The Impact of the Limit q-Durrmeyer Operator on Continuous Functions
The limit q -Durrmeyer operator, $$D_{\infty ,q}$$ D ∞ , q , was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of q -analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated f...
Saved in:
Published in | Computational methods and function theory Vol. 25; no. 2; pp. 303 - 315 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1617-9447 2195-3724 |
DOI | 10.1007/s40315-024-00534-7 |
Cover
Abstract | The limit q -Durrmeyer operator, $$D_{\infty ,q}$$ D ∞ , q , was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of q -analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of $$D_{\infty ,q}$$ D ∞ , q . The interrelation between the analytic properties of a function f and the rate of growth for $$D_{\infty ,q}f$$ D ∞ , q f are established, and the sharpness of the obtained results are demonstrated. |
---|---|
AbstractList | The limit q-Durrmeyer operator, D∞,q, was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of q-analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of D∞,q. The interrelation between the analytic properties of a function f and the rate of growth for D∞,qf are established, and the sharpness of the obtained results are demonstrated. The limit q -Durrmeyer operator, $$D_{\infty ,q}$$ D ∞ , q , was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008) during a study of q -analogues for the Bernstein–Durrmeyer operator. In the present work, this operator is investigated from a different perspective. More precisely, the growth estimates are derived for the entire functions comprising the range of $$D_{\infty ,q}$$ D ∞ , q . The interrelation between the analytic properties of a function f and the rate of growth for $$D_{\infty ,q}f$$ D ∞ , q f are established, and the sharpness of the obtained results are demonstrated. |
Author | Gürel Yılmaz, Övgü Turan, Mehmet Ostrovska, Sofiya |
Author_xml | – sequence: 1 givenname: Övgü surname: Gürel Yılmaz fullname: Gürel Yılmaz, Övgü – sequence: 2 givenname: Sofiya surname: Ostrovska fullname: Ostrovska, Sofiya – sequence: 3 givenname: Mehmet surname: Turan fullname: Turan, Mehmet |
BookMark | eNp9kM1KAzEURoNUsK2-gKuA62h-J8lSWquFQjd1HdKZDKZ0kmmSWfTtnVpXLlxdLnzn3o8zA5MQgwPgkeBngrF8yRwzIhCmHGEsGEfyBkwp0QIxSfkETElFJNKcyzswy_kwhrhmbAqWuy8H111v6wJjC8u4bXznCzyh5ZBS584uwW3vki0xwRjgIobiwxCHDFdDqIuPId-D29Yes3v4nXPwuXrbLT7QZvu-XrxuUM2ILshiahVVe8245o1yldwThYmUDSWVJOJSVVGB7Z6rmrWSNULqmgncNi1zY905eLre7VM8DS4Xc4hDCuNLwyiuREWp5mNKXVN1ijkn15raF3spWpL1R0OwuTgzV2dmdGZ-nBk5ovQP2iff2XT-D_oGZ7xuig |
CitedBy_id | crossref_primary_10_1515_ms_2024_0092 crossref_primary_10_1007_s00009_024_02769_z |
Cites_doi | 10.1007/978-3-319-55402-0 10.1007/BF03323418 10.1016/0021-9045(81)90101-5 10.1017/CBO9781107325937 10.1007/s10773-021-04828-7 10.1007/b97417 10.1016/S0167-8396(99)00023-0 10.1007/s00025-016-0530-2 10.1142/7426 10.1002/mma.1012 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s40315-024-00534-7 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2195-3724 |
EndPage | 315 |
ExternalDocumentID | 10_1007_s40315_024_00534_7 |
GroupedDBID | 06D 0R~ 199 203 2LR 30V 4.4 406 95. 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AM4 AMKLP AMXSW AMYLF AMYQR ANMIH ARMRJ ASPBG ATHPR AUKKA AVWKF AXYYD AYFIA AYJHY BAPOH BGNMA CITATION CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD HMJXF HRMNR HZ~ IKXTQ IWAJR IXD J-C J9A JBSCW JZLTJ KOV L7B LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9G O9J PT4 ROL RSV SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG UG4 UOJIU UTJUX UZXMN VFIZW VH1 W48 ZMTXR ABRTQ JQ2 |
ID | FETCH-LOGICAL-c319t-a02a828b93494d8e67b180177d21671537248250ab48c3f73d579c350fdf3e933 |
ISSN | 1617-9447 |
IngestDate | Wed Sep 17 23:55:45 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Tue Jul 01 04:50:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-a02a828b93494d8e67b180177d21671537248250ab48c3f73d579c350fdf3e933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s40315-024-00534-7.pdf |
PQID | 3206562294 |
PQPubID | 2043941 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3206562294 crossref_citationtrail_10_1007_s40315_024_00534_7 crossref_primary_10_1007_s40315_024_00534_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Computational methods and function theory |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | WS Chung (534_CR5) 2021; 60 NI Mahmudov (534_CR13) 2014; 237 534_CR1 FH Jackson (534_CR11) 1910; 41 MM Derriennic (534_CR6) 1981; 31 534_CR7 S Ostrovska (534_CR14) 2016; 69 V Gupta (534_CR9) 2008; 197 GG Lorentz (534_CR12) 1986 V Gupta (534_CR10) 2008; 31 (534_CR4) 1996 J Bustamante (534_CR3) 2017 GM Phillips (534_CR15) 2003 SG Gal (534_CR8) 2009 W Boehm (534_CR2) 1999; 16 J Thomae (534_CR16) 1869; 70 J Zeng (534_CR17) 1994; 25 |
References_xml | – volume: 237 start-page: 293 year: 2014 ident: 534_CR13 publication-title: Appl. Math. Comput. – volume-title: Bernstein Operators and Their Properties year: 2017 ident: 534_CR3 doi: 10.1007/978-3-319-55402-0 – volume: 41 start-page: 193 year: 1910 ident: 534_CR11 publication-title: Q. J. Pure Appl. Math. – volume: 25 start-page: 370 year: 1994 ident: 534_CR17 publication-title: Results Math. doi: 10.1007/BF03323418 – volume: 31 start-page: 325 year: 1981 ident: 534_CR6 publication-title: J. Approx. Theory doi: 10.1016/0021-9045(81)90101-5 – ident: 534_CR1 doi: 10.1017/CBO9781107325937 – volume: 70 start-page: 258 year: 1869 ident: 534_CR16 publication-title: J. Reine Angew. Math. – volume: 60 start-page: 2102 issue: 6 year: 2021 ident: 534_CR5 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-021-04828-7 – volume-title: Interpolation and Approximation by Polynomials year: 2003 ident: 534_CR15 doi: 10.1007/b97417 – ident: 534_CR7 – volume: 197 start-page: 172 issue: 1 year: 2008 ident: 534_CR9 publication-title: Appl. Math. Comput. – volume: 16 start-page: 587 year: 1999 ident: 534_CR2 publication-title: Comput. Aided Geom. Design doi: 10.1016/S0167-8396(99)00023-0 – volume-title: Bernstein Polynomials year: 1986 ident: 534_CR12 – volume: 69 start-page: 275 issue: 3–4 year: 2016 ident: 534_CR14 publication-title: Results Math. doi: 10.1007/s00025-016-0530-2 – volume-title: Quantum Groups and Their Applications in Physics year: 1996 ident: 534_CR4 – volume-title: Approximation by Complex Bernstein and Convolution Type Operators year: 2009 ident: 534_CR8 doi: 10.1142/7426 – volume: 31 start-page: 1946 issue: 16 year: 2008 ident: 534_CR10 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.1012 |
SSID | ssj0054933 |
Score | 2.3239856 |
Snippet | The limit q -Durrmeyer operator, $$D_{\infty ,q}$$ D ∞ , q , was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput.... The limit q-Durrmeyer operator, D∞,q, was introduced and its approximation properties were investigated by Gupta (Appl. Math. Comput. 197(1):172–178, 2008)... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 303 |
SubjectTerms | Continuity (mathematics) Entire functions Operators (mathematics) |
Title | The Impact of the Limit q-Durrmeyer Operator on Continuous Functions |
URI | https://www.proquest.com/docview/3206562294 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeoED4ikKBfnALXK1sb3r9bFpiQpSyoFUKqfVPmxATTZlH5Xa38CPZvzY3ZQColxW0a5jZT2Tmc_j-WYQeqsZeOkojYkGgROuYYOSyrQgytQPk4HMtDLc4cVJdHzKP5yFZ6PRj62spbbJ9vPr3_JK_keqcA_kaliyd5BsPyncgM8gX7iChOH6zzJ-39McDYS0fKXJd3LUVtVaAZyefLxQ9iTdnAqYUlTfytZkvc7Bnw2xuq5UgW3x0IUHXXNpV8NZ--GO-DhkgJpz9tlhpVaTzwaWzqardWpD0uaBjC6_uAF9KLduqs1lfW4R6yd496veKyzbysViF-rr2rOyfTSChkPWlDeggIiI5K6K5r6y96jpB8mE40p3VtfRnb120S0TygK25Y2ZI3veMvQut6PmpkkFAZxBjDXhRAxurTvK_8Xb9TmIfb1mO0cCcyR2jkTcQztUABIbo52D-Wx20nl22EozS9jo3tGTsCwV89YvuQl0bvp5C16Wj9BDv-vAB06FHqORKp-gB4u-ZG_9FB2BMmGnTHijMTzBVpnwljLhTpnwpsSDMuFemZ6h0_m75eEx8S02SA62tyFpQFPYc2fSVCkqYhWJbAqYRYiCTiMB3hCkFgNKTjMe50wLVoRC5iwMdKGZguV4jsblplQvEOamtqLOVaE040GhJNVZrKSpb1SEuQp30bRbjyT39edNG5RV8mdJ7KJJ_50LV33lr6P3umVO_L-0ThgFkB1RKvnLO032Ct0f9HsPjZuqVa8BfzbZG68WPwGP03ys |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+the+Limit+q-Durrmeyer+Operator+on+Continuous+Functions&rft.jtitle=Computational+methods+and+function+theory&rft.au=G%C3%BCrel+Y%C4%B1lmaz%2C+%C3%96vg%C3%BC&rft.au=Ostrovska%2C+Sofiya&rft.au=Turan%2C+Mehmet&rft.date=2025-06-01&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=25&rft.issue=2&rft.spage=303&rft.epage=315&rft_id=info:doi/10.1007%2Fs40315-024-00534-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40315_024_00534_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon |