uklj6ouxZyTG-w2-Q2lvUWwb73aY6926tUeerUwQcv_oM6Xw5slkR_fR9URzVNOWLn076p3qFfkjI9v
CitedBy_id crossref_primary_10_1007_s00500_022_07285_4
crossref_primary_10_1007_s00521_023_08367_6
crossref_primary_10_54097_ajst_v6i2_9707
crossref_primary_10_1007_s00521_023_08358_7
crossref_primary_10_1155_2021_5092480
crossref_primary_10_3390_sym14061208
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1016_j_ejor_2022_04_036
crossref_primary_10_1016_j_compeleceng_2022_108551
crossref_primary_10_1007_s11063_023_11171_x
crossref_primary_10_1007_s12667_021_00477_1
crossref_primary_10_3390_math8071070
crossref_primary_10_1007_s13369_021_05483_0
crossref_primary_10_1155_2021_2864607
crossref_primary_10_1371_journal_pone_0266537
crossref_primary_10_1016_j_asoc_2022_109821
crossref_primary_10_1155_2022_7272048
crossref_primary_10_1016_j_asoc_2022_109980
Cites_doi 10.1007/s10878-014-9717-1
10.1016/j.apm.2012.03.043
10.1016/j.future.2017.05.044
10.1109/TEVC.2016.2546340
10.1504/IJBIC.2010.032124
10.1109/ACCESS.2018.2809445
10.1007/s12293-016-0211-4
10.1023/A:1008202821328
10.1016/j.cor.2017.02.004
10.1016/j.knosys.2018.01.021
10.1016/j.engappai.2012.02.016
10.1504/IJBIC.2017.087924
10.1016/j.knosys.2013.04.003
10.1016/j.ins.2011.04.018
10.1016/j.asoc.2017.04.029
10.1016/j.ins.2011.08.006
10.1016/j.ins.2016.07.037
10.1007/s10489-017-1108-8
10.1016/j.ins.2014.09.041
10.1016/j.amc.2011.12.068
10.1007/s10898-007-9149-x
10.1109/TEVC.2013.2260862
10.1016/j.jestch.2015.09.008
10.1016/j.energy.2018.01.159
10.1109/MHS.1995.494215
10.1016/j.cad.2010.12.015
10.1016/j.cor.2017.01.015
10.1016/j.engstruct.2011.08.035
10.1007/978-1-4471-2748-2
10.1080/0305215X.2011.652103
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-020-01652-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 1888
ExternalDocumentID 10_1007_s10489_020_01652_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61806069
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-a455f3914df9ca7156bf926c4321a012348f3da99bdd428191aa107955e665113
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Fri Jul 25 19:14:17 EDT 2025
Wed Oct 01 04:09:45 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Fri Feb 21 02:26:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Teaching-learning-based optimization algorithm
Discounted {0–1} knapsack problem
Self-learning
Crossover operator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a455f3914df9ca7156bf926c4321a012348f3da99bdd428191aa107955e665113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2399630934
PQPubID 326365
PageCount 17
ParticipantIDs proquest_journals_2399630934
crossref_primary_10_1007_s10489_020_01652_0
crossref_citationtrail_10_1007_s10489_020_01652_0
springer_journals_10_1007_s10489_020_01652_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References FengYHWangGGBinary moth search algorithm for discounted {0-1} knapsack problemIEEE Access2018699107081071910.1109/ACCESS.2018.2809445
He YC, Wang XZ, Zhang SL (2016) The design and applications of discrete evolutionary algorithms based on encoding transformation. Journal of Software
TangQLiZZhangLPBalancing stochastic two-sided assembly line with multiple constraints using hybrid teaching-learning-based optimization algorithm[J]Comput Oper Res20178210211336126241391.9022910.1016/j.cor.2017.01.015
HeYZhangXLiWLiXWuWGaoSAlgorithms for randomized time-varying knapsack problemsJ Comb Optim20163119511734402501341.9011010.1007/s10878-014-9717-1
ToğanVDesign of planar steel frames using teaching–learning based optimizationEng Struct201234122523210.1016/j.engstruct.2011.08.035
Eberhart R (1995) A new optimizer using particle swarm theory. Procsixth Intlsympmicro Machine & Human Science:39–43
RaoRVPatelVMulti-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithmAppl Math Model20133731147116230022131351.9014710.1016/j.apm.2012.03.043
LiLWengWFujimuraSAn improved teaching-learning-based optimization algorithm to solve job shop scheduling problemsIeee/acis International Conference on Computer and Information Science20172017797801
AvciMTopalogluSA multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[J]Comput Oper Res201783546536248540690141310.1016/j.cor.2017.02.004
RongAFigueiraJRKlamrothKDynamic programming based algorithms for the discounted {0–1} knapsack problemApplied Mathematics & Computation2012218126921693328803471244.6508710.1016/j.amc.2011.12.068
Chen X, Mei C, Xu B, Yu K, Huang X (2018) Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization. Knowl-Based Syst
Zhu H, He Y, Wang X, Eric C.C. Tsang (2017) Discrete differential evolutions for the discounted {0-1} knapsack problem. International Journal of Bio-Inspired Computation 10(4):219
RaoRVSavsaniVJBalicJTeaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problemsEng Optim201244121447146210.1080/0305215X.2011.652103
WuCHeYChenYMutated bat algorithm for solving discounted {0-1} knapsack problem[J]Journal of Computer Applications (China)201737512921299
RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015
RaoRVPatelVAn elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problemsInt J Ind Eng Comput201234535560
CaiQGongMMaLRuanSYuanFJiaoLGreedy discrete particle swarm optimization for large-scale social network clusteringInformation Sciences An International Journal2015316C50351610.1016/j.ins.2014.09.041
WangLZhengXLWangSYA novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problemKnowl-Based Syst2013482172310.1016/j.knosys.2013.04.003
GongMCaiQChenXMaLComplex network clustering by multiobjective discrete particle swarm optimization based on decompositionIEEE Trans Evol Comput2014181829710.1109/TEVC.2013.2260862
Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Xiii (7):2104–2116
Kumar Y, Singh P K (2018) A chaotic teaching learning based optimization algorithm for clustering problems[J]. Appl Intell, 2018
ChenYHaoJKMemetic search for the generalized quadratic multiple knapsack problemIEEE Trans Evol Comput201620690892310.1109/TEVC.2016.2546340
RaoRVRaiDPOptimization of fused deposition modeling process using teaching-learning-based optimization algorithmEngineering Science & Technology An International Journal201619158760310.1016/j.jestch.2015.09.008
KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739345947123461781149.9018610.1007/s10898-007-9149-x
YangXSFirefly algorithm, stochastic test functions and design optimisationInternational Journal of Bio-Inspired Computation2010227884(77)10.1504/IJBIC.2010.032124
RaoRVTeaching-learning-based optimization:a novel optimization method for continuous non-linear large scale problemsInf Sci201218311510.1016/j.ins.2011.08.006
Feng Y, Yang J, Wu C et al (2016) Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation[J]. Memetic Computing
He YC, Wang XZ, Li WB et al (2016) Research on genetic algorithm for discounted {0-1} knapsack problem. Chinese Journal of Computers 39(12)
El Ghazi A (2017) Ahiod B (2017) energy efficient teaching-learning-based optimization for the discrete routing problem in wireless sensor networks[J]. Appl Intell
Rao RV, Savsani VJ (2012) Mechanical design optimization using advanced optimization techniques. Springer London
HeYCWangXZHeYLZhaoSLLiWBExact and approximate algorithms for discounted {0-1} knapsack problemInf Sci201636963464735394561428.9014410.1016/j.ins.2016.07.037
GunjiABDeepakBBBVLBahubalendruniCMVARBiswalDBBAn optimal robotic assembly sequence planning by assembly subsets detection method using teaching learning-based optimization algorithmIEEE Transactions on Automation Science & Engineering PP201899117
Karaboga D (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06
Feng Y, Wang GG, Li W, Li N (2017) Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem. Neural Comput Applic:1–18
JiXYeHZhouJYinYShenXAn improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industryAppl Soft Comput20175750451610.1016/j.asoc.2017.04.029
StornRPriceKDifferential evolution – a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711434135914795530888.9013510.1023/A:1008202821328
B GHeuristic and exact algorithms for discounted knapsack problems2007Master thesisUniversity of Erlangen-Nurnberg, Germany
Yu K, Lyndon W, Reynolds M, Wang X, Liang JJ (2018) Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization. Energy:148
TasgetirenMFPanQKSuganthanPNChenHLA discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shopsInformation Sciences An International Journal20111811634593475280153610.1016/j.ins.2011.04.018
RaoRVPatelVMulti-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithmEng Appl Artif Intell201326143044510.1016/j.engappai.2012.02.016
He Y, Xie H, Wong TL, Wang X (2017) A novel binary artificial bee colony algorithm for the set-union knapsack problem. Futur Gener Comput Syst
1652_CR14
1652_CR36
1652_CR13
1652_CR35
1652_CR31
D Karaboga (1652_CR28) 2007; 39
Y Chen (1652_CR37) 2016; 20
XS Yang (1652_CR30) 2010; 2
M Gong (1652_CR33) 2014; 18
C Wu (1652_CR39) 2017; 37
M Avci (1652_CR41) 2017; 83
V Toğan (1652_CR17) 2012; 34
AB Gunji (1652_CR21) 2018; 99
RV Rao (1652_CR10) 2012; 183
X Ji (1652_CR18) 2017; 57
1652_CR19
1652_CR38
RV Rao (1652_CR23) 2016; 19
RV Rao (1652_CR15) 2013; 37
1652_CR24
1652_CR22
R Storn (1652_CR25) 1997; 11
RV Rao (1652_CR8) 2011; 43
1652_CR7
RV Rao (1652_CR16) 2013; 26
Y He (1652_CR40) 2016; 31
1652_CR5
Q Tang (1652_CR12) 2017; 82
L Wang (1652_CR29) 2013; 48
1652_CR4
B G (1652_CR1) 2007
A Rong (1652_CR2) 2012; 218
RV Rao (1652_CR11) 2012; 3
YH Feng (1652_CR6) 2018; 6
L Li (1652_CR20) 2017; 2017
MF Tasgetiren (1652_CR32) 2011; 181
RV Rao (1652_CR9) 2012; 44
Q Cai (1652_CR34) 2015; 316
YC He (1652_CR3) 2016; 369
1652_CR27
1652_CR26
References_xml – reference: B GHeuristic and exact algorithms for discounted knapsack problems2007Master thesisUniversity of Erlangen-Nurnberg, Germany
– reference: Kumar Y, Singh P K (2018) A chaotic teaching learning based optimization algorithm for clustering problems[J]. Appl Intell, 2018
– reference: RaoRVTeaching-learning-based optimization:a novel optimization method for continuous non-linear large scale problemsInf Sci201218311510.1016/j.ins.2011.08.006
– reference: Karaboga D (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06
– reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739345947123461781149.9018610.1007/s10898-007-9149-x
– reference: He YC, Wang XZ, Zhang SL (2016) The design and applications of discrete evolutionary algorithms based on encoding transformation. Journal of Software
– reference: CaiQGongMMaLRuanSYuanFJiaoLGreedy discrete particle swarm optimization for large-scale social network clusteringInformation Sciences An International Journal2015316C50351610.1016/j.ins.2014.09.041
– reference: ChenYHaoJKMemetic search for the generalized quadratic multiple knapsack problemIEEE Trans Evol Comput201620690892310.1109/TEVC.2016.2546340
– reference: RaoRVPatelVAn elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problemsInt J Ind Eng Comput201234535560
– reference: RaoRVPatelVMulti-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithmAppl Math Model20133731147116230022131351.9014710.1016/j.apm.2012.03.043
– reference: TangQLiZZhangLPBalancing stochastic two-sided assembly line with multiple constraints using hybrid teaching-learning-based optimization algorithm[J]Comput Oper Res20178210211336126241391.9022910.1016/j.cor.2017.01.015
– reference: GunjiABDeepakBBBVLBahubalendruniCMVARBiswalDBBAn optimal robotic assembly sequence planning by assembly subsets detection method using teaching learning-based optimization algorithmIEEE Transactions on Automation Science & Engineering PP201899117
– reference: LiLWengWFujimuraSAn improved teaching-learning-based optimization algorithm to solve job shop scheduling problemsIeee/acis International Conference on Computer and Information Science20172017797801
– reference: GongMCaiQChenXMaLComplex network clustering by multiobjective discrete particle swarm optimization based on decompositionIEEE Trans Evol Comput2014181829710.1109/TEVC.2013.2260862
– reference: FengYHWangGGBinary moth search algorithm for discounted {0-1} knapsack problemIEEE Access2018699107081071910.1109/ACCESS.2018.2809445
– reference: Eberhart R (1995) A new optimizer using particle swarm theory. Procsixth Intlsympmicro Machine & Human Science:39–43
– reference: TasgetirenMFPanQKSuganthanPNChenHLA discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shopsInformation Sciences An International Journal20111811634593475280153610.1016/j.ins.2011.04.018
– reference: Zhu H, He Y, Wang X, Eric C.C. Tsang (2017) Discrete differential evolutions for the discounted {0-1} knapsack problem. International Journal of Bio-Inspired Computation 10(4):219
– reference: Chen X, Mei C, Xu B, Yu K, Huang X (2018) Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization. Knowl-Based Syst
– reference: RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015
– reference: WangLZhengXLWangSYA novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problemKnowl-Based Syst2013482172310.1016/j.knosys.2013.04.003
– reference: HeYZhangXLiWLiXWuWGaoSAlgorithms for randomized time-varying knapsack problemsJ Comb Optim20163119511734402501341.9011010.1007/s10878-014-9717-1
– reference: RaoRVSavsaniVJBalicJTeaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problemsEng Optim201244121447146210.1080/0305215X.2011.652103
– reference: RaoRVPatelVMulti-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithmEng Appl Artif Intell201326143044510.1016/j.engappai.2012.02.016
– reference: YangXSFirefly algorithm, stochastic test functions and design optimisationInternational Journal of Bio-Inspired Computation2010227884(77)10.1504/IJBIC.2010.032124
– reference: He YC, Wang XZ, Li WB et al (2016) Research on genetic algorithm for discounted {0-1} knapsack problem. Chinese Journal of Computers 39(12)
– reference: JiXYeHZhouJYinYShenXAn improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industryAppl Soft Comput20175750451610.1016/j.asoc.2017.04.029
– reference: WuCHeYChenYMutated bat algorithm for solving discounted {0-1} knapsack problem[J]Journal of Computer Applications (China)201737512921299
– reference: Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Xiii (7):2104–2116
– reference: HeYCWangXZHeYLZhaoSLLiWBExact and approximate algorithms for discounted {0-1} knapsack problemInf Sci201636963464735394561428.9014410.1016/j.ins.2016.07.037
– reference: He Y, Xie H, Wong TL, Wang X (2017) A novel binary artificial bee colony algorithm for the set-union knapsack problem. Futur Gener Comput Syst
– reference: RongAFigueiraJRKlamrothKDynamic programming based algorithms for the discounted {0–1} knapsack problemApplied Mathematics & Computation2012218126921693328803471244.6508710.1016/j.amc.2011.12.068
– reference: El Ghazi A (2017) Ahiod B (2017) energy efficient teaching-learning-based optimization for the discrete routing problem in wireless sensor networks[J]. Appl Intell
– reference: ToğanVDesign of planar steel frames using teaching–learning based optimizationEng Struct201234122523210.1016/j.engstruct.2011.08.035
– reference: Yu K, Lyndon W, Reynolds M, Wang X, Liang JJ (2018) Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization. Energy:148
– reference: AvciMTopalogluSA multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[J]Comput Oper Res201783546536248540690141310.1016/j.cor.2017.02.004
– reference: Feng Y, Wang GG, Li W, Li N (2017) Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem. Neural Comput Applic:1–18
– reference: Rao RV, Savsani VJ (2012) Mechanical design optimization using advanced optimization techniques. Springer London
– reference: Feng Y, Yang J, Wu C et al (2016) Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation[J]. Memetic Computing
– reference: RaoRVRaiDPOptimization of fused deposition modeling process using teaching-learning-based optimization algorithmEngineering Science & Technology An International Journal201619158760310.1016/j.jestch.2015.09.008
– reference: StornRPriceKDifferential evolution – a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711434135914795530888.9013510.1023/A:1008202821328
– volume: 31
  start-page: 95
  issue: 1
  year: 2016
  ident: 1652_CR40
  publication-title: J Comb Optim
  doi: 10.1007/s10878-014-9717-1
– volume-title: Heuristic and exact algorithms for discounted knapsack problems
  year: 2007
  ident: 1652_CR1
– volume: 37
  start-page: 1147
  issue: 3
  year: 2013
  ident: 1652_CR15
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2012.03.043
– volume: 37
  start-page: 1292
  issue: 5
  year: 2017
  ident: 1652_CR39
  publication-title: Journal of Computer Applications (China)
– ident: 1652_CR35
  doi: 10.1016/j.future.2017.05.044
– volume: 20
  start-page: 908
  issue: 6
  year: 2016
  ident: 1652_CR37
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2016.2546340
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 1652_CR30
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2010.032124
– volume: 6
  start-page: 10708
  issue: 99
  year: 2018
  ident: 1652_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2809445
– ident: 1652_CR36
  doi: 10.1007/s12293-016-0211-4
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 1652_CR25
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– ident: 1652_CR38
– volume: 83
  start-page: 54
  year: 2017
  ident: 1652_CR41
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2017.02.004
– ident: 1652_CR13
– ident: 1652_CR22
  doi: 10.1016/j.knosys.2018.01.021
– volume: 26
  start-page: 430
  issue: 1
  year: 2013
  ident: 1652_CR16
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.02.016
– ident: 1652_CR7
  doi: 10.1504/IJBIC.2017.087924
– volume: 48
  start-page: 17
  issue: 2
  year: 2013
  ident: 1652_CR29
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.04.003
– volume: 3
  start-page: 535
  issue: 4
  year: 2012
  ident: 1652_CR11
  publication-title: Int J Ind Eng Comput
– volume: 2017
  start-page: 797
  year: 2017
  ident: 1652_CR20
  publication-title: Ieee/acis International Conference on Computer and Information Science
– volume: 181
  start-page: 3459
  issue: 16
  year: 2011
  ident: 1652_CR32
  publication-title: Information Sciences An International Journal
  doi: 10.1016/j.ins.2011.04.018
– volume: 57
  start-page: 504
  year: 2017
  ident: 1652_CR18
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.04.029
– volume: 183
  start-page: 15
  issue: 1
  year: 2012
  ident: 1652_CR10
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.08.006
– ident: 1652_CR27
– volume: 369
  start-page: 634
  year: 2016
  ident: 1652_CR3
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.07.037
– ident: 1652_CR19
  doi: 10.1007/s10489-017-1108-8
– volume: 316
  start-page: 503
  issue: C
  year: 2015
  ident: 1652_CR34
  publication-title: Information Sciences An International Journal
  doi: 10.1016/j.ins.2014.09.041
– volume: 218
  start-page: 6921
  issue: 12
  year: 2012
  ident: 1652_CR2
  publication-title: Applied Mathematics & Computation
  doi: 10.1016/j.amc.2011.12.068
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 1652_CR28
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– ident: 1652_CR5
– ident: 1652_CR31
– volume: 18
  start-page: 82
  issue: 1
  year: 2014
  ident: 1652_CR33
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2260862
– volume: 19
  start-page: 587
  issue: 1
  year: 2016
  ident: 1652_CR23
  publication-title: Engineering Science & Technology An International Journal
  doi: 10.1016/j.jestch.2015.09.008
– ident: 1652_CR24
  doi: 10.1016/j.energy.2018.01.159
– ident: 1652_CR26
  doi: 10.1109/MHS.1995.494215
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 1652_CR8
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.12.015
– volume: 82
  start-page: 102
  year: 2017
  ident: 1652_CR12
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2017.01.015
– volume: 34
  start-page: 225
  issue: 1
  year: 2012
  ident: 1652_CR17
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.08.035
– ident: 1652_CR14
  doi: 10.1007/978-1-4471-2748-2
– ident: 1652_CR4
  doi: 10.1016/j.ins.2016.07.037
– volume: 99
  start-page: 1
  year: 2018
  ident: 1652_CR21
  publication-title: IEEE Transactions on Automation Science & Engineering PP
– volume: 44
  start-page: 1447
  issue: 12
  year: 2012
  ident: 1652_CR9
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2011.652103
SSID ssj0003301
Score 2.3485794
Snippet The discounted {0–1} knapsack problem (D{0–1}KP) is a kind of knapsack problem with group structure and discount relationships among items. It is more...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1872
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Crossovers
Exploration
Knapsack problem
Machine learning
Machines
Manufacturing
Mechanical Engineering
Optimization
Optimization algorithms
Processes
Teaching
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu7BQnqJQkAc2MGr8ajxWqIBAsEClMkVObFPUNqmaMADiv2OnDgUESJ3jWInvzr7z3XcfAEeYqYSQmKOQcIooMRwJ2eHIaE1xYHSopLuHvLnll316NWADDwrLq2r3KiVZ7tRfwG7UlfdgV0jFGUY2UK-X_bZqoN69eLjufe7ANkYvmfJsbIE4FwMPlvl9lu8H0sLL_JEYLc-b8wboV186LzMZnT4X8Wny-qOJ47K_sg7WvAMKu3ON2QArOt0EjYrcAXpb3wLpXTZ2lw3Q4XYdoYRW8K2Ngnc4SuU0l8kIejKaHMYvUJbjZtYFh8MXhwKDha_TRJ6Y4hG5E1PBzG5SE4_-hHL8mM2eiuFkG_TPe_dnl8iTM6DEWm2BJGXMEBFQZUQiOzYMjI3APKEEB9I5ajQ0REkhYqWoy9YFUtpQUzCmObdeHtkBtTRL9S6AVEoshYw1VYRaJQlxwigPsYmxYaEOmiCoJBQlvnO5I9AYR4uey25BI7ugUbmgUbsJjj_fmc77dvw7ulUJPvI2nEcO9ctdopg2wUklx8Xjv2fbW274PljFpSq4q50WqBWzZ31gPZ0iPvSK_QEJcvNB
  priority: 102
  providerName: Springer Nature
Title Solving discounted {0-1} knapsack problems by a discrete hybrid teaching-learning-based optimization algorithm
URI https://link.springer.com/article/10.1007/s10489-020-01652-0
https://www.proquest.com/docview/2399630934
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61yYULb0SgRD5wA4usX10fKpSgpBWICAGRwmk1u7ZbqekmNNtDhfjveLbeRiDR0x780GrGHs_7A3gttKukLA3PpVFcyWC4xUPDg_dKZMHnDskP-XluThbq41Iv92De1cJQWmUnE1tB7dYV-cjfUQ2mobCder_5yQk1iqKrHYQGJmgFd9S2GNuHvqDOWD3oT6bzL19vZXO03lsMvWh1cGPsMpXRpGI6RelDghK1jBZ89PdTtdM__wmZti_R7CHcTyokG9_w_BHs-foxPOjgGVi6rU-g_rZekbuAUeUt_bd37NeIZ7_ZeY2bLVbnLMHJbFl5zbCddxmVaHZ2TXVcrEmZljxBS5xyevMcW0cxc5HqNxmuTiOZmrOLp7CYTb9_OOEJXoFX8d41HJXWQdpMuWArPIyGXBmsMJWSIkNStVQepENrS-cUxdsyxGgsWq29MVFPk8-gV69r_xyYQhRosfTKSRXZnItKK5OLUIqgc58NIOsoWVSp9zhBYKyKXddkon4RqV-01C9GA3hzu2Zz03njztkHHYOKdAu3xe7MDOBtx7Td8P93e3H3bi_hnmjPCTljDqDXXF75V1E3acoh7Oez4yH0x7PJZE7f4x-fpsN0DOPoQoz_AN235Ns
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gCX8lYXCvgAJ7DY2GM3PlSIR6stbVcIWmlvwYntrdRtdukGoRXir_Hb8KROVyDRW89JfJiZzNPffADPhXKVlKXmudTIUQbNjd3SPHiPIgs-d5b6kIdDPTjGjyM1WoHfHRaGrlV2PrF11G5aUY_8NWEwNY3t8M3sGyfWKJqudhQaNlEruO12xVgCduz7xY9Yws239z5Efb8QYnfn6P2AJ5YBXkXza7hFpYI0GbpgKrsV65kyGKErlCKzlHFgHqSzxpTOIY2dMmtjzWSU8lrHdEXGc2_AGko0sfhbe7cz_PT5MhZI2RIw92OVw7U2owTbSeA9pOtKgi6GaSV4_-_QuMx3_xnRtpFv9w6sp5SVvb2wsbuw4ut7cLujg2DJO9yH-st0Qu0JRkhfkpN37GefZ7_YaW1nc1udskRfM2flgtn2vfOYtLOTBeHGWJNudvJEZTHmFGMdm0a3dpbwosxOxlEtzcnZAzi-FkE_hNV6WvsNYGitsMaWHp3EaFa5qBTqXIRSBJX7rAdZJ8miSrvOiXJjUiy3NJP0iyj9opV-0e_By8tvZhebPq58e7NTUJH--nmxtNEevOqUtnz8_9MeXX3aM7g5ODo8KA72hvuP4ZZobYYaQZuw2px_909iXtSUT5PxMfh63fb-B8qvGuM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkKpeePQhwqPsoT2VFfG-4j0gVBVSKC2q1CLl5q69u0EiOIEYoQjxx_h13XHWREUqN8629zDzeV47Mx_AByZtwXmuaMqVoIJ7RbXpKOqdEyzxLrUG65A_TtThqfjWk705uG9mYbCtsrGJtaG2wwJr5Ds4g6nw2k7s-NgW8XO_uze6pMgghTetDZ3GFCLHbnIT0rfx7tF-0PVHxroHv78c0sgwQIsAvYoaIaXnOhHW68J0Qi6Te81UIThLDEYbIvXcGq1zawVeOSXGhHxJS-mUCqEKD-e-gIUObnHHKfXu1wcvwHlNvdwO-Q1VSvfiwE4c2xPYqMSwJUxJRtv_OsVZpPvocrb2ed1lWIzBKvk8RdcKzLnyNSw1RBAk2oU3UP4aDrAwQXDGF8knnCW3bZrckfPSjMamOCeRuGZM8gkx9XtXIVwnZxOcGCNV7OmkkcSiT9G7WjIMBu0iTooSM-gHJVRnF2_h9FnE_A7my2HpVoEIY5jRJnfCchEAlbJCCpUynzMvU5e0IGkkmRVxyzmSbQyy2X5mlH4WpJ_V0s_aLfj08M1ouuPjybc3GgVl8X8fZzN0tmC7Udrs8f9PW3v6tC14GVCefT86OV6HV6yGDFaANmC-urp2myEgqvL3NfII_HluqP8F-Q4YfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+discounted+%7B0-1%7D+knapsack+problems+by+a+discrete+hybrid+teaching-learning-based+optimization+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Wu%2C+Congcong&rft.au=Zhao%2C+Jianli&rft.au=Feng%2C+Yanhong&rft.au=Lee%2C+Malrey&rft.date=2020-06-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=50&rft.issue=6&rft.spage=1872&rft.epage=1888&rft_id=info:doi/10.1007%2Fs10489-020-01652-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_020_01652_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon