Techno-Economic, Energy, Exergy, and Environmental Comparison of Hydrogen Production from Natural gas, Biogas, and their Combination as Feedstock
Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are depleting. Consequently, the use of renewable resources like biogas in the production of chemicals could benefit from the high potential of these sour...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 48; no. 7; pp. 8971 - 8987 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2193-567X 1319-8025 2191-4281 |
DOI | 10.1007/s13369-022-07581-z |
Cover
Abstract | Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are depleting. Consequently, the use of renewable resources like biogas in the production of chemicals could benefit from the high potential of these sources alone or in combination with fossil fuels. Both carbon dioxide and methane are present in biogas, making it an excellent renewable energy source. In this study, three models of hydrogen production from fossil sources (natural gas), renewable energy sources (biogas), and a combination of fossil and renewable sources were evaluated using a multicriteria decision-making technique. The calculated and compared parameters included the net energy efficiency of the process, the total carbon dioxide emission flow rate, the carbon dioxide emission intensity, the hydrogen production intensity, and the annual total cost. According to the results, the production of hydrogen from natural gas results in the highest amount of carbon dioxide emissions (8.76
m
˙
CO
2
m
˙
H
2
) for (3.31
t
H
2
t
feed
) of hydrogen production. Biogas combination with natural gas (combined feedstock) has the highest exergy (80.84%) and energy (81.62%) efficiency compared to the other two methods. In addition, the TAC for the combined process is the lowest of the three scenarios (TAC = $31.35 M). Due to the limitation of fossil fuel resources, combining renewable energy sources with fossil fuels enhances the thermodynamic performance of the system while reducing the required capital. |
---|---|
AbstractList | Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are depleting. Consequently, the use of renewable resources like biogas in the production of chemicals could benefit from the high potential of these sources alone or in combination with fossil fuels. Both carbon dioxide and methane are present in biogas, making it an excellent renewable energy source. In this study, three models of hydrogen production from fossil sources (natural gas), renewable energy sources (biogas), and a combination of fossil and renewable sources were evaluated using a multicriteria decision-making technique. The calculated and compared parameters included the net energy efficiency of the process, the total carbon dioxide emission flow rate, the carbon dioxide emission intensity, the hydrogen production intensity, and the annual total cost. According to the results, the production of hydrogen from natural gas results in the highest amount of carbon dioxide emissions (8.76
m
˙
CO
2
m
˙
H
2
) for (3.31
t
H
2
t
feed
) of hydrogen production. Biogas combination with natural gas (combined feedstock) has the highest exergy (80.84%) and energy (81.62%) efficiency compared to the other two methods. In addition, the TAC for the combined process is the lowest of the three scenarios (TAC = $31.35 M). Due to the limitation of fossil fuel resources, combining renewable energy sources with fossil fuels enhances the thermodynamic performance of the system while reducing the required capital. Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are depleting. Consequently, the use of renewable resources like biogas in the production of chemicals could benefit from the high potential of these sources alone or in combination with fossil fuels. Both carbon dioxide and methane are present in biogas, making it an excellent renewable energy source. In this study, three models of hydrogen production from fossil sources (natural gas), renewable energy sources (biogas), and a combination of fossil and renewable sources were evaluated using a multicriteria decision-making technique. The calculated and compared parameters included the net energy efficiency of the process, the total carbon dioxide emission flow rate, the carbon dioxide emission intensity, the hydrogen production intensity, and the annual total cost. According to the results, the production of hydrogen from natural gas results in the highest amount of carbon dioxide emissions (8.76 m˙CO2m˙H2) for (3.31 tH2tfeed) of hydrogen production. Biogas combination with natural gas (combined feedstock) has the highest exergy (80.84%) and energy (81.62%) efficiency compared to the other two methods. In addition, the TAC for the combined process is the lowest of the three scenarios (TAC = $31.35 M). Due to the limitation of fossil fuel resources, combining renewable energy sources with fossil fuels enhances the thermodynamic performance of the system while reducing the required capital. |
Author | Shamsi, Mohammad Naeiji, Esfandiyar Farokhi, Saman Moghaddas, Siamak |
Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0003-3231-8454 surname: Shamsi fullname: Shamsi, Mohammad email: Mohamad.shamsi@modares.ac.ir organization: Process Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University – sequence: 2 givenname: Siamak surname: Moghaddas fullname: Moghaddas, Siamak organization: Department of Chemical Engineering, Urmia University – sequence: 3 givenname: Esfandiyar surname: Naeiji fullname: Naeiji, Esfandiyar organization: School of Environment, College of Engineering, University of Tehran – sequence: 4 givenname: Saman surname: Farokhi fullname: Farokhi, Saman organization: Department of Chemical Engineering, University of Mohaghegh Ardabili |
BookMark | eNp9kc1uFDEQhC2USIQkL8BpJK4xuO358xFWG4IUAYdEys2yPT0bw4692F7E5i14Y7wzSEgccqpW66vqluoVOfHBIyGvgb0Fxrp3CYRoJWWcU9Y1PdCnF-SMgwRa8x5O5lnQpu0eXpLLlJxhdS9kAyDOyO87tI8-0LUNPkzOXlVrj3FzKPprUe2HsvvpYvAT-qy31SpMOx1dCr4KY3VzGGLYoK--xjDsbXZlPcYwVZ913seCb3S6qj64MOsxLT-ii8cU47yeeZ2qa8Qh5WC_X5DTUW8TXv7Vc3J_vb5b3dDbLx8_rd7fUitAZipxNGg0Zz0XwABMPdRG9wZ4gwAtN0wyHAcD2pqhRVm3zdh2jRVajIgcxTl5s-TuYvixx5TVt7CPvpxUvOedbLmsoVD9QtkYUoo4Kuvy_HSO2m0VMHXsQC0dqNKBmjtQT8XK_7Puopt0PDxvEospFdhvMP776hnXH9iWnqY |
CitedBy_id | crossref_primary_10_1016_j_psep_2024_01_045 crossref_primary_10_1016_j_energy_2024_131032 crossref_primary_10_1177_0958305X241258798 crossref_primary_10_1016_j_ijhydene_2023_11_284 crossref_primary_10_1002_adsu_202300241 crossref_primary_10_1016_j_enconman_2025_119549 crossref_primary_10_3390_en16176375 crossref_primary_10_1016_j_apcato_2024_206952 crossref_primary_10_3390_en16104058 crossref_primary_10_1007_s10098_024_03015_6 crossref_primary_10_1007_s13369_024_08774_4 crossref_primary_10_1007_s13369_024_09051_0 crossref_primary_10_58559_ijes_1613647 crossref_primary_10_1007_s13369_023_07659_2 crossref_primary_10_1016_j_fuel_2024_131037 crossref_primary_10_1007_s13369_023_08218_5 crossref_primary_10_1016_j_ijhydene_2024_03_216 crossref_primary_10_3390_su16166860 |
Cites_doi | 10.1016/j.geothermics.2017.08.011 10.1016/j.rser.2020.110192 10.1016/j.applthermaleng.2018.01.103 10.1016/j.enconman.2018.05.083 10.1016/j.apcatb.2017.12.039 10.1016/j.biortech.2020.124175 10.1016/j.ijhydene.2020.09.077 10.1016/j.jclepro.2017.07.183 10.1016/j.ijhydene.2015.03.079 10.1016/j.applthermaleng.2017.10.095 10.1016/j.ijhydene.2022.01.100 10.1016/j.rser.2017.05.140 10.1016/j.apenergy.2019.114452 10.1016/B978-008044704-9/50108-7 10.1016/j.ijhydene.2012.10.077 10.1016/j.jngse.2015.07.001 10.1016/j.jclepro.2017.05.176 10.1016/j.jclepro.2018.03.108 10.1016/j.ijhydene.2021.05.152 10.1016/j.biortech.2017.05.017 10.1016/j.energy.2021.122032 10.1016/j.petrol.2022.110270 10.1016/j.ijhydene.2020.08.138 10.1016/j.ijhydene.2020.05.009 10.1016/j.ijhydene.2018.12.226 10.1016/j.energy.2010.05.020 10.1080/17597269.2021.1894781 10.1016/j.energy.2019.05.179 10.1016/j.wasman.2022.03.028 10.1016/j.ijhydene.2021.10.055 10.1016/j.ces.2020.116364 10.3390/sym13122366 10.1016/j.ijhydene.2017.07.147 10.1016/j.ijhydene.2019.04.101 10.1016/j.wasman.2017.12.011 10.1016/j.ijhydene.2018.02.109 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-022-07581-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 8987 |
ExternalDocumentID | 10_1007_s13369_022_07581_z |
GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c319t-9efbeba208231011b4d4ba8b125e1162b090efdb1acbd6e9465f675c3a3fee2e3 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 08:58:34 EDT 2025 Thu Apr 24 22:51:45 EDT 2025 Tue Jul 01 01:34:29 EDT 2025 Fri Feb 21 02:43:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Environmental Economic Energy efficiency Biogas Exergy efficiency Hydrogen production Natural gas |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-9efbeba208231011b4d4ba8b125e1162b090efdb1acbd6e9465f675c3a3fee2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3231-8454 |
PQID | 2827962941 |
PQPubID | 2044268 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2827962941 crossref_citationtrail_10_1007_s13369_022_07581_z crossref_primary_10_1007_s13369_022_07581_z springer_journals_10_1007_s13369_022_07581_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Nordio, Wassie, Annaland, Tanaka, Sole, Gallucci (CR27) 2021; 46 Akrami, Khazaee, Gholami (CR39) 2018; 129 Mukherjee, Devaguptapu, Sviripa, Lund, Wu (CR8) 2018; 226 Ghaebi, Farhang, Parikhani, Rostamzadeh (CR40) 2018; 71 CR16 Gopaul, Dutta (CR14) 2015; 40 Kannah, Kavitha, Karthikeyan, Kumar, Dai-Viet, Banu (CR9) 2021; 319 CR10 Cheng, Meng, Li, Wang, Meng, Sunarso, Tan, Liu (CR11) 2020; 45 Temiz, Javani (CR29) 2020; 45 Gao, Jiang, Meng, Yan, Aihemaiti (CR18) 2018; 171 Zivar, Kumar, Foroozesh (CR5) 2021; 46 Safarian, Unnthorsson, Richter (CR26) 2022; 13 Demir (CR13) 2013; 38 Shamsi, Farokhi, Pourghafari, Bayat (CR34) 2022; 212 Boyano, Blanco-Marigorta, Morosuk, Tsatsaronis (CR15) 2011; 36 Chouhan, Sinha, Kumar, Kumar (CR24) 2021; 46 Phan, Minh, Espitalier, Nzihou, Grouset (CR25) 2022 Moharamian, Soltani, Rosen, Mahmoudi (CR32) 2018; 134 Shi, Elgarni, Mahinpey (CR35) 2021; 233 Park, Kim, Lee, Jeon, Jeong (CR28) 2022; 144 Seo, Yun, Lee (CR7) 2020; 262 Shamsi, Obaid, Farokhi, Bayat (CR31) 2022; 47 Camacho, Bensaid, Lorentzou, Vlachos, Pantoleontos, Konstandopoulos, Luneau, Meunier, Guilhaume, Schuurman (CR22) 2017; 42 Paepatung, Nopharatana, Songkasiri (CR4) 2009; 10 Chehade, Daher, Assaf, Riachi, Hamd (CR23) 2020; 45 Simbeck (CR6) 2005 Cong, Caro, Thomsen (CR1) 2017; 165 Lima, Santos, Pereira, Flauzino, Pereira, Nogueira, Valverde (CR19) 2018; 74 dos Santos, de Sousa Santos, Prata (CR20) 2018; 186 Othman, Adam, Najafi, Mamat (CR3) 2017; 80 Abdullah, Abd Ghani, Vo (CR2) 2017; 162 Chisalita, Cormos (CR21) 2019; 181 Li, Gao, Zhang, Liu (CR38) 2022; 238 Ishaq, Dincer (CR30) 2021; 135 Abashar (CR12) 2019; 44 Saaty (CR36) 2008; 1 Lin, Cheng, Zhang, Zhou, Cen, Murphy (CR17) 2017; 239 Chein, Chen, Yu, Chung (CR33) 2015; 26 Jin, Jin (CR37) 2021; 13 A Boyano (7581_CR15) 2011; 36 S Mukherjee (7581_CR8) 2018; 226 M Shamsi (7581_CR34) 2022; 212 SG Gopaul (7581_CR14) 2015; 40 B Abdullah (7581_CR2) 2017; 162 M-J Park (7581_CR28) 2022; 144 7581_CR10 S Safarian (7581_CR26) 2022; 13 N Paepatung (7581_CR4) 2009; 10 D Zivar (7581_CR5) 2021; 46 D-A Chisalita (7581_CR21) 2019; 181 MD Simbeck (7581_CR6) 2005 M Abashar (7581_CR12) 2019; 44 7581_CR16 N Demir (7581_CR13) 2013; 38 R Lin (7581_CR17) 2017; 239 TL Saaty (7581_CR36) 2008; 1 S-K Seo (7581_CR7) 2020; 262 C Shi (7581_CR35) 2021; 233 YM Camacho (7581_CR22) 2017; 42 Y Gao (7581_CR18) 2018; 171 M Temiz (7581_CR29) 2020; 45 RY Kannah (7581_CR9) 2021; 319 M Nordio (7581_CR27) 2021; 46 RM Lima (7581_CR19) 2018; 74 E Akrami (7581_CR39) 2018; 129 MF Othman (7581_CR3) 2017; 80 R-G Cong (7581_CR1) 2017; 165 TS Phan (7581_CR25) 2022 R Chein (7581_CR33) 2015; 26 G Jin (7581_CR37) 2021; 13 RO dos Santos (7581_CR20) 2018; 186 H Ghaebi (7581_CR40) 2018; 71 H Cheng (7581_CR11) 2020; 45 AMEH Chehade (7581_CR23) 2020; 45 A Moharamian (7581_CR32) 2018; 134 K Chouhan (7581_CR24) 2021; 46 H Ishaq (7581_CR30) 2021; 135 M Shamsi (7581_CR31) 2022; 47 K Li (7581_CR38) 2022; 238 |
References_xml | – volume: 71 start-page: 132 year: 2018 end-page: 145 ident: CR40 article-title: Energy, exergy and exergoeconomic analysis of a cogeneration system for power and hydrogen production purpose based on TRR method and using low grade geothermal source publication-title: Geothermics doi: 10.1016/j.geothermics.2017.08.011 – volume: 135 year: 2021 ident: CR30 article-title: Comparative assessment of renewable energy-based hydrogen production methods publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110192 – volume: 134 start-page: 1 year: 2018 end-page: 11 ident: CR32 article-title: Advanced exergy and advanced exergoeconomic analyses of biomass and natural gas fired combined cycles with hydrogen production publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.01.103 – volume: 171 start-page: 133 year: 2018 end-page: 155 ident: CR18 article-title: A review of recent developments in hydrogen production via biogas dry reforming publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.05.083 – volume: 226 start-page: 162 year: 2018 end-page: 181 ident: CR8 article-title: Low-temperature ammonia decomposition catalysts for hydrogen generation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.12.039 – volume: 319 year: 2021 ident: CR9 article-title: Techno-economic assessment of various hydrogen production methods–A review publication-title: Biores. Technol. doi: 10.1016/j.biortech.2020.124175 – volume: 45 start-page: 33235 year: 2020 end-page: 33247 ident: CR23 article-title: Simulation and optimization of hydrogen production by steam reforming of natural gas for refining and petrochemical demands in Lebanon publication-title: Int. J. Hydr. Energy doi: 10.1016/j.ijhydene.2020.09.077 – volume: 165 start-page: 1025 year: 2017 end-page: 1035 ident: CR1 article-title: Is it beneficial to use biogas in the Danish transport sector?–an environmental-economic analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.07.183 – volume: 40 start-page: 6307 year: 2015 end-page: 6318 ident: CR14 article-title: Dry reforming of multiple biogas types for syngas production simulated using Aspen Plus: the use of partial oxidation and hydrogen combustion to achieve thermo-neutrality publication-title: Int. J. Hydrog Energy doi: 10.1016/j.ijhydene.2015.03.079 – ident: CR16 – volume: 129 start-page: 995 year: 2018 end-page: 1001 ident: CR39 article-title: Comprehensive analysis of a multi-generation energy system by using an energy-exergy methodology for hot water, cooling, power and hydrogen production publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.10.095 – year: 2022 ident: CR25 article-title: Hydrogen production from biogas: process optimization using ASPEN Plus® publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2022.01.100 – volume: 1 start-page: 83 year: 2008 end-page: 98 ident: CR36 article-title: Decision making with the analytic hierarchy process publication-title: Int J Serv Sci – volume: 80 start-page: 694 year: 2017 end-page: 709 ident: CR3 article-title: Green fuel as alternative fuel for diesel engine: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.140 – ident: CR10 – volume: 262 year: 2020 ident: CR7 article-title: Design and optimization of a hydrogen supply chain using a centralized storage model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114452 – start-page: 1059 year: 2005 end-page: 1066 ident: CR6 article-title: Hydrogen costs with CO capture publication-title: Greenhouse gas control technologies 7 doi: 10.1016/B978-008044704-9/50108-7 – volume: 10 start-page: 19 year: 2009 end-page: 27 ident: CR4 article-title: Bio-methane potential of biological solid materials and agricultural wastes publication-title: Asian J. Energy Environ. – volume: 38 start-page: 853 year: 2013 end-page: 860 ident: CR13 article-title: Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles publication-title: Int. J. Hydr.n Energy doi: 10.1016/j.ijhydene.2012.10.077 – volume: 26 start-page: 617 year: 2015 end-page: 629 ident: CR33 article-title: Thermodynamic analysis of dry reforming of CH with CO at high pressures publication-title: J. Natural Gas Sci. Eng. doi: 10.1016/j.jngse.2015.07.001 – volume: 162 start-page: 170 year: 2017 end-page: 185 ident: CR2 article-title: Recent advances in dry reforming of methane over Ni-based catalysts publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.05.176 – volume: 186 start-page: 821 year: 2018 end-page: 830 ident: CR20 article-title: Simulation and optimization of a methanol synthesis process from different biogas sources publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.03.108 – volume: 46 start-page: 26809 year: 2021 end-page: 26824 ident: CR24 article-title: Simulation of steam reforming of biogas in an industrial reformer for hydrogen production publication-title: Int. J. Hydrog Energy doi: 10.1016/j.ijhydene.2021.05.152 – volume: 239 start-page: 345 year: 2017 end-page: 352 ident: CR17 article-title: Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion publication-title: Biores. Technol. doi: 10.1016/j.biortech.2017.05.017 – volume: 238 year: 2022 ident: CR38 article-title: Study on the energy efficiency of bioethanol-based liquid hydrogen production process publication-title: Energy doi: 10.1016/j.energy.2021.122032 – volume: 212 start-page: 110270 year: 2022 ident: CR34 article-title: Tuning the natural gas dew point by joule-thomson and mechanical refrigeration processes: a comparative energy and exergy analysis publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2022.110270 – volume: 46 start-page: 23436 year: 2021 end-page: 23462 ident: CR5 article-title: Underground hydrogen storage: a comprehensive review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.138 – volume: 46 start-page: 23417 year: 2021 end-page: 23435 ident: CR27 article-title: Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2020.05.009 – volume: 45 start-page: 3457 year: 2020 end-page: 3469 ident: CR29 article-title: Design and analysis of a combined floating photovoltaic system for electricity and hydrogen production publication-title: Int. J. Hydrog Energy doi: 10.1016/j.ijhydene.2018.12.226 – volume: 36 start-page: 2202 year: 2011 end-page: 2214 ident: CR15 article-title: Exergoenvironmental analysis of a steam methane reforming process for hydrogen production publication-title: Energy doi: 10.1016/j.energy.2010.05.020 – volume: 13 start-page: 717 year: 2022 end-page: 726 ident: CR26 article-title: Hydrogen production via biomass gasification: simulation and performance analysis under different gasifying agents publication-title: Biofuels doi: 10.1080/17597269.2021.1894781 – volume: 181 start-page: 331 year: 2019 end-page: 344 ident: CR21 article-title: Techno-economic assessment of hydrogen production processes based on various natural gas chemical looping systems with carbon capture publication-title: Energy doi: 10.1016/j.energy.2019.05.179 – volume: 144 start-page: 272 year: 2022 end-page: 284 ident: CR28 article-title: Optimization of a renewable hydrogen production system from food waste: a combination of anaerobic digestion and biogas reforming publication-title: Waste Manage. doi: 10.1016/j.wasman.2022.03.028 – volume: 47 start-page: 772 year: 2022 end-page: 781 ident: CR31 article-title: A novel process simulation model for hydrogen production via reforming of biomass gasification tar publication-title: Int. J. Hydrog Energy doi: 10.1016/j.ijhydene.2021.10.055 – volume: 233 year: 2021 ident: CR35 article-title: Process design and simulation study: CO utilization through mixed reforming of methane for methanol synthesis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.116364 – volume: 13 start-page: 2366 year: 2021 ident: CR37 article-title: Fault-diagnosis sensor selection for fuel cell stack systems combining an analytic hierarchy process with the technique order performance similarity ideal solution method publication-title: Symmetry doi: 10.3390/sym13122366 – volume: 42 start-page: 22841 year: 2017 end-page: 22855 ident: CR22 article-title: Development of a robust and efficient biogas processor for hydrogen production Part 1: modelling and simulation publication-title: Int J Hydr Energy doi: 10.1016/j.ijhydene.2017.07.147 – volume: 45 start-page: 7423 year: 2020 end-page: 7432 ident: CR11 article-title: Single-step synthesized dual-layer hollow fiber membrane reactor for on-site hydrogen production through ammonia decomposition publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.101 – volume: 74 start-page: 323 year: 2018 end-page: 334 ident: CR19 article-title: Spatially distributed potential of landfill biogas production and electric power generation in Brazil publication-title: Waste Manage. doi: 10.1016/j.wasman.2017.12.011 – volume: 44 start-page: 82 year: 2019 end-page: 90 ident: CR12 article-title: The impact of ammonia feed distribution on the performance of a fixed bed membrane reactor for ammonia decomposition to ultra-pure hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.109 – volume: 42 start-page: 22841 year: 2017 ident: 7581_CR22 publication-title: Int J Hydr Energy doi: 10.1016/j.ijhydene.2017.07.147 – volume: 212 start-page: 110270 year: 2022 ident: 7581_CR34 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2022.110270 – ident: 7581_CR10 – ident: 7581_CR16 – volume: 26 start-page: 617 year: 2015 ident: 7581_CR33 publication-title: J. Natural Gas Sci. Eng. doi: 10.1016/j.jngse.2015.07.001 – volume: 129 start-page: 995 year: 2018 ident: 7581_CR39 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.10.095 – volume: 319 year: 2021 ident: 7581_CR9 publication-title: Biores. Technol. doi: 10.1016/j.biortech.2020.124175 – volume: 36 start-page: 2202 year: 2011 ident: 7581_CR15 publication-title: Energy doi: 10.1016/j.energy.2010.05.020 – volume: 1 start-page: 83 year: 2008 ident: 7581_CR36 publication-title: Int J Serv Sci – volume: 38 start-page: 853 year: 2013 ident: 7581_CR13 publication-title: Int. J. Hydr.n Energy doi: 10.1016/j.ijhydene.2012.10.077 – volume: 162 start-page: 170 year: 2017 ident: 7581_CR2 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.05.176 – volume: 262 year: 2020 ident: 7581_CR7 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114452 – volume: 46 start-page: 26809 year: 2021 ident: 7581_CR24 publication-title: Int. J. Hydrog Energy doi: 10.1016/j.ijhydene.2021.05.152 – year: 2022 ident: 7581_CR25 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2022.01.100 – volume: 186 start-page: 821 year: 2018 ident: 7581_CR20 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.03.108 – volume: 233 year: 2021 ident: 7581_CR35 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.116364 – start-page: 1059 volume-title: Greenhouse gas control technologies 7 year: 2005 ident: 7581_CR6 doi: 10.1016/B978-008044704-9/50108-7 – volume: 239 start-page: 345 year: 2017 ident: 7581_CR17 publication-title: Biores. Technol. doi: 10.1016/j.biortech.2017.05.017 – volume: 13 start-page: 717 year: 2022 ident: 7581_CR26 publication-title: Biofuels doi: 10.1080/17597269.2021.1894781 – volume: 165 start-page: 1025 year: 2017 ident: 7581_CR1 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.07.183 – volume: 171 start-page: 133 year: 2018 ident: 7581_CR18 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.05.083 – volume: 45 start-page: 3457 year: 2020 ident: 7581_CR29 publication-title: Int. J. Hydrog Energy doi: 10.1016/j.ijhydene.2018.12.226 – volume: 13 start-page: 2366 year: 2021 ident: 7581_CR37 publication-title: Symmetry doi: 10.3390/sym13122366 – volume: 144 start-page: 272 year: 2022 ident: 7581_CR28 publication-title: Waste Manage. doi: 10.1016/j.wasman.2022.03.028 – volume: 135 year: 2021 ident: 7581_CR30 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110192 – volume: 80 start-page: 694 year: 2017 ident: 7581_CR3 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.140 – volume: 45 start-page: 7423 year: 2020 ident: 7581_CR11 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.101 – volume: 46 start-page: 23417 year: 2021 ident: 7581_CR27 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2020.05.009 – volume: 46 start-page: 23436 year: 2021 ident: 7581_CR5 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.138 – volume: 181 start-page: 331 year: 2019 ident: 7581_CR21 publication-title: Energy doi: 10.1016/j.energy.2019.05.179 – volume: 44 start-page: 82 year: 2019 ident: 7581_CR12 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.109 – volume: 134 start-page: 1 year: 2018 ident: 7581_CR32 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.01.103 – volume: 238 year: 2022 ident: 7581_CR38 publication-title: Energy doi: 10.1016/j.energy.2021.122032 – volume: 71 start-page: 132 year: 2018 ident: 7581_CR40 publication-title: Geothermics doi: 10.1016/j.geothermics.2017.08.011 – volume: 74 start-page: 323 year: 2018 ident: 7581_CR19 publication-title: Waste Manage. doi: 10.1016/j.wasman.2017.12.011 – volume: 45 start-page: 33235 year: 2020 ident: 7581_CR23 publication-title: Int. J. Hydr. Energy doi: 10.1016/j.ijhydene.2020.09.077 – volume: 226 start-page: 162 year: 2018 ident: 7581_CR8 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.12.039 – volume: 10 start-page: 19 year: 2009 ident: 7581_CR4 publication-title: Asian J. Energy Environ. – volume: 40 start-page: 6307 year: 2015 ident: 7581_CR14 publication-title: Int. J. Hydrog Energy doi: 10.1016/j.ijhydene.2015.03.079 – volume: 47 start-page: 772 year: 2022 ident: 7581_CR31 publication-title: Int. J. Hydrog Energy doi: 10.1016/j.ijhydene.2021.10.055 |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.4035668 |
Snippet | Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8971 |
SubjectTerms | Alternative energy sources Biogas Carbon dioxide Decision making Energy resources Engineering Exergy Fossil fuels Humanities and Social Sciences Hydrogen Hydrogen production multidisciplinary Multiple criterion Natural gas Pollution levels Raw materials Renewable energy sources Renewable resources Research Article-chemical Engineering Science |
Title | Techno-Economic, Energy, Exergy, and Environmental Comparison of Hydrogen Production from Natural gas, Biogas, and their Combination as Feedstock |
URI | https://link.springer.com/article/10.1007/s13369-022-07581-z https://www.proquest.com/docview/2827962941 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLay9rIdpv3UsnWVD7slRBgIgWMyJYqmLjs0kXJDNpiGdgkTSaU2_8X-2Z33bGObZFu1TYrAAmLA7-P5-fl9zwh9SP2AARICh_KMOwHv-w6LqOsMfJIxErkBY4Io_HkWThfBp2V_2Wr9aEQt3e5YL93_llfyP1KFYyBXwZL9B8maSuEAlEG-sAUJw_bvZCz94o4mF0u9Jrl8snSnS8I3PraENukuaKw-2JneZ1UJNxGsgUxlk1W0kxlVWTmuFOtrVJR1qQ67LCpRE4ytFYrotjOBzhDMyTrT_rWF4rCiIru5nv6W0Y1ar6jnM3kRe2ISQFY4Um9kzhh30IqutwXoI9ivaWZAU16tQJHCY1wWdE0NB2lGeXFddMbbXHB47qmJR57QqrxZFZ1LuHrT9H94vomVPfR_qibhlp8j1bmgaEWuolb3uDwGKhpGzZ5aKEb3AUHUwPqgodCjWK0Qo42DWJkHv3Q8bk3E9v0wdgRDAkyxiDh7283q0ILZl2SyuLhI5uPl_BE69QZg8wmS-pJY3yDY7HJhMGVRhCSSkRLmbWryl6KAHt_x0MCyo6ajiX5pP82foae13PFQofg5avHNC_SkIdyX6PsRnrtYoRn2d2oP8sMHSMYWybjMsUYytkjGAsm4RjIG_HaxwrGqTaIYN1CM6RYbFL9Ci8l4_nHq1EuGOCk0zs6Jec44o56YP4bOhrAgCxiNGJjxnECjMjd2eQ5aiKYsC3kchP0chsypT_2cc4_7r9HJptzwNwh76YAwkpM8FjEPEY3hl4NCox5naRj024jodk7SOp--WNbla2IzgQvZJCCbRMom2bdRx_znm8om8-DVZ1p8Sa11tokXeYM49OKAtFFXi9Se_nNtbx-u7R16bL-uM3Syq275e7C3d-wcnQ4no9HsXIL0Jz_J2cQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-Economic%2C+Energy%2C+Exergy%2C+and+Environmental+Comparison+of+Hydrogen+Production+from+Natural+gas%2C+Biogas%2C+and+their+Combination+as+Feedstock&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Shamsi+Mohammad&rft.au=Moghaddas+Siamak&rft.au=Naeiji+Esfandiyar&rft.au=Farokhi+Saman&rft.date=2023-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=48&rft.issue=7&rft.spage=8971&rft.epage=8987&rft_id=info:doi/10.1007%2Fs13369-022-07581-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |