Using machine learning and deep learning algorithms for downtime minimization in manufacturing systems: an early failure detection diagnostic service

Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected tool wear or unacceptable workpiece quality. This paper aims to report the study of more than 20 fault detection models using machine learni...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 128; no. 9-10; pp. 3857 - 3883
Main Authors Shahin, Mohammad, Chen, F. Frank, Hosseinzadeh, Ali, Zand, Neda
Format Journal Article
LanguageEnglish
Published London Springer London 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-023-12020-w

Cover

Abstract Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected tool wear or unacceptable workpiece quality. This paper aims to report the study of more than 20 fault detection models using machine learning (ML), deep learning (DL), and deep hybrid learning (DHL). Predicting how the system could fail based on certain features or system settings (input variables) can help avoid future breakdowns and minimize downtime. The effectiveness of the proposed algorithms was experimented with a synthetic predictive maintenance dataset published by the School of Engineering of the University of Applied Sciences in Berlin, Germany. The fidelity of these algorithms was evaluated using performance measurement values such as accuracy, precision, recall, and the F -score. Final results demonstrated that deep forest and gradient boosting algorithms had shown very high levels of average accuracy (exceeded 90%). Additionally, the multinomial logistic regression and long short-term memory-based algorithms have shown satisfactory average accuracy (above 80%). Further analysis of models suggests that some models outperformed others. The research concluded that, through various ML, DL, and DHL algorithms, operational data analytics, and health monitoring system, engineers could optimize maintenance and reduce reliability risks.
AbstractList Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected tool wear or unacceptable workpiece quality. This paper aims to report the study of more than 20 fault detection models using machine learning (ML), deep learning (DL), and deep hybrid learning (DHL). Predicting how the system could fail based on certain features or system settings (input variables) can help avoid future breakdowns and minimize downtime. The effectiveness of the proposed algorithms was experimented with a synthetic predictive maintenance dataset published by the School of Engineering of the University of Applied Sciences in Berlin, Germany. The fidelity of these algorithms was evaluated using performance measurement values such as accuracy, precision, recall, and the F -score. Final results demonstrated that deep forest and gradient boosting algorithms had shown very high levels of average accuracy (exceeded 90%). Additionally, the multinomial logistic regression and long short-term memory-based algorithms have shown satisfactory average accuracy (above 80%). Further analysis of models suggests that some models outperformed others. The research concluded that, through various ML, DL, and DHL algorithms, operational data analytics, and health monitoring system, engineers could optimize maintenance and reduce reliability risks.
Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected tool wear or unacceptable workpiece quality. This paper aims to report the study of more than 20 fault detection models using machine learning (ML), deep learning (DL), and deep hybrid learning (DHL). Predicting how the system could fail based on certain features or system settings (input variables) can help avoid future breakdowns and minimize downtime. The effectiveness of the proposed algorithms was experimented with a synthetic predictive maintenance dataset published by the School of Engineering of the University of Applied Sciences in Berlin, Germany. The fidelity of these algorithms was evaluated using performance measurement values such as accuracy, precision, recall, and the F-score. Final results demonstrated that deep forest and gradient boosting algorithms had shown very high levels of average accuracy (exceeded 90%). Additionally, the multinomial logistic regression and long short-term memory-based algorithms have shown satisfactory average accuracy (above 80%). Further analysis of models suggests that some models outperformed others. The research concluded that, through various ML, DL, and DHL algorithms, operational data analytics, and health monitoring system, engineers could optimize maintenance and reduce reliability risks.
Author Zand, Neda
Shahin, Mohammad
Hosseinzadeh, Ali
Chen, F. Frank
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Shahin
  fullname: Shahin, Mohammad
  organization: Mechanical Engineering Department, The University of Texas at San Antonio
– sequence: 2
  givenname: F. Frank
  surname: Chen
  fullname: Chen, F. Frank
  email: FF.Chen@utsa.edu
  organization: Mechanical Engineering Department, The University of Texas at San Antonio
– sequence: 3
  givenname: Ali
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Ali
  organization: Mechanical Engineering Department, The University of Texas at San Antonio
– sequence: 4
  givenname: Neda
  surname: Zand
  fullname: Zand, Neda
  organization: Computer Science Department, The University of Texas at San Antonio
BookMark eNp9kc1KAzEcxIMoWKsv4CngeTUf203qTcQvELzoOaTJf9vIblKTrKW-h-9r2gqKB0-BYX6TTOYI7fvgAaFTSs4pIeIiEUIFqQjjFWWEkWq1h0a05rzihE720YiwRlZcNPIQHaX0WuwNbeQIfb4k5-e412bhPOAOdPQbQXuLLcDyl9LNQ3R50SfchohtWPnsesC98653Hzq74LHzJcoPrTZ5iBsqrVOGPl2WQFySujVuteuGCCU9g9lC1um5Dyk7gxPEd2fgGB20uktw8n2O0cvtzfP1ffX4dPdwffVYGU6nuZoCLbWkmRk2s9oCtcyKyYy2hmhRW9bUM6HrIhlpp7UohYEx3nIQppaGcD5GZ7vcZQxvA6SsXsMQfblSMdnIWjSMTotL7lwmhpQitMq4vO2bYymjKFGbEdRuBFVGUNsR1Kqg7A-6jK7Xcf0_xHdQWm7-EOLPq_6hvgDo4aDN
CitedBy_id crossref_primary_10_3390_ai6030054
crossref_primary_10_21595_marc_2024_24585
crossref_primary_10_1108_IJLSS_05_2024_256
crossref_primary_10_3390_su16156548
crossref_primary_10_1186_s40537_024_01030_4
crossref_primary_10_3390_a17080333
crossref_primary_10_3390_s24103247
crossref_primary_10_1007_s00170_024_13719_0
crossref_primary_10_1007_s00170_024_14505_8
crossref_primary_10_1007_s12541_024_01075_8
crossref_primary_10_1038_s41598_024_70729_4
crossref_primary_10_1016_j_aei_2024_102685
crossref_primary_10_1016_j_spc_2024_12_012
crossref_primary_10_1016_j_smse_2024_100029
crossref_primary_10_1007_s00170_024_13167_w
crossref_primary_10_3390_make7010013
crossref_primary_10_3390_app142411973
crossref_primary_10_1016_j_jmsy_2024_12_002
crossref_primary_10_1016_j_eswa_2025_126672
crossref_primary_10_7769_gesec_v15i8_3981
Cites_doi 10.1109/TIM.2009.2036347
10.1016/j.triboint.2017.06.032
10.1109/AIKE48582.2020.00023
10.1214/aos/1013203451
10.1007/978-3-031-18326-3_11
10.1016/j.jmsy.2021.12.013
10.1016/j.neucom.2019.05.052
10.1007/b95439
10.1016/j.chemolab.2015.11.010
10.1016/j.jmsy.2021.08.012
10.1109/IAI53119.2021.9619276
10.1023/A:1010933404324
10.1016/j.eswa.2012.07.009
10.1109/ACCESS.2022.3177537
10.1108/13552511211281552
10.1109/ISMSIT52890.2021.9604712
10.1016/j.catena.2019.01.030
10.1016/j.patcog.2021.108331
10.1007/BF00993309
10.1177/1687814020919207
10.1007/978-1-4614-6849-3
10.1016/j.procir.2018.03.150
10.1006/mssp.2000.1395
10.1016/j.procir.2018.08.318
10.1007/s00170-004-2131-6
10.1016/j.jmsy.2020.11.016
10.1016/j.jmsy.2021.02.006
10.1016/j.envres.2020.109321
10.2991/iwama-16.2016.8
10.1016/j.infrared.2017.12.015
10.1016/S0169-7439(97)00061-0
10.1016/B978-0-444-64241-7.50341-4
10.1080/17509653.2008.10671056
10.1016/j.jmsy.2020.07.008
10.1007/s40436-013-0010-9
10.2478/itc-2013-0004
10.1177/0954405415601640
10.1016/j.jmsy.2021.05.003
10.1080/00207543.2017.1346843
10.1109/AIMV53313.2021.9670994
10.1016/j.catena.2020.104581
10.1016/j.jmsy.2022.06.002
10.1007/s00170-009-2482-0
10.1016/j.ijinfomgt.2018.10.006
10.1007/s00170-014-6341-2
10.4018/978-1-5225-0956-1.ch004
10.3390/su14063387
10.1016/j.procs.2018.01.106
10.1016/j.jmsy.2018.04.008
10.1007/s00170-022-10259-3
10.1016/j.ress.2017.11.021
10.1016/j.asoc.2022.108421
10.1145/3409073.3409096
10.1016/j.patcog.2021.107981
10.1016/j.ress.2021.107812
10.1162/neco.1997.9.8.1735
10.1109/BigData47090.2019.9006213
10.1109/PHM.2017.8079264
10.2307/2978933
10.1016/j.ress.2021.107864
10.1016/j.arcontrol.2010.02.008
10.1016/j.jmsy.2021.10.011
10.1016/j.ast.2018.09.044
10.1016/j.jobe.2023.106545
10.7551/mitpress/5236.001.0001
10.1007/s00170-020-05124-0
10.1006/jcss.1997.1504
10.1016/j.jmsy.2018.05.011
10.1145/2939672.2939785
10.1016/j.ymssp.2017.01.050
10.1016/j.sbspro.2015.10.090
10.1080/21693277.2015.1074124
10.1007/s00170-018-2548-y
10.1080/00207543.2018.1542181
10.1016/j.jom.2005.04.001
10.1177/0309524X211060550
10.1001/jamainternmed.2013.3577
10.1109/PVSC43889.2021.9518796
10.1016/j.aei.2023.102036
10.1002/9781119371052
10.3390/su10010247
10.1073/pnas.1821594116
10.1016/j.neucom.2021.10.005
10.1016/j.anucene.2018.04.002
10.1287/msom.1030.0028
10.1109/MTITS.2019.8883331
10.1109/TIE.2017.2733438
10.1214/aos/1016218223
10.1108/20401461211282691
10.1007/s00170-022-10329-6
10.1016/j.jmsy.2019.01.002
10.1109/ACCESS.2019.2916828
10.1108/09513551111147141
10.3390/MACHINES6040059
10.1109/IAECST54258.2021.9695668
10.1016/j.jmsy.2022.05.010
10.2307/2986296
10.1016/j.ress.2016.08.009
10.1016/j.apenergy.2012.12.043
10.1016/j.ejor.2015.08.045
10.1109/ICMDCS.2017.8211718
10.1142/S0219686721500098
10.3390/math11030682
10.24963/ijcai.2017/497
10.1007/s10696-023-09497-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s00170-023-12020-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 3883
ExternalDocumentID 10_1007_s00170_023_12020_w
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-9e12688cbc2bdade1d2d75b1fc0a74d264b7a4d75c8d947168e223f3e7c48c033
IEDL.DBID AGYKE
ISSN 0268-3768
IngestDate Fri Jul 25 11:12:41 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Wed Oct 01 02:42:41 EDT 2025
Fri Feb 21 02:41:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9-10
Keywords Waste reduction
Big data
Industry 4.0
Maintenance
Lean manufacturing
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9e12688cbc2bdade1d2d75b1fc0a74d264b7a4d75c8d947168e223f3e7c48c033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2868476219
PQPubID 2044010
PageCount 27
ParticipantIDs proquest_journals_2868476219
crossref_citationtrail_10_1007_s00170_023_12020_w
crossref_primary_10_1007_s00170_023_12020_w
springer_journals_10_1007_s00170_023_12020_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Zhao, Wang, Xiao (CR88) 2013; 112
Chen, Guestrin (CR109) 2016
Salma, Anas, Mohammed (CR11) 2021; 20
Montero Jimenez, Schwartz, Vingerhoeds (CR26) 2020; 56
Wang, Li, Xie (CR24) 2019; 57
Karim, Majumdar, Darabi (CR124) 2019; 7
Xia, Tang (CR131) 2021
Luwei, Yunusa-Kaltungo, Sha’aban (CR83) 2018; 6
Pastorino, Biswas (CR62) 2020
Atay, Arslankayaa (CR35) 2015; 207
Ghosh, SahaRay, Chakrabarty, Bhadra (CR114) 2021; 117
Singh, Malik, Sharma (CR80) 2017
Koprinkova-Hristova (CR70) 2013; 11
Waldrop (CR63) 2019; 116
Dua, Graff (CR61) 2019
Dombrowski, Malorny, Grabot, Vallespir, Gomes, Bouras, Kiritsis (CR2) 2014
Consilvio, Sanetti, Anguita (CR30) 2019
Duan, Deng, Li (CR86) 2019; 100
Friedman, Hastie, Tibshirani (CR107) 2000; 28
Rumelhart, McClelland (CR116) 1986
Shinde, Thakare (CR65) 2021
Hochreiter, Schmidhuber (CR118) 1997; 9
Shahin, Chen, Hosseinzadeh (CR128) 2022; 123
CR43
Li, Wang, He (CR38) 2016
Momber, Möller, Langenkämper (CR27) 2022; 46
Selcuk (CR54) 2017; 231
Ren, Sun, Cui, Zhang (CR75) 2018; 48
Shahin, Ff, Bouzary, Kim, Monplaisir, Rickli (CR123) 2023
Ayo-Imoru, m., Cilliers A c. (CR82) 2018; 118
He, Changchao, Zhaoxiang (CR12) 2017; 55
Zhai, Gehring, Reinhart (CR50) 2021; 61
Zonta, da Costa, Zeiser (CR68) 2022; 62
Xiao, Wang, Xu, Zhou (CR90) 2016; 151
Li, Fang, Shi (CR79) 2018
Adib, Mehedi, Sakib (CR67) 2021
Laib dit Leksir, Mansour, Moussaoui (CR89) 2018; 89
Akarslan (CR126) 2022; 117
Loh, Shih, Loh, Shih (CR95) 1997; 7
Zheng, Casari (CR91) 2018
Wang, Zhang, Wang (CR53) 2019; 50
Yu, Chen, Lu (CR129) 2021
Müller, Kiel, Voigt (CR45) 2018; 10
Ke, Meng, Finley (CR112) 2017
Witten, Frank, Hall, Pal (CR92) 2017
Abidi, Mohammed, Alkhalefah (CR46) 2022; 14
Ferreira, Gonçalves (CR47) 2022; 63
Hinchi, Tkiouat (CR73) 2018; 127
Choubey, Benton, Johnsten (CR29) 2019
Yang, Tan, Xia, Liu (CR120) 2020
Bahdanau, Cho, Bengio (CR119) 2015
De Treville, Antonakis (CR8) 2006; 24
Xia, Zheng, Li (CR36) 2022; 64
Mostafa, Lee, Dumrak (CR41) 2015; 3
Salzberg, Quinlan (CR97) 1994
CR66
Erigha, Ayo, Dada, Folorunso (CR100) 2017; 13
Samui, Sekhar, Balas (CR105) 2017
Alaswad, Xiang (CR22) 2017; 157
CR60
Friedman (CR108) 2001; 29
Svozil, Kvasnicka, Pospíchal (CR115) 1997; 39
Tiddens, Braaksma, Tinga (CR58) 2020; 26
Onel, Kieslich, Guzman, Pistikopoulos (CR84) 2018; 44
Hopp, Spearman (CR7) 2004; 6
Javed, Gouriveau, Zerhouni (CR20) 2017; 94
Lu, Wu, Huang, Qiu (CR78) 2019; 84
Peng, Dong, Zuo (CR17) 2010; 50
von Birgelen, Buratti, Mager, Niggemann (CR87) 2018; 72
McConnell, Lindrooth, Wholey, Maddox (CR3) 2013; 173
Rumelhart, Hinton, Williams (CR117) 1986
Ding, Kamaruddin (CR14) 2014; 76
Kass (CR96) 1980; 29
Freund, Schapire (CR110) 1999
Freund, Schapire (CR111) 1997; 55
Alpaydin (CR93) 2014
Majlesi, Koodiani, de Rincon (CR64) 2023; 74
Koc, Mazzuchi, Sarkani (CR106) 2012; 39
Froger, Gendreau, Mendoza (CR13) 2016; 251
Lee, Cao, Ng (CR44) 2017
Hashemian, Bean (CR52) 2011; 60
Pourghasemi, Gayen, Lasaponara, Tiefenbacher (CR125) 2020; 184
Shahin, Chen, Bouzary, Krishnaiyer (CR42) 2020; 107
Kothamasu, Huang, VerDuin (CR18) 2006; 28
Zuehlke (CR6) 2010; 34
Theissler, Elger, Kettelgerdes (CR34) 2021; 215
Shahin, Chen, Hosseinzadeh (CR4) 2023; 57
Powell, Skjelstad (CR40) 2012; 3
Albrice, Branch (CR25) 2015
Sanders, Elangeswaran, Wulfsberg (CR39) 2016; 9
CR130
CR9
Bekar, Skoogh, Nyqvist (CR59) 2020; 12
Zhang, Wang, Yan, Gao (CR74) 2018; 48
Ciaburro (CR121) 2017
Dong, Li, Sun (CR72) 2017
Meissner, Rahn, Wicke (CR32) 2021; 214
Livera, Theristis, Charalambous (CR31) 2021
Pedersen, Huniche (CR37) 2011; 24
Ferreiro, Konde, Prado (CR19) 2016
Sakib, Wuest (CR21) 2018; 78
Kosky, Robert, Wise (CR33) 2020
Zhang, Wang, Xiu (CR103) 2022; 468
Shahin, Chen, Bouzary (CR122) 2022; 123
Jin, Shi, Siegel (CR85) 2015
Cho, d., Carrasco R a., Ruz G a. (CR28) 2022; 10
Wu, Wu, Chen (CR57) 2021; 58
Gajewski, Vališ (CR81) 2017; 115
Wang (CR101) 2005
Han, Pang, Tan (CR69) 2021; 61
Wang (CR55) 2013; 1
Kuhn, Johnson (CR94) 2013
Womack, Jones (CR5) 2003
CR10
Breiman (CR98) 2001; 45
Chan, Chang, Chen, Lee (CR104) 2019; 176
Sahli, Evans, Manohar (CR48) 2021; 104
Zhao, Wang, Mao (CR71) 2017; 65
Esfandiarpour-Boroujeni, Shamsabadi, Shirani (CR127) 2020; 191
Bai, Li, Li (CR99) 2022; 122
Prajapati, Bechtel, Ganesan (CR16) 2012; 18
Huang, Cheng, Yang, Guo (CR76) 2019; 359
Fernandes, Canito, Canedo, Marreiors (CR49) 2019; 46
Gouriveau, Medjaher, Zerhouni (CR23) 2016
Altman (CR113) 1968; 23
Li, Ding, Sun (CR77) 2018; 172
Mechefske, Wang (CR15) 2001; 15
CR102
Alfeo, Cimino, Vaglini (CR56) 2022; 62
Carrasqueira, Cruz-Machado (CR1) 2008; 3
Leukel, González, Riekert (CR51) 2021; 61
S De Treville (12020_CR8) 2006; 24
E Akarslan (12020_CR126) 2022; 117
L Ren (12020_CR75) 2018; 48
P Zhang (12020_CR103) 2022; 468
W Jin (12020_CR85) 2015
H Xia (12020_CR131) 2021
P Kosky (12020_CR33) 2020
S Yang (12020_CR120) 2020
F Karim (12020_CR124) 2019; 7
S Zhai (12020_CR50) 2021; 61
EI Altman (12020_CR113) 1968; 23
M Abidi (12020_CR46) 2022; 14
A von Birgelen (12020_CR87) 2018; 72
12020_CR102
AL Alfeo (12020_CR56) 2022; 62
12020_CR66
K Javed (12020_CR20) 2017; 94
JJ Montero Jimenez (12020_CR26) 2020; 56
M Shahin (12020_CR128) 2022; 123
Y He (12020_CR12) 2017; 55
G Ciaburro (12020_CR121) 2017
M Carrasqueira (12020_CR1) 2008; 3
HR Pourghasemi (12020_CR125) 2020; 184
Y Peng (12020_CR17) 2010; 50
N Sakib (12020_CR21) 2018; 78
W Hopp (12020_CR7) 2004; 6
DE Rumelhart (12020_CR116) 1986
A Froger (12020_CR13) 2016; 251
A Prajapati (12020_CR16) 2012; 18
M Shahin (12020_CR4) 2023; 57
K Shinde (12020_CR65) 2021
L Wang (12020_CR101) 2005
ED Erigha (12020_CR100) 2017; 13
S Hochreiter (12020_CR118) 1997; 9
S Ferreiro (12020_CR19) 2016
A Sanders (12020_CR39) 2016; 9
D Dua (12020_CR61) 2019
IH Witten (12020_CR92) 2017
D Zuehlke (12020_CR6) 2010; 34
W-Y Loh (12020_CR95) 1997; 7
L Koc (12020_CR106) 2012; 39
R Gouriveau (12020_CR23) 2016
Y Freund (12020_CR110) 1999
A Livera (12020_CR31) 2021
X Li (12020_CR77) 2018; 172
L Xia (12020_CR36) 2022; 64
T Chen (12020_CR109) 2016
12020_CR43
J Pastorino (12020_CR62) 2020
J Zhang (12020_CR74) 2018; 48
12020_CR60
T Han (12020_CR69) 2021; 61
12020_CR130
S Choubey (12020_CR29) 2019
H Hashemian (12020_CR52) 2011; 60
M Shahin (12020_CR42) 2020; 107
H Yu (12020_CR129) 2021
A Zheng (12020_CR91) 2018
M Shahin (12020_CR122) 2022; 123
J Leukel (12020_CR51) 2021; 61
P Koprinkova-Hristova (12020_CR70) 2013; 11
A Theissler (12020_CR34) 2021; 215
12020_CR9
J Friedman (12020_CR107) 2000; 28
J Müller (12020_CR45) 2018; 10
D Powell (12020_CR40) 2012; 3
M Shahin (12020_CR123) 2023
W Tiddens (12020_CR58) 2020; 26
A Sahli (12020_CR48) 2021; 104
H Atay (12020_CR35) 2015; 207
J Womack (12020_CR5) 2003
D Albrice (12020_CR25) 2015
K Wang (12020_CR55) 2013; 1
Y Xiao (12020_CR90) 2016; 151
HC Chan (12020_CR104) 2019; 176
E Pedersen (12020_CR37) 2011; 24
P Samui (12020_CR105) 2017
C Lee (12020_CR44) 2017
K McConnell (12020_CR3) 2013; 173
J Gajewski (12020_CR81) 2017; 115
G Ke (12020_CR112) 2017
Y Laib dit Leksir (12020_CR89) 2018; 89
D Svozil (12020_CR115) 1997; 39
D Dong (12020_CR72) 2017
L Breiman (12020_CR98) 2001; 45
R Ayo-Imoru (12020_CR82) 2018; 118
S Selcuk (12020_CR54) 2017; 231
A Cho (12020_CR28) 2022; 10
A Ghosh (12020_CR114) 2021; 117
D Bahdanau (12020_CR119) 2015
F Lu (12020_CR78) 2019; 84
M Kuhn (12020_CR94) 2013
W Huang (12020_CR76) 2019; 359
C Ferreira (12020_CR47) 2022; 63
X Wang (12020_CR53) 2019; 50
E Bekar (12020_CR59) 2020; 12
X Wang (12020_CR24) 2019; 57
C Mechefske (12020_CR15) 2001; 15
GV Kass (12020_CR96) 1980; 29
QAR Adib (12020_CR67) 2021
J-Y Wu (12020_CR57) 2021; 58
R Meissner (12020_CR32) 2021; 214
U Dombrowski (12020_CR2) 2014
R Kothamasu (12020_CR18) 2006; 28
S Ding (12020_CR14) 2014; 76
T Zonta (12020_CR68) 2022; 62
A Consilvio (12020_CR30) 2019
S Li (12020_CR79) 2018
SL Salzberg (12020_CR97) 1994
DE Rumelhart (12020_CR117) 1986
A Salma (12020_CR11) 2021; 20
K Singh (12020_CR80) 2017
JH Friedman (12020_CR108) 2001; 29
MM Waldrop (12020_CR63) 2019; 116
R Zhao (12020_CR71) 2017; 65
J Bai (12020_CR99) 2022; 122
S Alaswad (12020_CR22) 2017; 157
E Alpaydin (12020_CR93) 2014
C Duan (12020_CR86) 2019; 100
S Mostafa (12020_CR41) 2015; 3
I Esfandiarpour-Boroujeni (12020_CR127) 2020; 191
Z Li (12020_CR38) 2016
KC Luwei (12020_CR83) 2018; 6
Y Zhao (12020_CR88) 2013; 112
AZ Hinchi (12020_CR73) 2018; 127
A Majlesi (12020_CR64) 2023; 74
AW Momber (12020_CR27) 2022; 46
Y Freund (12020_CR111) 1997; 55
M Onel (12020_CR84) 2018; 44
M Fernandes (12020_CR49) 2019; 46
12020_CR10
References_xml – year: 2014
  ident: CR93
  publication-title: Introduction to machine learning
– volume: 60
  start-page: 3480
  year: 2011
  end-page: 3492
  ident: CR52
  article-title: State-of-the-art predictive maintenance techniques
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2009.2036347
– volume: 115
  start-page: 557
  year: 2017
  end-page: 572
  ident: CR81
  article-title: The determination of combustion engine condition and reliability using oil analysis by MLP and RBF neural networks
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2017.06.032
– start-page: 116
  year: 2020
  end-page: 119
  ident: CR62
  publication-title: Hey ML, what can you do for me? 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Artificial Intelligence and Knowledge Engineering (AIKE), 2020
  doi: 10.1109/AIKE48582.2020.00023
– volume: 7
  start-page: 815
  issue: 4
  year: 1997
  end-page: 840
  ident: CR95
  article-title: Split selection methods for classification trees
  publication-title: Statistica sinica
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: CR108
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– start-page: 107
  year: 2023
  end-page: 114
  ident: CR123
  article-title: Implementation of a novel fully convolutional network approach to detect and classify cyber-attacks on IoT devices in smart manufacturing systems
  publication-title: Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus
  doi: 10.1007/978-3-031-18326-3_11
– volume: 62
  start-page: 450
  year: 2022
  end-page: 462
  ident: CR68
  article-title: A predictive maintenance model for optimizing production schedule using deep neural networks
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.12.013
– volume: 359
  start-page: 77
  year: 2019
  end-page: 92
  ident: CR76
  article-title: An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.052
– year: 2005
  ident: CR101
  publication-title: Support vector machines : theory and applications
  doi: 10.1007/b95439
– year: 2017
  ident: CR92
  publication-title: Data mining : practical machine learning tools and techniques
– volume: 151
  start-page: 15
  year: 2016
  end-page: 25
  ident: CR90
  article-title: Robust one-class SVM for fault detection
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.11.010
– volume: 61
  start-page: 87
  year: 2021
  end-page: 96
  ident: CR51
  article-title: Adoption of machine learning technology for failure prediction in industrial maintenance: a systematic review
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.08.012
– start-page: 1
  year: 2021
  end-page: 6
  ident: CR131
  article-title: An improved deep forest regression
  publication-title: 2021 3rd International Conference on Industrial Artificial Intelligence (IAI)
  doi: 10.1109/IAI53119.2021.9619276
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR98
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 39
  start-page: 13492
  year: 2012
  end-page: 13500
  ident: CR106
  article-title: A network intrusion detection system based on a hidden Naïve Bayes multiclass classifier
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.009
– volume: 10
  start-page: 55924
  year: 2022
  end-page: 55932
  ident: CR28
  article-title: Improving prescriptive maintenance by incorporating post-prognostic information through chance constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3177537
– start-page: 1401
  year: 1999
  end-page: 1406
  ident: CR110
  article-title: A short introduction to boosting
  publication-title: In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence
– volume: 18
  start-page: 384
  year: 2012
  end-page: 400
  ident: CR16
  article-title: Condition based maintenance: a survey
  publication-title: J Qual Maint Eng
  doi: 10.1108/13552511211281552
– start-page: 442
  year: 2021
  end-page: 447
  ident: CR67
  article-title: A deep hybrid learning approach to detect Bangla fake news
  publication-title: 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)
  doi: 10.1109/ISMSIT52890.2021.9604712
– volume: 176
  start-page: 419
  year: 2019
  end-page: 429
  ident: CR104
  article-title: Using multinomial logistic regression for prediction of soil depth in an area of complex topography in Taiwan
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.01.030
– start-page: 618
  year: 2014
  end-page: 625
  ident: CR2
  article-title: Lean after sales service – an opportunity for OEMs to ensure profits
  publication-title: In: Advances in production management systems innovative and knowledge-based production management in a global-local world
– volume: 122
  start-page: 108331
  year: 2022
  ident: CR99
  article-title: Multinomial random forest
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108331
– start-page: 235
  year: 1994
  end-page: 240
  ident: CR97
  publication-title: C4.5: programs for machine learning
  doi: 10.1007/BF00993309
– ident: CR60
– volume: 12
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR59
  article-title: An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814020919207
– year: 2013
  ident: CR94
  publication-title: Applied predictive modeling
  doi: 10.1007/978-1-4614-6849-3
– volume: 72
  start-page: 480
  year: 2018
  end-page: 485
  ident: CR87
  article-title: Self-organizing maps for anomaly localization and predictive maintenance in cyber-physical production systems
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.150
– volume: 15
  start-page: 1129
  year: 2001
  end-page: 1140
  ident: CR15
  article-title: Using fuzzy linguistics to select optimum maintenance and condition monitoring strategies
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.2000.1395
– volume: 78
  start-page: 267
  year: 2018
  end-page: 272
  ident: CR21
  article-title: Challenges and opportunities of condition-based predictive maintenance: a review
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.08.318
– volume: 28
  start-page: 1012
  year: 2006
  end-page: 1024
  ident: CR18
  article-title: System health monitoring and prognostics — a review of current paradigms and practices
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-004-2131-6
– volume: 58
  start-page: 109
  year: 2021
  end-page: 119
  ident: CR57
  article-title: A joint classification-regression method for multi-stage remaining useful life prediction
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.11.016
– volume: 61
  start-page: 830
  year: 2021
  end-page: 855
  ident: CR50
  article-title: Enabling predictive maintenance integrated production scheduling by operation-specific health prognostics with generative deep learning
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.02.006
– volume: 184
  start-page: 109321
  year: 2020
  ident: CR125
  article-title: Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling
  publication-title: Environ Res
  doi: 10.1016/j.envres.2020.109321
– year: 2016
  ident: CR38
  publication-title: Industry 4.0 - potentials for predictive maintenance
  doi: 10.2991/iwama-16.2016.8
– ident: CR66
– year: 2017
  ident: CR121
  publication-title: Neural networks with R
– volume: 13
  start-page: 135
  year: 2017
  end-page: 149
  ident: CR100
  article-title: Intrusion detection system based on support vector machines and the two-phase bat algorithm
  publication-title: J Inf Syst Secur
– ident: CR10
– volume: 89
  start-page: 120
  year: 2018
  end-page: 128
  ident: CR89
  article-title: Localization of thermal anomalies in electrical equipment using infrared thermography and support vector machine
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2017.12.015
– year: 2017
  ident: CR105
  publication-title: Handbook of neural computation
– volume: 39
  start-page: 43
  year: 1997
  end-page: 62
  ident: CR115
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 44
  start-page: 2077
  year: 2018
  end-page: 2082
  ident: CR84
  article-title: Simultaneous fault detection and identification in continuous processes via nonlinear support vector machine based feature selection
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/B978-0-444-64241-7.50341-4
– volume: 3
  start-page: 294
  year: 2008
  end-page: 302
  ident: CR1
  article-title: Strategic logistics: re-designing companies in accordance with Lean principles
  publication-title: Int J Manag Sci Eng Manag
  doi: 10.1080/17509653.2008.10671056
– volume: 56
  start-page: 539
  year: 2020
  end-page: 557
  ident: CR26
  article-title: Towards multi-model approaches to predictive maintenance: a systematic literature survey on diagnostics and prognostics
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.07.008
– volume: 1
  start-page: 62
  year: 2013
  end-page: 74
  ident: CR55
  article-title: Toward zero-defect manufacuturing - a data mining approach
  publication-title: Adv Manuf
  doi: 10.1007/s40436-013-0010-9
– volume: 11
  start-page: 21
  year: 2013
  end-page: 28
  ident: CR70
  article-title: Reinforcement learning for predictive maintenance of industrial plants
  publication-title: Inf Technol Control
  doi: 10.2478/itc-2013-0004
– volume: 231
  start-page: 1670
  year: 2017
  end-page: 1679
  ident: CR54
  article-title: Predictive maintenance, its implementation and latest trends
  publication-title: J Eng Manuf
  doi: 10.1177/0954405415601640
– volume: 62
  start-page: 972
  year: 2022
  end-page: 983
  ident: CR56
  article-title: Degradation stage classification via interpretable feature learning
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.05.003
– start-page: 8104
  year: 2018
  end-page: 8109
  ident: CR79
  article-title: Multi-step-ahead prediction with long short term memory networks and support vector regression
  publication-title: Chinese Control Conference, CCC
– volume: 55
  start-page: 5841
  year: 2017
  end-page: 5862
  ident: CR12
  article-title: Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2017.1346843
– start-page: 1
  year: 2021
  end-page: 6
  ident: CR65
  article-title: Deep hybrid learning method for classification of fetal brain abnormalities
  publication-title: 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Artificial Intelligence and Machine Vision (AIMV)
  doi: 10.1109/AIMV53313.2021.9670994
– volume: 191
  start-page: 104581
  year: 2020
  ident: CR127
  article-title: Comparison of error and uncertainty of decision tree and learning vector quantization models for predicting soil classes in areas with low altitude variations
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104581
– year: 2017
  ident: CR112
  article-title: LightGBM: a highly efficient gradient boosting decision tree
  publication-title: Advances in Neural Information Processing Systems
– volume: 64
  start-page: 107
  year: 2022
  end-page: 120
  ident: CR36
  article-title: Toward cognitive predictive maintenance: a survey of graph-based approaches
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2022.06.002
– volume: 50
  start-page: 297
  year: 2010
  end-page: 313
  ident: CR17
  article-title: Current status of machine prognostics in condition-based maintenance: a review
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2482-0
– volume: 9
  start-page: 811
  year: 2016
  end-page: 833
  ident: CR39
  article-title: Industry 4.0 implies lean manufacturing: research activities in Industry 4.0 function as enablers for lean manufacturing
  publication-title: J Ind Eng Manag
– volume: 46
  start-page: 252
  year: 2019
  end-page: 262
  ident: CR49
  article-title: Data analysis and feature selection for predictive maintenance: a case-study in the metallurgic industry
  publication-title: Int J Inf Manag
  doi: 10.1016/j.ijinfomgt.2018.10.006
– volume: 76
  start-page: 1263
  year: 2014
  end-page: 1283
  ident: CR14
  article-title: Maintenance policy optimization – literature review and directions
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6341-2
– year: 2017
  ident: CR44
  article-title: Supply chain management in the big data era
  publication-title: Big Data Analytics for Predictive Maintenance Strategies
  doi: 10.4018/978-1-5225-0956-1.ch004
– volume: 14
  start-page: 1
  year: 2022
  end-page: 27
  ident: CR46
  article-title: Predictive maintenance planning for Industry 4.0 using machine learning for sustainable manufacturing
  publication-title: Sustainability
  doi: 10.3390/su14063387
– volume: 127
  start-page: 123
  year: 2018
  end-page: 132
  ident: CR73
  article-title: Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.01.106
– volume: 48
  start-page: 71
  year: 2018
  end-page: 77
  ident: CR75
  article-title: Bearing remaining useful life prediction based on deep autoencoder and deep neural networks
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.04.008
– volume: 26
  start-page: 68
  year: 2020
  end-page: 85
  ident: CR58
  article-title: Exploring predictive maintenance applications in industry
  publication-title: J Qual Maint Eng
– year: 2018
  ident: CR91
  publication-title: Feature engineering for machine learning : principles and techniques for data scientists
– ident: CR102
– volume: 123
  start-page: 2017
  year: 2022
  end-page: 2029
  ident: CR122
  article-title: A novel fully convolutional neural network approach for detection and classification of attacks on industrial IoT devices in smart manufacturing systems
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-10259-3
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR77
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.11.021
– volume: 117
  start-page: 108421
  year: 2022
  ident: CR126
  article-title: Learning Vector Quantization based predictor model selection for hourly load demand forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108421
– year: 2015
  ident: CR85
  article-title: Development and evaluation of health monitoring techniques for railway point machines
  publication-title: In: 2015 IEEE Conference on Prognostics and Health Management: Enhancing Safety, Efficiency, Availability, and Effectiveness of Systems Through PHAf Technology and Application, PHM 2015
– year: 2015
  ident: CR119
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations
– start-page: 46
  year: 2020
  end-page: 50
  ident: CR120
  article-title: A method of intrusion detection based on attention-LSTM neural network
  publication-title: Proceedings of the 2020 5th International Conference on Machine Learning Technologies
  doi: 10.1145/3409073.3409096
– volume: 117
  start-page: 107981
  year: 2021
  ident: CR114
  article-title: Robust generalised quadratic discriminant analysis
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.107981
– volume: 214
  start-page: 107812
  year: 2021
  ident: CR32
  article-title: Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107812
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: CR118
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 4366
  year: 2019
  end-page: 4374
  ident: CR29
  article-title: Prescriptive equipment maintenance: a framework
  publication-title: 2019 IEEE International Conference on Big Data (Big Data), Big Data (Big Data)
  doi: 10.1109/BigData47090.2019.9006213
– start-page: 1
  year: 2017
  end-page: 6
  ident: CR72
  article-title: Life prediction of jet engines based on LSTM-recurrent neural networks
  publication-title: 2017 Prognostics and System Health Management Conference (PHM-Harbin)
  doi: 10.1109/PHM.2017.8079264
– volume: 104
  start-page: 1948
  year: 2021
  end-page: 1953
  ident: CR48
  article-title: Predictive maintenance in Industry 4.0: current themes
  publication-title: Procedia
– volume: 23
  start-page: 589
  year: 1968
  end-page: 609
  ident: CR113
  article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
  publication-title: J Financ
  doi: 10.2307/2978933
– volume: 215
  start-page: 107864
  year: 2021
  ident: CR34
  article-title: Predictive maintenance enabled by machine learning: use cases and challenges in the automotive industry
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107864
– volume: 34
  start-page: 129
  year: 2010
  end-page: 138
  ident: CR6
  article-title: SmartFactory-towards a factory-of-things
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2010.02.008
– year: 2020
  ident: CR33
  publication-title: Exploring engineering - an introduction to engineering and design
– volume: 61
  start-page: 576
  year: 2021
  end-page: 591
  ident: CR69
  article-title: Remaining useful life prediction of bearing based on stacked autoencoder and recurrent neural network
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.10.011
– volume: 84
  start-page: 661
  year: 2019
  end-page: 671
  ident: CR78
  article-title: Aircraft engine degradation prognostics based on logistic regression and novel OS-ELM algorithm
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2018.09.044
– volume: 74
  start-page: 106545
  year: 2023
  ident: CR64
  article-title: Artificial neural network model to estimate the long-term carbonation depth of concrete exposed to natural environments
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2023.106545
– start-page: 318
  year: 1986
  end-page: 362
  ident: CR117
  article-title: Learning internal representations by error propagation
  publication-title: Parallel distributed processing: explorations in the microstructure of cognition
  doi: 10.7551/mitpress/5236.001.0001
– volume: 107
  start-page: 2927
  year: 2020
  end-page: 2936
  ident: CR42
  article-title: Integration of Lean practices and Industry 4.0 technologies: smart manufacturing for next-generation enterprises
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05124-0
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: CR111
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– volume: 48
  start-page: 78
  year: 2018
  end-page: 86
  ident: CR74
  article-title: Long short-term memory for machine remaining life prediction
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.05.011
– start-page: 785
  year: 2016
  end-page: 794
  ident: CR109
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  doi: 10.1145/2939672.2939785
– volume: 94
  start-page: 214
  year: 2017
  end-page: 236
  ident: CR20
  article-title: State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.01.050
– year: 2019
  ident: CR61
  article-title: AI4I 2020 Predictive Maintenance Dataset
  publication-title: UCI Machine Learning Repository
– ident: CR9
– volume: 207
  start-page: 214
  year: 2015
  end-page: 225
  ident: CR35
  article-title: Maintenance management and lean manufacturing practices in a firm which produces dairy products
  publication-title: Procedia Soc Behav Sci
  doi: 10.1016/j.sbspro.2015.10.090
– volume: 3
  start-page: 236
  year: 2015
  end-page: 272
  ident: CR41
  article-title: Lean thinking for a maintenance process
  publication-title: Prod Manuf Res
  doi: 10.1080/21693277.2015.1074124
– volume: 100
  start-page: 421
  year: 2019
  end-page: 434
  ident: CR86
  article-title: Reliability assessment for CNC equipment based on degradation data
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2548-y
– volume: 57
  start-page: 5705
  year: 2019
  end-page: 5724
  ident: CR24
  article-title: Optimal preventive maintenance strategy for leased equipment under successive usage-based contracts
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2018.1542181
– year: 1986
  ident: CR116
  publication-title: Parallel distributed processing: explorations in the microstructure of cognition
  doi: 10.7551/mitpress/5236.001.0001
– volume: 24
  start-page: 99
  year: 2006
  end-page: 123
  ident: CR8
  article-title: Could lean production job design be intrinsically motivating? Contextual, configurational, and levels-of-analysis issues
  publication-title: J Oper Manag
  doi: 10.1016/j.jom.2005.04.001
– year: 2015
  ident: CR25
  publication-title: A deterioration model for establishing an optimal mix of time-based maintenance (TbM) and condition-based maintenance (CbM) for the enclosure system
– volume: 46
  start-page: 949
  year: 2022
  end-page: 971
  ident: CR27
  article-title: A digital twin concept for the prescriptive maintenance of protective coating systems on wind turbine structures
  publication-title: Wind Eng
  doi: 10.1177/0309524X211060550
– volume: 173
  start-page: 684
  year: 2013
  end-page: 692
  ident: CR3
  article-title: Management practices and the quality of care in cardiac units
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2013.3577
– start-page: 0306
  year: 2021
  end-page: 0311
  ident: CR31
  article-title: Decision support system for corrective maintenance in large-scale photovoltaic systems
  publication-title: 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Photovoltaic Specialists Conference (PVSC)
  doi: 10.1109/PVSC43889.2021.9518796
– ident: CR43
– volume: 57
  start-page: 102036
  year: 2023
  ident: CR4
  article-title: A smartphone-based application for an early skin disease prognosis: towards a lean healthcare system via computer-based vision
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102036
– year: 2003
  ident: CR5
  publication-title: Lean thinking: banish waste and create wealth in your corporation
– year: 2016
  ident: CR23
  publication-title: From prognostics and health systems management to predictive maintenance 1: monitoring and prognostics
  doi: 10.1002/9781119371052
– volume: 10
  start-page: 247
  year: 2018
  ident: CR45
  article-title: What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability
  publication-title: Sustainability
  doi: 10.3390/su10010247
– volume: 116
  start-page: 1074
  year: 2019
  end-page: 1077
  ident: CR63
  article-title: What are the limits of deep learning?
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1821594116
– volume: 468
  start-page: 148
  year: 2022
  end-page: 164
  ident: CR103
  article-title: Multinomial logistic regression classifier via lq,0-proximal Newton algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.005
– volume: 118
  start-page: 61
  year: 2018
  end-page: 70
  ident: CR82
  article-title: Continuous machine learning for abnormality identification to aid condition-based maintenance in nuclear power plant
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2018.04.002
– volume: 6
  start-page: 133
  year: 2004
  end-page: 148
  ident: CR7
  article-title: Commissioned paper to pull or not to pull: what is the question?
  publication-title: Manuf Serv Oper Manag
  doi: 10.1287/msom.1030.0028
– year: 2016
  ident: CR19
  publication-title: Industry 4.0: predictive intelligent maintenance for production equipment
– start-page: 1
  year: 2019
  end-page: 10
  ident: CR30
  article-title: Prescriptive maintenance of railway infrastructure: from data analytics to decision support
  publication-title: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Models and Technologies for Intelligent Transportation Systems (MT-ITS)
  doi: 10.1109/MTITS.2019.8883331
– volume: 65
  start-page: 1539
  year: 2017
  end-page: 1548
  ident: CR71
  article-title: Machine health monitoring using local feature-based gated recurrent unit networks
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2733438
– volume: 28
  start-page: 337
  year: 2000
  end-page: 407
  ident: CR107
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann Stat
  doi: 10.1214/aos/1016218223
– volume: 3
  start-page: 172
  year: 2012
  end-page: 186
  ident: CR40
  article-title: RFID for the extended lean enterprise
  publication-title: Int J Lean Six Sigma
  doi: 10.1108/20401461211282691
– volume: 123
  start-page: 1973
  year: 2022
  end-page: 1983
  ident: CR128
  article-title: A deep hybrid learning model for detection of cyber attacks in industrial IoT devices
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-10329-6
– volume: 50
  start-page: 201
  year: 2019
  end-page: 211
  ident: CR53
  article-title: Maintenance grouping optimization with system multi-level information based on BN lifetime prediction model
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2019.01.002
– volume: 7
  start-page: 67718
  year: 2019
  end-page: 67725
  ident: CR124
  article-title: Insights into LSTM fully convolutional networks for time series classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916828
– volume: 24
  start-page: 403
  year: 2011
  end-page: 420
  ident: CR37
  article-title: Determinants of lean success and failure in the Danish public sector
  publication-title: Int J Public Sect Manag
  doi: 10.1108/09513551111147141
– ident: CR130
– volume: 6
  start-page: 59
  year: 2018
  ident: CR83
  article-title: Integrated fault detection framework for classifying rotating machine faults using frequency domain data fusion and artificial neural networks
  publication-title: Machines
  doi: 10.3390/MACHINES6040059
– start-page: 525
  year: 2021
  end-page: 529
  ident: CR129
  article-title: Improving the accuracy of maintenance decision-making via deep forest-based failure prognostics
  publication-title: 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Science and Technology Innovation (IAECST)
  doi: 10.1109/IAECST54258.2021.9695668
– volume: 63
  start-page: 550
  year: 2022
  end-page: 562
  ident: CR47
  article-title: Remaining useful life prediction and challenges: a literature review on the use of machine learning methods
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2022.05.010
– volume: 29
  start-page: 119
  year: 1980
  end-page: 127
  ident: CR96
  article-title: An exploratory technique for investigating large quantities of categorical data
  publication-title: J R Stat Soc Ser C
  doi: 10.2307/2986296
– volume: 157
  start-page: 54
  year: 2017
  end-page: 63
  ident: CR22
  article-title: A review on condition-based maintenance optimization models for stochastically deteriorating system
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.08.009
– volume: 112
  start-page: 1041
  year: 2013
  end-page: 1048
  ident: CR88
  article-title: Pattern recognition-based chillers fault detection method using support vector data description (SVDD)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.043
– volume: 251
  start-page: 695
  year: 2016
  end-page: 706
  ident: CR13
  article-title: Maintenance scheduling in the electricity industry: a literature review
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.08.045
– start-page: 1
  year: 2017
  end-page: 6
  ident: CR80
  article-title: Condition monitoring of wind turbine gearbox using electrical signatures
  publication-title: 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Microelectronic Devices, Circuits and Systems (ICMDCS)
  doi: 10.1109/ICMDCS.2017.8211718
– volume: 20
  start-page: 163
  year: 2021
  end-page: 190
  ident: CR11
  article-title: Bibliographic study on the difficulties Encountered by SMEs during the implementation of lean manufacturing
  publication-title: J Adv Manuf Syst
  doi: 10.1142/S0219686721500098
– volume: 78
  start-page: 267
  year: 2018
  ident: 12020_CR21
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.08.318
– start-page: 107
  volume-title: Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus
  year: 2023
  ident: 12020_CR123
  doi: 10.1007/978-3-031-18326-3_11
– volume: 72
  start-page: 480
  year: 2018
  ident: 12020_CR87
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.150
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 12020_CR112
– ident: 12020_CR66
– volume: 184
  start-page: 109321
  year: 2020
  ident: 12020_CR125
  publication-title: Environ Res
  doi: 10.1016/j.envres.2020.109321
– volume: 359
  start-page: 77
  year: 2019
  ident: 12020_CR76
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.052
– volume: 9
  start-page: 1735
  year: 1997
  ident: 12020_CR118
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 4366
  volume-title: 2019 IEEE International Conference on Big Data (Big Data), Big Data (Big Data)
  year: 2019
  ident: 12020_CR29
  doi: 10.1109/BigData47090.2019.9006213
– volume-title: Industry 4.0 - potentials for predictive maintenance
  year: 2016
  ident: 12020_CR38
  doi: 10.2991/iwama-16.2016.8
– volume: 157
  start-page: 54
  year: 2017
  ident: 12020_CR22
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.08.009
– volume-title: Industry 4.0: predictive intelligent maintenance for production equipment
  year: 2016
  ident: 12020_CR19
– volume: 115
  start-page: 557
  year: 2017
  ident: 12020_CR81
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2017.06.032
– volume: 57
  start-page: 102036
  year: 2023
  ident: 12020_CR4
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102036
– volume: 94
  start-page: 214
  year: 2017
  ident: 12020_CR20
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.01.050
– volume: 62
  start-page: 972
  year: 2022
  ident: 12020_CR56
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.05.003
– volume-title: Handbook of neural computation
  year: 2017
  ident: 12020_CR105
– volume: 64
  start-page: 107
  year: 2022
  ident: 12020_CR36
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2022.06.002
– volume: 55
  start-page: 119
  year: 1997
  ident: 12020_CR111
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– volume: 6
  start-page: 133
  year: 2004
  ident: 12020_CR7
  publication-title: Manuf Serv Oper Manag
  doi: 10.1287/msom.1030.0028
– volume-title: Introduction to machine learning
  year: 2014
  ident: 12020_CR93
– start-page: 1
  volume-title: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Models and Technologies for Intelligent Transportation Systems (MT-ITS)
  year: 2019
  ident: 12020_CR30
  doi: 10.1109/MTITS.2019.8883331
– volume: 191
  start-page: 104581
  year: 2020
  ident: 12020_CR127
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104581
– volume: 112
  start-page: 1041
  year: 2013
  ident: 12020_CR88
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.043
– volume: 46
  start-page: 949
  year: 2022
  ident: 12020_CR27
  publication-title: Wind Eng
  doi: 10.1177/0309524X211060550
– volume: 50
  start-page: 201
  year: 2019
  ident: 12020_CR53
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2019.01.002
– volume: 7
  start-page: 67718
  year: 2019
  ident: 12020_CR124
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916828
– start-page: 1
  volume-title: 2017 Prognostics and System Health Management Conference (PHM-Harbin)
  year: 2017
  ident: 12020_CR72
  doi: 10.1109/PHM.2017.8079264
– start-page: 1
  volume-title: 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Microelectronic Devices, Circuits and Systems (ICMDCS)
  year: 2017
  ident: 12020_CR80
  doi: 10.1109/ICMDCS.2017.8211718
– volume: 48
  start-page: 71
  year: 2018
  ident: 12020_CR75
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.04.008
– volume: 56
  start-page: 539
  year: 2020
  ident: 12020_CR26
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.07.008
– start-page: 442
  volume-title: 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)
  year: 2021
  ident: 12020_CR67
  doi: 10.1109/ISMSIT52890.2021.9604712
– volume: 74
  start-page: 106545
  year: 2023
  ident: 12020_CR64
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2023.106545
– volume: 10
  start-page: 55924
  year: 2022
  ident: 12020_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3177537
– volume: 3
  start-page: 172
  year: 2012
  ident: 12020_CR40
  publication-title: Int J Lean Six Sigma
  doi: 10.1108/20401461211282691
– volume-title: Applied predictive modeling
  year: 2013
  ident: 12020_CR94
  doi: 10.1007/978-1-4614-6849-3
– volume: 20
  start-page: 163
  year: 2021
  ident: 12020_CR11
  publication-title: J Adv Manuf Syst
  doi: 10.1142/S0219686721500098
– volume-title: Lean thinking: banish waste and create wealth in your corporation
  year: 2003
  ident: 12020_CR5
– volume: 46
  start-page: 252
  year: 2019
  ident: 12020_CR49
  publication-title: Int J Inf Manag
  doi: 10.1016/j.ijinfomgt.2018.10.006
– volume: 24
  start-page: 403
  year: 2011
  ident: 12020_CR37
  publication-title: Int J Public Sect Manag
  doi: 10.1108/09513551111147141
– volume: 122
  start-page: 108331
  year: 2022
  ident: 12020_CR99
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108331
– volume: 123
  start-page: 1973
  year: 2022
  ident: 12020_CR128
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-10329-6
– volume: 48
  start-page: 78
  year: 2018
  ident: 12020_CR74
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.05.011
– start-page: 0306
  volume-title: 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Photovoltaic Specialists Conference (PVSC)
  year: 2021
  ident: 12020_CR31
  doi: 10.1109/PVSC43889.2021.9518796
– volume-title: UCI Machine Learning Repository
  year: 2019
  ident: 12020_CR61
– volume: 7
  start-page: 815
  issue: 4
  year: 1997
  ident: 12020_CR95
  publication-title: Statistica sinica
– start-page: 785
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 12020_CR109
  doi: 10.1145/2939672.2939785
– volume: 123
  start-page: 2017
  year: 2022
  ident: 12020_CR122
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-022-10259-3
– start-page: 235
  volume-title: C4.5: programs for machine learning
  year: 1994
  ident: 12020_CR97
  doi: 10.1007/BF00993309
– volume-title: A deterioration model for establishing an optimal mix of time-based maintenance (TbM) and condition-based maintenance (CbM) for the enclosure system
  year: 2015
  ident: 12020_CR25
– ident: 12020_CR60
– volume: 172
  start-page: 1
  year: 2018
  ident: 12020_CR77
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.11.021
– volume: 58
  start-page: 109
  year: 2021
  ident: 12020_CR57
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.11.016
– start-page: 1
  volume-title: 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Artificial Intelligence and Machine Vision (AIMV)
  year: 2021
  ident: 12020_CR65
  doi: 10.1109/AIMV53313.2021.9670994
– volume-title: Neural networks with R
  year: 2017
  ident: 12020_CR121
– volume: 45
  start-page: 5
  year: 2001
  ident: 12020_CR98
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 65
  start-page: 1539
  year: 2017
  ident: 12020_CR71
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2733438
– volume: 151
  start-page: 15
  year: 2016
  ident: 12020_CR90
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.11.010
– volume: 9
  start-page: 811
  year: 2016
  ident: 12020_CR39
  publication-title: J Ind Eng Manag
– start-page: 618
  volume-title: In: Advances in production management systems innovative and knowledge-based production management in a global-local world
  year: 2014
  ident: 12020_CR2
– volume: 34
  start-page: 129
  year: 2010
  ident: 12020_CR6
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2010.02.008
– volume: 44
  start-page: 2077
  year: 2018
  ident: 12020_CR84
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/B978-0-444-64241-7.50341-4
– volume: 29
  start-page: 1189
  year: 2001
  ident: 12020_CR108
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume-title: Big Data Analytics for Predictive Maintenance Strategies
  year: 2017
  ident: 12020_CR44
  doi: 10.4018/978-1-5225-0956-1.ch004
– volume: 116
  start-page: 1074
  year: 2019
  ident: 12020_CR63
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1821594116
– ident: 12020_CR10
– volume: 57
  start-page: 5705
  year: 2019
  ident: 12020_CR24
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2018.1542181
– volume: 127
  start-page: 123
  year: 2018
  ident: 12020_CR73
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.01.106
– volume-title: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations
  year: 2015
  ident: 12020_CR119
– volume: 50
  start-page: 297
  year: 2010
  ident: 12020_CR17
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2482-0
– volume: 100
  start-page: 421
  year: 2019
  ident: 12020_CR86
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-2548-y
– volume-title: Parallel distributed processing: explorations in the microstructure of cognition
  year: 1986
  ident: 12020_CR116
  doi: 10.7551/mitpress/5236.001.0001
– volume: 14
  start-page: 1
  year: 2022
  ident: 12020_CR46
  publication-title: Sustainability
  doi: 10.3390/su14063387
– volume: 118
  start-page: 61
  year: 2018
  ident: 12020_CR82
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2018.04.002
– start-page: 8104
  volume-title: Chinese Control Conference, CCC
  year: 2018
  ident: 12020_CR79
– volume: 3
  start-page: 236
  year: 2015
  ident: 12020_CR41
  publication-title: Prod Manuf Res
  doi: 10.1080/21693277.2015.1074124
– volume: 24
  start-page: 99
  year: 2006
  ident: 12020_CR8
  publication-title: J Oper Manag
  doi: 10.1016/j.jom.2005.04.001
– start-page: 318
  volume-title: Parallel distributed processing: explorations in the microstructure of cognition
  year: 1986
  ident: 12020_CR117
  doi: 10.7551/mitpress/5236.001.0001
– volume: 117
  start-page: 108421
  year: 2022
  ident: 12020_CR126
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108421
– volume: 12
  start-page: 1
  year: 2020
  ident: 12020_CR59
  publication-title: Adv Mech Eng
  doi: 10.1177/1687814020919207
– volume: 29
  start-page: 119
  year: 1980
  ident: 12020_CR96
  publication-title: J R Stat Soc Ser C
  doi: 10.2307/2986296
– volume-title: In: 2015 IEEE Conference on Prognostics and Health Management: Enhancing Safety, Efficiency, Availability, and Effectiveness of Systems Through PHAf Technology and Application, PHM 2015
  year: 2015
  ident: 12020_CR85
– volume: 89
  start-page: 120
  year: 2018
  ident: 12020_CR89
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2017.12.015
– volume: 176
  start-page: 419
  year: 2019
  ident: 12020_CR104
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.01.030
– start-page: 1401
  volume-title: In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence
  year: 1999
  ident: 12020_CR110
– volume: 1
  start-page: 62
  year: 2013
  ident: 12020_CR55
  publication-title: Adv Manuf
  doi: 10.1007/s40436-013-0010-9
– volume: 13
  start-page: 135
  year: 2017
  ident: 12020_CR100
  publication-title: J Inf Syst Secur
– volume: 251
  start-page: 695
  year: 2016
  ident: 12020_CR13
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.08.045
– volume: 6
  start-page: 59
  year: 2018
  ident: 12020_CR83
  publication-title: Machines
  doi: 10.3390/MACHINES6040059
– volume: 11
  start-page: 21
  year: 2013
  ident: 12020_CR70
  publication-title: Inf Technol Control
  doi: 10.2478/itc-2013-0004
– ident: 12020_CR102
  doi: 10.3390/math11030682
– volume: 173
  start-page: 684
  year: 2013
  ident: 12020_CR3
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2013.3577
– volume: 62
  start-page: 450
  year: 2022
  ident: 12020_CR68
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.12.013
– ident: 12020_CR130
  doi: 10.24963/ijcai.2017/497
– volume: 18
  start-page: 384
  year: 2012
  ident: 12020_CR16
  publication-title: J Qual Maint Eng
  doi: 10.1108/13552511211281552
– volume: 39
  start-page: 43
  year: 1997
  ident: 12020_CR115
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 231
  start-page: 1670
  year: 2017
  ident: 12020_CR54
  publication-title: J Eng Manuf
  doi: 10.1177/0954405415601640
– volume-title: Exploring engineering - an introduction to engineering and design
  year: 2020
  ident: 12020_CR33
– volume: 15
  start-page: 1129
  year: 2001
  ident: 12020_CR15
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.2000.1395
– volume: 84
  start-page: 661
  year: 2019
  ident: 12020_CR78
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2018.09.044
– volume: 76
  start-page: 1263
  year: 2014
  ident: 12020_CR14
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6341-2
– volume: 215
  start-page: 107864
  year: 2021
  ident: 12020_CR34
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107864
– volume: 61
  start-page: 87
  year: 2021
  ident: 12020_CR51
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.08.012
– start-page: 1
  volume-title: 2021 3rd International Conference on Industrial Artificial Intelligence (IAI)
  year: 2021
  ident: 12020_CR131
  doi: 10.1109/IAI53119.2021.9619276
– ident: 12020_CR9
– volume: 63
  start-page: 550
  year: 2022
  ident: 12020_CR47
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2022.05.010
– volume: 26
  start-page: 68
  year: 2020
  ident: 12020_CR58
  publication-title: J Qual Maint Eng
– volume-title: From prognostics and health systems management to predictive maintenance 1: monitoring and prognostics
  year: 2016
  ident: 12020_CR23
  doi: 10.1002/9781119371052
– volume: 60
  start-page: 3480
  year: 2011
  ident: 12020_CR52
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2009.2036347
– volume-title: Feature engineering for machine learning : principles and techniques for data scientists
  year: 2018
  ident: 12020_CR91
– volume: 61
  start-page: 830
  year: 2021
  ident: 12020_CR50
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.02.006
– volume: 468
  start-page: 148
  year: 2022
  ident: 12020_CR103
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.005
– start-page: 525
  volume-title: 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Science and Technology Innovation (IAECST)
  year: 2021
  ident: 12020_CR129
  doi: 10.1109/IAECST54258.2021.9695668
– volume: 3
  start-page: 294
  year: 2008
  ident: 12020_CR1
  publication-title: Int J Manag Sci Eng Manag
  doi: 10.1080/17509653.2008.10671056
– volume: 55
  start-page: 5841
  year: 2017
  ident: 12020_CR12
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2017.1346843
– volume: 10
  start-page: 247
  year: 2018
  ident: 12020_CR45
  publication-title: Sustainability
  doi: 10.3390/su10010247
– volume: 107
  start-page: 2927
  year: 2020
  ident: 12020_CR42
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05124-0
– volume-title: Data mining : practical machine learning tools and techniques
  year: 2017
  ident: 12020_CR92
– start-page: 116
  volume-title: Hey ML, what can you do for me? 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Artificial Intelligence and Knowledge Engineering (AIKE), 2020
  year: 2020
  ident: 12020_CR62
  doi: 10.1109/AIKE48582.2020.00023
– volume: 117
  start-page: 107981
  year: 2021
  ident: 12020_CR114
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.107981
– volume: 207
  start-page: 214
  year: 2015
  ident: 12020_CR35
  publication-title: Procedia Soc Behav Sci
  doi: 10.1016/j.sbspro.2015.10.090
– volume-title: Support vector machines : theory and applications
  year: 2005
  ident: 12020_CR101
  doi: 10.1007/b95439
– volume: 104
  start-page: 1948
  year: 2021
  ident: 12020_CR48
  publication-title: Procedia
– volume: 23
  start-page: 589
  year: 1968
  ident: 12020_CR113
  publication-title: J Financ
  doi: 10.2307/2978933
– volume: 39
  start-page: 13492
  year: 2012
  ident: 12020_CR106
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.009
– volume: 28
  start-page: 337
  year: 2000
  ident: 12020_CR107
  publication-title: Ann Stat
  doi: 10.1214/aos/1016218223
– volume: 28
  start-page: 1012
  year: 2006
  ident: 12020_CR18
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-004-2131-6
– start-page: 46
  volume-title: Proceedings of the 2020 5th International Conference on Machine Learning Technologies
  year: 2020
  ident: 12020_CR120
  doi: 10.1145/3409073.3409096
– volume: 61
  start-page: 576
  year: 2021
  ident: 12020_CR69
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.10.011
– ident: 12020_CR43
  doi: 10.1007/s10696-023-09497-8
– volume: 214
  start-page: 107812
  year: 2021
  ident: 12020_CR32
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107812
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.5696225
Snippet Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3857
SubjectTerms Accuracy
Algorithms
CAE) and Design
Computer-Aided Engineering (CAD
Deep learning
Downtime
Engineering
Failure detection
Fault detection
Industrial and Production Engineering
Machine learning
Mechanical Engineering
Media Management
Optimization
Original Article
Performance measurement
Predictive maintenance
Tool wear
Workpieces
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_q9UUfxI-Kp63kwbca2mSzya4gYqWlCD1EWujbks1HLfS2p7elf4n_rzPZ7F0r2NfsZlgyM8lkZ-b3A3ivtDdOxMhN2eIFRcqaW21bboQ02sU6qkANziczfXymvp2X5xswG3thqKxy3BPTRu2vHf0j35OVxo1Uo4N9XvzixBpF2dWRQsNmagX_KUGMPYJNSchYE9g8OJx9_zFamKgNsWSuLFDWRE2_tvBClcWQ98p5CC1SMx1eVCpyxSq33aTmuwQ9w_HM40LSJez2_tG2jlf_SbGmk-voGTzNISf7MtjIc9gI3Qt4cgeI8CX8SZUDbJ4qKwPLVBIXzHae-RAWd0auLnBV-p_zJcNwl3m8xBM9PSOIknnu6WSXHYrqbqhpInVBsgEvevkRBbJAkMos2ksqiEfpfSoG65gfiv7wI9ly2MC24Ozo8PTrMc-EDdyhJ_e8DgIXqnKtk623PggvPdlAdPvWKI-xV2uswiFX-RpPRV0FjE5iEYxTldsvilcw6a678BoYzi8jZX2F1aosfStVa2U0RUHVcU5MQYxr3biMZk6kGlfNCoc56adB_TRJP83tFHZXcxYDlseDb2-PKmyyXy-btRVO4cOo1vXj_0t787C0t_BYJkuiKsFtmPS_b8IORjt9-y6b8F8x5vpE
  priority: 102
  providerName: ProQuest
Title Using machine learning and deep learning algorithms for downtime minimization in manufacturing systems: an early failure detection diagnostic service
URI https://link.springer.com/article/10.1007/s00170-023-12020-w
https://www.proquest.com/docview/2868476219
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ADMLS
  dateStart: 19850901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdYd4ED41Mr2yofuEGm2XHsZLfC2k3AJgRUGqfIn6NiTaclVaX9H_y_PDtOOyZA2imSYzux_ez3rPd7v4fQa8aN0MS5RGQKLiiUFonkUiWCUMG1KxyzPsD59IyfTNiH8-w8BoXVHdq9c0mGk3oV7BaoXhLQMQmh_tKz3ECbgW-rhzaHx98_jjo5IoXwuTBXckYLn4B-Lccpy9LWuxW9DZyEkDm4juR-w-UxuObvX_1Tga2t0juO1KCfxlto0o2shaX83F80al_f3CF9vO_Qn6DH0WDFw1bCnqIHtnqGHt2iMXyOfgXcAZ4FXKbFMRHFBZaVwcbaq1sllxfz62nzY1ZjMJaxmS8rn9wee4KTWYwIxdMKuqoWPuQixFDilm26PoQOsfWEzNjJqYfTQ-9NgJJV2LSQQfhJXLfH3ws0GY--vT9JYrqHRMM50CSFJbAAuVaaKiONJYYaL0FOH0jBDFhuSkgGRTo3BehUnluwbVxqhWa5PkjTl6hXzSu7jTC0z5z3GRPJWZYZRZmS1Ik09dg6TfqIdGtY6siF7lNyXJYrFucw5SVMeRmmvFz20ZtVm6uWCeS_tXc70SjjqVCXNOdgDHBQEn30tlvp9et_9_bqftV30EMahMVjDndRr7le2D2wnRo1QBv5-HgAG-bo9NPXQdw48Hw3Ovv8Bd5O6PA3EmUTJA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYQHNoeqv6qW2jrQ3tqrWLHsZNKqAIKWgqsqgokbqljO4DEZpcmaNUH6ev02ZhxnF1aqdy4ZjejKDOen8x83xDyViqnLa8qptMSChQhcmaUKZnmQitb5ZX0CHA-HKnhsfx6kp4skT89FgbHKnufGBy1m1j8Rv5RZAocqYID9nl6yXBrFHZX-xUaJq5WcBuBYiwCO_b9rxmUcM3G3hfQ9zshdneOtocsbhlgFsyvZbnnQmWZLa0onXGeO-HwwSu7brR0kDCU2ki4ZDOXgytXmYeQWiVeW5nZdfwgCiFgRSYyh-JvZWtn9O17b9E817iVc27xIocERy9OVCLTpOuzxb6H4gG8B4VRhkc_izCfAPYLVDcMYizjAou-2d-hdJEf_9PSDZFy9xF5GFNcutnZ5GOy5Osn5MEN4sOn5HeYVKDjMMnpaVxdcUpN7ajzfnrjysUpaKE9GzcU0mvqJjN4_2NPkRJlHDGk9LwGUfUVgjQC6pJ2_NTNJxBIPVI408qc4wA-SG_D8FlNXTdkCA9Jm85hPiPHd6K652S5ntT-BaFwf1phl5kbJdPUlUKWRlQ6SXAaz_IB4f27LmxkT8clHhfFnPc56KcA_RRBP8VsQN7P75l23CG3_nutV2ER_UhTLKx-QD70al38_H9pL2-X9obcGx4dHhQHe6P9VXJfBKvCCcU1stz-vPKvINNqy9fRnCn5cdcn6BoOejfV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZYkabxgNgYWqEwP-yNRWDHsRPeEFDBBoiHVeItcvyDVaJp1Qbxl_D_cuckbTcBEq9OfIl8Z99Zd993hPwQ0irDvI9UUsAFhfMs0lIXkWJcSeMzLxwCnK-u5flA_LpNbpdQ_KHavU1J1pgGZGkqq4OJ9Qdz4FugfYnA30SM4wXo8QNZFUiUABY94MetRbFMYVfMucXxDFvRLyw6Fklc57mavINkATwHF5MUt17awGxe_ua_rmwRn_6XUg2eqr9B1psQkx7XNvGZrLjyC1lbIh7cJE-hUoCOQiWlo03riDuqS0utc5Olkfu78XRY_R3NKIS31MKlHdvRU6QkGTUYTjosQVT5gCCJgHqkNT_07AgEUocUytTrIRbAg_QqFH-V1NZFfvCTdFYfWF_JoH_25-Q8aho0RAZ2bhVljsFCpaYwvLDaOma5RZ17c6iVsBBrFUoLGDKpzcALytRBNOJjp4xIzWEcb5FOOS7dN0JhfuIxy8u0FEliCy4Kzb2KY6yGM6xLWLvWuWnYy7GJxn0-510O-slBP3nQT_7YJfvzOZOau-PNt3utCvNmH89ynkpw3xKO9S752ap18fh1advve_07-Xhz2s8vL65_75BPPBgZFgz2SKeaPrhdCHyqYi_Y9jMzJ_gS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+and+deep+learning+algorithms+for+downtime+minimization+in+manufacturing+systems%3A+an+early+failure+detection+diagnostic+service&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Shahin%2C+Mohammad&rft.au=Chen%2C+F.+Frank&rft.au=Hosseinzadeh%2C+Ali&rft.au=Zand%2C+Neda&rft.date=2023-10-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=128&rft.issue=9-10&rft.spage=3857&rft.epage=3883&rft_id=info:doi/10.1007%2Fs00170-023-12020-w&rft.externalDocID=10_1007_s00170_023_12020_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon