Acoustic Waves in a High-Temperature Plasma II. Damping and Instability
In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of the plasma has a well-defined description. We consider a constant heating function supposing that the heating processes are generally establ...
Saved in:
Published in | Solar physics Vol. 298; no. 9; p. 102 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0038-0938 1573-093X |
DOI | 10.1007/s11207-023-02196-5 |
Cover
Abstract | In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of the plasma has a well-defined description. We consider a constant heating function supposing that the heating processes are generally established. For the radiative-loss function, a number of values are taken, which have been found using the CHIANTI code. On their basis, an analytical expression of the function in the form of a cubic interpolation has been worked out. We analyze the dispersion relation for linear acoustic waves. The heating and cooling function, introduced along with the classical expression of the thermal conductivity, allows us to obtain some specific results about their properties. In other words, a model of non-adiabatic acoustic waves with field-aligned thermal conduction, CHIANTI-based radiative cooling and constant heating function is constructed. Using the available observational data on compression waves, we can set the problem of finding the parameters of the coronal plasma. The model allows to specify the temperature range at which the thermal instability of waves is possible and to draw some conclusions about their damping. The coronal temperatures considered can be divided into intervals from 0.5 to 0.98 MK and from 4.57 to 8.38 MK, where the radiation function increases, and intervals from 0.98 to 4.57 MK and from 8.38 to 10 MK, where the radiation function decreases. With constant heating, at large wavelengths, acoustic waves can be unstable in the decreasing interval from 1.38 to 3.15 MK. In the increasing intervals, they may have a zero real part of the oscillation frequency and thus become non-propagating, also subject to a large wavelength. In some cases, the plasma density has a significant effect on the damping of acoustic oscillations due to heating and cooling. A change in density within the same order can lead to the fact that the heating and cooling effects prevail over the effect of thermal conductivity on long-wave perturbations. |
---|---|
AbstractList | In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of the plasma has a well-defined description. We consider a constant heating function supposing that the heating processes are generally established. For the radiative-loss function, a number of values are taken, which have been found using the CHIANTI code. On their basis, an analytical expression of the function in the form of a cubic interpolation has been worked out. We analyze the dispersion relation for linear acoustic waves. The heating and cooling function, introduced along with the classical expression of the thermal conductivity, allows us to obtain some specific results about their properties. In other words, a model of non-adiabatic acoustic waves with field-aligned thermal conduction, CHIANTI-based radiative cooling and constant heating function is constructed. Using the available observational data on compression waves, we can set the problem of finding the parameters of the coronal plasma. The model allows to specify the temperature range at which the thermal instability of waves is possible and to draw some conclusions about their damping. The coronal temperatures considered can be divided into intervals from 0.5 to 0.98 MK and from 4.57 to 8.38 MK, where the radiation function increases, and intervals from 0.98 to 4.57 MK and from 8.38 to 10 MK, where the radiation function decreases. With constant heating, at large wavelengths, acoustic waves can be unstable in the decreasing interval from 1.38 to 3.15 MK. In the increasing intervals, they may have a zero real part of the oscillation frequency and thus become non-propagating, also subject to a large wavelength. In some cases, the plasma density has a significant effect on the damping of acoustic oscillations due to heating and cooling. A change in density within the same order can lead to the fact that the heating and cooling effects prevail over the effect of thermal conductivity on long-wave perturbations. In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of the plasma has a well-defined description. We consider a constant heating function supposing that the heating processes are generally established. For the radiative-loss function, a number of values are taken, which have been found using the CHIANTI code. On their basis, an analytical expression of the function in the form of a cubic interpolation has been worked out. We analyze the dispersion relation for linear acoustic waves. The heating and cooling function, introduced along with the classical expression of the thermal conductivity, allows us to obtain some specific results about their properties. In other words, a model of non-adiabatic acoustic waves with field-aligned thermal conduction, CHIANTI-based radiative cooling and constant heating function is constructed. Using the available observational data on compression waves, we can set the problem of finding the parameters of the coronal plasma. The model allows to specify the temperature range at which the thermal instability of waves is possible and to draw some conclusions about their damping. The coronal temperatures considered can be divided into intervals from 0.5 to 0.98 MK and from 4.57 to 8.38 MK, where the radiation function increases, and intervals from 0.98 to 4.57 MK and from 8.38 to 10 MK, where the radiation function decreases. With constant heating, at large wavelengths, acoustic waves can be unstable in the decreasing interval from 1.38 to 3.15 MK. In the increasing intervals, they may have a zero real part of the oscillation frequency and thus become non-propagating, also subject to a large wavelength. In some cases, the plasma density has a significant effect on the damping of acoustic oscillations due to heating and cooling. A change in density within the same order can lead to the fact that the heating and cooling effects prevail over the effect of thermal conductivity on long-wave perturbations. |
ArticleNumber | 102 |
Author | Mikhalyaev, B. B. Derteev, S. B. Shividov, N. K. Bembitov, D. B. Sapraliev, M. E. |
Author_xml | – sequence: 1 givenname: B. B. surname: Mikhalyaev fullname: Mikhalyaev, B. B. email: bbmikh@mail.ru organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov – sequence: 2 givenname: S. B. surname: Derteev fullname: Derteev, S. B. organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov – sequence: 3 givenname: N. K. surname: Shividov fullname: Shividov, N. K. organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov – sequence: 4 givenname: M. E. surname: Sapraliev fullname: Sapraliev, M. E. organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov – sequence: 5 givenname: D. B. surname: Bembitov fullname: Bembitov, D. B. organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz1vzsdmPY6naLhT0UNFbyCbZmrKbrUlW6L931xUEDz0MMwPzzDvzzsDEtlYDcIvRAiOU3nuMCUojRGgfOE8idgGmmKV9m9P3CZgiRLOhzq7AzPsDQgPGpmC9lG3ng5HwTXxpD42FAm7M_iPa6eaonQid0_ClFr4RsCgW8EE0R2P3UFgFC-uDKE1twukaXFai9vrmN8_B69PjbrWJts_rYrXcRpLiPES51iRVsRBIqVSWCaniJIkpSUpFVVpSVdEkz6lmOC6rlGUqlwThDCmJCGOZoHNwN-49uvaz0z7wQ9s520tykiUojlOGWD9FxinpWu-drvjRmUa4E8eID5_z0TDeG8Z_DOMDlP2DpAkimNYGJ0x9HqUj6nsdu9fu76oz1DeRXYAM |
CitedBy_id | crossref_primary_10_1007_s11207_024_02381_0 |
Cites_doi | 10.3847/0004-637X/820/1/13 10.1051/0004-6361/202140665 10.1002/asna.200710803 10.1063/1.5115224 10.3847/1538-4357/abd8ce 10.1051/0004-6361/201016405 10.1086/345548 10.1086/592963 10.3847/2041-8213/ab0c9f 10.1007/s11214-010-9716-1 10.1086/148317 10.1051/0004-6361/202039791 10.1051/aas:1997368 10.3390/physics5010015 10.1038/31166 10.1007/s11214-021-00811-0 10.1007/s11214-010-9698-z 10.1088/0004-637X/711/1/228 10.3847/1538-4357/ab478f 10.1098/rsta.2011.0640 10.1007/s11207-021-01868-4 10.1007/BF00833341 10.3847/0004-637X/824/1/8 10.1051/0004-6361/201936072 10.1051/0004-6361:20079328 10.3390/physics5010017 10.1007/s11207-022-02071-9 10.1086/155949 10.3389/fspas.2022.1073664 10.1086/145707 10.1007/s11207-021-01764-x 10.1051/aas:1999449 10.1088/0004-637X/789/2/118 10.12942/lrsp-2014-4 10.1134/S0038094612060056 10.1098/rsta.2014.0269 10.1051/0004-6361/201016329 10.1086/146942 10.1051/0004-6361/202039095 10.1088/0004-637X/810/2/98 10.3847/0004-637X/828/2/76 10.1007/s11207-021-01841-1 10.1007/BF001569625 10.1086/510424 10.1017/CBO9781139020732 10.1002/9781119055006.ch23 10.1051/0004-6361/201834699 10.1088/0004-637X/731/1/39 10.1007/10.1088/0004-637X/773/2/134 10.1088/0004-637X/740/2/111 10.1088/1361-6587/ab5406 10.1051/0004-6361:20030984 10.1007/s11214-009-9506-9 10.1007/s11207-006-0055-z 10.1051/0004-6361:20034233 10.3847/1538-4357/abfb01 10.1051/0004-6361:20034630 10.1007/s11214-009-9526-5 10.1088/2041-8205/811/1/L13 10.1051/0004-6361/200911712 10.1002/9781119055006.ch24 10.1146/annurev-astro-032320-042940 10.1088/1361-6587/ac36a5 10.3847/1538-4357/aac38a 10.1098/rsta.2014.0256 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7TG 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ H8D HCIFZ KL. L7M M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11207-023-02196-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One ProQuest Central ProQuest Central Student Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Science Database (via ProQuest SciTech Premium Collection) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1573-093X |
ExternalDocumentID | 10_1007_s11207_023_02196_5 |
GrantInformation_xml | – fundername: Ministry of Science and Higher Education of the Russian Federation grantid: 075-03-2022-119/1; 075-03-2022-119/1; 075-03-2022-119/1; 075-03-2022-119/1; 075-03-2022-119/1 funderid: http://dx.doi.org/10.13039/501100012190 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAK LK5 LLZTM M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OK1 OVD P19 P62 P9T PF0 PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNP RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7Y Z7Z Z8M Z8S Z8T ZMTXR ~02 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TG 7XB 8FD 8FK ABRTQ H8D KL. L7M PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-9ee27d4aa0dd7cb62f4664326bd3d7b3df36993e514bf758d9c20180dc02558a3 |
IEDL.DBID | 8FG |
ISSN | 0038-0938 |
IngestDate | Tue Aug 12 09:41:10 EDT 2025 Tue Jul 01 04:31:16 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Fri Feb 21 02:41:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Heating, coronal Corona Waves, acoustic Instabilities Coronal seismology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-9ee27d4aa0dd7cb62f4664326bd3d7b3df36993e514bf758d9c20180dc02558a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2860447505 |
PQPubID | 105618 |
ParticipantIDs | proquest_journals_2860447505 crossref_primary_10_1007_s11207_023_02196_5 crossref_citationtrail_10_1007_s11207_023_02196_5 springer_journals_10_1007_s11207_023_02196_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230900 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | A Journal for Solar and Solar-Stellar Research and the Study of Solar-Terrestrial Physics |
PublicationTitle | Solar physics |
PublicationTitleAbbrev | Sol Phys |
PublicationYear | 2023 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | De Moortel, Hood (CR10) 2003; 408 Erdélyi, Ballai (CR19) 2007; 8 Kumar, Nakariakov, Moon (CR34) 2016; 824 Hildner (CR22) 1974; 35 Wang, Ofman (CR60) 2019; 886 Del Zanna, Dere, Young, Landi (CR13) 2021; 909 Wang, Ofman, Sun, Solanki, Davila (CR62) 2018; 860 Dere, Landi, Mason, Monsignori Fossi, Young (CR14) 1997; 125 Lionello, Winebarger, Mok, Linker, Mikić (CR36) 2013; 773 Antolin (CR1) 2020; 62 Krishna Prasad, Banerjee, Van Doorsselaere (CR32) 2014; 789 Srivastava, Kuridze, Zaqarashvili, Dwivedi (CR53) 2008; 481 Dere, Landi, Young, Del Zanna, Landini, Mason (CR15) 2009; 498 Banerjee, Krishna Prasad (CR4) 2016 Nakariakov, Kolotkov (CR39) 2020; 58 Priest, Foley, Heyvaerts, Arber, Culhane, Acton (CR47) 1998; 393 Wang, Ofman, Yuan, Reale, Kolotkov, Srivastava (CR63) 2021; 217 Zavershinskii, Kolotkov, Riashchikov, Molevich (CR67) 2021; 296 Wang, Innes, Qiu (CR59) 2007; 656 Warren, Winebarger, Brooks (CR64) 2010; 711 De Moortel (CR8) 2009; 149 Belov, Molevich, Zavershinskii (CR5) 2021; 296 Somov, Syrovatskij (CR51) 1980; 6 Spitzer (CR52) 1962 Viall, Klimchuk (CR56) 2016; 828 De Moortel, Browning (CR9) 2015; 373 Carbonell, Oliver, Ballester (CR6) 2004; 415 Taroyan, Erdélyi (CR54) 2009; 149 Narain, Ulmschneider (CR41) 1996; 75 Aschwanden, Terradas (CR2) 2008; 686 Derteev, Shividov, Bembitov, Mikhalyaev (CR16) 2023; 5 Mikhalyaev, Veselovskii, Khongorova (CR38) 2013; 47 Kolotkov, Nakariakov, Zavershinskii (CR29) 2019; 626 Priest (CR46) 2014 Claes, Keppens (CR7) 2019; 624 Hermans, Keppens (CR21) 2021; 635 Ibanez, Ballester (CR23) 2022; 297 Landi, Landini, Dere, Young, Mason (CR35) 1999; 135 Klimchuk, Patsourakos, Cargill (CR25) 2008; 682 Nakariakov, Kosak, Kolotkov, Anfinogentov, Kumar, Moon (CR40) 2019; 874 Krishna Prasad, Van Doorsselaere (CR33) 2021; 914 Kolotkov, Zavershinskii, Nakariakov (CR30) 2021; 63 Reale (CR48) 2014; 11 Dudík, Dzifčáková, Karlický, Kulinová (CR18) 2011; 529 Field (CR20) 1965; 142 Krishna Prasad, Banerjee, Gupta (CR31) 2011; 528 Rosner, Tucker, Vaiana (CR49) 1978; 220 Wang, Ofman, Sun, Provornikova, Davila (CR61) 2015; 811 Tripathi, Klimchuk, Mason (CR55) 2011; 740 Zavershinskii, Kolotkov, Nakariakov, Molevich, Ryashchikov (CR66) 2019; 26 Parker (CR44) 1953; 117 Banerjee, Gupta, Teriaca (CR3) 2011; 158 Mandal, Magyar, Yuan, Van Doorsselaere, Banerjee (CR37) 2016; 820 Duckenfield, Kolotkov, Nakariakov (CR17) 2021; 646 Ofman, Wang (CR42) 2002; 580 Wang (CR58) 2016 Klimchuk (CR24) 2015; 373 Kolotkov, Duckenfield, Nakariakov (CR27) 2020; 644 Soler, Ballester, Goossens (CR50) 2011; 731 Orange, Chesny, Olusey (CR43) 2015; 810 Prasad, Srivastava, Wang (CR45) 2021; 296 De Moortel, Hood (CR11) 2004; 415 De Moortel, Nakariakov (CR12) 2012; 370 Kolotkov (CR26) 2022; 9 Kolotkov, Nakariakov, Fihosy (CR28) 2023; 5 Weymann (CR65) 1960; 132 Wang (CR57) 2011; 158 R. Erdélyi (2196_CR19) 2007; 8 P. Antolin (2196_CR1) 2020; 62 R. Rosner (2196_CR49) 1978; 220 G.B. Field (2196_CR20) 1965; 142 A. Prasad (2196_CR45) 2021; 296 T. Wang (2196_CR62) 2018; 860 D.Y. Kolotkov (2196_CR29) 2019; 626 V.M. Nakariakov (2196_CR40) 2019; 874 N.M. Viall (2196_CR56) 2016; 828 B.V. Somov (2196_CR51) 1980; 6 J. Dudík (2196_CR18) 2011; 529 G. Del Zanna (2196_CR13) 2021; 909 T. Wang (2196_CR58) 2016 K.P. Dere (2196_CR15) 2009; 498 D. Tripathi (2196_CR55) 2011; 740 M.H. Ibanez (2196_CR23) 2022; 297 T.J. Duckenfield (2196_CR17) 2021; 646 E. Hildner (2196_CR22) 1974; 35 D.I. Zavershinskii (2196_CR66) 2019; 26 S. Krishna Prasad (2196_CR32) 2014; 789 S. Mandal (2196_CR37) 2016; 820 J.A. Klimchuk (2196_CR25) 2008; 682 T. Wang (2196_CR57) 2011; 158 E.R. Priest (2196_CR46) 2014 D.Y. Kolotkov (2196_CR27) 2020; 644 H.P. Warren (2196_CR64) 2010; 711 M.J. Aschwanden (2196_CR2) 2008; 686 I. De Moortel (2196_CR9) 2015; 373 Y. Taroyan (2196_CR54) 2009; 149 A.K. Srivastava (2196_CR53) 2008; 481 F. Reale (2196_CR48) 2014; 11 R. Soler (2196_CR50) 2011; 731 R. Weymann (2196_CR65) 1960; 132 L. Ofman (2196_CR42) 2002; 580 I. De Moortel (2196_CR12) 2012; 370 D.Y. Kolotkov (2196_CR26) 2022; 9 D. Banerjee (2196_CR4) 2016 R. Lionello (2196_CR36) 2013; 773 T. Wang (2196_CR60) 2019; 886 M. Carbonell (2196_CR6) 2004; 415 K.P. Dere (2196_CR14) 1997; 125 E.R. Priest (2196_CR47) 1998; 393 D.Y. Kolotkov (2196_CR28) 2023; 5 S. Krishna Prasad (2196_CR31) 2011; 528 D. Zavershinskii (2196_CR67) 2021; 296 B.B. Mikhalyaev (2196_CR38) 2013; 47 D.Y. Kolotkov (2196_CR30) 2021; 63 L.J. Spitzer (2196_CR52) 1962 S.A. Belov (2196_CR5) 2021; 296 S.B. Derteev (2196_CR16) 2023; 5 J.A. Klimchuk (2196_CR24) 2015; 373 J. Hermans (2196_CR21) 2021; 635 T. Wang (2196_CR59) 2007; 656 I. De Moortel (2196_CR11) 2004; 415 E.N. Parker (2196_CR44) 1953; 117 E. Landi (2196_CR35) 1999; 135 I. De Moortel (2196_CR10) 2003; 408 I. De Moortel (2196_CR8) 2009; 149 U. Narain (2196_CR41) 1996; 75 D. Banerjee (2196_CR3) 2011; 158 S. Krishna Prasad (2196_CR33) 2021; 914 T. Wang (2196_CR61) 2015; 811 N.B. Orange (2196_CR43) 2015; 810 S. Kumar (2196_CR34) 2016; 824 V.M. Nakariakov (2196_CR39) 2020; 58 T. Wang (2196_CR63) 2021; 217 N. Claes (2196_CR7) 2019; 624 |
References_xml | – volume: 820 year: 2016 ident: CR37 article-title: Forward modeling of propagating slow waves in coronal loops and their frequency-dependent damping publication-title: Astrophys. J. doi: 10.3847/0004-637X/820/1/13 – volume: 635 year: 2021 ident: CR21 article-title: Effect of optically thin cooling curves on condensation formation: case study using thermal instability publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202140665 – volume: 8 year: 2007 ident: CR19 article-title: Heating of the solar and stellar coronae: a review publication-title: Astron. Nachr. doi: 10.1002/asna.200710803 – volume: 26 year: 2019 ident: CR66 article-title: Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance publication-title: Phys. Plasmas doi: 10.1063/1.5115224 – volume: 909 year: 2021 ident: CR13 article-title: CHIANTI – an atomic database for emission lines. XVI. Version 10, further extensions publication-title: Astrophys. J. doi: 10.3847/1538-4357/abd8ce – volume: 528 year: 2011 ident: CR31 article-title: Propagating intensity disturbances in polar corona as seen from AIA/SDO publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201016405 – volume: 580 year: 2002 ident: CR42 article-title: Hot coronal loop oscillations observed by SUMER: slow magnetosonic wave damping by thermal conduction publication-title: Astrophys. J. doi: 10.1086/345548 – volume: 686 year: 2008 ident: CR2 article-title: The effect of radiative cooling on coronal loop oscillations publication-title: Astrophys. J. doi: 10.1086/592963 – volume: 874 year: 2019 ident: CR40 article-title: Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ab0c9f – volume: 158 year: 2011 ident: CR57 article-title: Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology publication-title: Space Sci. Rev. doi: 10.1007/s11214-010-9716-1 – volume: 142 year: 1965 ident: CR20 article-title: Thermal instability publication-title: Astrophys. J. doi: 10.1086/148317 – volume: 646 year: 2021 ident: CR17 article-title: The effect of the magnetic field on the damping of slow waves in the solar corona publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202039791 – volume: 125 year: 1997 ident: CR14 article-title: CHIANTI – an atomic database for emission lines publication-title: Astron. Astrophys. Suppl. Ser. doi: 10.1051/aas:1997368 – volume: 5 year: 2023 ident: CR28 article-title: Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance publication-title: Physics doi: 10.3390/physics5010015 – volume: 393 year: 1998 ident: CR47 article-title: Nature of the heating mechanism for the diffuse solar corona publication-title: Nature doi: 10.1038/31166 – volume: 217 year: 2021 ident: CR63 article-title: Slow-mode magnetoacoustic waves in coronal loops publication-title: Space Sci. Rev. doi: 10.1007/s11214-021-00811-0 – volume: 158 year: 2011 ident: CR3 article-title: Propagating MHD waves in coronal holes publication-title: Space Sci. Rev. doi: 10.1007/s11214-010-9698-z – volume: 711 year: 2010 ident: CR64 article-title: Evidence for steady heating: observations of an active region core with Hinode and TRACE publication-title: Astrophys. J. doi: 10.1088/0004-637X/711/1/228 – volume: 886 year: 2019 ident: CR60 article-title: Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: numerical parametric study of a 1D loop model publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab478f – volume: 370 year: 2012 ident: CR12 article-title: Magnetohydrodynamic waves and coronal seismology: an overview of recent results publication-title: Phil. Trans. Roy. Soc. A doi: 10.1098/rsta.2011.0640 – volume: 296 year: 2021 ident: CR5 article-title: Dispersion of slow magnetoacoustic waves in the active region fan loops introduced by thermal misbalance publication-title: Solar Phys. doi: 10.1007/s11207-021-01868-4 – volume: 75 year: 1996 ident: CR41 article-title: Chromosperic and coronal heating mechanisms. II publication-title: Space Sci. Rev. doi: 10.1007/BF00833341 – volume: 824 year: 2016 ident: CR34 article-title: Effect of a radiation cooling and heating function on standing longitudinal oscillations in coronal loops publication-title: Astrophys. J. doi: 10.3847/0004-637X/824/1/8 – volume: 626 year: 2019 ident: CR29 article-title: Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201936072 – volume: 481 year: 2008 ident: CR53 article-title: Intensity oscillations observed with Hinode near the south pole of the Sun: leakage of low frequency magneto-acoustic waves into the solar corona publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20079328 – volume: 5 year: 2023 ident: CR16 article-title: Damping and dispersion of non-adiabatic acoustic waves in a high-temperature plasma: a radiative-loss function publication-title: Physics doi: 10.3390/physics5010017 – volume: 297 year: 2022 ident: CR23 article-title: The effect of thermal misbalance on slow magnetoacoustic waves in a partially ionized prominence-like plasma publication-title: Solar Phys. doi: 10.1007/s11207-022-02071-9 – volume: 220 year: 1978 ident: CR49 article-title: Dynamics of the quiescent solar corona publication-title: Astrophys. J. doi: 10.1086/155949 – volume: 9 year: 2022 ident: CR26 article-title: Coronal seismology by slow waves in non-adiabatic conditions publication-title: Front. Astron. Space Sci. doi: 10.3389/fspas.2022.1073664 – volume: 117 year: 1953 ident: CR44 article-title: Instability of thermal fields publication-title: Astrophys. J. doi: 10.1086/145707 – volume: 296 year: 2021 ident: CR45 article-title: Role of compressive viscosity and thermal conductivity on the damping of slow Waves in coronal loops with and without heating–cooling imbalance publication-title: Solar Phys. doi: 10.1007/s11207-021-01764-x – volume: 135 year: 1999 ident: CR35 article-title: CHIANTI – an atomic database for emission lines III. Continuum radiation and extension of the ion database publication-title: Astron. Astrophys. Suppl. Ser. doi: 10.1051/aas:1999449 – volume: 789 year: 2014 ident: CR32 article-title: Frequency-dependent in propagating slow magneto-acoustic waves publication-title: Astrophys. J. doi: 10.1088/0004-637X/789/2/118 – volume: 11 year: 2014 ident: CR48 article-title: Coronal loops: observations and modeling of confined plasma publication-title: Living Rev. Solar Phys. doi: 10.12942/lrsp-2014-4 – start-page: 170 year: 1962 ident: CR52 publication-title: Physics of Fully Ionized Gases – volume: 47 year: 2013 ident: CR38 article-title: Radiation effects on the MHD wave behavior in the solar corona publication-title: Solar Syst. Res. doi: 10.1134/S0038094612060056 – volume: 373 year: 2015 ident: CR9 article-title: Recent advances in coronal heating publication-title: Phil. Trans. R. Acad. Sci. A doi: 10.1098/rsta.2014.0269 – volume: 529 year: 2011 ident: CR18 article-title: The bound-bound and free-free radiative losses for the nonthermal distributions in solar and stellar coronae publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201016329 – volume: 132 year: 1960 ident: CR65 article-title: Heating of stellar chromospheres by shock waves publication-title: Astrophys. J. doi: 10.1086/146942 – volume: 644 year: 2020 ident: CR27 article-title: Seismological constraints on the solar coronal heating function publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202039095 – volume: 810 year: 2015 ident: CR43 article-title: Observations of an energetically isolated quiet Sun transient: evidence of quasi-steady coronal heating publication-title: Astrophys. J. doi: 10.1088/0004-637X/810/2/98 – volume: 828 year: 2016 ident: CR56 article-title: Signatures of steady heating in time lag analysis of coronal emission publication-title: Astrophys. J. doi: 10.3847/0004-637X/828/2/76 – volume: 296 year: 2021 ident: CR67 article-title: Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance publication-title: Solar Phys. doi: 10.1007/s11207-021-01841-1 – volume: 35 year: 1974 ident: CR22 article-title: The formation of solar quiescent prominences by condensation publication-title: Solar Phys. doi: 10.1007/BF001569625 – volume: 656 year: 2007 ident: CR59 article-title: Determination of the coronal magnetic field from hot-loop oscillations observed by SUMER and SXT publication-title: Astrophys. J. doi: 10.1086/510424 – start-page: 576 year: 2014 ident: CR46 publication-title: Magnetohydrodynamics of the Sun doi: 10.1017/CBO9781139020732 – volume: 6 year: 1980 ident: CR51 article-title: Thermal instability of a current sheet as the origin of the cool coronal loops publication-title: Sov. Astron. Lett. – start-page: 395 year: 2016 ident: CR58 article-title: Waves in solar coronal loops publication-title: Low-Frequency Waves in Space Plasmas doi: 10.1002/9781119055006.ch23 – volume: 624 year: 2019 ident: CR7 article-title: Thermal stability of magnetohydrodynamic modes in homogeneous plasmas publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201834699 – volume: 731 year: 2011 ident: CR50 article-title: The thermal instability of solar prominence threads publication-title: Astrophys. J. doi: 10.1088/0004-637X/731/1/39 – volume: 773 year: 2013 ident: CR36 article-title: Thermal non-equilibrium revisited: a heating model for coronal loops publication-title: Astrophys. J. doi: 10.1007/10.1088/0004-637X/773/2/134 – volume: 740 year: 2011 ident: CR55 article-title: Emissiom measure distribution and heating of two active region cores publication-title: Astrophys. J. doi: 10.1088/0004-637X/740/2/111 – volume: 62 year: 2020 ident: CR1 article-title: Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ab5406 – volume: 408 year: 2003 ident: CR10 article-title: The damping of slow MHD waves in solar coronal magnetic fields publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20030984 – volume: 149 year: 2009 ident: CR54 article-title: Heating diagnostics with MHD waves publication-title: Space Sci. Rev. doi: 10.1007/s11214-009-9506-9 – volume: 682 year: 2008 ident: CR25 article-title: Highly efficient modeling of dynamic coronal loops publication-title: Astrophys. J. doi: 10.1007/s11207-006-0055-z – volume: 415 year: 2004 ident: CR11 article-title: The damping of slow MHD waves in solar coronal magnetic fields II. The effect of gravitational stratification and field line divergence publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20034233 – volume: 914 year: 2021 ident: CR33 article-title: Compressive oscillations in hot coronal loops: are sloshing oscillations and standing slow waves independent? publication-title: Astron. Astrophys. doi: 10.3847/1538-4357/abfb01 – volume: 415 year: 2004 ident: CR6 article-title: Time damping of linear non-adiabatic magnetohydrodynamic waves in an unbounded plasma with solar coronal properties publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20034630 – volume: 149 year: 2009 ident: CR8 article-title: Longitudinal waves in coronal loops publication-title: Space Sci. Rev. doi: 10.1007/s11214-009-9526-5 – volume: 811 year: 2015 ident: CR61 article-title: Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves publication-title: Astrophys. J. Lett. doi: 10.1088/2041-8205/811/1/L13 – volume: 498 year: 2009 ident: CR15 article-title: CHIANTI – an atomic database for emission lines IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/200911712 – start-page: 419 year: 2016 ident: CR4 article-title: MHD waves in coronal holes publication-title: Low-Frequency Waves in Space Plasmas doi: 10.1002/9781119055006.ch24 – volume: 58 year: 2020 ident: CR39 article-title: Magnetohydrodynamic waves in the solar corona publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev-astro-032320-042940 – volume: 63 year: 2021 ident: CR30 article-title: The solar corona as an active medium for magnetoacoustic waves publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac36a5 – volume: 860 year: 2018 ident: CR62 article-title: Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops publication-title: Astrophys. J. doi: 10.3847/1538-4357/aac38a – volume: 373 year: 2015 ident: CR24 article-title: Key aspects of coronal heating publication-title: Phil. Trans. R. Acad. Sci. A doi: 10.1098/rsta.2014.0256 – volume: 789 year: 2014 ident: 2196_CR32 publication-title: Astrophys. J. doi: 10.1088/0004-637X/789/2/118 – volume: 914 year: 2021 ident: 2196_CR33 publication-title: Astron. Astrophys. doi: 10.3847/1538-4357/abfb01 – volume: 711 year: 2010 ident: 2196_CR64 publication-title: Astrophys. J. doi: 10.1088/0004-637X/711/1/228 – start-page: 419 volume-title: Low-Frequency Waves in Space Plasmas year: 2016 ident: 2196_CR4 doi: 10.1002/9781119055006.ch24 – start-page: 170 volume-title: Physics of Fully Ionized Gases year: 1962 ident: 2196_CR52 – volume: 62 year: 2020 ident: 2196_CR1 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ab5406 – volume: 415 year: 2004 ident: 2196_CR6 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20034630 – volume: 11 year: 2014 ident: 2196_CR48 publication-title: Living Rev. Solar Phys. doi: 10.12942/lrsp-2014-4 – volume: 370 year: 2012 ident: 2196_CR12 publication-title: Phil. Trans. Roy. Soc. A doi: 10.1098/rsta.2011.0640 – volume: 117 year: 1953 ident: 2196_CR44 publication-title: Astrophys. J. doi: 10.1086/145707 – volume: 125 year: 1997 ident: 2196_CR14 publication-title: Astron. Astrophys. Suppl. Ser. doi: 10.1051/aas:1997368 – volume: 8 year: 2007 ident: 2196_CR19 publication-title: Astron. Nachr. doi: 10.1002/asna.200710803 – volume: 296 year: 2021 ident: 2196_CR67 publication-title: Solar Phys. doi: 10.1007/s11207-021-01841-1 – volume: 142 year: 1965 ident: 2196_CR20 publication-title: Astrophys. J. doi: 10.1086/148317 – volume: 6 year: 1980 ident: 2196_CR51 publication-title: Sov. Astron. Lett. – volume: 35 year: 1974 ident: 2196_CR22 publication-title: Solar Phys. doi: 10.1007/BF001569625 – volume: 75 year: 1996 ident: 2196_CR41 publication-title: Space Sci. Rev. doi: 10.1007/BF00833341 – volume: 158 year: 2011 ident: 2196_CR3 publication-title: Space Sci. Rev. doi: 10.1007/s11214-010-9698-z – volume: 373 year: 2015 ident: 2196_CR9 publication-title: Phil. Trans. R. Acad. Sci. A doi: 10.1098/rsta.2014.0269 – volume: 624 year: 2019 ident: 2196_CR7 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201834699 – volume: 393 year: 1998 ident: 2196_CR47 publication-title: Nature doi: 10.1038/31166 – volume: 731 year: 2011 ident: 2196_CR50 publication-title: Astrophys. J. doi: 10.1088/0004-637X/731/1/39 – volume: 528 year: 2011 ident: 2196_CR31 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201016405 – volume: 635 year: 2021 ident: 2196_CR21 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202140665 – volume: 580 year: 2002 ident: 2196_CR42 publication-title: Astrophys. J. doi: 10.1086/345548 – volume: 529 year: 2011 ident: 2196_CR18 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201016329 – volume: 481 year: 2008 ident: 2196_CR53 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20079328 – volume: 682 year: 2008 ident: 2196_CR25 publication-title: Astrophys. J. doi: 10.1007/s11207-006-0055-z – volume: 810 year: 2015 ident: 2196_CR43 publication-title: Astrophys. J. doi: 10.1088/0004-637X/810/2/98 – volume: 860 year: 2018 ident: 2196_CR62 publication-title: Astrophys. J. doi: 10.3847/1538-4357/aac38a – volume: 415 year: 2004 ident: 2196_CR11 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20034233 – volume: 646 year: 2021 ident: 2196_CR17 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202039791 – volume: 26 year: 2019 ident: 2196_CR66 publication-title: Phys. Plasmas doi: 10.1063/1.5115224 – volume: 686 year: 2008 ident: 2196_CR2 publication-title: Astrophys. J. doi: 10.1086/592963 – volume: 217 year: 2021 ident: 2196_CR63 publication-title: Space Sci. Rev. doi: 10.1007/s11214-021-00811-0 – volume: 909 year: 2021 ident: 2196_CR13 publication-title: Astrophys. J. doi: 10.3847/1538-4357/abd8ce – volume: 47 year: 2013 ident: 2196_CR38 publication-title: Solar Syst. Res. doi: 10.1134/S0038094612060056 – volume: 828 year: 2016 ident: 2196_CR56 publication-title: Astrophys. J. doi: 10.3847/0004-637X/828/2/76 – volume: 135 year: 1999 ident: 2196_CR35 publication-title: Astron. Astrophys. Suppl. Ser. doi: 10.1051/aas:1999449 – volume: 373 year: 2015 ident: 2196_CR24 publication-title: Phil. Trans. R. Acad. Sci. A doi: 10.1098/rsta.2014.0256 – volume: 408 year: 2003 ident: 2196_CR10 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20030984 – volume: 5 year: 2023 ident: 2196_CR16 publication-title: Physics doi: 10.3390/physics5010017 – volume: 886 year: 2019 ident: 2196_CR60 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab478f – start-page: 576 volume-title: Magnetohydrodynamics of the Sun year: 2014 ident: 2196_CR46 doi: 10.1017/CBO9781139020732 – volume: 296 year: 2021 ident: 2196_CR5 publication-title: Solar Phys. doi: 10.1007/s11207-021-01868-4 – volume: 149 year: 2009 ident: 2196_CR8 publication-title: Space Sci. Rev. doi: 10.1007/s11214-009-9526-5 – volume: 296 year: 2021 ident: 2196_CR45 publication-title: Solar Phys. doi: 10.1007/s11207-021-01764-x – volume: 644 year: 2020 ident: 2196_CR27 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202039095 – volume: 626 year: 2019 ident: 2196_CR29 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201936072 – volume: 820 year: 2016 ident: 2196_CR37 publication-title: Astrophys. J. doi: 10.3847/0004-637X/820/1/13 – start-page: 395 volume-title: Low-Frequency Waves in Space Plasmas year: 2016 ident: 2196_CR58 doi: 10.1002/9781119055006.ch23 – volume: 9 year: 2022 ident: 2196_CR26 publication-title: Front. Astron. Space Sci. doi: 10.3389/fspas.2022.1073664 – volume: 149 year: 2009 ident: 2196_CR54 publication-title: Space Sci. Rev. doi: 10.1007/s11214-009-9506-9 – volume: 63 year: 2021 ident: 2196_CR30 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac36a5 – volume: 874 year: 2019 ident: 2196_CR40 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ab0c9f – volume: 58 year: 2020 ident: 2196_CR39 publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev-astro-032320-042940 – volume: 811 year: 2015 ident: 2196_CR61 publication-title: Astrophys. J. Lett. doi: 10.1088/2041-8205/811/1/L13 – volume: 158 year: 2011 ident: 2196_CR57 publication-title: Space Sci. Rev. doi: 10.1007/s11214-010-9716-1 – volume: 824 year: 2016 ident: 2196_CR34 publication-title: Astrophys. J. doi: 10.3847/0004-637X/824/1/8 – volume: 297 year: 2022 ident: 2196_CR23 publication-title: Solar Phys. doi: 10.1007/s11207-022-02071-9 – volume: 773 year: 2013 ident: 2196_CR36 publication-title: Astrophys. J. doi: 10.1007/10.1088/0004-637X/773/2/134 – volume: 5 year: 2023 ident: 2196_CR28 publication-title: Physics doi: 10.3390/physics5010015 – volume: 132 year: 1960 ident: 2196_CR65 publication-title: Astrophys. J. doi: 10.1086/146942 – volume: 740 year: 2011 ident: 2196_CR55 publication-title: Astrophys. J. doi: 10.1088/0004-637X/740/2/111 – volume: 220 year: 1978 ident: 2196_CR49 publication-title: Astrophys. J. doi: 10.1086/155949 – volume: 498 year: 2009 ident: 2196_CR15 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/200911712 – volume: 656 year: 2007 ident: 2196_CR59 publication-title: Astrophys. J. doi: 10.1086/510424 |
SSID | ssj0010075 |
Score | 2.403189 |
Snippet | In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102 |
SubjectTerms | Acoustic properties Acoustic waves Acoustics Astrophysics and Astroparticles Atmospheric Sciences Compression waves Conduction cooling Conduction heating Cooling Cooling effects Corona Coronal temperatures Damping Data compression Heat conductivity Heat transfer Heating Heating and cooling High temperature High temperature plasmas Interpolation Intervals Longitudinal waves Perturbation Physics Physics and Astronomy Plasma Plasma density Radiation Radiative cooling Solar corona Solar physics Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Temperature Thermal conductivity Thermal instability Wave propagation Wavelengths |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD5RiIkvXlADiqYPxhctGR27PRIFRKPhASI-Le3aJUYZxoEJ_np7dmGRqAlvzdo1a0-7fuf2FeDcFsy1lGNSqY9zraBwSYVwFZWhGyJlkfIEenQfHu3bUetubI2zpLA4j3bPXZLJn7pIdmsyNKsx9DvqdUOtTShbqKCUoNzuPd93lt4DIyXYRa8X1Rq7myXL_N7LzwOpQJkrjtHkvOnuwij_0jTM5LUxn4lG8LVC4rjuUPZgJwOgpJ2umH3YUFEFqu0YTeLTyYJckKScWjziCmwN0tIB9NrBNLn7izzxTxWTl4hwgnEidKg0-E7JmclAw_EJJ_1-g9zwCWZjER5JgkEJKSX44hBG3c7w-pZm9zDQQG_QGfWUYo5scW5I6QTCZiFy0mvcJ6QpHWHK0LQ1zFEae4lQ6x_SCxjygskAFRaXm0dQiqaRqgLR8I5bVmg6AhPshMlNh7uh6zFHP2RC1qCZC8MPMpJyvCvjzS_olXHufD13fjJ3vlWDy-U77ylFx7-t67mM_Wy7xj5zbQOZDw1dfZWLrKj-u7fj9ZqfwDZLpI4xanUozT7m6lSDmpk4y9bwN_QJ6SA priority: 102 providerName: Springer Nature |
Title | Acoustic Waves in a High-Temperature Plasma II. Damping and Instability |
URI | https://link.springer.com/article/10.1007/s11207-023-02196-5 https://www.proquest.com/docview/2860447505 |
Volume | 298 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-093X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0010075 issn: 0038-0938 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-093X dateEnd: 20240930 omitProxy: false ssIdentifier: ssj0010075 issn: 0038-0938 databaseCode: ADMLS dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-093X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010075 issn: 0038-0938 databaseCode: AFBBN dateStart: 19670101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-093X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0010075 issn: 0038-0938 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-093X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0010075 issn: 0038-0938 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-093X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010075 issn: 0038-0938 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-093X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010075 issn: 0038-0938 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFH64IHgRrYp1IwfxotE209lOMrWLC5YiLdbTkEwyINhpdargv_e9WSwK9pQwmZnDy0vy5S3fAzhxlPBs41pc43GOFxSpuVKe4Tr2YqIsMr4ij-5Dz7kZNu5G9qgwuKVFWGW5J2YbtZ5EZCO_FJ5TI3K6mn01feNUNYq8q0UJjWVYrQvUJMoU73R_vAi1nGiXvF8cb-5ekTSTp87VBRnpBHkxUQu5_ftgmqPNPw7S7NzpbMJGARhZkM_wFiyZpAJ7QUom7Mn4i52yrJ9bKNIKrPXz3jZ0g2iS1epiT_LTpOwlYZJRXAcfGATLOZky6yN8Hkt2e3vBWnJM2VNMJppREEFO4f21A8NOe3B9w4u6CTzCBTXjvjHC1Q0pa1q7kXJETBzyiNOUtrSrLB1bDsISg1hJxXhf0H4kiMdLR3TB8KS1CyvJJDF7wBCOSduOLVdRQpyypOVKL_Z84eJDoXQV6qXQwqggFafaFq_hnA6ZBB2ioMNM0KFdhbOfb6Y5pcbCtw_LuQiL5ZWGc2Wownk5P_Ph__-2v_hvB7AuMpWgGLJDWJm9f5gjBB0zdZxp1jGsBs1Ws0Nt9_m-jW2z3es_4uhQBN8lg9TU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1REGovVYEitqXgQ-EChmBvEueA0Aq67PIlDovKLdixI1XqZmmzLdo_xW9kJk5YgQQ3blE-fBi_eJ49M28AvkdGqNDFklt057hB0ZYboxy3ucpJssglhiK65xdR76p9ch1ez8B9UwtDaZXNmlgt1HaU0Rn5rlBRQOJ0QXhw-4dT1yiKrjYtNDwsTt3kDrds5X7_COd3Q4juj8Fhj9ddBXiGcBvzxDkR27bWgbVxZiKRk8I6shhjpY2NtLmM0Gk7ZBImRzZtk0yQypXNiH4rLXHcdzDXllKSVr_qHj9GLQIv7EvRNh4kUtVFOr5Ub0_QoaCgqCminodPHeGU3T4LyFZ-rvsJPtYElXU8ohZgxhWLsNIp6ch8NJywTVZd-xORchHmL_3VEhx3slHVG4z91P9dyX4VTDPKI-EDh-TcizezS6TrQ836_R12pIdUrcV0YRklLXjJ8MlnuHoTiy7DbDEq3AowpH86DHMZGyrAM1LLWKtcJSLGm8LYFuw1RkuzWsScemn8Tqfyy2ToFA2dVoZOwxZsPX5z6yU8Xn17tZmLtP6dy3QKvhZsN_MzffzyaF9eH20d3vcG52fpWf_i9Ct8EBU8KH9tFWbHf_-5b0h4xmatQhmDm7eG9QOHsQwM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4Uo_FiFDWgqD0YL1pduuzruBERfBAOELlt2m03MZGFuKsJ_96ZfYAaNfHWbLs9TNvMN69vCDm1JXct7ZhMgToHA0UoJqWrmYrcCCmLtCcxovvYt7uj1t3YGn-q4s-y3cuQZF7TgCxNcXo1U9HVsvCtydHFxjEGCXeIWatkrQW6Gs2vEfcXcQQjp9rF-BcD290tymZ-3uOralrizW8h0kzzdLbJVgEZqZ-f8Q5Z0XGV1PwEndjTyZye0Wyc-yiSKlkf5KNdcuuH06xbF30S7zqhzzEVFDM72FADXM7plOkAAPRE0F7vkrbFBOunqIgVxTSCnMR7vkdGnZvhdZcVnRNYCE8qZZ7W3FEtIQylnFDaPEIWeUBqUpnKkaaKTBuAiQa0JCOwGJQXcmTyUiGaGK4w90klnsa6RigAMmFZkelILImTpjAd4Uauxx34yKWqk2YptCAsaMWxu8VLsCRERkEHIOggE3Rg1cn54p9ZTqrx5-pGeRZB8cCSgLu2gVyFBkxflOeznP59t4P_LT8hG4N2J3jo9e8PySbPbgsmmDVIJX1900eASFJ5nF26D3Go014 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acoustic+Waves+in+a+High-Temperature+Plasma+II.+Damping+and+Instability&rft.jtitle=Solar+physics&rft.au=Mikhalyaev%2C+B.+B&rft.au=Derteev%2C+S.+B&rft.au=Shividov%2C+N.+K&rft.au=Sapraliev%2C+M.+E&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0038-0938&rft.eissn=1573-093X&rft.volume=298&rft.issue=9&rft.spage=102&rft_id=info:doi/10.1007%2Fs11207-023-02196-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0938&client=summon |