The Impact of the Limit q-Durrmeyer Operator on Continuous Functions

The limit q -Durrmeyer operator, $$D_{\infty ,q}$$ D ∞ , q , was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of q -analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated f...

Full description

Saved in:
Bibliographic Details
Published inComputational methods and function theory Vol. 25; no. 2; pp. 303 - 315
Main Authors Gürel Yılmaz, Övgü, Ostrovska, Sofiya, Turan, Mehmet
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.06.2025
Subjects
Online AccessGet full text
ISSN1617-9447
2195-3724
DOI10.1007/s40315-024-00534-7

Cover

Abstract The limit q -Durrmeyer operator, $$D_{\infty ,q}$$ D ∞ , q , was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of q -analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of $$D_{\infty ,q}$$ D ∞ , q . The interrelation between the analytic properties of a function f and the rate of growth for $$D_{\infty ,q}f$$ D ∞ , q f are established, and the sharpness of the obtained results are demonstrated.
AbstractList The limit q-Durrmeyer operator, D∞,q, was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of q-analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of D∞,q. The interrelation between the analytic properties of a function f and the rate of growth for D∞,qf are established, and the sharpness of the obtained results are demonstrated.
The limit q -Durrmeyer operator, $$D_{\infty ,q}$$ D ∞ , q , was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of q -analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of $$D_{\infty ,q}$$ D ∞ , q . The interrelation between the analytic properties of a function f and the rate of growth for $$D_{\infty ,q}f$$ D ∞ , q f are established, and the sharpness of the obtained results are demonstrated.
Author Gürel Yılmaz, Övgü
Turan, Mehmet
Ostrovska, Sofiya
Author_xml – sequence: 1
  givenname: Övgü
  surname: Gürel Yılmaz
  fullname: Gürel Yılmaz, Övgü
– sequence: 2
  givenname: Sofiya
  surname: Ostrovska
  fullname: Ostrovska, Sofiya
– sequence: 3
  givenname: Mehmet
  surname: Turan
  fullname: Turan, Mehmet
BookMark eNp9kM1KAzEURoNUsK2-gKuA62h-J8lSWquFQjd1HdKZDKZ0kmmSWfTtnVpXLlxdLnzn3o8zA5MQgwPgkeBngrF8yRwzIhCmHGEsGEfyBkwp0QIxSfkETElFJNKcyzswy_kwhrhmbAqWuy8H111v6wJjC8u4bXznCzyh5ZBS584uwW3vki0xwRjgIobiwxCHDFdDqIuPId-D29Yes3v4nXPwuXrbLT7QZvu-XrxuUM2ILshiahVVe8245o1yldwThYmUDSWVJOJSVVGB7Z6rmrWSNULqmgncNi1zY905eLre7VM8DS4Xc4hDCuNLwyiuREWp5mNKXVN1ijkn15raF3spWpL1R0OwuTgzV2dmdGZ-nBk5ovQP2iff2XT-D_oGZ7xuig
CitedBy_id crossref_primary_10_1515_ms_2024_0092
crossref_primary_10_1007_s00009_024_02769_z
Cites_doi 10.1007/978-3-319-55402-0
10.1007/BF03323418
10.1016/0021-9045(81)90101-5
10.1017/CBO9781107325937
10.1007/s10773-021-04828-7
10.1007/b97417
10.1016/S0167-8396(99)00023-0
10.1007/s00025-016-0530-2
10.1142/7426
10.1002/mma.1012
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40315-024-00534-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2195-3724
EndPage 315
ExternalDocumentID 10_1007_s40315_024_00534_7
GroupedDBID 06D
0R~
199
203
2LR
30V
4.4
406
95.
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AM4
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARMRJ
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
BAPOH
BGNMA
CITATION
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
KOV
L7B
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
ROL
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
VH1
W48
ZMTXR
ABRTQ
JQ2
ID FETCH-LOGICAL-c319t-a02a828b93494d8e67b180177d21671537248250ab48c3f73d579c350fdf3e933
ISSN 1617-9447
IngestDate Wed Sep 17 23:55:45 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Tue Jul 01 04:50:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-a02a828b93494d8e67b180177d21671537248250ab48c3f73d579c350fdf3e933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s40315-024-00534-7.pdf
PQID 3206562294
PQPubID 2043941
PageCount 13
ParticipantIDs proquest_journals_3206562294
crossref_citationtrail_10_1007_s40315_024_00534_7
crossref_primary_10_1007_s40315_024_00534_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Computational methods and function theory
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References WS Chung (534_CR5) 2021; 60
NI Mahmudov (534_CR13) 2014; 237
534_CR1
FH Jackson (534_CR11) 1910; 41
MM Derriennic (534_CR6) 1981; 31
534_CR7
S Ostrovska (534_CR14) 2016; 69
V Gupta (534_CR9) 2008; 197
GG Lorentz (534_CR12) 1986
V Gupta (534_CR10) 2008; 31
(534_CR4) 1996
J Bustamante (534_CR3) 2017
GM Phillips (534_CR15) 2003
SG Gal (534_CR8) 2009
W Boehm (534_CR2) 1999; 16
J Thomae (534_CR16) 1869; 70
J Zeng (534_CR17) 1994; 25
References_xml – volume: 237
  start-page: 293
  year: 2014
  ident: 534_CR13
  publication-title: Appl. Math. Comput.
– volume-title: Bernstein Operators and Their Properties
  year: 2017
  ident: 534_CR3
  doi: 10.1007/978-3-319-55402-0
– volume: 41
  start-page: 193
  year: 1910
  ident: 534_CR11
  publication-title: Q. J. Pure Appl. Math.
– volume: 25
  start-page: 370
  year: 1994
  ident: 534_CR17
  publication-title: Results Math.
  doi: 10.1007/BF03323418
– volume: 31
  start-page: 325
  year: 1981
  ident: 534_CR6
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(81)90101-5
– ident: 534_CR1
  doi: 10.1017/CBO9781107325937
– volume: 70
  start-page: 258
  year: 1869
  ident: 534_CR16
  publication-title: J. Reine Angew. Math.
– volume: 60
  start-page: 2102
  issue: 6
  year: 2021
  ident: 534_CR5
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-021-04828-7
– volume-title: Interpolation and Approximation by Polynomials
  year: 2003
  ident: 534_CR15
  doi: 10.1007/b97417
– ident: 534_CR7
– volume: 197
  start-page: 172
  issue: 1
  year: 2008
  ident: 534_CR9
  publication-title: Appl. Math. Comput.
– volume: 16
  start-page: 587
  year: 1999
  ident: 534_CR2
  publication-title: Comput. Aided Geom. Design
  doi: 10.1016/S0167-8396(99)00023-0
– volume-title: Bernstein Polynomials
  year: 1986
  ident: 534_CR12
– volume: 69
  start-page: 275
  issue: 3–4
  year: 2016
  ident: 534_CR14
  publication-title: Results Math.
  doi: 10.1007/s00025-016-0530-2
– volume-title: Quantum Groups and Their Applications in Physics
  year: 1996
  ident: 534_CR4
– volume-title: Approximation by Complex Bernstein and Convolution Type Operators
  year: 2009
  ident: 534_CR8
  doi: 10.1142/7426
– volume: 31
  start-page: 1946
  issue: 16
  year: 2008
  ident: 534_CR10
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.1012
SSID ssj0054933
Score 2.3239856
Snippet The limit q -Durrmeyer operator, $$D_{\infty ,q}$$ D ∞ , q , was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput....
The limit q-Durrmeyer operator, D∞,q, was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008)...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 303
SubjectTerms Continuity (mathematics)
Entire functions
Operators (mathematics)
Title The Impact of the Limit q-Durrmeyer Operator on Continuous Functions
URI https://www.proquest.com/docview/3206562294
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeoED4ikKBfnALXK1sb3r9bFpiQpSyoFUKqfVPmxATTZlH5Xa38CPZvzY3ZQColxW0a5jZT2Tmc_j-WYQeqsZeOkojYkGgROuYYOSyrQgytQPk4HMtDLc4cVJdHzKP5yFZ6PRj62spbbJ9vPr3_JK_keqcA_kaliyd5BsPyncgM8gX7iChOH6zzJ-39McDYS0fKXJd3LUVtVaAZyefLxQ9iTdnAqYUlTfytZkvc7Bnw2xuq5UgW3x0IUHXXNpV8NZ--GO-DhkgJpz9tlhpVaTzwaWzqardWpD0uaBjC6_uAF9KLduqs1lfW4R6yd496veKyzbysViF-rr2rOyfTSChkPWlDeggIiI5K6K5r6y96jpB8mE40p3VtfRnb120S0TygK25Y2ZI3veMvQut6PmpkkFAZxBjDXhRAxurTvK_8Xb9TmIfb1mO0cCcyR2jkTcQztUABIbo52D-Wx20nl22EozS9jo3tGTsCwV89YvuQl0bvp5C16Wj9BDv-vAB06FHqORKp-gB4u-ZG_9FB2BMmGnTHijMTzBVpnwljLhTpnwpsSDMuFemZ6h0_m75eEx8S02SA62tyFpQFPYc2fSVCkqYhWJbAqYRYiCTiMB3hCkFgNKTjMe50wLVoRC5iwMdKGZguV4jsblplQvEOamtqLOVaE040GhJNVZrKSpb1SEuQp30bRbjyT39edNG5RV8mdJ7KJJ_50LV33lr6P3umVO_L-0ThgFkB1RKvnLO032Ct0f9HsPjZuqVa8BfzbZG68WPwGP03ys
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+the+Limit+q-Durrmeyer+Operator+on+Continuous+Functions&rft.jtitle=Computational+methods+and+function+theory&rft.au=G%C3%BCrel+Y%C4%B1lmaz%2C+%C3%96vg%C3%BC&rft.au=Ostrovska%2C+Sofiya&rft.au=Turan%2C+Mehmet&rft.date=2025-06-01&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=25&rft.issue=2&rft.spage=303&rft.epage=315&rft_id=info:doi/10.1007%2Fs40315-024-00534-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40315_024_00534_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon