A novel nature-inspired maximum power point tracking (MPPT) controller based on ACO-ANN algorithm for photovoltaic (PV) system fed arc welding machines
In this paper, a metaheuristic optimized multilayer feed‐forward artificial neural network (ANN) controller is proposed to extract the maximum power from available solar energy for a three-phase shunt active power filter (APF) grid connected photovoltaic (PV) system supplying an arc welding machine....
Saved in:
| Published in | Neural computing & applications Vol. 34; no. 1; pp. 299 - 317 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.01.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-021-06393-w |
Cover
| Abstract | In this paper, a metaheuristic optimized multilayer feed‐forward artificial neural network (ANN) controller is proposed to extract the maximum power from available solar energy for a three-phase shunt active power filter (APF) grid connected photovoltaic (PV) system supplying an arc welding machine. Firstly, in order to improve the maximum power point (MPP) delivered by PV arrays and to overcome the drawbacks in the conventional MPPT method under irradiation variation, a hybrid MPPT controller is designed, in which the input parameters include the PV array voltage and current, and the output parameter is the duty cycle of the DC/DC boost converter. The proposed approach abbreviated as ANN-ACO MPPT controller is based on an ant colony optimization (ACO) algorithm which is useful to train the developed ANN and to evolve the connection weights and biases to get the optimal values of duty cycle converter corresponding to the MPP of a PV array. Secondly, aiming to meet the various grid requirements such as power quality improvement, distortion free signals etc., a three-phase shunt APF is utilized, and a direct power control algorithm is designed for distributing the solar energy between the DC-link capacitor, arc welding machine and the AC grid. Finally, the performance of proposed control system is confirmed by simulation tests on a 12.2 kW PV system. Both simulation and experimental results have demonstrated that the deigned ANN-ACO MPPT controller can provide a better MPP tracking with a faster speed and a high robustness with a minimal steady-state oscillation than those obtained with the conventional INC method. Also, with the use of a three-phase shunt APF, all the power fluctuations from the arc welding machine disturbances are damped out and the output active and reactive power become controllable. |
|---|---|
| AbstractList | In this paper, a metaheuristic optimized multilayer feed‐forward artificial neural network (ANN) controller is proposed to extract the maximum power from available solar energy for a three-phase shunt active power filter (APF) grid connected photovoltaic (PV) system supplying an arc welding machine. Firstly, in order to improve the maximum power point (MPP) delivered by PV arrays and to overcome the drawbacks in the conventional MPPT method under irradiation variation, a hybrid MPPT controller is designed, in which the input parameters include the PV array voltage and current, and the output parameter is the duty cycle of the DC/DC boost converter. The proposed approach abbreviated as ANN-ACO MPPT controller is based on an ant colony optimization (ACO) algorithm which is useful to train the developed ANN and to evolve the connection weights and biases to get the optimal values of duty cycle converter corresponding to the MPP of a PV array. Secondly, aiming to meet the various grid requirements such as power quality improvement, distortion free signals etc., a three-phase shunt APF is utilized, and a direct power control algorithm is designed for distributing the solar energy between the DC-link capacitor, arc welding machine and the AC grid. Finally, the performance of proposed control system is confirmed by simulation tests on a 12.2 kW PV system. Both simulation and experimental results have demonstrated that the deigned ANN-ACO MPPT controller can provide a better MPP tracking with a faster speed and a high robustness with a minimal steady-state oscillation than those obtained with the conventional INC method. Also, with the use of a three-phase shunt APF, all the power fluctuations from the arc welding machine disturbances are damped out and the output active and reactive power become controllable. In this paper, a metaheuristic optimized multilayer feed‐forward artificial neural network (ANN) controller is proposed to extract the maximum power from available solar energy for a three-phase shunt active power filter (APF) grid connected photovoltaic (PV) system supplying an arc welding machine. Firstly, in order to improve the maximum power point (MPP) delivered by PV arrays and to overcome the drawbacks in the conventional MPPT method under irradiation variation, a hybrid MPPT controller is designed, in which the input parameters include the PV array voltage and current, and the output parameter is the duty cycle of the DC/DC boost converter. The proposed approach abbreviated as ANN-ACO MPPT controller is based on an ant colony optimization (ACO) algorithm which is useful to train the developed ANN and to evolve the connection weights and biases to get the optimal values of duty cycle converter corresponding to the MPP of a PV array. Secondly, aiming to meet the various grid requirements such as power quality improvement, distortion free signals etc., a three-phase shunt APF is utilized, and a direct power control algorithm is designed for distributing the solar energy between the DC-link capacitor, arc welding machine and the AC grid. Finally, the performance of proposed control system is confirmed by simulation tests on a 12.2 kW PV system. Both simulation and experimental results have demonstrated that the deigned ANN-ACO MPPT controller can provide a better MPP tracking with a faster speed and a high robustness with a minimal steady-state oscillation than those obtained with the conventional INC method. Also, with the use of a three-phase shunt APF, all the power fluctuations from the arc welding machine disturbances are damped out and the output active and reactive power become controllable. |
| Author | Babes, Badreddine Boutaghane, Amar Hamouda, Noureddine |
| Author_xml | – sequence: 1 givenname: Badreddine orcidid: 0000-0002-9256-2021 surname: Babes fullname: Babes, Badreddine email: elect_babes@yahoo.fr, b.babes@crti.dz organization: Research Center in Industrial Technologies (CRTI) – sequence: 2 givenname: Amar surname: Boutaghane fullname: Boutaghane, Amar organization: Research Center in Industrial Technologies (CRTI) – sequence: 3 givenname: Noureddine surname: Hamouda fullname: Hamouda, Noureddine organization: Research Center in Industrial Technologies (CRTI) |
| BookMark | eNp9kU1PGzEQhq2KSg0ff6AnS1zgsO147d14j1EEFIlCDpTrytiziWHXDraTwC_p38WrVKrEgcPMHOZ95kPvITlw3iEh3xn8YADTnxGgKlkBY9S84cXuC5kwwXnBoZIHZAKNGFuCfyOHMT4BgKhlNSF_Z9T5LfbUqbQJWFgX1zagoYN6tcNmoGu_w5CzdYmmoPSzdUt69nuxuD-n2rsUfN9nwaOKGfKOzuZ3xez2lqp-6YNNq4F2PvMrn_zW90lZTc8WD-c0vsWEuZkpFTTdYW_GyYPSK-swHpOvneojnvyrR-TP5cX9_Fdxc3d1PZ_dFJqzJhWKKyOkZqpCUTVSgAEw2JV6iowxbbTpmqmSEksjNdZTZrAyTae5qB-V0IIfkdP93HXwLxuMqX3ym-DyyrasmeSygqrOKrlX6eBjDNi12iaV7Pi_sn3LoB1taPc2tDDGaEO7y2j5AV0HO6jw9jnE91DMYrfE8P-qT6h3yGOfeg |
| CitedBy_id | crossref_primary_10_1155_2022_5700570 crossref_primary_10_3390_app121910056 crossref_primary_10_26599_AIR_2024_9150031 crossref_primary_10_3390_en15114146 crossref_primary_10_4218_etrij_2022_0184 crossref_primary_10_1007_s00521_023_08716_5 crossref_primary_10_1007_s41870_024_02309_8 crossref_primary_10_1109_ACCESS_2022_3204270 crossref_primary_10_1016_j_suscom_2023_100946 crossref_primary_10_1007_s00521_021_06586_3 crossref_primary_10_3390_biomimetics8050402 crossref_primary_10_3390_biomimetics8040332 crossref_primary_10_1007_s00521_023_08453_9 crossref_primary_10_1007_s10668_023_03116_0 crossref_primary_10_1007_s11356_023_28248_8 crossref_primary_10_1016_j_jestch_2023_101436 crossref_primary_10_3390_technologies13030112 crossref_primary_10_1007_s00202_024_02810_0 crossref_primary_10_3390_wevj15030101 crossref_primary_10_1002_ente_202300648 crossref_primary_10_1016_j_energy_2024_132927 crossref_primary_10_1016_j_compeleceng_2024_109648 crossref_primary_10_1007_s00202_023_02180_z crossref_primary_10_1177_00368504241288790 crossref_primary_10_3390_ai5040119 crossref_primary_10_36548_jeea_2021_4_006 crossref_primary_10_3390_en15093164 crossref_primary_10_1080_15325008_2023_2215780 crossref_primary_10_1155_er_8834986 crossref_primary_10_3390_su132413934 crossref_primary_10_1016_j_heliyon_2023_e19819 crossref_primary_10_3390_en16155665 crossref_primary_10_1016_j_renene_2024_120469 crossref_primary_10_1002_ente_202300380 crossref_primary_10_1155_2022_2133294 crossref_primary_10_1186_s43067_023_00114_0 |
| Cites_doi | 10.1109/JPHOTOV.2017.2649600 10.18280/jesa.530607 10.1115/1.4033685 10.1007/s43236-020-00143-2 10.1002/2050-7038.12439 10.18280/jesa.540216 10.1016/0167-8191(90)90086-O 10.1109/ACCESS.2020.2979141 10.1016/j.renene.2004.09.011 10.1016/j.engappai.2020.103688 10.18280/jesa.530201 10.1109/TPEL.2013.2275739 10.1109/ACCESS.2019.2929266 10.1109/TSTE.2015.2438781 10.4028/www.scientific.net/DDF.406.300 10.1109/TFUZZ.2009.2029569 10.1016/j.ijepes.2013.04.017 10.1016/j.proeng.2011.12.677 10.1109/tnnls.2020.3015200 10.1007/s43236-019-00029-y 10.1016/j.neucom.2019.08.095 10.1109/TII.2012.2192282 10.1007/978-981-15-6403-1_26 10.1007/978-3-030-63846-7_48 10.1109/icrera.2016.7884400 10.1109/irsec.2018.8703010 10.1109/ccssp49278.2020.9151609 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-021-06393-w |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 317 |
| ExternalDocumentID | 10_1007_s00521_021_06393_w |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-a3ad48c1a5e459840d00def2c7e111cdcdf97a88e2d8ce671de5d9fc346ba4c43 |
| IEDL.DBID | AGYKE |
| ISSN | 0941-0643 |
| IngestDate | Sun Sep 07 03:50:33 EDT 2025 Wed Oct 01 02:26:07 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Fri Feb 21 02:46:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | DC/DC boost converter Solar photovoltaic (PV) system Feed-forward artificial neural network (ANN) Total harmonic distortion (THD) Three-phase shunt APF Hybrid ACO-ANN MPPT control Arc welding machine Ant colony optimization (ACO) algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a3ad48c1a5e459840d00def2c7e111cdcdf97a88e2d8ce671de5d9fc346ba4c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9256-2021 |
| PQID | 2618385056 |
| PQPubID | 2043988 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2618385056 crossref_citationtrail_10_1007_s00521_021_06393_w crossref_primary_10_1007_s00521_021_06393_w springer_journals_10_1007_s00521_021_06393_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220100 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Al-Majidi, Abbod, Al Raweshidy (CR14) 2020; 92 De Rubio (CR17) 2009; 17 Al Nabulsi, Dhaouadi (CR9) 2012; 8 Tang, Sun, Chen, Zhao, Yang, Szeto (CR13) 2017; 7 Bouafassa, Fernández-Ramírez, Babes (CR3) 2020; 20 Chiang, Chen, Huang (CR18) 2019; 7 Bahgat, Helwa, Ahmad, El-Shenawy (CR27) 2005; 30 Zoua, Yua, Zhangb, Lu (CR11) 2012; 29 Babes, Boutaghane, Hamouda, Kahla, Kellai, Ellinger, Petzoldt (CR25) 2020; 53 Akbar, Seyed Mohammad, Asma (CR10) 2013; 53 Benaouda, Babes, Bouchakour, Kahla, Bendiabdellah (CR24) 2021; 54 Sher (CR12) 2015; 6 Ferhat, Rahmani, Babes (CR6) 2020; 20 CR2 Hamouda, Babes, Hamouda, Kahla, Ellinger, Petzoldt (CR21) 2020; 53 CR8 CR7 Kim, Sung, Lee (CR5) 2014; 29 Rymar, Zhernosekov, Sydorets (CR4) 2011; 12 CR23 Hernández, Zamora, Sossa, Téllez, Furlán (CR20) 2020; 390 CR22 Kellai, Kahla, Dehimi, Babes (CR1) 2021; 406 Aquino, Rubio, Pacheco, Gutierrez, Ochoa, Balcazar, Cruz, Garcia, Novoa, Zacarias (CR16) 2020; 8 De Rubio (CR19) 2020 Ibnelouad, El Kari, Ayad, Mjahed (CR26) 2020; 30 Yadav, Gaur (CR28) 2016; 11 Whitley, Starkweather, Bogart (CR15) 1990; 14 YS Kim (6393_CR5) 2014; 29 D Whitley (6393_CR15) 1990; 14 N Hamouda (6393_CR21) 2020; 53 G Hernández (6393_CR20) 2020; 390 B Babes (6393_CR25) 2020; 53 A Al Nabulsi (6393_CR9) 2012; 8 JJ De Rubio (6393_CR19) 2020 6393_CR7 HS Chiang (6393_CR18) 2019; 7 6393_CR8 Y Zoua (6393_CR11) 2012; 29 GA Akbar (6393_CR10) 2013; 53 M Ferhat (6393_CR6) 2020; 20 JJ De Rubio (6393_CR17) 2009; 17 A Kellai (6393_CR1) 2021; 406 6393_CR2 6393_CR22 6393_CR23 A Ibnelouad (6393_CR26) 2020; 30 HA Sher (6393_CR12) 2015; 6 OF Benaouda (6393_CR24) 2021; 54 SD Al-Majidi (6393_CR14) 2020; 92 AK Yadav (6393_CR28) 2016; 11 G Aquino (6393_CR16) 2020; 8 ABG Bahgat (6393_CR27) 2005; 30 S Tang (6393_CR13) 2017; 7 A Bouafassa (6393_CR3) 2020; 20 SV Rymar (6393_CR4) 2011; 12 |
| References_xml | – volume: 7 start-page: 640 year: 2017 end-page: 650 ident: CR13 article-title: An enhanced MPPT method combining fractional-order and fuzzy logic control publication-title: IEEE J Photovolt doi: 10.1109/JPHOTOV.2017.2649600 – volume: 53 start-page: 811 year: 2020 end-page: 823 ident: CR25 article-title: New optimal control of permanent magnet DC motor for photovoltaic wire feeder systems publication-title: J Européen des Systèmes Automatisés doi: 10.18280/jesa.530607 – volume: 11 year: 2016 ident: CR28 article-title: Improved self-tuning fuzzy proportional-integral derivative versus fuzzy-adaptive proportional–integral–derivative for speed control of nonlinear hybrid electric vehicles publication-title: ASME J Comput Nonlinear Dyn doi: 10.1115/1.4033685 – volume: 20 start-page: 1445 year: 2020 end-page: 1455 ident: CR3 article-title: Power quality improvements of arc welding power supplies by modified bridgeless SEPIC PFC converter publication-title: J Power Electron doi: 10.1007/s43236-020-00143-2 – ident: CR22 – volume: 30 start-page: e12439 year: 2020 ident: CR26 article-title: Improved cooperative artificial neural network- particle swarm optimization approach for solar photovoltaic systems using maximum power point tracking publication-title: Int Trans Electr Energy Syst doi: 10.1002/2050-7038.12439 – volume: 54 start-page: 335 year: 2021 end-page: 344 ident: CR24 article-title: Arc welding current control using thyristor based three-phase rectifiers applied to gas metal arc welding connected to grid network publication-title: J Européen des Systèmes Automatisés. doi: 10.18280/jesa.540216 – volume: 14 start-page: 347 year: 1990 end-page: 361 ident: CR15 article-title: Genetic algorithms and neural networks: optimizing connections and connectivity publication-title: Parallel Comput doi: 10.1016/0167-8191(90)90086-O – ident: CR2 – volume: 8 start-page: 46324 year: 2020 end-page: 46334 ident: CR16 article-title: Novel nonlinear hypothesis for the delta parallel robot modeling publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2979141 – ident: CR8 – volume: 30 start-page: 1257 year: 2005 end-page: 1268 ident: CR27 article-title: Maximum power point tracking controller for PV systems using neural networks publication-title: Renew Energy doi: 10.1016/j.renene.2004.09.011 – volume: 92 start-page: 103688 year: 2020 ident: CR14 article-title: A particle swarm optimization-trained feedforward neural network for predicting the maximum power point of a photovoltaic array publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103688 – volume: 53 start-page: 157 year: 2020 end-page: 166 ident: CR21 article-title: Optimal tuning of fractional order proportional-integral-derivative controller for wire feeder system using ant colony optimization publication-title: J Européen Des Systèmes Automatisés doi: 10.18280/jesa.530201 – ident: CR23 – volume: 29 start-page: 2666 year: 2014 end-page: 2679 ident: CR5 article-title: Comparative performance analysis of high density and efficiency PFC topologies publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2013.2275739 – volume: 7 start-page: 103255 year: 2019 end-page: 103262 ident: CR18 article-title: Wavelet-based EEG processing for epilepsy detection using fuzzy entropy and associative petri net publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929266 – volume: 6 start-page: 1426 year: 2015 end-page: 1434 ident: CR12 article-title: A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2015.2438781 – volume: 406 start-page: 300 year: 2021 end-page: 311 ident: CR1 article-title: Microstructural and mechanical properties of welding and thermal spraying coatings on ductile cast iron publication-title: Defect Diffus Forum doi: 10.4028/www.scientific.net/DDF.406.300 – volume: 17 start-page: 1296 year: 2009 end-page: 1309 ident: CR17 article-title: SOFMLS: online self-organizing fuzzy modified least-squares network publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2009.2029569 – volume: 53 start-page: 237 year: 2013 end-page: 243 ident: CR10 article-title: A high performance maximum power point tracker for PV systems publication-title: Elect Power Energy Syst doi: 10.1016/j.ijepes.2013.04.017 – volume: 12 start-page: 7 year: 2011 end-page: 12 ident: CR4 article-title: Effect of single-phase power sources of welding arc on electric mains publication-title: Paton Weld J – volume: 29 start-page: 105 year: 2012 end-page: 109 ident: CR11 article-title: MPPT control for PV generation system based on an improved IncCond algorithm publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.12.677 – year: 2020 ident: CR19 article-title: Stability analysis of the modified levenberg-marquardt algorithm for the artificial neural network training publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/tnnls.2020.3015200 – volume: 20 start-page: 188 year: 2020 end-page: 197 ident: CR6 article-title: DSP-based implementation of improved deadbeat control for three-phase shunt active power filters publication-title: J Power Electron doi: 10.1007/s43236-019-00029-y – ident: CR7 – volume: 390 start-page: 327 year: 2020 end-page: 340 ident: CR20 article-title: Hybrid neural networks for big data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.095 – volume: 8 start-page: 573 year: 2012 end-page: 584 ident: CR9 article-title: Efficiency optimization of a DSP-based standalone PV System using fuzzy logic and dual-MPPT control publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2012.2192282 – volume: 20 start-page: 1445 year: 2020 ident: 6393_CR3 publication-title: J Power Electron doi: 10.1007/s43236-020-00143-2 – volume: 53 start-page: 237 year: 2013 ident: 6393_CR10 publication-title: Elect Power Energy Syst doi: 10.1016/j.ijepes.2013.04.017 – ident: 6393_CR2 doi: 10.1007/978-981-15-6403-1_26 – volume: 14 start-page: 347 year: 1990 ident: 6393_CR15 publication-title: Parallel Comput doi: 10.1016/0167-8191(90)90086-O – volume: 6 start-page: 1426 year: 2015 ident: 6393_CR12 publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2015.2438781 – volume: 406 start-page: 300 year: 2021 ident: 6393_CR1 publication-title: Defect Diffus Forum doi: 10.4028/www.scientific.net/DDF.406.300 – volume: 29 start-page: 105 year: 2012 ident: 6393_CR11 publication-title: Procedia Eng doi: 10.1016/j.proeng.2011.12.677 – volume: 92 start-page: 103688 year: 2020 ident: 6393_CR14 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103688 – volume: 17 start-page: 1296 year: 2009 ident: 6393_CR17 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2009.2029569 – volume: 7 start-page: 640 year: 2017 ident: 6393_CR13 publication-title: IEEE J Photovolt doi: 10.1109/JPHOTOV.2017.2649600 – ident: 6393_CR23 doi: 10.1007/978-3-030-63846-7_48 – volume: 390 start-page: 327 year: 2020 ident: 6393_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.095 – volume: 54 start-page: 335 year: 2021 ident: 6393_CR24 publication-title: J Européen des Systèmes Automatisés. doi: 10.18280/jesa.540216 – ident: 6393_CR7 doi: 10.1109/icrera.2016.7884400 – volume: 29 start-page: 2666 year: 2014 ident: 6393_CR5 publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2013.2275739 – ident: 6393_CR8 doi: 10.1109/irsec.2018.8703010 – volume: 8 start-page: 573 year: 2012 ident: 6393_CR9 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2012.2192282 – volume: 30 start-page: e12439 year: 2020 ident: 6393_CR26 publication-title: Int Trans Electr Energy Syst doi: 10.1002/2050-7038.12439 – volume: 8 start-page: 46324 year: 2020 ident: 6393_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2979141 – volume: 53 start-page: 157 year: 2020 ident: 6393_CR21 publication-title: J Européen Des Systèmes Automatisés doi: 10.18280/jesa.530201 – ident: 6393_CR22 doi: 10.1109/ccssp49278.2020.9151609 – volume: 12 start-page: 7 year: 2011 ident: 6393_CR4 publication-title: Paton Weld J – volume: 20 start-page: 188 year: 2020 ident: 6393_CR6 publication-title: J Power Electron doi: 10.1007/s43236-019-00029-y – volume: 30 start-page: 1257 year: 2005 ident: 6393_CR27 publication-title: Renew Energy doi: 10.1016/j.renene.2004.09.011 – volume: 7 start-page: 103255 year: 2019 ident: 6393_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929266 – volume: 53 start-page: 811 year: 2020 ident: 6393_CR25 publication-title: J Européen des Systèmes Automatisés doi: 10.18280/jesa.530607 – volume: 11 year: 2016 ident: 6393_CR28 publication-title: ASME J Comput Nonlinear Dyn doi: 10.1115/1.4033685 – year: 2020 ident: 6393_CR19 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/tnnls.2020.3015200 |
| SSID | ssj0004685 |
| Score | 2.488029 |
| Snippet | In this paper, a metaheuristic optimized multilayer feed‐forward artificial neural network (ANN) controller is proposed to extract the maximum power from... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 299 |
| SubjectTerms | Algorithms Ant colony optimization Arc welding machines Arrays Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer simulation Control algorithms Control systems design Control theory Controllers Converters Data Mining and Knowledge Discovery Heuristic methods Image Processing and Computer Vision Maximum power tracking Multilayers Original Article Parameters Photovoltaic cells Power control Probability and Statistics in Computer Science Reactive power Signal quality Solar energy Tracking control Welding machines |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9sKFN2JpQXPg0AosdmM7jwNCS9WqQmpYoRb1Fjljh660myxt2uWf8HeZyTpdQKIH55DYjuTxeMbz-oR4Y8ooHVtTyUQbuqCgUtKWSSZ1mWCpMHHasUf3JI-Pz_Tnc3O-JfI-F4bDKvszsTuoXYNsI39Pmn6qUpbXH5c_JKNGsXe1h9CwAVrBfehKjN0T2xFXxhqI7U-H-fTrH5mSHUgn3Wk43kerkEbTJdOxhZTeciOxreTqb1G10T__cZl2kujokXgQVEiYrGn-WGz5-ol42MMzQODWp-LXBOrmxs9hXbxTzmr2qnsHC_tztrhewJIR0ug5q1toLy2y1Rz2TqbT030IIexz6sCCzkFTw-Tgi5zkOdj5d1qZ9mIBpPHC8qJpGzrkWjtD2Jt-24d1dWioaBSxEax85-Ci33Lcpr96Js6ODk8PjmXAYZBIDNpKq6zTKRJJvTYZ3QjdaOR8FWHi6aREh67KEpumPnIp-jgZO29cVqHScWk1avVcDOqm9i8ERFUSuTGSXoJGe9RWl5Z0iMzGcWlMqYdi3C95gaFIOWNlzIvb8sodmYoRNyZTsRqKt7djlusSHXf23u0pWQR2vSo2m2so3vXU3Xz-_2wv755tR9yPOF2iM9nsikF7ee1fkRLTlq_DzvwNf_PvZQ priority: 102 providerName: ProQuest |
| Title | A novel nature-inspired maximum power point tracking (MPPT) controller based on ACO-ANN algorithm for photovoltaic (PV) system fed arc welding machines |
| URI | https://link.springer.com/article/10.1007/s00521-021-06393-w https://www.proquest.com/docview/2618385056 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LctMwUEPTCxfa8hgCJbMHDu2AO4kt-XE0bdIOkJCBhiknj16mHhI7kygNw4_0d7vyI4UOMNOD7INWki1ptbvaFyGvmXDDHmepE1CGAor0PIeLIHKoCKTwZKCoshrd4cg_m9D3F-yidgpbNtbujUqyPKk3zm72BhNFX1uQrHrOeotsl_G2WmQ7Pv32of-bP2SZihMlFwtLvdpZ5u-9_EmQbrnMO4rRkt4Mdsik-dLKzOTH0cqII_nrThDH-_7KLnlUM6AQVztmjzzQ-WOy0yR3gBrXn5DrGPLiSk-hCv3pZLnVyWsFM_4zm61mMLf51fCZ5QbMgkt75w4Hw_H4_BBqA_gpAlgyqaDIIT7-5MSjEfDp92KRmcsZIL8M88vCFHhEGp5JOBh_PYQqtjSk2AqRENa6VI_hsNbqUy-fksmgf3585tRZHByJ6G0c7nFFQ4kbQlMWoTypul2lU1cGGs9ZqaRKo4CHoXZVKLUf9JRmKkqlR33BqaTeM9LKi1w_J-Cmgat6ErkayaiWlFPBkQOJuO8LxgRtk16zlImsQ5zbTBvTZBOcuZz5pGuLnflk3SZvNm3mVYCP_0LvNzskqZF9maAQGnqhZSXb5G2z4LfV_-7txf3AX5KHrnW-KC-A9knLLFb6FbJERnTIVjg47SAenAw_funU-IDvd_3R-DPWTtz4BukSCIE |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9gCX8lYDBeYAUitYkXh3_ThUKJRWKW1MhFLUm9mXaaTEThu3gV_Cv-G3MeusG0Citx7sg727tjzj2Xl_hLwUKog7UuQ04gINFM0YlSpKKFeRVkxHhhsX0e2nYe-YfzwRJyvkV1ML49IqG5lYC2pTaucjf4uafsxit1-_m55RhxrloqsNhIb00Apmp24x5gs7Du2POZpws52DD0jvV0Gwvzfc7VGPMkA1sl9FJZOGxxpf2HKRoL1j2m1j80BHFuWANtrkSSTj2AYm1jaMOsYKk-Sa8VBJrjnDdW-RNc54gsbf2vu9dPD5j8rMGhQUbSiXX8SZL9upi_ecRxavugPVBEbnf2-NS333nxBtvfPt3yPrXmWF7oLH7pMVWzwgdxs4CPDS4SH52YWivLRjWDQLpaPCRfGtgYn8PppcTGDqENnwPCoqqM6ldl562OoPBsNt8CnzYxzgNlYDZQHd3U-0m6Ygx9-QEtXpBFDDhulpWZUoVCs50rA1-LINi27UkOMspAfMbR1Qw8e6PFE7e0SOb4Qij8lqURZ2g0CQR4HpaNSDtOBWc8mVRJ0lkWGohFC8RTrNJ8-0b4rusDnG2VU755pMWdsdjkzZvEVeX82ZLlqCXDt6s6Fk5sXDLFsyc4u8aai7vP3_1Z5cv9oLcrs37B9lRwfp4VNyJ3ClGrW7aJOsVucX9hkqUJV67rkUyNeb_jF-A7MZLnY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKlW9UOhDbAtlDhxArcVubOdxjKAr2sJ2D2zFLfIrEGk3WS2m23_Sv8s4jwUqWqkH55KxI2U8nm9mPDOE7AkVxAMpchpxgQaKZoxKFSWUq0grpiPDjY_ono3Ckwn_eiEu7mXx17fdu5Bkk9PgqzSV7nBu8sNV4pv3ZqIZ7AeqWEaXT8kz7gsl4I6eBOm9zMi6KSfaMJ6SszZt5vE1HqqmO7z5R4i01jzDDbLeQkZIGx5vkie2fEVedu0YoJXO1-R3CmX1006hKdZJi9JH0a2BmfxVzG5mMPcd0fBZlA7cQmrvJYf9s_H4_ADaK-tTJPCKzUBVQnr0naajEcjpZbUo3NUMEOHC_KpyFR5qThYa9sc_DqCpBg05zkKxgaWtA1r4WX9P016_IZPh5_OjE9r2XaAaBdJRyaThsUYWWi4StABNv29sHujI4smojTZ5Esk4toGJtQ2jgbHCJLlmPFSSa87ekrWyKu0WgSCPAjPQiEO04FZzyZVEzJDIMFRCKN4jg-6XZ7otSu57Y0yzVTnlmk1Z3w_PpmzZIx9Xc-ZNSY5_Um93nMxa8bzO0GyMWezBX4986rh79_rvq737P_Jd8nx8PMxOv4y-vScvAp85UXtvtsmaW9zYHcQzTn2ot-wtEs3tYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+nature-inspired+maximum+power+point+tracking+%28MPPT%29+controller+based+on+ACO-ANN+algorithm+for+photovoltaic+%28PV%29+system+fed+arc+welding+machines&rft.jtitle=Neural+computing+%26+applications&rft.au=Babes%2C+Badreddine&rft.au=Boutaghane%2C+Amar&rft.au=Hamouda%2C+Noureddine&rft.date=2022-01-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=1&rft.spage=299&rft.epage=317&rft_id=info:doi/10.1007%2Fs00521-021-06393-w&rft.externalDocID=10_1007_s00521_021_06393_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |