Techno-Economic, Energy, Exergy, and Environmental Comparison of Hydrogen Production from Natural gas, Biogas, and their Combination as Feedstock

Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are depleting. Consequently, the use of renewable resources like biogas in the production of chemicals could benefit from the high potential of these sour...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 48; no. 7; pp. 8971 - 8987
Main Authors Shamsi, Mohammad, Moghaddas, Siamak, Naeiji, Esfandiyar, Farokhi, Saman
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
DOI10.1007/s13369-022-07581-z

Cover

Abstract Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are depleting. Consequently, the use of renewable resources like biogas in the production of chemicals could benefit from the high potential of these sources alone or in combination with fossil fuels. Both carbon dioxide and methane are present in biogas, making it an excellent renewable energy source. In this study, three models of hydrogen production from fossil sources (natural gas), renewable energy sources (biogas), and a combination of fossil and renewable sources were evaluated using a multicriteria decision-making technique. The calculated and compared parameters included the net energy efficiency of the process, the total carbon dioxide emission flow rate, the carbon dioxide emission intensity, the hydrogen production intensity, and the annual total cost. According to the results, the production of hydrogen from natural gas results in the highest amount of carbon dioxide emissions (8.76 m ˙ CO 2 m ˙ H 2 ) for (3.31 t H 2 t feed ) of hydrogen production. Biogas combination with natural gas (combined feedstock) has the highest exergy (80.84%) and energy (81.62%) efficiency compared to the other two methods. In addition, the TAC for the combined process is the lowest of the three scenarios (TAC = $31.35 M). Due to the limitation of fossil fuel resources, combining renewable energy sources with fossil fuels enhances the thermodynamic performance of the system while reducing the required capital.
AbstractList Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are depleting. Consequently, the use of renewable resources like biogas in the production of chemicals could benefit from the high potential of these sources alone or in combination with fossil fuels. Both carbon dioxide and methane are present in biogas, making it an excellent renewable energy source. In this study, three models of hydrogen production from fossil sources (natural gas), renewable energy sources (biogas), and a combination of fossil and renewable sources were evaluated using a multicriteria decision-making technique. The calculated and compared parameters included the net energy efficiency of the process, the total carbon dioxide emission flow rate, the carbon dioxide emission intensity, the hydrogen production intensity, and the annual total cost. According to the results, the production of hydrogen from natural gas results in the highest amount of carbon dioxide emissions (8.76 m ˙ CO 2 m ˙ H 2 ) for (3.31 t H 2 t feed ) of hydrogen production. Biogas combination with natural gas (combined feedstock) has the highest exergy (80.84%) and energy (81.62%) efficiency compared to the other two methods. In addition, the TAC for the combined process is the lowest of the three scenarios (TAC = $31.35 M). Due to the limitation of fossil fuel resources, combining renewable energy sources with fossil fuels enhances the thermodynamic performance of the system while reducing the required capital.
Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are depleting. Consequently, the use of renewable resources like biogas in the production of chemicals could benefit from the high potential of these sources alone or in combination with fossil fuels. Both carbon dioxide and methane are present in biogas, making it an excellent renewable energy source. In this study, three models of hydrogen production from fossil sources (natural gas), renewable energy sources (biogas), and a combination of fossil and renewable sources were evaluated using a multicriteria decision-making technique. The calculated and compared parameters included the net energy efficiency of the process, the total carbon dioxide emission flow rate, the carbon dioxide emission intensity, the hydrogen production intensity, and the annual total cost. According to the results, the production of hydrogen from natural gas results in the highest amount of carbon dioxide emissions (8.76 m˙CO2m˙H2) for (3.31 tH2tfeed) of hydrogen production. Biogas combination with natural gas (combined feedstock) has the highest exergy (80.84%) and energy (81.62%) efficiency compared to the other two methods. In addition, the TAC for the combined process is the lowest of the three scenarios (TAC = $31.35 M). Due to the limitation of fossil fuel resources, combining renewable energy sources with fossil fuels enhances the thermodynamic performance of the system while reducing the required capital.
Author Shamsi, Mohammad
Naeiji, Esfandiyar
Farokhi, Saman
Moghaddas, Siamak
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0003-3231-8454
  surname: Shamsi
  fullname: Shamsi, Mohammad
  email: Mohamad.shamsi@modares.ac.ir
  organization: Process Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University
– sequence: 2
  givenname: Siamak
  surname: Moghaddas
  fullname: Moghaddas, Siamak
  organization: Department of Chemical Engineering, Urmia University
– sequence: 3
  givenname: Esfandiyar
  surname: Naeiji
  fullname: Naeiji, Esfandiyar
  organization: School of Environment, College of Engineering, University of Tehran
– sequence: 4
  givenname: Saman
  surname: Farokhi
  fullname: Farokhi, Saman
  organization: Department of Chemical Engineering, University of Mohaghegh Ardabili
BookMark eNp9kc1uFDEQhC2USIQkL8BpJK4xuO358xFWG4IUAYdEys2yPT0bw4692F7E5i14Y7wzSEgccqpW66vqluoVOfHBIyGvgb0Fxrp3CYRoJWWcU9Y1PdCnF-SMgwRa8x5O5lnQpu0eXpLLlJxhdS9kAyDOyO87tI8-0LUNPkzOXlVrj3FzKPprUe2HsvvpYvAT-qy31SpMOx1dCr4KY3VzGGLYoK--xjDsbXZlPcYwVZ913seCb3S6qj64MOsxLT-ii8cU47yeeZ2qa8Qh5WC_X5DTUW8TXv7Vc3J_vb5b3dDbLx8_rd7fUitAZipxNGg0Zz0XwABMPdRG9wZ4gwAtN0wyHAcD2pqhRVm3zdh2jRVajIgcxTl5s-TuYvixx5TVt7CPvpxUvOedbLmsoVD9QtkYUoo4Kuvy_HSO2m0VMHXsQC0dqNKBmjtQT8XK_7Puopt0PDxvEospFdhvMP776hnXH9iWnqY
CitedBy_id crossref_primary_10_1016_j_psep_2024_01_045
crossref_primary_10_1016_j_energy_2024_131032
crossref_primary_10_1177_0958305X241258798
crossref_primary_10_1016_j_ijhydene_2023_11_284
crossref_primary_10_1002_adsu_202300241
crossref_primary_10_1016_j_enconman_2025_119549
crossref_primary_10_3390_en16176375
crossref_primary_10_1016_j_apcato_2024_206952
crossref_primary_10_3390_en16104058
crossref_primary_10_1007_s10098_024_03015_6
crossref_primary_10_1007_s13369_024_08774_4
crossref_primary_10_1007_s13369_024_09051_0
crossref_primary_10_58559_ijes_1613647
crossref_primary_10_1007_s13369_023_07659_2
crossref_primary_10_1016_j_fuel_2024_131037
crossref_primary_10_1007_s13369_023_08218_5
crossref_primary_10_1016_j_ijhydene_2024_03_216
crossref_primary_10_3390_su16166860
Cites_doi 10.1016/j.geothermics.2017.08.011
10.1016/j.rser.2020.110192
10.1016/j.applthermaleng.2018.01.103
10.1016/j.enconman.2018.05.083
10.1016/j.apcatb.2017.12.039
10.1016/j.biortech.2020.124175
10.1016/j.ijhydene.2020.09.077
10.1016/j.jclepro.2017.07.183
10.1016/j.ijhydene.2015.03.079
10.1016/j.applthermaleng.2017.10.095
10.1016/j.ijhydene.2022.01.100
10.1016/j.rser.2017.05.140
10.1016/j.apenergy.2019.114452
10.1016/B978-008044704-9/50108-7
10.1016/j.ijhydene.2012.10.077
10.1016/j.jngse.2015.07.001
10.1016/j.jclepro.2017.05.176
10.1016/j.jclepro.2018.03.108
10.1016/j.ijhydene.2021.05.152
10.1016/j.biortech.2017.05.017
10.1016/j.energy.2021.122032
10.1016/j.petrol.2022.110270
10.1016/j.ijhydene.2020.08.138
10.1016/j.ijhydene.2020.05.009
10.1016/j.ijhydene.2018.12.226
10.1016/j.energy.2010.05.020
10.1080/17597269.2021.1894781
10.1016/j.energy.2019.05.179
10.1016/j.wasman.2022.03.028
10.1016/j.ijhydene.2021.10.055
10.1016/j.ces.2020.116364
10.3390/sym13122366
10.1016/j.ijhydene.2017.07.147
10.1016/j.ijhydene.2019.04.101
10.1016/j.wasman.2017.12.011
10.1016/j.ijhydene.2018.02.109
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13369-022-07581-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 8987
ExternalDocumentID 10_1007_s13369_022_07581_z
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-9efbeba208231011b4d4ba8b125e1162b090efdb1acbd6e9465f675c3a3fee2e3
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 08:58:34 EDT 2025
Thu Apr 24 22:51:45 EDT 2025
Tue Jul 01 01:34:29 EDT 2025
Fri Feb 21 02:43:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Environmental
Economic
Energy efficiency
Biogas
Exergy efficiency
Hydrogen production
Natural gas
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-9efbeba208231011b4d4ba8b125e1162b090efdb1acbd6e9465f675c3a3fee2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3231-8454
PQID 2827962941
PQPubID 2044268
PageCount 17
ParticipantIDs proquest_journals_2827962941
crossref_citationtrail_10_1007_s13369_022_07581_z
crossref_primary_10_1007_s13369_022_07581_z
springer_journals_10_1007_s13369_022_07581_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Nordio, Wassie, Annaland, Tanaka, Sole, Gallucci (CR27) 2021; 46
Akrami, Khazaee, Gholami (CR39) 2018; 129
Mukherjee, Devaguptapu, Sviripa, Lund, Wu (CR8) 2018; 226
Ghaebi, Farhang, Parikhani, Rostamzadeh (CR40) 2018; 71
CR16
Gopaul, Dutta (CR14) 2015; 40
Kannah, Kavitha, Karthikeyan, Kumar, Dai-Viet, Banu (CR9) 2021; 319
CR10
Cheng, Meng, Li, Wang, Meng, Sunarso, Tan, Liu (CR11) 2020; 45
Temiz, Javani (CR29) 2020; 45
Gao, Jiang, Meng, Yan, Aihemaiti (CR18) 2018; 171
Zivar, Kumar, Foroozesh (CR5) 2021; 46
Safarian, Unnthorsson, Richter (CR26) 2022; 13
Demir (CR13) 2013; 38
Shamsi, Farokhi, Pourghafari, Bayat (CR34) 2022; 212
Boyano, Blanco-Marigorta, Morosuk, Tsatsaronis (CR15) 2011; 36
Chouhan, Sinha, Kumar, Kumar (CR24) 2021; 46
Phan, Minh, Espitalier, Nzihou, Grouset (CR25) 2022
Moharamian, Soltani, Rosen, Mahmoudi (CR32) 2018; 134
Shi, Elgarni, Mahinpey (CR35) 2021; 233
Park, Kim, Lee, Jeon, Jeong (CR28) 2022; 144
Seo, Yun, Lee (CR7) 2020; 262
Shamsi, Obaid, Farokhi, Bayat (CR31) 2022; 47
Camacho, Bensaid, Lorentzou, Vlachos, Pantoleontos, Konstandopoulos, Luneau, Meunier, Guilhaume, Schuurman (CR22) 2017; 42
Paepatung, Nopharatana, Songkasiri (CR4) 2009; 10
Chehade, Daher, Assaf, Riachi, Hamd (CR23) 2020; 45
Simbeck (CR6) 2005
Cong, Caro, Thomsen (CR1) 2017; 165
Lima, Santos, Pereira, Flauzino, Pereira, Nogueira, Valverde (CR19) 2018; 74
dos Santos, de Sousa Santos, Prata (CR20) 2018; 186
Othman, Adam, Najafi, Mamat (CR3) 2017; 80
Abdullah, Abd Ghani, Vo (CR2) 2017; 162
Chisalita, Cormos (CR21) 2019; 181
Li, Gao, Zhang, Liu (CR38) 2022; 238
Ishaq, Dincer (CR30) 2021; 135
Abashar (CR12) 2019; 44
Saaty (CR36) 2008; 1
Lin, Cheng, Zhang, Zhou, Cen, Murphy (CR17) 2017; 239
Chein, Chen, Yu, Chung (CR33) 2015; 26
Jin, Jin (CR37) 2021; 13
A Boyano (7581_CR15) 2011; 36
S Mukherjee (7581_CR8) 2018; 226
M Shamsi (7581_CR34) 2022; 212
SG Gopaul (7581_CR14) 2015; 40
B Abdullah (7581_CR2) 2017; 162
M-J Park (7581_CR28) 2022; 144
7581_CR10
S Safarian (7581_CR26) 2022; 13
N Paepatung (7581_CR4) 2009; 10
D Zivar (7581_CR5) 2021; 46
D-A Chisalita (7581_CR21) 2019; 181
MD Simbeck (7581_CR6) 2005
M Abashar (7581_CR12) 2019; 44
7581_CR16
N Demir (7581_CR13) 2013; 38
R Lin (7581_CR17) 2017; 239
TL Saaty (7581_CR36) 2008; 1
S-K Seo (7581_CR7) 2020; 262
C Shi (7581_CR35) 2021; 233
YM Camacho (7581_CR22) 2017; 42
Y Gao (7581_CR18) 2018; 171
M Temiz (7581_CR29) 2020; 45
RY Kannah (7581_CR9) 2021; 319
M Nordio (7581_CR27) 2021; 46
RM Lima (7581_CR19) 2018; 74
E Akrami (7581_CR39) 2018; 129
MF Othman (7581_CR3) 2017; 80
R-G Cong (7581_CR1) 2017; 165
TS Phan (7581_CR25) 2022
R Chein (7581_CR33) 2015; 26
G Jin (7581_CR37) 2021; 13
RO dos Santos (7581_CR20) 2018; 186
H Ghaebi (7581_CR40) 2018; 71
H Cheng (7581_CR11) 2020; 45
AMEH Chehade (7581_CR23) 2020; 45
A Moharamian (7581_CR32) 2018; 134
K Chouhan (7581_CR24) 2021; 46
H Ishaq (7581_CR30) 2021; 135
M Shamsi (7581_CR31) 2022; 47
K Li (7581_CR38) 2022; 238
References_xml – volume: 71
  start-page: 132
  year: 2018
  end-page: 145
  ident: CR40
  article-title: Energy, exergy and exergoeconomic analysis of a cogeneration system for power and hydrogen production purpose based on TRR method and using low grade geothermal source
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2017.08.011
– volume: 135
  year: 2021
  ident: CR30
  article-title: Comparative assessment of renewable energy-based hydrogen production methods
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110192
– volume: 134
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR32
  article-title: Advanced exergy and advanced exergoeconomic analyses of biomass and natural gas fired combined cycles with hydrogen production
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.01.103
– volume: 171
  start-page: 133
  year: 2018
  end-page: 155
  ident: CR18
  article-title: A review of recent developments in hydrogen production via biogas dry reforming
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.05.083
– volume: 226
  start-page: 162
  year: 2018
  end-page: 181
  ident: CR8
  article-title: Low-temperature ammonia decomposition catalysts for hydrogen generation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.12.039
– volume: 319
  year: 2021
  ident: CR9
  article-title: Techno-economic assessment of various hydrogen production methods–A review
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2020.124175
– volume: 45
  start-page: 33235
  year: 2020
  end-page: 33247
  ident: CR23
  article-title: Simulation and optimization of hydrogen production by steam reforming of natural gas for refining and petrochemical demands in Lebanon
  publication-title: Int. J. Hydr. Energy
  doi: 10.1016/j.ijhydene.2020.09.077
– volume: 165
  start-page: 1025
  year: 2017
  end-page: 1035
  ident: CR1
  article-title: Is it beneficial to use biogas in the Danish transport sector?–an environmental-economic analysis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.07.183
– volume: 40
  start-page: 6307
  year: 2015
  end-page: 6318
  ident: CR14
  article-title: Dry reforming of multiple biogas types for syngas production simulated using Aspen Plus: the use of partial oxidation and hydrogen combustion to achieve thermo-neutrality
  publication-title: Int. J. Hydrog Energy
  doi: 10.1016/j.ijhydene.2015.03.079
– ident: CR16
– volume: 129
  start-page: 995
  year: 2018
  end-page: 1001
  ident: CR39
  article-title: Comprehensive analysis of a multi-generation energy system by using an energy-exergy methodology for hot water, cooling, power and hydrogen production
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.10.095
– year: 2022
  ident: CR25
  article-title: Hydrogen production from biogas: process optimization using ASPEN Plus®
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2022.01.100
– volume: 1
  start-page: 83
  year: 2008
  end-page: 98
  ident: CR36
  article-title: Decision making with the analytic hierarchy process
  publication-title: Int J Serv Sci
– volume: 80
  start-page: 694
  year: 2017
  end-page: 709
  ident: CR3
  article-title: Green fuel as alternative fuel for diesel engine: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.140
– ident: CR10
– volume: 262
  year: 2020
  ident: CR7
  article-title: Design and optimization of a hydrogen supply chain using a centralized storage model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114452
– start-page: 1059
  year: 2005
  end-page: 1066
  ident: CR6
  article-title: Hydrogen costs with CO capture
  publication-title: Greenhouse gas control technologies 7
  doi: 10.1016/B978-008044704-9/50108-7
– volume: 10
  start-page: 19
  year: 2009
  end-page: 27
  ident: CR4
  article-title: Bio-methane potential of biological solid materials and agricultural wastes
  publication-title: Asian J. Energy Environ.
– volume: 38
  start-page: 853
  year: 2013
  end-page: 860
  ident: CR13
  article-title: Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles
  publication-title: Int. J. Hydr.n Energy
  doi: 10.1016/j.ijhydene.2012.10.077
– volume: 26
  start-page: 617
  year: 2015
  end-page: 629
  ident: CR33
  article-title: Thermodynamic analysis of dry reforming of CH with CO at high pressures
  publication-title: J. Natural Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.07.001
– volume: 162
  start-page: 170
  year: 2017
  end-page: 185
  ident: CR2
  article-title: Recent advances in dry reforming of methane over Ni-based catalysts
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.05.176
– volume: 186
  start-page: 821
  year: 2018
  end-page: 830
  ident: CR20
  article-title: Simulation and optimization of a methanol synthesis process from different biogas sources
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.03.108
– volume: 46
  start-page: 26809
  year: 2021
  end-page: 26824
  ident: CR24
  article-title: Simulation of steam reforming of biogas in an industrial reformer for hydrogen production
  publication-title: Int. J. Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.05.152
– volume: 239
  start-page: 345
  year: 2017
  end-page: 352
  ident: CR17
  article-title: Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2017.05.017
– volume: 238
  year: 2022
  ident: CR38
  article-title: Study on the energy efficiency of bioethanol-based liquid hydrogen production process
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122032
– volume: 212
  start-page: 110270
  year: 2022
  ident: CR34
  article-title: Tuning the natural gas dew point by joule-thomson and mechanical refrigeration processes: a comparative energy and exergy analysis
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2022.110270
– volume: 46
  start-page: 23436
  year: 2021
  end-page: 23462
  ident: CR5
  article-title: Underground hydrogen storage: a comprehensive review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.138
– volume: 46
  start-page: 23417
  year: 2021
  end-page: 23435
  ident: CR27
  article-title: Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2020.05.009
– volume: 45
  start-page: 3457
  year: 2020
  end-page: 3469
  ident: CR29
  article-title: Design and analysis of a combined floating photovoltaic system for electricity and hydrogen production
  publication-title: Int. J. Hydrog Energy
  doi: 10.1016/j.ijhydene.2018.12.226
– volume: 36
  start-page: 2202
  year: 2011
  end-page: 2214
  ident: CR15
  article-title: Exergoenvironmental analysis of a steam methane reforming process for hydrogen production
  publication-title: Energy
  doi: 10.1016/j.energy.2010.05.020
– volume: 13
  start-page: 717
  year: 2022
  end-page: 726
  ident: CR26
  article-title: Hydrogen production via biomass gasification: simulation and performance analysis under different gasifying agents
  publication-title: Biofuels
  doi: 10.1080/17597269.2021.1894781
– volume: 181
  start-page: 331
  year: 2019
  end-page: 344
  ident: CR21
  article-title: Techno-economic assessment of hydrogen production processes based on various natural gas chemical looping systems with carbon capture
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.179
– volume: 144
  start-page: 272
  year: 2022
  end-page: 284
  ident: CR28
  article-title: Optimization of a renewable hydrogen production system from food waste: a combination of anaerobic digestion and biogas reforming
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2022.03.028
– volume: 47
  start-page: 772
  year: 2022
  end-page: 781
  ident: CR31
  article-title: A novel process simulation model for hydrogen production via reforming of biomass gasification tar
  publication-title: Int. J. Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.10.055
– volume: 233
  year: 2021
  ident: CR35
  article-title: Process design and simulation study: CO utilization through mixed reforming of methane for methanol synthesis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.116364
– volume: 13
  start-page: 2366
  year: 2021
  ident: CR37
  article-title: Fault-diagnosis sensor selection for fuel cell stack systems combining an analytic hierarchy process with the technique order performance similarity ideal solution method
  publication-title: Symmetry
  doi: 10.3390/sym13122366
– volume: 42
  start-page: 22841
  year: 2017
  end-page: 22855
  ident: CR22
  article-title: Development of a robust and efficient biogas processor for hydrogen production Part 1: modelling and simulation
  publication-title: Int J Hydr Energy
  doi: 10.1016/j.ijhydene.2017.07.147
– volume: 45
  start-page: 7423
  year: 2020
  end-page: 7432
  ident: CR11
  article-title: Single-step synthesized dual-layer hollow fiber membrane reactor for on-site hydrogen production through ammonia decomposition
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.101
– volume: 74
  start-page: 323
  year: 2018
  end-page: 334
  ident: CR19
  article-title: Spatially distributed potential of landfill biogas production and electric power generation in Brazil
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2017.12.011
– volume: 44
  start-page: 82
  year: 2019
  end-page: 90
  ident: CR12
  article-title: The impact of ammonia feed distribution on the performance of a fixed bed membrane reactor for ammonia decomposition to ultra-pure hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.02.109
– volume: 42
  start-page: 22841
  year: 2017
  ident: 7581_CR22
  publication-title: Int J Hydr Energy
  doi: 10.1016/j.ijhydene.2017.07.147
– volume: 212
  start-page: 110270
  year: 2022
  ident: 7581_CR34
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2022.110270
– ident: 7581_CR10
– ident: 7581_CR16
– volume: 26
  start-page: 617
  year: 2015
  ident: 7581_CR33
  publication-title: J. Natural Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.07.001
– volume: 129
  start-page: 995
  year: 2018
  ident: 7581_CR39
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.10.095
– volume: 319
  year: 2021
  ident: 7581_CR9
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2020.124175
– volume: 36
  start-page: 2202
  year: 2011
  ident: 7581_CR15
  publication-title: Energy
  doi: 10.1016/j.energy.2010.05.020
– volume: 1
  start-page: 83
  year: 2008
  ident: 7581_CR36
  publication-title: Int J Serv Sci
– volume: 38
  start-page: 853
  year: 2013
  ident: 7581_CR13
  publication-title: Int. J. Hydr.n Energy
  doi: 10.1016/j.ijhydene.2012.10.077
– volume: 162
  start-page: 170
  year: 2017
  ident: 7581_CR2
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.05.176
– volume: 262
  year: 2020
  ident: 7581_CR7
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114452
– volume: 46
  start-page: 26809
  year: 2021
  ident: 7581_CR24
  publication-title: Int. J. Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.05.152
– year: 2022
  ident: 7581_CR25
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2022.01.100
– volume: 186
  start-page: 821
  year: 2018
  ident: 7581_CR20
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.03.108
– volume: 233
  year: 2021
  ident: 7581_CR35
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.116364
– start-page: 1059
  volume-title: Greenhouse gas control technologies 7
  year: 2005
  ident: 7581_CR6
  doi: 10.1016/B978-008044704-9/50108-7
– volume: 239
  start-page: 345
  year: 2017
  ident: 7581_CR17
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2017.05.017
– volume: 13
  start-page: 717
  year: 2022
  ident: 7581_CR26
  publication-title: Biofuels
  doi: 10.1080/17597269.2021.1894781
– volume: 165
  start-page: 1025
  year: 2017
  ident: 7581_CR1
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.07.183
– volume: 171
  start-page: 133
  year: 2018
  ident: 7581_CR18
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.05.083
– volume: 45
  start-page: 3457
  year: 2020
  ident: 7581_CR29
  publication-title: Int. J. Hydrog Energy
  doi: 10.1016/j.ijhydene.2018.12.226
– volume: 13
  start-page: 2366
  year: 2021
  ident: 7581_CR37
  publication-title: Symmetry
  doi: 10.3390/sym13122366
– volume: 144
  start-page: 272
  year: 2022
  ident: 7581_CR28
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2022.03.028
– volume: 135
  year: 2021
  ident: 7581_CR30
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110192
– volume: 80
  start-page: 694
  year: 2017
  ident: 7581_CR3
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.140
– volume: 45
  start-page: 7423
  year: 2020
  ident: 7581_CR11
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.101
– volume: 46
  start-page: 23417
  year: 2021
  ident: 7581_CR27
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2020.05.009
– volume: 46
  start-page: 23436
  year: 2021
  ident: 7581_CR5
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.138
– volume: 181
  start-page: 331
  year: 2019
  ident: 7581_CR21
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.179
– volume: 44
  start-page: 82
  year: 2019
  ident: 7581_CR12
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.02.109
– volume: 134
  start-page: 1
  year: 2018
  ident: 7581_CR32
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.01.103
– volume: 238
  year: 2022
  ident: 7581_CR38
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122032
– volume: 71
  start-page: 132
  year: 2018
  ident: 7581_CR40
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2017.08.011
– volume: 74
  start-page: 323
  year: 2018
  ident: 7581_CR19
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2017.12.011
– volume: 45
  start-page: 33235
  year: 2020
  ident: 7581_CR23
  publication-title: Int. J. Hydr. Energy
  doi: 10.1016/j.ijhydene.2020.09.077
– volume: 226
  start-page: 162
  year: 2018
  ident: 7581_CR8
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.12.039
– volume: 10
  start-page: 19
  year: 2009
  ident: 7581_CR4
  publication-title: Asian J. Energy Environ.
– volume: 40
  start-page: 6307
  year: 2015
  ident: 7581_CR14
  publication-title: Int. J. Hydrog Energy
  doi: 10.1016/j.ijhydene.2015.03.079
– volume: 47
  start-page: 772
  year: 2022
  ident: 7581_CR31
  publication-title: Int. J. Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.10.055
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.4035668
Snippet Despite the fact that fossil fuel resources can produce a substantial amount of hydrogen, their pollution level is concerning, and their reserves are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8971
SubjectTerms Alternative energy sources
Biogas
Carbon dioxide
Decision making
Energy resources
Engineering
Exergy
Fossil fuels
Humanities and Social Sciences
Hydrogen
Hydrogen production
multidisciplinary
Multiple criterion
Natural gas
Pollution levels
Raw materials
Renewable energy sources
Renewable resources
Research Article-chemical Engineering
Science
Title Techno-Economic, Energy, Exergy, and Environmental Comparison of Hydrogen Production from Natural gas, Biogas, and their Combination as Feedstock
URI https://link.springer.com/article/10.1007/s13369-022-07581-z
https://www.proquest.com/docview/2827962941
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLay9rIdpv3UsnWVD7slRBgIgWMyJYqmLjs0kXJDNpiGdgkTSaU2_8X-2Z33bGObZFu1TYrAAmLA7-P5-fl9zwh9SP2AARICh_KMOwHv-w6LqOsMfJIxErkBY4Io_HkWThfBp2V_2Wr9aEQt3e5YL93_llfyP1KFYyBXwZL9B8maSuEAlEG-sAUJw_bvZCz94o4mF0u9Jrl8snSnS8I3PraENukuaKw-2JneZ1UJNxGsgUxlk1W0kxlVWTmuFOtrVJR1qQ67LCpRE4ytFYrotjOBzhDMyTrT_rWF4rCiIru5nv6W0Y1ar6jnM3kRe2ISQFY4Um9kzhh30IqutwXoI9ivaWZAU16tQJHCY1wWdE0NB2lGeXFddMbbXHB47qmJR57QqrxZFZ1LuHrT9H94vomVPfR_qibhlp8j1bmgaEWuolb3uDwGKhpGzZ5aKEb3AUHUwPqgodCjWK0Qo42DWJkHv3Q8bk3E9v0wdgRDAkyxiDh7283q0ILZl2SyuLhI5uPl_BE69QZg8wmS-pJY3yDY7HJhMGVRhCSSkRLmbWryl6KAHt_x0MCyo6ajiX5pP82foae13PFQofg5avHNC_SkIdyX6PsRnrtYoRn2d2oP8sMHSMYWybjMsUYytkjGAsm4RjIG_HaxwrGqTaIYN1CM6RYbFL9Ci8l4_nHq1EuGOCk0zs6Jec44o56YP4bOhrAgCxiNGJjxnECjMjd2eQ5aiKYsC3kchP0chsypT_2cc4_7r9HJptzwNwh76YAwkpM8FjEPEY3hl4NCox5naRj024jodk7SOp--WNbla2IzgQvZJCCbRMom2bdRx_znm8om8-DVZ1p8Sa11tokXeYM49OKAtFFXi9Se_nNtbx-u7R16bL-uM3Syq275e7C3d-wcnQ4no9HsXIL0Jz_J2cQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-Economic%2C+Energy%2C+Exergy%2C+and+Environmental+Comparison+of+Hydrogen+Production+from+Natural+gas%2C+Biogas%2C+and+their+Combination+as+Feedstock&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Shamsi+Mohammad&rft.au=Moghaddas+Siamak&rft.au=Naeiji+Esfandiyar&rft.au=Farokhi+Saman&rft.date=2023-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=48&rft.issue=7&rft.spage=8971&rft.epage=8987&rft_id=info:doi/10.1007%2Fs13369-022-07581-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon