Solving discounted {0-1} knapsack problems by a discrete hybrid teaching-learning-based optimization algorithm
The discounted {0–1} knapsack problem (D{0–1}KP) is a kind of knapsack problem with group structure and discount relationships among items. It is more challenging than the classical 0–1 knapsack problem. A more effective hybrid algorithm, the discrete hybrid teaching-learning-based optimization algo...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 50; no. 6; pp. 1872 - 1888 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.06.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-020-01652-0 |
Cover
| Abstract | The discounted {0–1} knapsack problem (D{0–1}KP) is a kind of knapsack problem with group structure and discount relationships among items. It is more challenging than the classical 0–1 knapsack problem. A more effective hybrid algorithm, the discrete hybrid teaching-learning-based optimization algorithm (HTLBO), is proposed to solve D{0–1}KP in this paper. HTLBO is based on the framework of the teaching-learning-based optimization (TLBO) algorithm. A two-tuple consisting of a quaternary vector and a real vector is used to represent an individual in HTLBO and that allows TLBO to effectively solve discrete optimization problems. We enhanced the optimization ability of HTLBO from three aspects. The learning strategy in the Learner phase is modified to extend the exploration capability of HTLBO. Inspired by the human learning process, self-learning factors are incorporated into the Teacher and Learner phases, which balances the exploitation and exploration of the algorithm. Two types of crossover operators are designed to enhance the global search capability of HTLBO. Finally, we conducted extensive experiments on eight sets of 80 instances using our proposed approach. The experiment results show that the new algorithm has higher accuracy and better stability than do previous methods. Overall, HTLBO is an excellent approach for solving the D{0–1}KP. |
|---|---|
| AbstractList | The discounted {0–1} knapsack problem (D{0–1}KP) is a kind of knapsack problem with group structure and discount relationships among items. It is more challenging than the classical 0–1 knapsack problem. A more effective hybrid algorithm, the discrete hybrid teaching-learning-based optimization algorithm (HTLBO), is proposed to solve D{0–1}KP in this paper. HTLBO is based on the framework of the teaching-learning-based optimization (TLBO) algorithm. A two-tuple consisting of a quaternary vector and a real vector is used to represent an individual in HTLBO and that allows TLBO to effectively solve discrete optimization problems. We enhanced the optimization ability of HTLBO from three aspects. The learning strategy in the Learner phase is modified to extend the exploration capability of HTLBO. Inspired by the human learning process, self-learning factors are incorporated into the Teacher and Learner phases, which balances the exploitation and exploration of the algorithm. Two types of crossover operators are designed to enhance the global search capability of HTLBO. Finally, we conducted extensive experiments on eight sets of 80 instances using our proposed approach. The experiment results show that the new algorithm has higher accuracy and better stability than do previous methods. Overall, HTLBO is an excellent approach for solving the D{0–1}KP. |
| Author | Feng, Yanhong Zhao, Jianli Lee, Malrey Wu, Congcong |
| Author_xml | – sequence: 1 givenname: Congcong surname: Wu fullname: Wu, Congcong email: hebwucongcong@126.com organization: School of Economics and Management, China University of Geosciences, College of Information Engineering, Hebei GEO University – sequence: 2 givenname: Jianli surname: Zhao fullname: Zhao, Jianli organization: College of Information Engineering, Hebei GEO University, Center for Advanced Image and Information Technology, School of Electronics and Information Engineering, ChonBuk National University – sequence: 3 givenname: Yanhong surname: Feng fullname: Feng, Yanhong organization: College of Information Engineering, Hebei GEO University – sequence: 4 givenname: Malrey surname: Lee fullname: Lee, Malrey organization: Center for Advanced Image and Information Technology, School of Electronics and Information Engineering, ChonBuk National University |
| BookMark | eNp9kE9rGzEQxUVxoHbSL9CToGclM5J21zqW0PyBQA5pITcxu6u1lawlV5IDbul3z8YuFHrIaebwfu_NvAWbhRgcY58RzhGgucgIemkESBCAdSUFfGBzrBolGm2aGZuDkVrUtXn8yBY5PwGAUoBzFh7i-OLDivc-d3EXiuv5bxD4hz8H2mbqnvk2xXZ0m8zbPaeDLrni-HrfJt_z4qhbTwZidJTC29JSnkzitviN_0XFx8BpXMXky3pzxk4GGrP79Heesh9X375f3oi7--vby693olNoiiBdVYMyqPvBdNRgVbeDkXWnlUQClEovB9WTMW3fa7lEg0QIjakqV9cVojplX46-0_E_dy4X-xR3KUyRVipjagVG6Uklj6ouxZyTG-w2-Q2lvUWwb73aY6926tUeerUwQcv_oM6Xw5slkR_fR9URzVNOWLn076p3qFfkjI9v |
| CitedBy_id | crossref_primary_10_1007_s00500_022_07285_4 crossref_primary_10_1007_s00521_023_08367_6 crossref_primary_10_54097_ajst_v6i2_9707 crossref_primary_10_1007_s00521_023_08358_7 crossref_primary_10_1155_2021_5092480 crossref_primary_10_3390_sym14061208 crossref_primary_10_1109_ACCESS_2022_3157400 crossref_primary_10_1016_j_ejor_2022_04_036 crossref_primary_10_1016_j_compeleceng_2022_108551 crossref_primary_10_1007_s11063_023_11171_x crossref_primary_10_1007_s12667_021_00477_1 crossref_primary_10_3390_math8071070 crossref_primary_10_1007_s13369_021_05483_0 crossref_primary_10_1155_2021_2864607 crossref_primary_10_1371_journal_pone_0266537 crossref_primary_10_1016_j_asoc_2022_109821 crossref_primary_10_1155_2022_7272048 crossref_primary_10_1016_j_asoc_2022_109980 |
| Cites_doi | 10.1007/s10878-014-9717-1 10.1016/j.apm.2012.03.043 10.1016/j.future.2017.05.044 10.1109/TEVC.2016.2546340 10.1504/IJBIC.2010.032124 10.1109/ACCESS.2018.2809445 10.1007/s12293-016-0211-4 10.1023/A:1008202821328 10.1016/j.cor.2017.02.004 10.1016/j.knosys.2018.01.021 10.1016/j.engappai.2012.02.016 10.1504/IJBIC.2017.087924 10.1016/j.knosys.2013.04.003 10.1016/j.ins.2011.04.018 10.1016/j.asoc.2017.04.029 10.1016/j.ins.2011.08.006 10.1016/j.ins.2016.07.037 10.1007/s10489-017-1108-8 10.1016/j.ins.2014.09.041 10.1016/j.amc.2011.12.068 10.1007/s10898-007-9149-x 10.1109/TEVC.2013.2260862 10.1016/j.jestch.2015.09.008 10.1016/j.energy.2018.01.159 10.1109/MHS.1995.494215 10.1016/j.cad.2010.12.015 10.1016/j.cor.2017.01.015 10.1016/j.engstruct.2011.08.035 10.1007/978-1-4471-2748-2 10.1080/0305215X.2011.652103 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-020-01652-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 1888 |
| ExternalDocumentID | 10_1007_s10489_020_01652_0 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61806069 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-a455f3914df9ca7156bf926c4321a012348f3da99bdd428191aa107955e665113 |
| IEDL.DBID | BENPR |
| ISSN | 0924-669X |
| IngestDate | Fri Jul 25 19:14:17 EDT 2025 Wed Oct 01 04:09:45 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Fri Feb 21 02:26:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Teaching-learning-based optimization algorithm Discounted {0–1} knapsack problem Self-learning Crossover operator |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a455f3914df9ca7156bf926c4321a012348f3da99bdd428191aa107955e665113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2399630934 |
| PQPubID | 326365 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2399630934 crossref_primary_10_1007_s10489_020_01652_0 crossref_citationtrail_10_1007_s10489_020_01652_0 springer_journals_10_1007_s10489_020_01652_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200600 2020-06-00 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | FengYHWangGGBinary moth search algorithm for discounted {0-1} knapsack problemIEEE Access2018699107081071910.1109/ACCESS.2018.2809445 He YC, Wang XZ, Zhang SL (2016) The design and applications of discrete evolutionary algorithms based on encoding transformation. Journal of Software TangQLiZZhangLPBalancing stochastic two-sided assembly line with multiple constraints using hybrid teaching-learning-based optimization algorithm[J]Comput Oper Res20178210211336126241391.9022910.1016/j.cor.2017.01.015 HeYZhangXLiWLiXWuWGaoSAlgorithms for randomized time-varying knapsack problemsJ Comb Optim20163119511734402501341.9011010.1007/s10878-014-9717-1 ToğanVDesign of planar steel frames using teaching–learning based optimizationEng Struct201234122523210.1016/j.engstruct.2011.08.035 Eberhart R (1995) A new optimizer using particle swarm theory. Procsixth Intlsympmicro Machine & Human Science:39–43 RaoRVPatelVMulti-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithmAppl Math Model20133731147116230022131351.9014710.1016/j.apm.2012.03.043 LiLWengWFujimuraSAn improved teaching-learning-based optimization algorithm to solve job shop scheduling problemsIeee/acis International Conference on Computer and Information Science20172017797801 AvciMTopalogluSA multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[J]Comput Oper Res201783546536248540690141310.1016/j.cor.2017.02.004 RongAFigueiraJRKlamrothKDynamic programming based algorithms for the discounted {0–1} knapsack problemApplied Mathematics & Computation2012218126921693328803471244.6508710.1016/j.amc.2011.12.068 Chen X, Mei C, Xu B, Yu K, Huang X (2018) Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization. Knowl-Based Syst Zhu H, He Y, Wang X, Eric C.C. Tsang (2017) Discrete differential evolutions for the discounted {0-1} knapsack problem. International Journal of Bio-Inspired Computation 10(4):219 RaoRVSavsaniVJBalicJTeaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problemsEng Optim201244121447146210.1080/0305215X.2011.652103 WuCHeYChenYMutated bat algorithm for solving discounted {0-1} knapsack problem[J]Journal of Computer Applications (China)201737512921299 RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015 RaoRVPatelVAn elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problemsInt J Ind Eng Comput201234535560 CaiQGongMMaLRuanSYuanFJiaoLGreedy discrete particle swarm optimization for large-scale social network clusteringInformation Sciences An International Journal2015316C50351610.1016/j.ins.2014.09.041 WangLZhengXLWangSYA novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problemKnowl-Based Syst2013482172310.1016/j.knosys.2013.04.003 GongMCaiQChenXMaLComplex network clustering by multiobjective discrete particle swarm optimization based on decompositionIEEE Trans Evol Comput2014181829710.1109/TEVC.2013.2260862 Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Xiii (7):2104–2116 Kumar Y, Singh P K (2018) A chaotic teaching learning based optimization algorithm for clustering problems[J]. Appl Intell, 2018 ChenYHaoJKMemetic search for the generalized quadratic multiple knapsack problemIEEE Trans Evol Comput201620690892310.1109/TEVC.2016.2546340 RaoRVRaiDPOptimization of fused deposition modeling process using teaching-learning-based optimization algorithmEngineering Science & Technology An International Journal201619158760310.1016/j.jestch.2015.09.008 KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739345947123461781149.9018610.1007/s10898-007-9149-x YangXSFirefly algorithm, stochastic test functions and design optimisationInternational Journal of Bio-Inspired Computation2010227884(77)10.1504/IJBIC.2010.032124 RaoRVTeaching-learning-based optimization:a novel optimization method for continuous non-linear large scale problemsInf Sci201218311510.1016/j.ins.2011.08.006 Feng Y, Yang J, Wu C et al (2016) Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation[J]. Memetic Computing He YC, Wang XZ, Li WB et al (2016) Research on genetic algorithm for discounted {0-1} knapsack problem. Chinese Journal of Computers 39(12) El Ghazi A (2017) Ahiod B (2017) energy efficient teaching-learning-based optimization for the discrete routing problem in wireless sensor networks[J]. Appl Intell Rao RV, Savsani VJ (2012) Mechanical design optimization using advanced optimization techniques. Springer London HeYCWangXZHeYLZhaoSLLiWBExact and approximate algorithms for discounted {0-1} knapsack problemInf Sci201636963464735394561428.9014410.1016/j.ins.2016.07.037 GunjiABDeepakBBBVLBahubalendruniCMVARBiswalDBBAn optimal robotic assembly sequence planning by assembly subsets detection method using teaching learning-based optimization algorithmIEEE Transactions on Automation Science & Engineering PP201899117 Karaboga D (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06 Feng Y, Wang GG, Li W, Li N (2017) Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem. Neural Comput Applic:1–18 JiXYeHZhouJYinYShenXAn improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industryAppl Soft Comput20175750451610.1016/j.asoc.2017.04.029 StornRPriceKDifferential evolution – a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711434135914795530888.9013510.1023/A:1008202821328 B GHeuristic and exact algorithms for discounted knapsack problems2007Master thesisUniversity of Erlangen-Nurnberg, Germany Yu K, Lyndon W, Reynolds M, Wang X, Liang JJ (2018) Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization. Energy:148 TasgetirenMFPanQKSuganthanPNChenHLA discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shopsInformation Sciences An International Journal20111811634593475280153610.1016/j.ins.2011.04.018 RaoRVPatelVMulti-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithmEng Appl Artif Intell201326143044510.1016/j.engappai.2012.02.016 He Y, Xie H, Wong TL, Wang X (2017) A novel binary artificial bee colony algorithm for the set-union knapsack problem. Futur Gener Comput Syst 1652_CR14 1652_CR36 1652_CR13 1652_CR35 1652_CR31 D Karaboga (1652_CR28) 2007; 39 Y Chen (1652_CR37) 2016; 20 XS Yang (1652_CR30) 2010; 2 M Gong (1652_CR33) 2014; 18 C Wu (1652_CR39) 2017; 37 M Avci (1652_CR41) 2017; 83 V Toğan (1652_CR17) 2012; 34 AB Gunji (1652_CR21) 2018; 99 RV Rao (1652_CR10) 2012; 183 X Ji (1652_CR18) 2017; 57 1652_CR19 1652_CR38 RV Rao (1652_CR23) 2016; 19 RV Rao (1652_CR15) 2013; 37 1652_CR24 1652_CR22 R Storn (1652_CR25) 1997; 11 RV Rao (1652_CR8) 2011; 43 1652_CR7 RV Rao (1652_CR16) 2013; 26 Y He (1652_CR40) 2016; 31 1652_CR5 Q Tang (1652_CR12) 2017; 82 L Wang (1652_CR29) 2013; 48 1652_CR4 B G (1652_CR1) 2007 A Rong (1652_CR2) 2012; 218 RV Rao (1652_CR11) 2012; 3 YH Feng (1652_CR6) 2018; 6 L Li (1652_CR20) 2017; 2017 MF Tasgetiren (1652_CR32) 2011; 181 RV Rao (1652_CR9) 2012; 44 Q Cai (1652_CR34) 2015; 316 YC He (1652_CR3) 2016; 369 1652_CR27 1652_CR26 |
| References_xml | – reference: B GHeuristic and exact algorithms for discounted knapsack problems2007Master thesisUniversity of Erlangen-Nurnberg, Germany – reference: Kumar Y, Singh P K (2018) A chaotic teaching learning based optimization algorithm for clustering problems[J]. Appl Intell, 2018 – reference: RaoRVTeaching-learning-based optimization:a novel optimization method for continuous non-linear large scale problemsInf Sci201218311510.1016/j.ins.2011.08.006 – reference: Karaboga D (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06 – reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739345947123461781149.9018610.1007/s10898-007-9149-x – reference: He YC, Wang XZ, Zhang SL (2016) The design and applications of discrete evolutionary algorithms based on encoding transformation. Journal of Software – reference: CaiQGongMMaLRuanSYuanFJiaoLGreedy discrete particle swarm optimization for large-scale social network clusteringInformation Sciences An International Journal2015316C50351610.1016/j.ins.2014.09.041 – reference: ChenYHaoJKMemetic search for the generalized quadratic multiple knapsack problemIEEE Trans Evol Comput201620690892310.1109/TEVC.2016.2546340 – reference: RaoRVPatelVAn elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problemsInt J Ind Eng Comput201234535560 – reference: RaoRVPatelVMulti-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithmAppl Math Model20133731147116230022131351.9014710.1016/j.apm.2012.03.043 – reference: TangQLiZZhangLPBalancing stochastic two-sided assembly line with multiple constraints using hybrid teaching-learning-based optimization algorithm[J]Comput Oper Res20178210211336126241391.9022910.1016/j.cor.2017.01.015 – reference: GunjiABDeepakBBBVLBahubalendruniCMVARBiswalDBBAn optimal robotic assembly sequence planning by assembly subsets detection method using teaching learning-based optimization algorithmIEEE Transactions on Automation Science & Engineering PP201899117 – reference: LiLWengWFujimuraSAn improved teaching-learning-based optimization algorithm to solve job shop scheduling problemsIeee/acis International Conference on Computer and Information Science20172017797801 – reference: GongMCaiQChenXMaLComplex network clustering by multiobjective discrete particle swarm optimization based on decompositionIEEE Trans Evol Comput2014181829710.1109/TEVC.2013.2260862 – reference: FengYHWangGGBinary moth search algorithm for discounted {0-1} knapsack problemIEEE Access2018699107081071910.1109/ACCESS.2018.2809445 – reference: Eberhart R (1995) A new optimizer using particle swarm theory. Procsixth Intlsympmicro Machine & Human Science:39–43 – reference: TasgetirenMFPanQKSuganthanPNChenHLA discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shopsInformation Sciences An International Journal20111811634593475280153610.1016/j.ins.2011.04.018 – reference: Zhu H, He Y, Wang X, Eric C.C. Tsang (2017) Discrete differential evolutions for the discounted {0-1} knapsack problem. International Journal of Bio-Inspired Computation 10(4):219 – reference: Chen X, Mei C, Xu B, Yu K, Huang X (2018) Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization. Knowl-Based Syst – reference: RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015 – reference: WangLZhengXLWangSYA novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problemKnowl-Based Syst2013482172310.1016/j.knosys.2013.04.003 – reference: HeYZhangXLiWLiXWuWGaoSAlgorithms for randomized time-varying knapsack problemsJ Comb Optim20163119511734402501341.9011010.1007/s10878-014-9717-1 – reference: RaoRVSavsaniVJBalicJTeaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problemsEng Optim201244121447146210.1080/0305215X.2011.652103 – reference: RaoRVPatelVMulti-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithmEng Appl Artif Intell201326143044510.1016/j.engappai.2012.02.016 – reference: YangXSFirefly algorithm, stochastic test functions and design optimisationInternational Journal of Bio-Inspired Computation2010227884(77)10.1504/IJBIC.2010.032124 – reference: He YC, Wang XZ, Li WB et al (2016) Research on genetic algorithm for discounted {0-1} knapsack problem. Chinese Journal of Computers 39(12) – reference: JiXYeHZhouJYinYShenXAn improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industryAppl Soft Comput20175750451610.1016/j.asoc.2017.04.029 – reference: WuCHeYChenYMutated bat algorithm for solving discounted {0-1} knapsack problem[J]Journal of Computer Applications (China)201737512921299 – reference: Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Xiii (7):2104–2116 – reference: HeYCWangXZHeYLZhaoSLLiWBExact and approximate algorithms for discounted {0-1} knapsack problemInf Sci201636963464735394561428.9014410.1016/j.ins.2016.07.037 – reference: He Y, Xie H, Wong TL, Wang X (2017) A novel binary artificial bee colony algorithm for the set-union knapsack problem. Futur Gener Comput Syst – reference: RongAFigueiraJRKlamrothKDynamic programming based algorithms for the discounted {0–1} knapsack problemApplied Mathematics & Computation2012218126921693328803471244.6508710.1016/j.amc.2011.12.068 – reference: El Ghazi A (2017) Ahiod B (2017) energy efficient teaching-learning-based optimization for the discrete routing problem in wireless sensor networks[J]. Appl Intell – reference: ToğanVDesign of planar steel frames using teaching–learning based optimizationEng Struct201234122523210.1016/j.engstruct.2011.08.035 – reference: Yu K, Lyndon W, Reynolds M, Wang X, Liang JJ (2018) Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization. Energy:148 – reference: AvciMTopalogluSA multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[J]Comput Oper Res201783546536248540690141310.1016/j.cor.2017.02.004 – reference: Feng Y, Wang GG, Li W, Li N (2017) Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem. Neural Comput Applic:1–18 – reference: Rao RV, Savsani VJ (2012) Mechanical design optimization using advanced optimization techniques. Springer London – reference: Feng Y, Yang J, Wu C et al (2016) Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation[J]. Memetic Computing – reference: RaoRVRaiDPOptimization of fused deposition modeling process using teaching-learning-based optimization algorithmEngineering Science & Technology An International Journal201619158760310.1016/j.jestch.2015.09.008 – reference: StornRPriceKDifferential evolution – a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711434135914795530888.9013510.1023/A:1008202821328 – volume: 31 start-page: 95 issue: 1 year: 2016 ident: 1652_CR40 publication-title: J Comb Optim doi: 10.1007/s10878-014-9717-1 – volume-title: Heuristic and exact algorithms for discounted knapsack problems year: 2007 ident: 1652_CR1 – volume: 37 start-page: 1147 issue: 3 year: 2013 ident: 1652_CR15 publication-title: Appl Math Model doi: 10.1016/j.apm.2012.03.043 – volume: 37 start-page: 1292 issue: 5 year: 2017 ident: 1652_CR39 publication-title: Journal of Computer Applications (China) – ident: 1652_CR35 doi: 10.1016/j.future.2017.05.044 – volume: 20 start-page: 908 issue: 6 year: 2016 ident: 1652_CR37 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2546340 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 1652_CR30 publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2010.032124 – volume: 6 start-page: 10708 issue: 99 year: 2018 ident: 1652_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2809445 – ident: 1652_CR36 doi: 10.1007/s12293-016-0211-4 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 1652_CR25 publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – ident: 1652_CR38 – volume: 83 start-page: 54 year: 2017 ident: 1652_CR41 publication-title: Comput Oper Res doi: 10.1016/j.cor.2017.02.004 – ident: 1652_CR13 – ident: 1652_CR22 doi: 10.1016/j.knosys.2018.01.021 – volume: 26 start-page: 430 issue: 1 year: 2013 ident: 1652_CR16 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.02.016 – ident: 1652_CR7 doi: 10.1504/IJBIC.2017.087924 – volume: 48 start-page: 17 issue: 2 year: 2013 ident: 1652_CR29 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2013.04.003 – volume: 3 start-page: 535 issue: 4 year: 2012 ident: 1652_CR11 publication-title: Int J Ind Eng Comput – volume: 2017 start-page: 797 year: 2017 ident: 1652_CR20 publication-title: Ieee/acis International Conference on Computer and Information Science – volume: 181 start-page: 3459 issue: 16 year: 2011 ident: 1652_CR32 publication-title: Information Sciences An International Journal doi: 10.1016/j.ins.2011.04.018 – volume: 57 start-page: 504 year: 2017 ident: 1652_CR18 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.04.029 – volume: 183 start-page: 15 issue: 1 year: 2012 ident: 1652_CR10 publication-title: Inf Sci doi: 10.1016/j.ins.2011.08.006 – ident: 1652_CR27 – volume: 369 start-page: 634 year: 2016 ident: 1652_CR3 publication-title: Inf Sci doi: 10.1016/j.ins.2016.07.037 – ident: 1652_CR19 doi: 10.1007/s10489-017-1108-8 – volume: 316 start-page: 503 issue: C year: 2015 ident: 1652_CR34 publication-title: Information Sciences An International Journal doi: 10.1016/j.ins.2014.09.041 – volume: 218 start-page: 6921 issue: 12 year: 2012 ident: 1652_CR2 publication-title: Applied Mathematics & Computation doi: 10.1016/j.amc.2011.12.068 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 1652_CR28 publication-title: J Glob Optim doi: 10.1007/s10898-007-9149-x – ident: 1652_CR5 – ident: 1652_CR31 – volume: 18 start-page: 82 issue: 1 year: 2014 ident: 1652_CR33 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2260862 – volume: 19 start-page: 587 issue: 1 year: 2016 ident: 1652_CR23 publication-title: Engineering Science & Technology An International Journal doi: 10.1016/j.jestch.2015.09.008 – ident: 1652_CR24 doi: 10.1016/j.energy.2018.01.159 – ident: 1652_CR26 doi: 10.1109/MHS.1995.494215 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 1652_CR8 publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.12.015 – volume: 82 start-page: 102 year: 2017 ident: 1652_CR12 publication-title: Comput Oper Res doi: 10.1016/j.cor.2017.01.015 – volume: 34 start-page: 225 issue: 1 year: 2012 ident: 1652_CR17 publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.08.035 – ident: 1652_CR14 doi: 10.1007/978-1-4471-2748-2 – ident: 1652_CR4 doi: 10.1016/j.ins.2016.07.037 – volume: 99 start-page: 1 year: 2018 ident: 1652_CR21 publication-title: IEEE Transactions on Automation Science & Engineering PP – volume: 44 start-page: 1447 issue: 12 year: 2012 ident: 1652_CR9 publication-title: Eng Optim doi: 10.1080/0305215X.2011.652103 |
| SSID | ssj0003301 |
| Score | 2.3485794 |
| Snippet | The discounted {0–1} knapsack problem (D{0–1}KP) is a kind of knapsack problem with group structure and discount relationships among items. It is more... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1872 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Crossovers Exploration Knapsack problem Machine learning Machines Manufacturing Mechanical Engineering Optimization Optimization algorithms Processes Teaching |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu7BQnqJQkAc2MGr8ajxWqIBAsEClMkVObFPUNqmaMADiv2OnDgUESJ3jWInvzr7z3XcfAEeYqYSQmKOQcIooMRwJ2eHIaE1xYHSopLuHvLnll316NWADDwrLq2r3KiVZ7tRfwG7UlfdgV0jFGUY2UK-X_bZqoN69eLjufe7ANkYvmfJsbIE4FwMPlvl9lu8H0sLL_JEYLc-b8wboV186LzMZnT4X8Wny-qOJ47K_sg7WvAMKu3ON2QArOt0EjYrcAXpb3wLpXTZ2lw3Q4XYdoYRW8K2Ngnc4SuU0l8kIejKaHMYvUJbjZtYFh8MXhwKDha_TRJ6Y4hG5E1PBzG5SE4_-hHL8mM2eiuFkG_TPe_dnl8iTM6DEWm2BJGXMEBFQZUQiOzYMjI3APKEEB9I5ajQ0REkhYqWoy9YFUtpQUzCmObdeHtkBtTRL9S6AVEoshYw1VYRaJQlxwigPsYmxYaEOmiCoJBQlvnO5I9AYR4uey25BI7ugUbmgUbsJjj_fmc77dvw7ulUJPvI2nEcO9ctdopg2wUklx8Xjv2fbW274PljFpSq4q50WqBWzZ31gPZ0iPvSK_QEJcvNB priority: 102 providerName: Springer Nature |
| Title | Solving discounted {0-1} knapsack problems by a discrete hybrid teaching-learning-based optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s10489-020-01652-0 https://www.proquest.com/docview/2399630934 |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB61yYULb0SgRD5wA4usX10fKpSgpBWICAGRwmk1u7ZbqekmNNtDhfjveLbeRiDR0x780GrGHs_7A3gttKukLA3PpVFcyWC4xUPDg_dKZMHnDskP-XluThbq41Iv92De1cJQWmUnE1tB7dYV-cjfUQ2mobCder_5yQk1iqKrHYQGJmgFd9S2GNuHvqDOWD3oT6bzL19vZXO03lsMvWh1cGPsMpXRpGI6RelDghK1jBZ89PdTtdM__wmZti_R7CHcTyokG9_w_BHs-foxPOjgGVi6rU-g_rZekbuAUeUt_bd37NeIZ7_ZeY2bLVbnLMHJbFl5zbCddxmVaHZ2TXVcrEmZljxBS5xyevMcW0cxc5HqNxmuTiOZmrOLp7CYTb9_OOEJXoFX8d41HJXWQdpMuWArPIyGXBmsMJWSIkNStVQepENrS-cUxdsyxGgsWq29MVFPk8-gV69r_xyYQhRosfTKSRXZnItKK5OLUIqgc58NIOsoWVSp9zhBYKyKXddkon4RqV-01C9GA3hzu2Zz03njztkHHYOKdAu3xe7MDOBtx7Td8P93e3H3bi_hnmjPCTljDqDXXF75V1E3acoh7Oez4yH0x7PJZE7f4x-fpsN0DOPoQoz_AN235Ns |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gCX8lYXCvgAJ7DY2GM3PlSIR6stbVcIWmlvwYntrdRtdukGoRXir_Hb8KROVyDRW89JfJiZzNPffADPhXKVlKXmudTIUQbNjd3SPHiPIgs-d5b6kIdDPTjGjyM1WoHfHRaGrlV2PrF11G5aUY_8NWEwNY3t8M3sGyfWKJqudhQaNlEruO12xVgCduz7xY9Yws239z5Efb8QYnfn6P2AJ5YBXkXza7hFpYI0GbpgKrsV65kyGKErlCKzlHFgHqSzxpTOIY2dMmtjzWSU8lrHdEXGc2_AGko0sfhbe7cz_PT5MhZI2RIw92OVw7U2owTbSeA9pOtKgi6GaSV4_-_QuMx3_xnRtpFv9w6sp5SVvb2wsbuw4ut7cLujg2DJO9yH-st0Qu0JRkhfkpN37GefZ7_YaW1nc1udskRfM2flgtn2vfOYtLOTBeHGWJNudvJEZTHmFGMdm0a3dpbwosxOxlEtzcnZAzi-FkE_hNV6WvsNYGitsMaWHp3EaFa5qBTqXIRSBJX7rAdZJ8miSrvOiXJjUiy3NJP0iyj9opV-0e_By8tvZhebPq58e7NTUJH--nmxtNEevOqUtnz8_9MeXX3aM7g5ODo8KA72hvuP4ZZobYYaQZuw2px_909iXtSUT5PxMfh63fb-B8qvGuM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkKpeePQhwqPsoT2VFfG-4j0gVBVSKC2q1CLl5q69u0EiOIEYoQjxx_h13XHWREUqN8629zDzeV47Mx_AByZtwXmuaMqVoIJ7RbXpKOqdEyzxLrUG65A_TtThqfjWk705uG9mYbCtsrGJtaG2wwJr5Ds4g6nw2k7s-NgW8XO_uze6pMgghTetDZ3GFCLHbnIT0rfx7tF-0PVHxroHv78c0sgwQIsAvYoaIaXnOhHW68J0Qi6Te81UIThLDEYbIvXcGq1zawVeOSXGhHxJS-mUCqEKD-e-gIUObnHHKfXu1wcvwHlNvdwO-Q1VSvfiwE4c2xPYqMSwJUxJRtv_OsVZpPvocrb2ed1lWIzBKvk8RdcKzLnyNSw1RBAk2oU3UP4aDrAwQXDGF8knnCW3bZrckfPSjMamOCeRuGZM8gkx9XtXIVwnZxOcGCNV7OmkkcSiT9G7WjIMBu0iTooSM-gHJVRnF2_h9FnE_A7my2HpVoEIY5jRJnfCchEAlbJCCpUynzMvU5e0IGkkmRVxyzmSbQyy2X5mlH4WpJ_V0s_aLfj08M1ouuPjybc3GgVl8X8fZzN0tmC7Udrs8f9PW3v6tC14GVCefT86OV6HV6yGDFaANmC-urp2myEgqvL3NfII_HluqP8F-Q4YfQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+discounted+%7B0-1%7D+knapsack+problems+by+a+discrete+hybrid+teaching-learning-based+optimization+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Wu%2C+Congcong&rft.au=Zhao%2C+Jianli&rft.au=Feng%2C+Yanhong&rft.au=Lee%2C+Malrey&rft.date=2020-06-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=50&rft.issue=6&rft.spage=1872&rft.epage=1888&rft_id=info:doi/10.1007%2Fs10489-020-01652-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_020_01652_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |