Acoustic Waves in a High-Temperature Plasma II. Damping and Instability

In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of the plasma has a well-defined description. We consider a constant heating function supposing that the heating processes are generally establ...

Full description

Saved in:
Bibliographic Details
Published inSolar physics Vol. 298; no. 9; p. 102
Main Authors Mikhalyaev, B. B., Derteev, S. B., Shividov, N. K., Sapraliev, M. E., Bembitov, D. B.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0038-0938
1573-093X
DOI10.1007/s11207-023-02196-5

Cover

Abstract In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of the plasma has a well-defined description. We consider a constant heating function supposing that the heating processes are generally established. For the radiative-loss function, a number of values are taken, which have been found using the CHIANTI code. On their basis, an analytical expression of the function in the form of a cubic interpolation has been worked out. We analyze the dispersion relation for linear acoustic waves. The heating and cooling function, introduced along with the classical expression of the thermal conductivity, allows us to obtain some specific results about their properties. In other words, a model of non-adiabatic acoustic waves with field-aligned thermal conduction, CHIANTI-based radiative cooling and constant heating function is constructed. Using the available observational data on compression waves, we can set the problem of finding the parameters of the coronal plasma. The model allows to specify the temperature range at which the thermal instability of waves is possible and to draw some conclusions about their damping. The coronal temperatures considered can be divided into intervals from 0.5 to 0.98 MK and from 4.57 to 8.38 MK, where the radiation function increases, and intervals from 0.98 to 4.57 MK and from 8.38 to 10 MK, where the radiation function decreases. With constant heating, at large wavelengths, acoustic waves can be unstable in the decreasing interval from 1.38 to 3.15 MK. In the increasing intervals, they may have a zero real part of the oscillation frequency and thus become non-propagating, also subject to a large wavelength. In some cases, the plasma density has a significant effect on the damping of acoustic oscillations due to heating and cooling. A change in density within the same order can lead to the fact that the heating and cooling effects prevail over the effect of thermal conductivity on long-wave perturbations.
AbstractList In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of the plasma has a well-defined description. We consider a constant heating function supposing that the heating processes are generally established. For the radiative-loss function, a number of values are taken, which have been found using the CHIANTI code. On their basis, an analytical expression of the function in the form of a cubic interpolation has been worked out. We analyze the dispersion relation for linear acoustic waves. The heating and cooling function, introduced along with the classical expression of the thermal conductivity, allows us to obtain some specific results about their properties. In other words, a model of non-adiabatic acoustic waves with field-aligned thermal conduction, CHIANTI-based radiative cooling and constant heating function is constructed. Using the available observational data on compression waves, we can set the problem of finding the parameters of the coronal plasma. The model allows to specify the temperature range at which the thermal instability of waves is possible and to draw some conclusions about their damping. The coronal temperatures considered can be divided into intervals from 0.5 to 0.98 MK and from 4.57 to 8.38 MK, where the radiation function increases, and intervals from 0.98 to 4.57 MK and from 8.38 to 10 MK, where the radiation function decreases. With constant heating, at large wavelengths, acoustic waves can be unstable in the decreasing interval from 1.38 to 3.15 MK. In the increasing intervals, they may have a zero real part of the oscillation frequency and thus become non-propagating, also subject to a large wavelength. In some cases, the plasma density has a significant effect on the damping of acoustic oscillations due to heating and cooling. A change in density within the same order can lead to the fact that the heating and cooling effects prevail over the effect of thermal conductivity on long-wave perturbations.
In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of the plasma has a well-defined description. We consider a constant heating function supposing that the heating processes are generally established. For the radiative-loss function, a number of values are taken, which have been found using the CHIANTI code. On their basis, an analytical expression of the function in the form of a cubic interpolation has been worked out. We analyze the dispersion relation for linear acoustic waves. The heating and cooling function, introduced along with the classical expression of the thermal conductivity, allows us to obtain some specific results about their properties. In other words, a model of non-adiabatic acoustic waves with field-aligned thermal conduction, CHIANTI-based radiative cooling and constant heating function is constructed. Using the available observational data on compression waves, we can set the problem of finding the parameters of the coronal plasma. The model allows to specify the temperature range at which the thermal instability of waves is possible and to draw some conclusions about their damping. The coronal temperatures considered can be divided into intervals from 0.5 to 0.98 MK and from 4.57 to 8.38 MK, where the radiation function increases, and intervals from 0.98 to 4.57 MK and from 8.38 to 10 MK, where the radiation function decreases. With constant heating, at large wavelengths, acoustic waves can be unstable in the decreasing interval from 1.38 to 3.15 MK. In the increasing intervals, they may have a zero real part of the oscillation frequency and thus become non-propagating, also subject to a large wavelength. In some cases, the plasma density has a significant effect on the damping of acoustic oscillations due to heating and cooling. A change in density within the same order can lead to the fact that the heating and cooling effects prevail over the effect of thermal conductivity on long-wave perturbations.
ArticleNumber 102
Author Mikhalyaev, B. B.
Derteev, S. B.
Shividov, N. K.
Bembitov, D. B.
Sapraliev, M. E.
Author_xml – sequence: 1
  givenname: B. B.
  surname: Mikhalyaev
  fullname: Mikhalyaev, B. B.
  email: bbmikh@mail.ru
  organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov
– sequence: 2
  givenname: S. B.
  surname: Derteev
  fullname: Derteev, S. B.
  organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov
– sequence: 3
  givenname: N. K.
  surname: Shividov
  fullname: Shividov, N. K.
  organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov
– sequence: 4
  givenname: M. E.
  surname: Sapraliev
  fullname: Sapraliev, M. E.
  organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov
– sequence: 5
  givenname: D. B.
  surname: Bembitov
  fullname: Bembitov, D. B.
  organization: Department of Theoretical Physics, Kalmyk State University named after B.B. Gorodovikov
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz1vzsdmPY6naLhT0UNFbyCbZmrKbrUlW6L931xUEDz0MMwPzzDvzzsDEtlYDcIvRAiOU3nuMCUojRGgfOE8idgGmmKV9m9P3CZgiRLOhzq7AzPsDQgPGpmC9lG3ng5HwTXxpD42FAm7M_iPa6eaonQid0_ClFr4RsCgW8EE0R2P3UFgFC-uDKE1twukaXFai9vrmN8_B69PjbrWJts_rYrXcRpLiPES51iRVsRBIqVSWCaniJIkpSUpFVVpSVdEkz6lmOC6rlGUqlwThDCmJCGOZoHNwN-49uvaz0z7wQ9s520tykiUojlOGWD9FxinpWu-drvjRmUa4E8eID5_z0TDeG8Z_DOMDlP2DpAkimNYGJ0x9HqUj6nsdu9fu76oz1DeRXYAM
CitedBy_id crossref_primary_10_1007_s11207_024_02381_0
Cites_doi 10.3847/0004-637X/820/1/13
10.1051/0004-6361/202140665
10.1002/asna.200710803
10.1063/1.5115224
10.3847/1538-4357/abd8ce
10.1051/0004-6361/201016405
10.1086/345548
10.1086/592963
10.3847/2041-8213/ab0c9f
10.1007/s11214-010-9716-1
10.1086/148317
10.1051/0004-6361/202039791
10.1051/aas:1997368
10.3390/physics5010015
10.1038/31166
10.1007/s11214-021-00811-0
10.1007/s11214-010-9698-z
10.1088/0004-637X/711/1/228
10.3847/1538-4357/ab478f
10.1098/rsta.2011.0640
10.1007/s11207-021-01868-4
10.1007/BF00833341
10.3847/0004-637X/824/1/8
10.1051/0004-6361/201936072
10.1051/0004-6361:20079328
10.3390/physics5010017
10.1007/s11207-022-02071-9
10.1086/155949
10.3389/fspas.2022.1073664
10.1086/145707
10.1007/s11207-021-01764-x
10.1051/aas:1999449
10.1088/0004-637X/789/2/118
10.12942/lrsp-2014-4
10.1134/S0038094612060056
10.1098/rsta.2014.0269
10.1051/0004-6361/201016329
10.1086/146942
10.1051/0004-6361/202039095
10.1088/0004-637X/810/2/98
10.3847/0004-637X/828/2/76
10.1007/s11207-021-01841-1
10.1007/BF001569625
10.1086/510424
10.1017/CBO9781139020732
10.1002/9781119055006.ch23
10.1051/0004-6361/201834699
10.1088/0004-637X/731/1/39
10.1007/10.1088/0004-637X/773/2/134
10.1088/0004-637X/740/2/111
10.1088/1361-6587/ab5406
10.1051/0004-6361:20030984
10.1007/s11214-009-9506-9
10.1007/s11207-006-0055-z
10.1051/0004-6361:20034233
10.3847/1538-4357/abfb01
10.1051/0004-6361:20034630
10.1007/s11214-009-9526-5
10.1088/2041-8205/811/1/L13
10.1051/0004-6361/200911712
10.1002/9781119055006.ch24
10.1146/annurev-astro-032320-042940
10.1088/1361-6587/ac36a5
10.3847/1538-4357/aac38a
10.1098/rsta.2014.0256
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7TG
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
KL.
L7M
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11207-023-02196-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Science Database (via ProQuest SciTech Premium Collection)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1573-093X
ExternalDocumentID 10_1007_s11207_023_02196_5
GrantInformation_xml – fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: 075-03-2022-119/1; 075-03-2022-119/1; 075-03-2022-119/1; 075-03-2022-119/1; 075-03-2022-119/1
  funderid: http://dx.doi.org/10.13039/501100012190
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAK
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OK1
OVD
P19
P62
P9T
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNP
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7Y
Z7Z
Z8M
Z8S
Z8T
ZMTXR
~02
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
7XB
8FD
8FK
ABRTQ
H8D
KL.
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-9ee27d4aa0dd7cb62f4664326bd3d7b3df36993e514bf758d9c20180dc02558a3
IEDL.DBID 8FG
ISSN 0038-0938
IngestDate Tue Aug 12 09:41:10 EDT 2025
Tue Jul 01 04:31:16 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Fri Feb 21 02:41:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Heating, coronal
Corona
Waves, acoustic
Instabilities
Coronal seismology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9ee27d4aa0dd7cb62f4664326bd3d7b3df36993e514bf758d9c20180dc02558a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2860447505
PQPubID 105618
ParticipantIDs proquest_journals_2860447505
crossref_primary_10_1007_s11207_023_02196_5
crossref_citationtrail_10_1007_s11207_023_02196_5
springer_journals_10_1007_s11207_023_02196_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle A Journal for Solar and Solar-Stellar Research and the Study of Solar-Terrestrial Physics
PublicationTitle Solar physics
PublicationTitleAbbrev Sol Phys
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References De Moortel, Hood (CR10) 2003; 408
Erdélyi, Ballai (CR19) 2007; 8
Kumar, Nakariakov, Moon (CR34) 2016; 824
Hildner (CR22) 1974; 35
Wang, Ofman (CR60) 2019; 886
Del Zanna, Dere, Young, Landi (CR13) 2021; 909
Wang, Ofman, Sun, Solanki, Davila (CR62) 2018; 860
Dere, Landi, Mason, Monsignori Fossi, Young (CR14) 1997; 125
Lionello, Winebarger, Mok, Linker, Mikić (CR36) 2013; 773
Antolin (CR1) 2020; 62
Krishna Prasad, Banerjee, Van Doorsselaere (CR32) 2014; 789
Srivastava, Kuridze, Zaqarashvili, Dwivedi (CR53) 2008; 481
Dere, Landi, Young, Del Zanna, Landini, Mason (CR15) 2009; 498
Banerjee, Krishna Prasad (CR4) 2016
Nakariakov, Kolotkov (CR39) 2020; 58
Priest, Foley, Heyvaerts, Arber, Culhane, Acton (CR47) 1998; 393
Wang, Ofman, Yuan, Reale, Kolotkov, Srivastava (CR63) 2021; 217
Zavershinskii, Kolotkov, Riashchikov, Molevich (CR67) 2021; 296
Wang, Innes, Qiu (CR59) 2007; 656
Warren, Winebarger, Brooks (CR64) 2010; 711
De Moortel (CR8) 2009; 149
Belov, Molevich, Zavershinskii (CR5) 2021; 296
Somov, Syrovatskij (CR51) 1980; 6
Spitzer (CR52) 1962
Viall, Klimchuk (CR56) 2016; 828
De Moortel, Browning (CR9) 2015; 373
Carbonell, Oliver, Ballester (CR6) 2004; 415
Taroyan, Erdélyi (CR54) 2009; 149
Narain, Ulmschneider (CR41) 1996; 75
Aschwanden, Terradas (CR2) 2008; 686
Derteev, Shividov, Bembitov, Mikhalyaev (CR16) 2023; 5
Mikhalyaev, Veselovskii, Khongorova (CR38) 2013; 47
Kolotkov, Nakariakov, Zavershinskii (CR29) 2019; 626
Priest (CR46) 2014
Claes, Keppens (CR7) 2019; 624
Hermans, Keppens (CR21) 2021; 635
Ibanez, Ballester (CR23) 2022; 297
Landi, Landini, Dere, Young, Mason (CR35) 1999; 135
Klimchuk, Patsourakos, Cargill (CR25) 2008; 682
Nakariakov, Kosak, Kolotkov, Anfinogentov, Kumar, Moon (CR40) 2019; 874
Krishna Prasad, Van Doorsselaere (CR33) 2021; 914
Kolotkov, Zavershinskii, Nakariakov (CR30) 2021; 63
Reale (CR48) 2014; 11
Dudík, Dzifčáková, Karlický, Kulinová (CR18) 2011; 529
Field (CR20) 1965; 142
Krishna Prasad, Banerjee, Gupta (CR31) 2011; 528
Rosner, Tucker, Vaiana (CR49) 1978; 220
Wang, Ofman, Sun, Provornikova, Davila (CR61) 2015; 811
Tripathi, Klimchuk, Mason (CR55) 2011; 740
Zavershinskii, Kolotkov, Nakariakov, Molevich, Ryashchikov (CR66) 2019; 26
Parker (CR44) 1953; 117
Banerjee, Gupta, Teriaca (CR3) 2011; 158
Mandal, Magyar, Yuan, Van Doorsselaere, Banerjee (CR37) 2016; 820
Duckenfield, Kolotkov, Nakariakov (CR17) 2021; 646
Ofman, Wang (CR42) 2002; 580
Wang (CR58) 2016
Klimchuk (CR24) 2015; 373
Kolotkov, Duckenfield, Nakariakov (CR27) 2020; 644
Soler, Ballester, Goossens (CR50) 2011; 731
Orange, Chesny, Olusey (CR43) 2015; 810
Prasad, Srivastava, Wang (CR45) 2021; 296
De Moortel, Hood (CR11) 2004; 415
De Moortel, Nakariakov (CR12) 2012; 370
Kolotkov (CR26) 2022; 9
Kolotkov, Nakariakov, Fihosy (CR28) 2023; 5
Weymann (CR65) 1960; 132
Wang (CR57) 2011; 158
R. Erdélyi (2196_CR19) 2007; 8
P. Antolin (2196_CR1) 2020; 62
R. Rosner (2196_CR49) 1978; 220
G.B. Field (2196_CR20) 1965; 142
A. Prasad (2196_CR45) 2021; 296
T. Wang (2196_CR62) 2018; 860
D.Y. Kolotkov (2196_CR29) 2019; 626
V.M. Nakariakov (2196_CR40) 2019; 874
N.M. Viall (2196_CR56) 2016; 828
B.V. Somov (2196_CR51) 1980; 6
J. Dudík (2196_CR18) 2011; 529
G. Del Zanna (2196_CR13) 2021; 909
T. Wang (2196_CR58) 2016
K.P. Dere (2196_CR15) 2009; 498
D. Tripathi (2196_CR55) 2011; 740
M.H. Ibanez (2196_CR23) 2022; 297
T.J. Duckenfield (2196_CR17) 2021; 646
E. Hildner (2196_CR22) 1974; 35
D.I. Zavershinskii (2196_CR66) 2019; 26
S. Krishna Prasad (2196_CR32) 2014; 789
S. Mandal (2196_CR37) 2016; 820
J.A. Klimchuk (2196_CR25) 2008; 682
T. Wang (2196_CR57) 2011; 158
E.R. Priest (2196_CR46) 2014
D.Y. Kolotkov (2196_CR27) 2020; 644
H.P. Warren (2196_CR64) 2010; 711
M.J. Aschwanden (2196_CR2) 2008; 686
I. De Moortel (2196_CR9) 2015; 373
Y. Taroyan (2196_CR54) 2009; 149
A.K. Srivastava (2196_CR53) 2008; 481
F. Reale (2196_CR48) 2014; 11
R. Soler (2196_CR50) 2011; 731
R. Weymann (2196_CR65) 1960; 132
L. Ofman (2196_CR42) 2002; 580
I. De Moortel (2196_CR12) 2012; 370
D.Y. Kolotkov (2196_CR26) 2022; 9
D. Banerjee (2196_CR4) 2016
R. Lionello (2196_CR36) 2013; 773
T. Wang (2196_CR60) 2019; 886
M. Carbonell (2196_CR6) 2004; 415
K.P. Dere (2196_CR14) 1997; 125
E.R. Priest (2196_CR47) 1998; 393
D.Y. Kolotkov (2196_CR28) 2023; 5
S. Krishna Prasad (2196_CR31) 2011; 528
D. Zavershinskii (2196_CR67) 2021; 296
B.B. Mikhalyaev (2196_CR38) 2013; 47
D.Y. Kolotkov (2196_CR30) 2021; 63
L.J. Spitzer (2196_CR52) 1962
S.A. Belov (2196_CR5) 2021; 296
S.B. Derteev (2196_CR16) 2023; 5
J.A. Klimchuk (2196_CR24) 2015; 373
J. Hermans (2196_CR21) 2021; 635
T. Wang (2196_CR59) 2007; 656
I. De Moortel (2196_CR11) 2004; 415
E.N. Parker (2196_CR44) 1953; 117
E. Landi (2196_CR35) 1999; 135
I. De Moortel (2196_CR10) 2003; 408
I. De Moortel (2196_CR8) 2009; 149
U. Narain (2196_CR41) 1996; 75
D. Banerjee (2196_CR3) 2011; 158
S. Krishna Prasad (2196_CR33) 2021; 914
T. Wang (2196_CR61) 2015; 811
N.B. Orange (2196_CR43) 2015; 810
S. Kumar (2196_CR34) 2016; 824
V.M. Nakariakov (2196_CR39) 2020; 58
T. Wang (2196_CR63) 2021; 217
N. Claes (2196_CR7) 2019; 624
References_xml – volume: 820
  year: 2016
  ident: CR37
  article-title: Forward modeling of propagating slow waves in coronal loops and their frequency-dependent damping
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/820/1/13
– volume: 635
  year: 2021
  ident: CR21
  article-title: Effect of optically thin cooling curves on condensation formation: case study using thermal instability
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202140665
– volume: 8
  year: 2007
  ident: CR19
  article-title: Heating of the solar and stellar coronae: a review
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.200710803
– volume: 26
  year: 2019
  ident: CR66
  article-title: Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5115224
– volume: 909
  year: 2021
  ident: CR13
  article-title: CHIANTI – an atomic database for emission lines. XVI. Version 10, further extensions
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/abd8ce
– volume: 528
  year: 2011
  ident: CR31
  article-title: Propagating intensity disturbances in polar corona as seen from AIA/SDO
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201016405
– volume: 580
  year: 2002
  ident: CR42
  article-title: Hot coronal loop oscillations observed by SUMER: slow magnetosonic wave damping by thermal conduction
  publication-title: Astrophys. J.
  doi: 10.1086/345548
– volume: 686
  year: 2008
  ident: CR2
  article-title: The effect of radiative cooling on coronal loop oscillations
  publication-title: Astrophys. J.
  doi: 10.1086/592963
– volume: 874
  year: 2019
  ident: CR40
  article-title: Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ab0c9f
– volume: 158
  year: 2011
  ident: CR57
  article-title: Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-010-9716-1
– volume: 142
  year: 1965
  ident: CR20
  article-title: Thermal instability
  publication-title: Astrophys. J.
  doi: 10.1086/148317
– volume: 646
  year: 2021
  ident: CR17
  article-title: The effect of the magnetic field on the damping of slow waves in the solar corona
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202039791
– volume: 125
  year: 1997
  ident: CR14
  article-title: CHIANTI – an atomic database for emission lines
  publication-title: Astron. Astrophys. Suppl. Ser.
  doi: 10.1051/aas:1997368
– volume: 5
  year: 2023
  ident: CR28
  article-title: Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
  publication-title: Physics
  doi: 10.3390/physics5010015
– volume: 393
  year: 1998
  ident: CR47
  article-title: Nature of the heating mechanism for the diffuse solar corona
  publication-title: Nature
  doi: 10.1038/31166
– volume: 217
  year: 2021
  ident: CR63
  article-title: Slow-mode magnetoacoustic waves in coronal loops
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-021-00811-0
– volume: 158
  year: 2011
  ident: CR3
  article-title: Propagating MHD waves in coronal holes
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-010-9698-z
– volume: 711
  year: 2010
  ident: CR64
  article-title: Evidence for steady heating: observations of an active region core with Hinode and TRACE
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/711/1/228
– volume: 886
  year: 2019
  ident: CR60
  article-title: Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: numerical parametric study of a 1D loop model
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab478f
– volume: 370
  year: 2012
  ident: CR12
  article-title: Magnetohydrodynamic waves and coronal seismology: an overview of recent results
  publication-title: Phil. Trans. Roy. Soc. A
  doi: 10.1098/rsta.2011.0640
– volume: 296
  year: 2021
  ident: CR5
  article-title: Dispersion of slow magnetoacoustic waves in the active region fan loops introduced by thermal misbalance
  publication-title: Solar Phys.
  doi: 10.1007/s11207-021-01868-4
– volume: 75
  year: 1996
  ident: CR41
  article-title: Chromosperic and coronal heating mechanisms. II
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00833341
– volume: 824
  year: 2016
  ident: CR34
  article-title: Effect of a radiation cooling and heating function on standing longitudinal oscillations in coronal loops
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/824/1/8
– volume: 626
  year: 2019
  ident: CR29
  article-title: Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201936072
– volume: 481
  year: 2008
  ident: CR53
  article-title: Intensity oscillations observed with Hinode near the south pole of the Sun: leakage of low frequency magneto-acoustic waves into the solar corona
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20079328
– volume: 5
  year: 2023
  ident: CR16
  article-title: Damping and dispersion of non-adiabatic acoustic waves in a high-temperature plasma: a radiative-loss function
  publication-title: Physics
  doi: 10.3390/physics5010017
– volume: 297
  year: 2022
  ident: CR23
  article-title: The effect of thermal misbalance on slow magnetoacoustic waves in a partially ionized prominence-like plasma
  publication-title: Solar Phys.
  doi: 10.1007/s11207-022-02071-9
– volume: 220
  year: 1978
  ident: CR49
  article-title: Dynamics of the quiescent solar corona
  publication-title: Astrophys. J.
  doi: 10.1086/155949
– volume: 9
  year: 2022
  ident: CR26
  article-title: Coronal seismology by slow waves in non-adiabatic conditions
  publication-title: Front. Astron. Space Sci.
  doi: 10.3389/fspas.2022.1073664
– volume: 117
  year: 1953
  ident: CR44
  article-title: Instability of thermal fields
  publication-title: Astrophys. J.
  doi: 10.1086/145707
– volume: 296
  year: 2021
  ident: CR45
  article-title: Role of compressive viscosity and thermal conductivity on the damping of slow Waves in coronal loops with and without heating–cooling imbalance
  publication-title: Solar Phys.
  doi: 10.1007/s11207-021-01764-x
– volume: 135
  year: 1999
  ident: CR35
  article-title: CHIANTI – an atomic database for emission lines III. Continuum radiation and extension of the ion database
  publication-title: Astron. Astrophys. Suppl. Ser.
  doi: 10.1051/aas:1999449
– volume: 789
  year: 2014
  ident: CR32
  article-title: Frequency-dependent in propagating slow magneto-acoustic waves
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/789/2/118
– volume: 11
  year: 2014
  ident: CR48
  article-title: Coronal loops: observations and modeling of confined plasma
  publication-title: Living Rev. Solar Phys.
  doi: 10.12942/lrsp-2014-4
– start-page: 170
  year: 1962
  ident: CR52
  publication-title: Physics of Fully Ionized Gases
– volume: 47
  year: 2013
  ident: CR38
  article-title: Radiation effects on the MHD wave behavior in the solar corona
  publication-title: Solar Syst. Res.
  doi: 10.1134/S0038094612060056
– volume: 373
  year: 2015
  ident: CR9
  article-title: Recent advances in coronal heating
  publication-title: Phil. Trans. R. Acad. Sci. A
  doi: 10.1098/rsta.2014.0269
– volume: 529
  year: 2011
  ident: CR18
  article-title: The bound-bound and free-free radiative losses for the nonthermal distributions in solar and stellar coronae
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201016329
– volume: 132
  year: 1960
  ident: CR65
  article-title: Heating of stellar chromospheres by shock waves
  publication-title: Astrophys. J.
  doi: 10.1086/146942
– volume: 644
  year: 2020
  ident: CR27
  article-title: Seismological constraints on the solar coronal heating function
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202039095
– volume: 810
  year: 2015
  ident: CR43
  article-title: Observations of an energetically isolated quiet Sun transient: evidence of quasi-steady coronal heating
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/810/2/98
– volume: 828
  year: 2016
  ident: CR56
  article-title: Signatures of steady heating in time lag analysis of coronal emission
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/828/2/76
– volume: 296
  year: 2021
  ident: CR67
  article-title: Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
  publication-title: Solar Phys.
  doi: 10.1007/s11207-021-01841-1
– volume: 35
  year: 1974
  ident: CR22
  article-title: The formation of solar quiescent prominences by condensation
  publication-title: Solar Phys.
  doi: 10.1007/BF001569625
– volume: 656
  year: 2007
  ident: CR59
  article-title: Determination of the coronal magnetic field from hot-loop oscillations observed by SUMER and SXT
  publication-title: Astrophys. J.
  doi: 10.1086/510424
– start-page: 576
  year: 2014
  ident: CR46
  publication-title: Magnetohydrodynamics of the Sun
  doi: 10.1017/CBO9781139020732
– volume: 6
  year: 1980
  ident: CR51
  article-title: Thermal instability of a current sheet as the origin of the cool coronal loops
  publication-title: Sov. Astron. Lett.
– start-page: 395
  year: 2016
  ident: CR58
  article-title: Waves in solar coronal loops
  publication-title: Low-Frequency Waves in Space Plasmas
  doi: 10.1002/9781119055006.ch23
– volume: 624
  year: 2019
  ident: CR7
  article-title: Thermal stability of magnetohydrodynamic modes in homogeneous plasmas
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201834699
– volume: 731
  year: 2011
  ident: CR50
  article-title: The thermal instability of solar prominence threads
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/731/1/39
– volume: 773
  year: 2013
  ident: CR36
  article-title: Thermal non-equilibrium revisited: a heating model for coronal loops
  publication-title: Astrophys. J.
  doi: 10.1007/10.1088/0004-637X/773/2/134
– volume: 740
  year: 2011
  ident: CR55
  article-title: Emissiom measure distribution and heating of two active region cores
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/740/2/111
– volume: 62
  year: 2020
  ident: CR1
  article-title: Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ab5406
– volume: 408
  year: 2003
  ident: CR10
  article-title: The damping of slow MHD waves in solar coronal magnetic fields
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20030984
– volume: 149
  year: 2009
  ident: CR54
  article-title: Heating diagnostics with MHD waves
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-009-9506-9
– volume: 682
  year: 2008
  ident: CR25
  article-title: Highly efficient modeling of dynamic coronal loops
  publication-title: Astrophys. J.
  doi: 10.1007/s11207-006-0055-z
– volume: 415
  year: 2004
  ident: CR11
  article-title: The damping of slow MHD waves in solar coronal magnetic fields II. The effect of gravitational stratification and field line divergence
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20034233
– volume: 914
  year: 2021
  ident: CR33
  article-title: Compressive oscillations in hot coronal loops: are sloshing oscillations and standing slow waves independent?
  publication-title: Astron. Astrophys.
  doi: 10.3847/1538-4357/abfb01
– volume: 415
  year: 2004
  ident: CR6
  article-title: Time damping of linear non-adiabatic magnetohydrodynamic waves in an unbounded plasma with solar coronal properties
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20034630
– volume: 149
  year: 2009
  ident: CR8
  article-title: Longitudinal waves in coronal loops
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-009-9526-5
– volume: 811
  year: 2015
  ident: CR61
  article-title: Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/811/1/L13
– volume: 498
  year: 2009
  ident: CR15
  article-title: CHIANTI – an atomic database for emission lines IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/200911712
– start-page: 419
  year: 2016
  ident: CR4
  article-title: MHD waves in coronal holes
  publication-title: Low-Frequency Waves in Space Plasmas
  doi: 10.1002/9781119055006.ch24
– volume: 58
  year: 2020
  ident: CR39
  article-title: Magnetohydrodynamic waves in the solar corona
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev-astro-032320-042940
– volume: 63
  year: 2021
  ident: CR30
  article-title: The solar corona as an active medium for magnetoacoustic waves
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac36a5
– volume: 860
  year: 2018
  ident: CR62
  article-title: Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aac38a
– volume: 373
  year: 2015
  ident: CR24
  article-title: Key aspects of coronal heating
  publication-title: Phil. Trans. R. Acad. Sci. A
  doi: 10.1098/rsta.2014.0256
– volume: 789
  year: 2014
  ident: 2196_CR32
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/789/2/118
– volume: 914
  year: 2021
  ident: 2196_CR33
  publication-title: Astron. Astrophys.
  doi: 10.3847/1538-4357/abfb01
– volume: 711
  year: 2010
  ident: 2196_CR64
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/711/1/228
– start-page: 419
  volume-title: Low-Frequency Waves in Space Plasmas
  year: 2016
  ident: 2196_CR4
  doi: 10.1002/9781119055006.ch24
– start-page: 170
  volume-title: Physics of Fully Ionized Gases
  year: 1962
  ident: 2196_CR52
– volume: 62
  year: 2020
  ident: 2196_CR1
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ab5406
– volume: 415
  year: 2004
  ident: 2196_CR6
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20034630
– volume: 11
  year: 2014
  ident: 2196_CR48
  publication-title: Living Rev. Solar Phys.
  doi: 10.12942/lrsp-2014-4
– volume: 370
  year: 2012
  ident: 2196_CR12
  publication-title: Phil. Trans. Roy. Soc. A
  doi: 10.1098/rsta.2011.0640
– volume: 117
  year: 1953
  ident: 2196_CR44
  publication-title: Astrophys. J.
  doi: 10.1086/145707
– volume: 125
  year: 1997
  ident: 2196_CR14
  publication-title: Astron. Astrophys. Suppl. Ser.
  doi: 10.1051/aas:1997368
– volume: 8
  year: 2007
  ident: 2196_CR19
  publication-title: Astron. Nachr.
  doi: 10.1002/asna.200710803
– volume: 296
  year: 2021
  ident: 2196_CR67
  publication-title: Solar Phys.
  doi: 10.1007/s11207-021-01841-1
– volume: 142
  year: 1965
  ident: 2196_CR20
  publication-title: Astrophys. J.
  doi: 10.1086/148317
– volume: 6
  year: 1980
  ident: 2196_CR51
  publication-title: Sov. Astron. Lett.
– volume: 35
  year: 1974
  ident: 2196_CR22
  publication-title: Solar Phys.
  doi: 10.1007/BF001569625
– volume: 75
  year: 1996
  ident: 2196_CR41
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00833341
– volume: 158
  year: 2011
  ident: 2196_CR3
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-010-9698-z
– volume: 373
  year: 2015
  ident: 2196_CR9
  publication-title: Phil. Trans. R. Acad. Sci. A
  doi: 10.1098/rsta.2014.0269
– volume: 624
  year: 2019
  ident: 2196_CR7
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201834699
– volume: 393
  year: 1998
  ident: 2196_CR47
  publication-title: Nature
  doi: 10.1038/31166
– volume: 731
  year: 2011
  ident: 2196_CR50
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/731/1/39
– volume: 528
  year: 2011
  ident: 2196_CR31
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201016405
– volume: 635
  year: 2021
  ident: 2196_CR21
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202140665
– volume: 580
  year: 2002
  ident: 2196_CR42
  publication-title: Astrophys. J.
  doi: 10.1086/345548
– volume: 529
  year: 2011
  ident: 2196_CR18
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201016329
– volume: 481
  year: 2008
  ident: 2196_CR53
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20079328
– volume: 682
  year: 2008
  ident: 2196_CR25
  publication-title: Astrophys. J.
  doi: 10.1007/s11207-006-0055-z
– volume: 810
  year: 2015
  ident: 2196_CR43
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/810/2/98
– volume: 860
  year: 2018
  ident: 2196_CR62
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aac38a
– volume: 415
  year: 2004
  ident: 2196_CR11
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20034233
– volume: 646
  year: 2021
  ident: 2196_CR17
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202039791
– volume: 26
  year: 2019
  ident: 2196_CR66
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5115224
– volume: 686
  year: 2008
  ident: 2196_CR2
  publication-title: Astrophys. J.
  doi: 10.1086/592963
– volume: 217
  year: 2021
  ident: 2196_CR63
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-021-00811-0
– volume: 909
  year: 2021
  ident: 2196_CR13
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/abd8ce
– volume: 47
  year: 2013
  ident: 2196_CR38
  publication-title: Solar Syst. Res.
  doi: 10.1134/S0038094612060056
– volume: 828
  year: 2016
  ident: 2196_CR56
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/828/2/76
– volume: 135
  year: 1999
  ident: 2196_CR35
  publication-title: Astron. Astrophys. Suppl. Ser.
  doi: 10.1051/aas:1999449
– volume: 373
  year: 2015
  ident: 2196_CR24
  publication-title: Phil. Trans. R. Acad. Sci. A
  doi: 10.1098/rsta.2014.0256
– volume: 408
  year: 2003
  ident: 2196_CR10
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20030984
– volume: 5
  year: 2023
  ident: 2196_CR16
  publication-title: Physics
  doi: 10.3390/physics5010017
– volume: 886
  year: 2019
  ident: 2196_CR60
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab478f
– start-page: 576
  volume-title: Magnetohydrodynamics of the Sun
  year: 2014
  ident: 2196_CR46
  doi: 10.1017/CBO9781139020732
– volume: 296
  year: 2021
  ident: 2196_CR5
  publication-title: Solar Phys.
  doi: 10.1007/s11207-021-01868-4
– volume: 149
  year: 2009
  ident: 2196_CR8
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-009-9526-5
– volume: 296
  year: 2021
  ident: 2196_CR45
  publication-title: Solar Phys.
  doi: 10.1007/s11207-021-01764-x
– volume: 644
  year: 2020
  ident: 2196_CR27
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202039095
– volume: 626
  year: 2019
  ident: 2196_CR29
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201936072
– volume: 820
  year: 2016
  ident: 2196_CR37
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/820/1/13
– start-page: 395
  volume-title: Low-Frequency Waves in Space Plasmas
  year: 2016
  ident: 2196_CR58
  doi: 10.1002/9781119055006.ch23
– volume: 9
  year: 2022
  ident: 2196_CR26
  publication-title: Front. Astron. Space Sci.
  doi: 10.3389/fspas.2022.1073664
– volume: 149
  year: 2009
  ident: 2196_CR54
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-009-9506-9
– volume: 63
  year: 2021
  ident: 2196_CR30
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac36a5
– volume: 874
  year: 2019
  ident: 2196_CR40
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ab0c9f
– volume: 58
  year: 2020
  ident: 2196_CR39
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev-astro-032320-042940
– volume: 811
  year: 2015
  ident: 2196_CR61
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/811/1/L13
– volume: 158
  year: 2011
  ident: 2196_CR57
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-010-9716-1
– volume: 824
  year: 2016
  ident: 2196_CR34
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/824/1/8
– volume: 297
  year: 2022
  ident: 2196_CR23
  publication-title: Solar Phys.
  doi: 10.1007/s11207-022-02071-9
– volume: 773
  year: 2013
  ident: 2196_CR36
  publication-title: Astrophys. J.
  doi: 10.1007/10.1088/0004-637X/773/2/134
– volume: 5
  year: 2023
  ident: 2196_CR28
  publication-title: Physics
  doi: 10.3390/physics5010015
– volume: 132
  year: 1960
  ident: 2196_CR65
  publication-title: Astrophys. J.
  doi: 10.1086/146942
– volume: 740
  year: 2011
  ident: 2196_CR55
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/740/2/111
– volume: 220
  year: 1978
  ident: 2196_CR49
  publication-title: Astrophys. J.
  doi: 10.1086/155949
– volume: 498
  year: 2009
  ident: 2196_CR15
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/200911712
– volume: 656
  year: 2007
  ident: 2196_CR59
  publication-title: Astrophys. J.
  doi: 10.1086/510424
SSID ssj0010075
Score 2.403189
Snippet In this article we study the properties of acoustic waves in the rarefied high-temperature plasma of the solar corona, assuming that the heating and cooling of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102
SubjectTerms Acoustic properties
Acoustic waves
Acoustics
Astrophysics and Astroparticles
Atmospheric Sciences
Compression waves
Conduction cooling
Conduction heating
Cooling
Cooling effects
Corona
Coronal temperatures
Damping
Data compression
Heat conductivity
Heat transfer
Heating
Heating and cooling
High temperature
High temperature plasmas
Interpolation
Intervals
Longitudinal waves
Perturbation
Physics
Physics and Astronomy
Plasma
Plasma density
Radiation
Radiative cooling
Solar corona
Solar physics
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Temperature
Thermal conductivity
Thermal instability
Wave propagation
Wavelengths
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD5RiIkvXlADiqYPxhctGR27PRIFRKPhASI-Le3aJUYZxoEJ_np7dmGRqAlvzdo1a0-7fuf2FeDcFsy1lGNSqY9zraBwSYVwFZWhGyJlkfIEenQfHu3bUetubI2zpLA4j3bPXZLJn7pIdmsyNKsx9DvqdUOtTShbqKCUoNzuPd93lt4DIyXYRa8X1Rq7myXL_N7LzwOpQJkrjtHkvOnuwij_0jTM5LUxn4lG8LVC4rjuUPZgJwOgpJ2umH3YUFEFqu0YTeLTyYJckKScWjziCmwN0tIB9NrBNLn7izzxTxWTl4hwgnEidKg0-E7JmclAw_EJJ_1-g9zwCWZjER5JgkEJKSX44hBG3c7w-pZm9zDQQG_QGfWUYo5scW5I6QTCZiFy0mvcJ6QpHWHK0LQ1zFEae4lQ6x_SCxjygskAFRaXm0dQiqaRqgLR8I5bVmg6AhPshMlNh7uh6zFHP2RC1qCZC8MPMpJyvCvjzS_olXHufD13fjJ3vlWDy-U77ylFx7-t67mM_Wy7xj5zbQOZDw1dfZWLrKj-u7fj9ZqfwDZLpI4xanUozT7m6lSDmpk4y9bwN_QJ6SA
  priority: 102
  providerName: Springer Nature
Title Acoustic Waves in a High-Temperature Plasma II. Damping and Instability
URI https://link.springer.com/article/10.1007/s11207-023-02196-5
https://www.proquest.com/docview/2860447505
Volume 298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-093X
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0010075
  issn: 0038-0938
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-093X
  dateEnd: 20240930
  omitProxy: false
  ssIdentifier: ssj0010075
  issn: 0038-0938
  databaseCode: ADMLS
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-093X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010075
  issn: 0038-0938
  databaseCode: AFBBN
  dateStart: 19670101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-093X
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0010075
  issn: 0038-0938
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-093X
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0010075
  issn: 0038-0938
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-093X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010075
  issn: 0038-0938
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-093X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010075
  issn: 0038-0938
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFH64IHgRrYp1IwfxotE209lOMrWLC5YiLdbTkEwyINhpdargv_e9WSwK9pQwmZnDy0vy5S3fAzhxlPBs41pc43GOFxSpuVKe4Tr2YqIsMr4ij-5Dz7kZNu5G9qgwuKVFWGW5J2YbtZ5EZCO_FJ5TI3K6mn01feNUNYq8q0UJjWVYrQvUJMoU73R_vAi1nGiXvF8cb-5ekTSTp87VBRnpBHkxUQu5_ftgmqPNPw7S7NzpbMJGARhZkM_wFiyZpAJ7QUom7Mn4i52yrJ9bKNIKrPXz3jZ0g2iS1epiT_LTpOwlYZJRXAcfGATLOZky6yN8Hkt2e3vBWnJM2VNMJppREEFO4f21A8NOe3B9w4u6CTzCBTXjvjHC1Q0pa1q7kXJETBzyiNOUtrSrLB1bDsISg1hJxXhf0H4kiMdLR3TB8KS1CyvJJDF7wBCOSduOLVdRQpyypOVKL_Z84eJDoXQV6qXQwqggFafaFq_hnA6ZBB2ioMNM0KFdhbOfb6Y5pcbCtw_LuQiL5ZWGc2Wownk5P_Ph__-2v_hvB7AuMpWgGLJDWJm9f5gjBB0zdZxp1jGsBs1Ws0Nt9_m-jW2z3es_4uhQBN8lg9TU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1REGovVYEitqXgQ-EChmBvEueA0Aq67PIlDovKLdixI1XqZmmzLdo_xW9kJk5YgQQ3blE-fBi_eJ49M28AvkdGqNDFklt057hB0ZYboxy3ucpJssglhiK65xdR76p9ch1ez8B9UwtDaZXNmlgt1HaU0Rn5rlBRQOJ0QXhw-4dT1yiKrjYtNDwsTt3kDrds5X7_COd3Q4juj8Fhj9ddBXiGcBvzxDkR27bWgbVxZiKRk8I6shhjpY2NtLmM0Gk7ZBImRzZtk0yQypXNiH4rLXHcdzDXllKSVr_qHj9GLQIv7EvRNh4kUtVFOr5Ub0_QoaCgqCminodPHeGU3T4LyFZ-rvsJPtYElXU8ohZgxhWLsNIp6ch8NJywTVZd-xORchHmL_3VEhx3slHVG4z91P9dyX4VTDPKI-EDh-TcizezS6TrQ836_R12pIdUrcV0YRklLXjJ8MlnuHoTiy7DbDEq3AowpH86DHMZGyrAM1LLWKtcJSLGm8LYFuw1RkuzWsScemn8Tqfyy2ToFA2dVoZOwxZsPX5z6yU8Xn17tZmLtP6dy3QKvhZsN_MzffzyaF9eH20d3vcG52fpWf_i9Ct8EBU8KH9tFWbHf_-5b0h4xmatQhmDm7eG9QOHsQwM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4Uo_FiFDWgqD0YL1pduuzruBERfBAOELlt2m03MZGFuKsJ_96ZfYAaNfHWbLs9TNvMN69vCDm1JXct7ZhMgToHA0UoJqWrmYrcCCmLtCcxovvYt7uj1t3YGn-q4s-y3cuQZF7TgCxNcXo1U9HVsvCtydHFxjEGCXeIWatkrQW6Gs2vEfcXcQQjp9rF-BcD290tymZ-3uOralrizW8h0kzzdLbJVgEZqZ-f8Q5Z0XGV1PwEndjTyZye0Wyc-yiSKlkf5KNdcuuH06xbF30S7zqhzzEVFDM72FADXM7plOkAAPRE0F7vkrbFBOunqIgVxTSCnMR7vkdGnZvhdZcVnRNYCE8qZZ7W3FEtIQylnFDaPEIWeUBqUpnKkaaKTBuAiQa0JCOwGJQXcmTyUiGaGK4w90klnsa6RigAMmFZkelILImTpjAd4Uauxx34yKWqk2YptCAsaMWxu8VLsCRERkEHIOggE3Rg1cn54p9ZTqrx5-pGeRZB8cCSgLu2gVyFBkxflOeznP59t4P_LT8hG4N2J3jo9e8PySbPbgsmmDVIJX1900eASFJ5nF26D3Go014
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acoustic+Waves+in+a+High-Temperature+Plasma+II.+Damping+and+Instability&rft.jtitle=Solar+physics&rft.au=Mikhalyaev%2C+B.+B&rft.au=Derteev%2C+S.+B&rft.au=Shividov%2C+N.+K&rft.au=Sapraliev%2C+M.+E&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0038-0938&rft.eissn=1573-093X&rft.volume=298&rft.issue=9&rft.spage=102&rft_id=info:doi/10.1007%2Fs11207-023-02196-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0938&client=summon