Using machine learning and deep learning algorithms for downtime minimization in manufacturing systems: an early failure detection diagnostic service
Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected tool wear or unacceptable workpiece quality. This paper aims to report the study of more than 20 fault detection models using machine learni...
Saved in:
| Published in | International journal of advanced manufacturing technology Vol. 128; no. 9-10; pp. 3857 - 3883 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.10.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-3768 1433-3015 |
| DOI | 10.1007/s00170-023-12020-w |
Cover
| Abstract | Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected tool wear or unacceptable workpiece quality. This paper aims to report the study of more than 20 fault detection models using machine learning (ML), deep learning (DL), and deep hybrid learning (DHL). Predicting how the system could fail based on certain features or system settings (input variables) can help avoid future breakdowns and minimize downtime. The effectiveness of the proposed algorithms was experimented with a synthetic predictive maintenance dataset published by the School of Engineering of the University of Applied Sciences in Berlin, Germany. The fidelity of these algorithms was evaluated using performance measurement values such as accuracy, precision, recall, and the
F
-score. Final results demonstrated that deep forest and gradient boosting algorithms had shown very high levels of average accuracy (exceeded 90%). Additionally, the multinomial logistic regression and long short-term memory-based algorithms have shown satisfactory average accuracy (above 80%). Further analysis of models suggests that some models outperformed others. The research concluded that, through various ML, DL, and DHL algorithms, operational data analytics, and health monitoring system, engineers could optimize maintenance and reduce reliability risks. |
|---|---|
| AbstractList | Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected tool wear or unacceptable workpiece quality. This paper aims to report the study of more than 20 fault detection models using machine learning (ML), deep learning (DL), and deep hybrid learning (DHL). Predicting how the system could fail based on certain features or system settings (input variables) can help avoid future breakdowns and minimize downtime. The effectiveness of the proposed algorithms was experimented with a synthetic predictive maintenance dataset published by the School of Engineering of the University of Applied Sciences in Berlin, Germany. The fidelity of these algorithms was evaluated using performance measurement values such as accuracy, precision, recall, and the
F
-score. Final results demonstrated that deep forest and gradient boosting algorithms had shown very high levels of average accuracy (exceeded 90%). Additionally, the multinomial logistic regression and long short-term memory-based algorithms have shown satisfactory average accuracy (above 80%). Further analysis of models suggests that some models outperformed others. The research concluded that, through various ML, DL, and DHL algorithms, operational data analytics, and health monitoring system, engineers could optimize maintenance and reduce reliability risks. Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected tool wear or unacceptable workpiece quality. This paper aims to report the study of more than 20 fault detection models using machine learning (ML), deep learning (DL), and deep hybrid learning (DHL). Predicting how the system could fail based on certain features or system settings (input variables) can help avoid future breakdowns and minimize downtime. The effectiveness of the proposed algorithms was experimented with a synthetic predictive maintenance dataset published by the School of Engineering of the University of Applied Sciences in Berlin, Germany. The fidelity of these algorithms was evaluated using performance measurement values such as accuracy, precision, recall, and the F-score. Final results demonstrated that deep forest and gradient boosting algorithms had shown very high levels of average accuracy (exceeded 90%). Additionally, the multinomial logistic regression and long short-term memory-based algorithms have shown satisfactory average accuracy (above 80%). Further analysis of models suggests that some models outperformed others. The research concluded that, through various ML, DL, and DHL algorithms, operational data analytics, and health monitoring system, engineers could optimize maintenance and reduce reliability risks. |
| Author | Zand, Neda Shahin, Mohammad Hosseinzadeh, Ali Chen, F. Frank |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Shahin fullname: Shahin, Mohammad organization: Mechanical Engineering Department, The University of Texas at San Antonio – sequence: 2 givenname: F. Frank surname: Chen fullname: Chen, F. Frank email: FF.Chen@utsa.edu organization: Mechanical Engineering Department, The University of Texas at San Antonio – sequence: 3 givenname: Ali surname: Hosseinzadeh fullname: Hosseinzadeh, Ali organization: Mechanical Engineering Department, The University of Texas at San Antonio – sequence: 4 givenname: Neda surname: Zand fullname: Zand, Neda organization: Computer Science Department, The University of Texas at San Antonio |
| BookMark | eNp9kc1KAzEcxIMoWKsv4CngeTUf203qTcQvELzoOaTJf9vIblKTrKW-h-9r2gqKB0-BYX6TTOYI7fvgAaFTSs4pIeIiEUIFqQjjFWWEkWq1h0a05rzihE720YiwRlZcNPIQHaX0WuwNbeQIfb4k5-e412bhPOAOdPQbQXuLLcDyl9LNQ3R50SfchohtWPnsesC98653Hzq74LHzJcoPrTZ5iBsqrVOGPl2WQFySujVuteuGCCU9g9lC1um5Dyk7gxPEd2fgGB20uktw8n2O0cvtzfP1ffX4dPdwffVYGU6nuZoCLbWkmRk2s9oCtcyKyYy2hmhRW9bUM6HrIhlpp7UohYEx3nIQppaGcD5GZ7vcZQxvA6SsXsMQfblSMdnIWjSMTotL7lwmhpQitMq4vO2bYymjKFGbEdRuBFVGUNsR1Kqg7A-6jK7Xcf0_xHdQWm7-EOLPq_6hvgDo4aDN |
| CitedBy_id | crossref_primary_10_3390_ai6030054 crossref_primary_10_21595_marc_2024_24585 crossref_primary_10_1108_IJLSS_05_2024_256 crossref_primary_10_3390_su16156548 crossref_primary_10_1186_s40537_024_01030_4 crossref_primary_10_3390_a17080333 crossref_primary_10_3390_s24103247 crossref_primary_10_1007_s00170_024_13719_0 crossref_primary_10_1007_s00170_024_14505_8 crossref_primary_10_1007_s12541_024_01075_8 crossref_primary_10_1038_s41598_024_70729_4 crossref_primary_10_1016_j_aei_2024_102685 crossref_primary_10_1016_j_spc_2024_12_012 crossref_primary_10_1016_j_smse_2024_100029 crossref_primary_10_1007_s00170_024_13167_w crossref_primary_10_3390_make7010013 crossref_primary_10_3390_app142411973 crossref_primary_10_1016_j_jmsy_2024_12_002 crossref_primary_10_1016_j_eswa_2025_126672 crossref_primary_10_7769_gesec_v15i8_3981 |
| Cites_doi | 10.1109/TIM.2009.2036347 10.1016/j.triboint.2017.06.032 10.1109/AIKE48582.2020.00023 10.1214/aos/1013203451 10.1007/978-3-031-18326-3_11 10.1016/j.jmsy.2021.12.013 10.1016/j.neucom.2019.05.052 10.1007/b95439 10.1016/j.chemolab.2015.11.010 10.1016/j.jmsy.2021.08.012 10.1109/IAI53119.2021.9619276 10.1023/A:1010933404324 10.1016/j.eswa.2012.07.009 10.1109/ACCESS.2022.3177537 10.1108/13552511211281552 10.1109/ISMSIT52890.2021.9604712 10.1016/j.catena.2019.01.030 10.1016/j.patcog.2021.108331 10.1007/BF00993309 10.1177/1687814020919207 10.1007/978-1-4614-6849-3 10.1016/j.procir.2018.03.150 10.1006/mssp.2000.1395 10.1016/j.procir.2018.08.318 10.1007/s00170-004-2131-6 10.1016/j.jmsy.2020.11.016 10.1016/j.jmsy.2021.02.006 10.1016/j.envres.2020.109321 10.2991/iwama-16.2016.8 10.1016/j.infrared.2017.12.015 10.1016/S0169-7439(97)00061-0 10.1016/B978-0-444-64241-7.50341-4 10.1080/17509653.2008.10671056 10.1016/j.jmsy.2020.07.008 10.1007/s40436-013-0010-9 10.2478/itc-2013-0004 10.1177/0954405415601640 10.1016/j.jmsy.2021.05.003 10.1080/00207543.2017.1346843 10.1109/AIMV53313.2021.9670994 10.1016/j.catena.2020.104581 10.1016/j.jmsy.2022.06.002 10.1007/s00170-009-2482-0 10.1016/j.ijinfomgt.2018.10.006 10.1007/s00170-014-6341-2 10.4018/978-1-5225-0956-1.ch004 10.3390/su14063387 10.1016/j.procs.2018.01.106 10.1016/j.jmsy.2018.04.008 10.1007/s00170-022-10259-3 10.1016/j.ress.2017.11.021 10.1016/j.asoc.2022.108421 10.1145/3409073.3409096 10.1016/j.patcog.2021.107981 10.1016/j.ress.2021.107812 10.1162/neco.1997.9.8.1735 10.1109/BigData47090.2019.9006213 10.1109/PHM.2017.8079264 10.2307/2978933 10.1016/j.ress.2021.107864 10.1016/j.arcontrol.2010.02.008 10.1016/j.jmsy.2021.10.011 10.1016/j.ast.2018.09.044 10.1016/j.jobe.2023.106545 10.7551/mitpress/5236.001.0001 10.1007/s00170-020-05124-0 10.1006/jcss.1997.1504 10.1016/j.jmsy.2018.05.011 10.1145/2939672.2939785 10.1016/j.ymssp.2017.01.050 10.1016/j.sbspro.2015.10.090 10.1080/21693277.2015.1074124 10.1007/s00170-018-2548-y 10.1080/00207543.2018.1542181 10.1016/j.jom.2005.04.001 10.1177/0309524X211060550 10.1001/jamainternmed.2013.3577 10.1109/PVSC43889.2021.9518796 10.1016/j.aei.2023.102036 10.1002/9781119371052 10.3390/su10010247 10.1073/pnas.1821594116 10.1016/j.neucom.2021.10.005 10.1016/j.anucene.2018.04.002 10.1287/msom.1030.0028 10.1109/MTITS.2019.8883331 10.1109/TIE.2017.2733438 10.1214/aos/1016218223 10.1108/20401461211282691 10.1007/s00170-022-10329-6 10.1016/j.jmsy.2019.01.002 10.1109/ACCESS.2019.2916828 10.1108/09513551111147141 10.3390/MACHINES6040059 10.1109/IAECST54258.2021.9695668 10.1016/j.jmsy.2022.05.010 10.2307/2986296 10.1016/j.ress.2016.08.009 10.1016/j.apenergy.2012.12.043 10.1016/j.ejor.2015.08.045 10.1109/ICMDCS.2017.8211718 10.1142/S0219686721500098 10.3390/math11030682 10.24963/ijcai.2017/497 10.1007/s10696-023-09497-8 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s00170-023-12020-w |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 3883 |
| ExternalDocumentID | 10_1007_s00170_023_12020_w |
| GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-9e12688cbc2bdade1d2d75b1fc0a74d264b7a4d75c8d947168e223f3e7c48c033 |
| IEDL.DBID | AGYKE |
| ISSN | 0268-3768 |
| IngestDate | Fri Jul 25 11:12:41 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Wed Oct 01 02:42:41 EDT 2025 Fri Feb 21 02:41:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9-10 |
| Keywords | Waste reduction Big data Industry 4.0 Maintenance Lean manufacturing Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-9e12688cbc2bdade1d2d75b1fc0a74d264b7a4d75c8d947168e223f3e7c48c033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2868476219 |
| PQPubID | 2044010 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_2868476219 crossref_citationtrail_10_1007_s00170_023_12020_w crossref_primary_10_1007_s00170_023_12020_w springer_journals_10_1007_s00170_023_12020_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231000 2023-10-00 20231001 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 20231000 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Zhao, Wang, Xiao (CR88) 2013; 112 Chen, Guestrin (CR109) 2016 Salma, Anas, Mohammed (CR11) 2021; 20 Montero Jimenez, Schwartz, Vingerhoeds (CR26) 2020; 56 Wang, Li, Xie (CR24) 2019; 57 Karim, Majumdar, Darabi (CR124) 2019; 7 Xia, Tang (CR131) 2021 Luwei, Yunusa-Kaltungo, Sha’aban (CR83) 2018; 6 Pastorino, Biswas (CR62) 2020 Atay, Arslankayaa (CR35) 2015; 207 Ghosh, SahaRay, Chakrabarty, Bhadra (CR114) 2021; 117 Singh, Malik, Sharma (CR80) 2017 Koprinkova-Hristova (CR70) 2013; 11 Waldrop (CR63) 2019; 116 Dua, Graff (CR61) 2019 Dombrowski, Malorny, Grabot, Vallespir, Gomes, Bouras, Kiritsis (CR2) 2014 Consilvio, Sanetti, Anguita (CR30) 2019 Duan, Deng, Li (CR86) 2019; 100 Friedman, Hastie, Tibshirani (CR107) 2000; 28 Rumelhart, McClelland (CR116) 1986 Shinde, Thakare (CR65) 2021 Hochreiter, Schmidhuber (CR118) 1997; 9 Shahin, Chen, Hosseinzadeh (CR128) 2022; 123 CR43 Li, Wang, He (CR38) 2016 Momber, Möller, Langenkämper (CR27) 2022; 46 Selcuk (CR54) 2017; 231 Ren, Sun, Cui, Zhang (CR75) 2018; 48 Shahin, Ff, Bouzary, Kim, Monplaisir, Rickli (CR123) 2023 Ayo-Imoru, m., Cilliers A c. (CR82) 2018; 118 He, Changchao, Zhaoxiang (CR12) 2017; 55 Zhai, Gehring, Reinhart (CR50) 2021; 61 Zonta, da Costa, Zeiser (CR68) 2022; 62 Xiao, Wang, Xu, Zhou (CR90) 2016; 151 Li, Fang, Shi (CR79) 2018 Adib, Mehedi, Sakib (CR67) 2021 Laib dit Leksir, Mansour, Moussaoui (CR89) 2018; 89 Akarslan (CR126) 2022; 117 Loh, Shih, Loh, Shih (CR95) 1997; 7 Zheng, Casari (CR91) 2018 Wang, Zhang, Wang (CR53) 2019; 50 Yu, Chen, Lu (CR129) 2021 Müller, Kiel, Voigt (CR45) 2018; 10 Ke, Meng, Finley (CR112) 2017 Witten, Frank, Hall, Pal (CR92) 2017 Abidi, Mohammed, Alkhalefah (CR46) 2022; 14 Ferreira, Gonçalves (CR47) 2022; 63 Hinchi, Tkiouat (CR73) 2018; 127 Choubey, Benton, Johnsten (CR29) 2019 Yang, Tan, Xia, Liu (CR120) 2020 Bahdanau, Cho, Bengio (CR119) 2015 De Treville, Antonakis (CR8) 2006; 24 Xia, Zheng, Li (CR36) 2022; 64 Mostafa, Lee, Dumrak (CR41) 2015; 3 Salzberg, Quinlan (CR97) 1994 CR66 Erigha, Ayo, Dada, Folorunso (CR100) 2017; 13 Samui, Sekhar, Balas (CR105) 2017 Alaswad, Xiang (CR22) 2017; 157 CR60 Friedman (CR108) 2001; 29 Svozil, Kvasnicka, Pospíchal (CR115) 1997; 39 Tiddens, Braaksma, Tinga (CR58) 2020; 26 Onel, Kieslich, Guzman, Pistikopoulos (CR84) 2018; 44 Hopp, Spearman (CR7) 2004; 6 Javed, Gouriveau, Zerhouni (CR20) 2017; 94 Lu, Wu, Huang, Qiu (CR78) 2019; 84 Peng, Dong, Zuo (CR17) 2010; 50 von Birgelen, Buratti, Mager, Niggemann (CR87) 2018; 72 McConnell, Lindrooth, Wholey, Maddox (CR3) 2013; 173 Rumelhart, Hinton, Williams (CR117) 1986 Ding, Kamaruddin (CR14) 2014; 76 Kass (CR96) 1980; 29 Freund, Schapire (CR110) 1999 Freund, Schapire (CR111) 1997; 55 Alpaydin (CR93) 2014 Majlesi, Koodiani, de Rincon (CR64) 2023; 74 Koc, Mazzuchi, Sarkani (CR106) 2012; 39 Froger, Gendreau, Mendoza (CR13) 2016; 251 Lee, Cao, Ng (CR44) 2017 Hashemian, Bean (CR52) 2011; 60 Pourghasemi, Gayen, Lasaponara, Tiefenbacher (CR125) 2020; 184 Shahin, Chen, Bouzary, Krishnaiyer (CR42) 2020; 107 Kothamasu, Huang, VerDuin (CR18) 2006; 28 Zuehlke (CR6) 2010; 34 Theissler, Elger, Kettelgerdes (CR34) 2021; 215 Shahin, Chen, Hosseinzadeh (CR4) 2023; 57 Powell, Skjelstad (CR40) 2012; 3 Albrice, Branch (CR25) 2015 Sanders, Elangeswaran, Wulfsberg (CR39) 2016; 9 CR130 CR9 Bekar, Skoogh, Nyqvist (CR59) 2020; 12 Zhang, Wang, Yan, Gao (CR74) 2018; 48 Ciaburro (CR121) 2017 Dong, Li, Sun (CR72) 2017 Meissner, Rahn, Wicke (CR32) 2021; 214 Livera, Theristis, Charalambous (CR31) 2021 Pedersen, Huniche (CR37) 2011; 24 Ferreiro, Konde, Prado (CR19) 2016 Sakib, Wuest (CR21) 2018; 78 Kosky, Robert, Wise (CR33) 2020 Zhang, Wang, Xiu (CR103) 2022; 468 Shahin, Chen, Bouzary (CR122) 2022; 123 Jin, Shi, Siegel (CR85) 2015 Cho, d., Carrasco R a., Ruz G a. (CR28) 2022; 10 Wu, Wu, Chen (CR57) 2021; 58 Gajewski, Vališ (CR81) 2017; 115 Wang (CR101) 2005 Han, Pang, Tan (CR69) 2021; 61 Wang (CR55) 2013; 1 Kuhn, Johnson (CR94) 2013 Womack, Jones (CR5) 2003 CR10 Breiman (CR98) 2001; 45 Chan, Chang, Chen, Lee (CR104) 2019; 176 Sahli, Evans, Manohar (CR48) 2021; 104 Zhao, Wang, Mao (CR71) 2017; 65 Esfandiarpour-Boroujeni, Shamsabadi, Shirani (CR127) 2020; 191 Bai, Li, Li (CR99) 2022; 122 Prajapati, Bechtel, Ganesan (CR16) 2012; 18 Huang, Cheng, Yang, Guo (CR76) 2019; 359 Fernandes, Canito, Canedo, Marreiors (CR49) 2019; 46 Gouriveau, Medjaher, Zerhouni (CR23) 2016 Altman (CR113) 1968; 23 Li, Ding, Sun (CR77) 2018; 172 Mechefske, Wang (CR15) 2001; 15 CR102 Alfeo, Cimino, Vaglini (CR56) 2022; 62 Carrasqueira, Cruz-Machado (CR1) 2008; 3 Leukel, González, Riekert (CR51) 2021; 61 S De Treville (12020_CR8) 2006; 24 E Akarslan (12020_CR126) 2022; 117 L Ren (12020_CR75) 2018; 48 P Zhang (12020_CR103) 2022; 468 W Jin (12020_CR85) 2015 H Xia (12020_CR131) 2021 P Kosky (12020_CR33) 2020 S Yang (12020_CR120) 2020 F Karim (12020_CR124) 2019; 7 S Zhai (12020_CR50) 2021; 61 EI Altman (12020_CR113) 1968; 23 M Abidi (12020_CR46) 2022; 14 A von Birgelen (12020_CR87) 2018; 72 12020_CR102 AL Alfeo (12020_CR56) 2022; 62 12020_CR66 K Javed (12020_CR20) 2017; 94 JJ Montero Jimenez (12020_CR26) 2020; 56 M Shahin (12020_CR128) 2022; 123 Y He (12020_CR12) 2017; 55 G Ciaburro (12020_CR121) 2017 M Carrasqueira (12020_CR1) 2008; 3 HR Pourghasemi (12020_CR125) 2020; 184 Y Peng (12020_CR17) 2010; 50 N Sakib (12020_CR21) 2018; 78 W Hopp (12020_CR7) 2004; 6 DE Rumelhart (12020_CR116) 1986 A Froger (12020_CR13) 2016; 251 A Prajapati (12020_CR16) 2012; 18 M Shahin (12020_CR4) 2023; 57 K Shinde (12020_CR65) 2021 L Wang (12020_CR101) 2005 ED Erigha (12020_CR100) 2017; 13 S Hochreiter (12020_CR118) 1997; 9 S Ferreiro (12020_CR19) 2016 A Sanders (12020_CR39) 2016; 9 D Dua (12020_CR61) 2019 IH Witten (12020_CR92) 2017 D Zuehlke (12020_CR6) 2010; 34 W-Y Loh (12020_CR95) 1997; 7 L Koc (12020_CR106) 2012; 39 R Gouriveau (12020_CR23) 2016 Y Freund (12020_CR110) 1999 A Livera (12020_CR31) 2021 X Li (12020_CR77) 2018; 172 L Xia (12020_CR36) 2022; 64 T Chen (12020_CR109) 2016 12020_CR43 J Pastorino (12020_CR62) 2020 J Zhang (12020_CR74) 2018; 48 12020_CR60 T Han (12020_CR69) 2021; 61 12020_CR130 S Choubey (12020_CR29) 2019 H Hashemian (12020_CR52) 2011; 60 M Shahin (12020_CR42) 2020; 107 H Yu (12020_CR129) 2021 A Zheng (12020_CR91) 2018 M Shahin (12020_CR122) 2022; 123 J Leukel (12020_CR51) 2021; 61 P Koprinkova-Hristova (12020_CR70) 2013; 11 A Theissler (12020_CR34) 2021; 215 12020_CR9 J Friedman (12020_CR107) 2000; 28 J Müller (12020_CR45) 2018; 10 D Powell (12020_CR40) 2012; 3 M Shahin (12020_CR123) 2023 W Tiddens (12020_CR58) 2020; 26 A Sahli (12020_CR48) 2021; 104 H Atay (12020_CR35) 2015; 207 J Womack (12020_CR5) 2003 D Albrice (12020_CR25) 2015 K Wang (12020_CR55) 2013; 1 Y Xiao (12020_CR90) 2016; 151 HC Chan (12020_CR104) 2019; 176 E Pedersen (12020_CR37) 2011; 24 P Samui (12020_CR105) 2017 C Lee (12020_CR44) 2017 K McConnell (12020_CR3) 2013; 173 J Gajewski (12020_CR81) 2017; 115 G Ke (12020_CR112) 2017 Y Laib dit Leksir (12020_CR89) 2018; 89 D Svozil (12020_CR115) 1997; 39 D Dong (12020_CR72) 2017 L Breiman (12020_CR98) 2001; 45 R Ayo-Imoru (12020_CR82) 2018; 118 S Selcuk (12020_CR54) 2017; 231 A Cho (12020_CR28) 2022; 10 A Ghosh (12020_CR114) 2021; 117 D Bahdanau (12020_CR119) 2015 F Lu (12020_CR78) 2019; 84 M Kuhn (12020_CR94) 2013 W Huang (12020_CR76) 2019; 359 C Ferreira (12020_CR47) 2022; 63 X Wang (12020_CR53) 2019; 50 E Bekar (12020_CR59) 2020; 12 X Wang (12020_CR24) 2019; 57 C Mechefske (12020_CR15) 2001; 15 GV Kass (12020_CR96) 1980; 29 QAR Adib (12020_CR67) 2021 J-Y Wu (12020_CR57) 2021; 58 R Meissner (12020_CR32) 2021; 214 U Dombrowski (12020_CR2) 2014 R Kothamasu (12020_CR18) 2006; 28 S Ding (12020_CR14) 2014; 76 T Zonta (12020_CR68) 2022; 62 A Consilvio (12020_CR30) 2019 S Li (12020_CR79) 2018 SL Salzberg (12020_CR97) 1994 DE Rumelhart (12020_CR117) 1986 A Salma (12020_CR11) 2021; 20 K Singh (12020_CR80) 2017 JH Friedman (12020_CR108) 2001; 29 MM Waldrop (12020_CR63) 2019; 116 R Zhao (12020_CR71) 2017; 65 J Bai (12020_CR99) 2022; 122 S Alaswad (12020_CR22) 2017; 157 E Alpaydin (12020_CR93) 2014 C Duan (12020_CR86) 2019; 100 S Mostafa (12020_CR41) 2015; 3 I Esfandiarpour-Boroujeni (12020_CR127) 2020; 191 Z Li (12020_CR38) 2016 KC Luwei (12020_CR83) 2018; 6 Y Zhao (12020_CR88) 2013; 112 AZ Hinchi (12020_CR73) 2018; 127 A Majlesi (12020_CR64) 2023; 74 AW Momber (12020_CR27) 2022; 46 Y Freund (12020_CR111) 1997; 55 M Onel (12020_CR84) 2018; 44 M Fernandes (12020_CR49) 2019; 46 12020_CR10 |
| References_xml | – year: 2014 ident: CR93 publication-title: Introduction to machine learning – volume: 60 start-page: 3480 year: 2011 end-page: 3492 ident: CR52 article-title: State-of-the-art predictive maintenance techniques publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2009.2036347 – volume: 115 start-page: 557 year: 2017 end-page: 572 ident: CR81 article-title: The determination of combustion engine condition and reliability using oil analysis by MLP and RBF neural networks publication-title: Tribol Int doi: 10.1016/j.triboint.2017.06.032 – start-page: 116 year: 2020 end-page: 119 ident: CR62 publication-title: Hey ML, what can you do for me? 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Artificial Intelligence and Knowledge Engineering (AIKE), 2020 doi: 10.1109/AIKE48582.2020.00023 – volume: 7 start-page: 815 issue: 4 year: 1997 end-page: 840 ident: CR95 article-title: Split selection methods for classification trees publication-title: Statistica sinica – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: CR108 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat doi: 10.1214/aos/1013203451 – start-page: 107 year: 2023 end-page: 114 ident: CR123 article-title: Implementation of a novel fully convolutional network approach to detect and classify cyber-attacks on IoT devices in smart manufacturing systems publication-title: Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus doi: 10.1007/978-3-031-18326-3_11 – volume: 62 start-page: 450 year: 2022 end-page: 462 ident: CR68 article-title: A predictive maintenance model for optimizing production schedule using deep neural networks publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.12.013 – volume: 359 start-page: 77 year: 2019 end-page: 92 ident: CR76 article-title: An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.052 – year: 2005 ident: CR101 publication-title: Support vector machines : theory and applications doi: 10.1007/b95439 – year: 2017 ident: CR92 publication-title: Data mining : practical machine learning tools and techniques – volume: 151 start-page: 15 year: 2016 end-page: 25 ident: CR90 article-title: Robust one-class SVM for fault detection publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2015.11.010 – volume: 61 start-page: 87 year: 2021 end-page: 96 ident: CR51 article-title: Adoption of machine learning technology for failure prediction in industrial maintenance: a systematic review publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.08.012 – start-page: 1 year: 2021 end-page: 6 ident: CR131 article-title: An improved deep forest regression publication-title: 2021 3rd International Conference on Industrial Artificial Intelligence (IAI) doi: 10.1109/IAI53119.2021.9619276 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR98 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 39 start-page: 13492 year: 2012 end-page: 13500 ident: CR106 article-title: A network intrusion detection system based on a hidden Naïve Bayes multiclass classifier publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.009 – volume: 10 start-page: 55924 year: 2022 end-page: 55932 ident: CR28 article-title: Improving prescriptive maintenance by incorporating post-prognostic information through chance constraints publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3177537 – start-page: 1401 year: 1999 end-page: 1406 ident: CR110 article-title: A short introduction to boosting publication-title: In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence – volume: 18 start-page: 384 year: 2012 end-page: 400 ident: CR16 article-title: Condition based maintenance: a survey publication-title: J Qual Maint Eng doi: 10.1108/13552511211281552 – start-page: 442 year: 2021 end-page: 447 ident: CR67 article-title: A deep hybrid learning approach to detect Bangla fake news publication-title: 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) doi: 10.1109/ISMSIT52890.2021.9604712 – volume: 176 start-page: 419 year: 2019 end-page: 429 ident: CR104 article-title: Using multinomial logistic regression for prediction of soil depth in an area of complex topography in Taiwan publication-title: CATENA doi: 10.1016/j.catena.2019.01.030 – start-page: 618 year: 2014 end-page: 625 ident: CR2 article-title: Lean after sales service – an opportunity for OEMs to ensure profits publication-title: In: Advances in production management systems innovative and knowledge-based production management in a global-local world – volume: 122 start-page: 108331 year: 2022 ident: CR99 article-title: Multinomial random forest publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108331 – start-page: 235 year: 1994 end-page: 240 ident: CR97 publication-title: C4.5: programs for machine learning doi: 10.1007/BF00993309 – ident: CR60 – volume: 12 start-page: 1 year: 2020 end-page: 14 ident: CR59 article-title: An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study publication-title: Adv Mech Eng doi: 10.1177/1687814020919207 – year: 2013 ident: CR94 publication-title: Applied predictive modeling doi: 10.1007/978-1-4614-6849-3 – volume: 72 start-page: 480 year: 2018 end-page: 485 ident: CR87 article-title: Self-organizing maps for anomaly localization and predictive maintenance in cyber-physical production systems publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.150 – volume: 15 start-page: 1129 year: 2001 end-page: 1140 ident: CR15 article-title: Using fuzzy linguistics to select optimum maintenance and condition monitoring strategies publication-title: Mech Syst Signal Process doi: 10.1006/mssp.2000.1395 – volume: 78 start-page: 267 year: 2018 end-page: 272 ident: CR21 article-title: Challenges and opportunities of condition-based predictive maintenance: a review publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.08.318 – volume: 28 start-page: 1012 year: 2006 end-page: 1024 ident: CR18 article-title: System health monitoring and prognostics — a review of current paradigms and practices publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-004-2131-6 – volume: 58 start-page: 109 year: 2021 end-page: 119 ident: CR57 article-title: A joint classification-regression method for multi-stage remaining useful life prediction publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.11.016 – volume: 61 start-page: 830 year: 2021 end-page: 855 ident: CR50 article-title: Enabling predictive maintenance integrated production scheduling by operation-specific health prognostics with generative deep learning publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.02.006 – volume: 184 start-page: 109321 year: 2020 ident: CR125 article-title: Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling publication-title: Environ Res doi: 10.1016/j.envres.2020.109321 – year: 2016 ident: CR38 publication-title: Industry 4.0 - potentials for predictive maintenance doi: 10.2991/iwama-16.2016.8 – ident: CR66 – year: 2017 ident: CR121 publication-title: Neural networks with R – volume: 13 start-page: 135 year: 2017 end-page: 149 ident: CR100 article-title: Intrusion detection system based on support vector machines and the two-phase bat algorithm publication-title: J Inf Syst Secur – ident: CR10 – volume: 89 start-page: 120 year: 2018 end-page: 128 ident: CR89 article-title: Localization of thermal anomalies in electrical equipment using infrared thermography and support vector machine publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2017.12.015 – year: 2017 ident: CR105 publication-title: Handbook of neural computation – volume: 39 start-page: 43 year: 1997 end-page: 62 ident: CR115 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom Intell Lab Syst doi: 10.1016/S0169-7439(97)00061-0 – volume: 44 start-page: 2077 year: 2018 end-page: 2082 ident: CR84 article-title: Simultaneous fault detection and identification in continuous processes via nonlinear support vector machine based feature selection publication-title: Comput Aided Chem Eng doi: 10.1016/B978-0-444-64241-7.50341-4 – volume: 3 start-page: 294 year: 2008 end-page: 302 ident: CR1 article-title: Strategic logistics: re-designing companies in accordance with Lean principles publication-title: Int J Manag Sci Eng Manag doi: 10.1080/17509653.2008.10671056 – volume: 56 start-page: 539 year: 2020 end-page: 557 ident: CR26 article-title: Towards multi-model approaches to predictive maintenance: a systematic literature survey on diagnostics and prognostics publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.07.008 – volume: 1 start-page: 62 year: 2013 end-page: 74 ident: CR55 article-title: Toward zero-defect manufacuturing - a data mining approach publication-title: Adv Manuf doi: 10.1007/s40436-013-0010-9 – volume: 11 start-page: 21 year: 2013 end-page: 28 ident: CR70 article-title: Reinforcement learning for predictive maintenance of industrial plants publication-title: Inf Technol Control doi: 10.2478/itc-2013-0004 – volume: 231 start-page: 1670 year: 2017 end-page: 1679 ident: CR54 article-title: Predictive maintenance, its implementation and latest trends publication-title: J Eng Manuf doi: 10.1177/0954405415601640 – volume: 62 start-page: 972 year: 2022 end-page: 983 ident: CR56 article-title: Degradation stage classification via interpretable feature learning publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.05.003 – start-page: 8104 year: 2018 end-page: 8109 ident: CR79 article-title: Multi-step-ahead prediction with long short term memory networks and support vector regression publication-title: Chinese Control Conference, CCC – volume: 55 start-page: 5841 year: 2017 end-page: 5862 ident: CR12 article-title: Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis publication-title: Int J Prod Res doi: 10.1080/00207543.2017.1346843 – start-page: 1 year: 2021 end-page: 6 ident: CR65 article-title: Deep hybrid learning method for classification of fetal brain abnormalities publication-title: 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Artificial Intelligence and Machine Vision (AIMV) doi: 10.1109/AIMV53313.2021.9670994 – volume: 191 start-page: 104581 year: 2020 ident: CR127 article-title: Comparison of error and uncertainty of decision tree and learning vector quantization models for predicting soil classes in areas with low altitude variations publication-title: CATENA doi: 10.1016/j.catena.2020.104581 – year: 2017 ident: CR112 article-title: LightGBM: a highly efficient gradient boosting decision tree publication-title: Advances in Neural Information Processing Systems – volume: 64 start-page: 107 year: 2022 end-page: 120 ident: CR36 article-title: Toward cognitive predictive maintenance: a survey of graph-based approaches publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2022.06.002 – volume: 50 start-page: 297 year: 2010 end-page: 313 ident: CR17 article-title: Current status of machine prognostics in condition-based maintenance: a review publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2482-0 – volume: 9 start-page: 811 year: 2016 end-page: 833 ident: CR39 article-title: Industry 4.0 implies lean manufacturing: research activities in Industry 4.0 function as enablers for lean manufacturing publication-title: J Ind Eng Manag – volume: 46 start-page: 252 year: 2019 end-page: 262 ident: CR49 article-title: Data analysis and feature selection for predictive maintenance: a case-study in the metallurgic industry publication-title: Int J Inf Manag doi: 10.1016/j.ijinfomgt.2018.10.006 – volume: 76 start-page: 1263 year: 2014 end-page: 1283 ident: CR14 article-title: Maintenance policy optimization – literature review and directions publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6341-2 – year: 2017 ident: CR44 article-title: Supply chain management in the big data era publication-title: Big Data Analytics for Predictive Maintenance Strategies doi: 10.4018/978-1-5225-0956-1.ch004 – volume: 14 start-page: 1 year: 2022 end-page: 27 ident: CR46 article-title: Predictive maintenance planning for Industry 4.0 using machine learning for sustainable manufacturing publication-title: Sustainability doi: 10.3390/su14063387 – volume: 127 start-page: 123 year: 2018 end-page: 132 ident: CR73 article-title: Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.01.106 – volume: 48 start-page: 71 year: 2018 end-page: 77 ident: CR75 article-title: Bearing remaining useful life prediction based on deep autoencoder and deep neural networks publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.04.008 – volume: 26 start-page: 68 year: 2020 end-page: 85 ident: CR58 article-title: Exploring predictive maintenance applications in industry publication-title: J Qual Maint Eng – year: 2018 ident: CR91 publication-title: Feature engineering for machine learning : principles and techniques for data scientists – ident: CR102 – volume: 123 start-page: 2017 year: 2022 end-page: 2029 ident: CR122 article-title: A novel fully convolutional neural network approach for detection and classification of attacks on industrial IoT devices in smart manufacturing systems publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-10259-3 – volume: 172 start-page: 1 year: 2018 end-page: 11 ident: CR77 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.11.021 – volume: 117 start-page: 108421 year: 2022 ident: CR126 article-title: Learning Vector Quantization based predictor model selection for hourly load demand forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.108421 – year: 2015 ident: CR85 article-title: Development and evaluation of health monitoring techniques for railway point machines publication-title: In: 2015 IEEE Conference on Prognostics and Health Management: Enhancing Safety, Efficiency, Availability, and Effectiveness of Systems Through PHAf Technology and Application, PHM 2015 – year: 2015 ident: CR119 article-title: Neural machine translation by jointly learning to align and translate publication-title: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations – start-page: 46 year: 2020 end-page: 50 ident: CR120 article-title: A method of intrusion detection based on attention-LSTM neural network publication-title: Proceedings of the 2020 5th International Conference on Machine Learning Technologies doi: 10.1145/3409073.3409096 – volume: 117 start-page: 107981 year: 2021 ident: CR114 article-title: Robust generalised quadratic discriminant analysis publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.107981 – volume: 214 start-page: 107812 year: 2021 ident: CR32 article-title: Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107812 – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: CR118 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – start-page: 4366 year: 2019 end-page: 4374 ident: CR29 article-title: Prescriptive equipment maintenance: a framework publication-title: 2019 IEEE International Conference on Big Data (Big Data), Big Data (Big Data) doi: 10.1109/BigData47090.2019.9006213 – start-page: 1 year: 2017 end-page: 6 ident: CR72 article-title: Life prediction of jet engines based on LSTM-recurrent neural networks publication-title: 2017 Prognostics and System Health Management Conference (PHM-Harbin) doi: 10.1109/PHM.2017.8079264 – volume: 104 start-page: 1948 year: 2021 end-page: 1953 ident: CR48 article-title: Predictive maintenance in Industry 4.0: current themes publication-title: Procedia – volume: 23 start-page: 589 year: 1968 end-page: 609 ident: CR113 article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy publication-title: J Financ doi: 10.2307/2978933 – volume: 215 start-page: 107864 year: 2021 ident: CR34 article-title: Predictive maintenance enabled by machine learning: use cases and challenges in the automotive industry publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107864 – volume: 34 start-page: 129 year: 2010 end-page: 138 ident: CR6 article-title: SmartFactory-towards a factory-of-things publication-title: Annu Rev Control doi: 10.1016/j.arcontrol.2010.02.008 – year: 2020 ident: CR33 publication-title: Exploring engineering - an introduction to engineering and design – volume: 61 start-page: 576 year: 2021 end-page: 591 ident: CR69 article-title: Remaining useful life prediction of bearing based on stacked autoencoder and recurrent neural network publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.10.011 – volume: 84 start-page: 661 year: 2019 end-page: 671 ident: CR78 article-title: Aircraft engine degradation prognostics based on logistic regression and novel OS-ELM algorithm publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2018.09.044 – volume: 74 start-page: 106545 year: 2023 ident: CR64 article-title: Artificial neural network model to estimate the long-term carbonation depth of concrete exposed to natural environments publication-title: J Build Eng doi: 10.1016/j.jobe.2023.106545 – start-page: 318 year: 1986 end-page: 362 ident: CR117 article-title: Learning internal representations by error propagation publication-title: Parallel distributed processing: explorations in the microstructure of cognition doi: 10.7551/mitpress/5236.001.0001 – volume: 107 start-page: 2927 year: 2020 end-page: 2936 ident: CR42 article-title: Integration of Lean practices and Industry 4.0 technologies: smart manufacturing for next-generation enterprises publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05124-0 – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: CR111 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – volume: 48 start-page: 78 year: 2018 end-page: 86 ident: CR74 article-title: Long short-term memory for machine remaining life prediction publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.05.011 – start-page: 785 year: 2016 end-page: 794 ident: CR109 article-title: XGBoost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining doi: 10.1145/2939672.2939785 – volume: 94 start-page: 214 year: 2017 end-page: 236 ident: CR20 article-title: State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.01.050 – year: 2019 ident: CR61 article-title: AI4I 2020 Predictive Maintenance Dataset publication-title: UCI Machine Learning Repository – ident: CR9 – volume: 207 start-page: 214 year: 2015 end-page: 225 ident: CR35 article-title: Maintenance management and lean manufacturing practices in a firm which produces dairy products publication-title: Procedia Soc Behav Sci doi: 10.1016/j.sbspro.2015.10.090 – volume: 3 start-page: 236 year: 2015 end-page: 272 ident: CR41 article-title: Lean thinking for a maintenance process publication-title: Prod Manuf Res doi: 10.1080/21693277.2015.1074124 – volume: 100 start-page: 421 year: 2019 end-page: 434 ident: CR86 article-title: Reliability assessment for CNC equipment based on degradation data publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2548-y – volume: 57 start-page: 5705 year: 2019 end-page: 5724 ident: CR24 article-title: Optimal preventive maintenance strategy for leased equipment under successive usage-based contracts publication-title: Int J Prod Res doi: 10.1080/00207543.2018.1542181 – year: 1986 ident: CR116 publication-title: Parallel distributed processing: explorations in the microstructure of cognition doi: 10.7551/mitpress/5236.001.0001 – volume: 24 start-page: 99 year: 2006 end-page: 123 ident: CR8 article-title: Could lean production job design be intrinsically motivating? Contextual, configurational, and levels-of-analysis issues publication-title: J Oper Manag doi: 10.1016/j.jom.2005.04.001 – year: 2015 ident: CR25 publication-title: A deterioration model for establishing an optimal mix of time-based maintenance (TbM) and condition-based maintenance (CbM) for the enclosure system – volume: 46 start-page: 949 year: 2022 end-page: 971 ident: CR27 article-title: A digital twin concept for the prescriptive maintenance of protective coating systems on wind turbine structures publication-title: Wind Eng doi: 10.1177/0309524X211060550 – volume: 173 start-page: 684 year: 2013 end-page: 692 ident: CR3 article-title: Management practices and the quality of care in cardiac units publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2013.3577 – start-page: 0306 year: 2021 end-page: 0311 ident: CR31 article-title: Decision support system for corrective maintenance in large-scale photovoltaic systems publication-title: 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Photovoltaic Specialists Conference (PVSC) doi: 10.1109/PVSC43889.2021.9518796 – ident: CR43 – volume: 57 start-page: 102036 year: 2023 ident: CR4 article-title: A smartphone-based application for an early skin disease prognosis: towards a lean healthcare system via computer-based vision publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102036 – year: 2003 ident: CR5 publication-title: Lean thinking: banish waste and create wealth in your corporation – year: 2016 ident: CR23 publication-title: From prognostics and health systems management to predictive maintenance 1: monitoring and prognostics doi: 10.1002/9781119371052 – volume: 10 start-page: 247 year: 2018 ident: CR45 article-title: What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability publication-title: Sustainability doi: 10.3390/su10010247 – volume: 116 start-page: 1074 year: 2019 end-page: 1077 ident: CR63 article-title: What are the limits of deep learning? publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1821594116 – volume: 468 start-page: 148 year: 2022 end-page: 164 ident: CR103 article-title: Multinomial logistic regression classifier via lq,0-proximal Newton algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.005 – volume: 118 start-page: 61 year: 2018 end-page: 70 ident: CR82 article-title: Continuous machine learning for abnormality identification to aid condition-based maintenance in nuclear power plant publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2018.04.002 – volume: 6 start-page: 133 year: 2004 end-page: 148 ident: CR7 article-title: Commissioned paper to pull or not to pull: what is the question? publication-title: Manuf Serv Oper Manag doi: 10.1287/msom.1030.0028 – year: 2016 ident: CR19 publication-title: Industry 4.0: predictive intelligent maintenance for production equipment – start-page: 1 year: 2019 end-page: 10 ident: CR30 article-title: Prescriptive maintenance of railway infrastructure: from data analytics to decision support publication-title: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Models and Technologies for Intelligent Transportation Systems (MT-ITS) doi: 10.1109/MTITS.2019.8883331 – volume: 65 start-page: 1539 year: 2017 end-page: 1548 ident: CR71 article-title: Machine health monitoring using local feature-based gated recurrent unit networks publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2733438 – volume: 28 start-page: 337 year: 2000 end-page: 407 ident: CR107 article-title: Additive logistic regression: a statistical view of boosting publication-title: Ann Stat doi: 10.1214/aos/1016218223 – volume: 3 start-page: 172 year: 2012 end-page: 186 ident: CR40 article-title: RFID for the extended lean enterprise publication-title: Int J Lean Six Sigma doi: 10.1108/20401461211282691 – volume: 123 start-page: 1973 year: 2022 end-page: 1983 ident: CR128 article-title: A deep hybrid learning model for detection of cyber attacks in industrial IoT devices publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-10329-6 – volume: 50 start-page: 201 year: 2019 end-page: 211 ident: CR53 article-title: Maintenance grouping optimization with system multi-level information based on BN lifetime prediction model publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2019.01.002 – volume: 7 start-page: 67718 year: 2019 end-page: 67725 ident: CR124 article-title: Insights into LSTM fully convolutional networks for time series classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916828 – volume: 24 start-page: 403 year: 2011 end-page: 420 ident: CR37 article-title: Determinants of lean success and failure in the Danish public sector publication-title: Int J Public Sect Manag doi: 10.1108/09513551111147141 – ident: CR130 – volume: 6 start-page: 59 year: 2018 ident: CR83 article-title: Integrated fault detection framework for classifying rotating machine faults using frequency domain data fusion and artificial neural networks publication-title: Machines doi: 10.3390/MACHINES6040059 – start-page: 525 year: 2021 end-page: 529 ident: CR129 article-title: Improving the accuracy of maintenance decision-making via deep forest-based failure prognostics publication-title: 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Science and Technology Innovation (IAECST) doi: 10.1109/IAECST54258.2021.9695668 – volume: 63 start-page: 550 year: 2022 end-page: 562 ident: CR47 article-title: Remaining useful life prediction and challenges: a literature review on the use of machine learning methods publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2022.05.010 – volume: 29 start-page: 119 year: 1980 end-page: 127 ident: CR96 article-title: An exploratory technique for investigating large quantities of categorical data publication-title: J R Stat Soc Ser C doi: 10.2307/2986296 – volume: 157 start-page: 54 year: 2017 end-page: 63 ident: CR22 article-title: A review on condition-based maintenance optimization models for stochastically deteriorating system publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.08.009 – volume: 112 start-page: 1041 year: 2013 end-page: 1048 ident: CR88 article-title: Pattern recognition-based chillers fault detection method using support vector data description (SVDD) publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.043 – volume: 251 start-page: 695 year: 2016 end-page: 706 ident: CR13 article-title: Maintenance scheduling in the electricity industry: a literature review publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.08.045 – start-page: 1 year: 2017 end-page: 6 ident: CR80 article-title: Condition monitoring of wind turbine gearbox using electrical signatures publication-title: 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Microelectronic Devices, Circuits and Systems (ICMDCS) doi: 10.1109/ICMDCS.2017.8211718 – volume: 20 start-page: 163 year: 2021 end-page: 190 ident: CR11 article-title: Bibliographic study on the difficulties Encountered by SMEs during the implementation of lean manufacturing publication-title: J Adv Manuf Syst doi: 10.1142/S0219686721500098 – volume: 78 start-page: 267 year: 2018 ident: 12020_CR21 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.08.318 – start-page: 107 volume-title: Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus year: 2023 ident: 12020_CR123 doi: 10.1007/978-3-031-18326-3_11 – volume: 72 start-page: 480 year: 2018 ident: 12020_CR87 publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.150 – volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 12020_CR112 – ident: 12020_CR66 – volume: 184 start-page: 109321 year: 2020 ident: 12020_CR125 publication-title: Environ Res doi: 10.1016/j.envres.2020.109321 – volume: 359 start-page: 77 year: 2019 ident: 12020_CR76 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.052 – volume: 9 start-page: 1735 year: 1997 ident: 12020_CR118 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – start-page: 4366 volume-title: 2019 IEEE International Conference on Big Data (Big Data), Big Data (Big Data) year: 2019 ident: 12020_CR29 doi: 10.1109/BigData47090.2019.9006213 – volume-title: Industry 4.0 - potentials for predictive maintenance year: 2016 ident: 12020_CR38 doi: 10.2991/iwama-16.2016.8 – volume: 157 start-page: 54 year: 2017 ident: 12020_CR22 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.08.009 – volume-title: Industry 4.0: predictive intelligent maintenance for production equipment year: 2016 ident: 12020_CR19 – volume: 115 start-page: 557 year: 2017 ident: 12020_CR81 publication-title: Tribol Int doi: 10.1016/j.triboint.2017.06.032 – volume: 57 start-page: 102036 year: 2023 ident: 12020_CR4 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102036 – volume: 94 start-page: 214 year: 2017 ident: 12020_CR20 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.01.050 – volume: 62 start-page: 972 year: 2022 ident: 12020_CR56 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.05.003 – volume-title: Handbook of neural computation year: 2017 ident: 12020_CR105 – volume: 64 start-page: 107 year: 2022 ident: 12020_CR36 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2022.06.002 – volume: 55 start-page: 119 year: 1997 ident: 12020_CR111 publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – volume: 6 start-page: 133 year: 2004 ident: 12020_CR7 publication-title: Manuf Serv Oper Manag doi: 10.1287/msom.1030.0028 – volume-title: Introduction to machine learning year: 2014 ident: 12020_CR93 – start-page: 1 volume-title: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Models and Technologies for Intelligent Transportation Systems (MT-ITS) year: 2019 ident: 12020_CR30 doi: 10.1109/MTITS.2019.8883331 – volume: 191 start-page: 104581 year: 2020 ident: 12020_CR127 publication-title: CATENA doi: 10.1016/j.catena.2020.104581 – volume: 112 start-page: 1041 year: 2013 ident: 12020_CR88 publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.043 – volume: 46 start-page: 949 year: 2022 ident: 12020_CR27 publication-title: Wind Eng doi: 10.1177/0309524X211060550 – volume: 50 start-page: 201 year: 2019 ident: 12020_CR53 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2019.01.002 – volume: 7 start-page: 67718 year: 2019 ident: 12020_CR124 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916828 – start-page: 1 volume-title: 2017 Prognostics and System Health Management Conference (PHM-Harbin) year: 2017 ident: 12020_CR72 doi: 10.1109/PHM.2017.8079264 – start-page: 1 volume-title: 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Microelectronic Devices, Circuits and Systems (ICMDCS) year: 2017 ident: 12020_CR80 doi: 10.1109/ICMDCS.2017.8211718 – volume: 48 start-page: 71 year: 2018 ident: 12020_CR75 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.04.008 – volume: 56 start-page: 539 year: 2020 ident: 12020_CR26 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.07.008 – start-page: 442 volume-title: 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) year: 2021 ident: 12020_CR67 doi: 10.1109/ISMSIT52890.2021.9604712 – volume: 74 start-page: 106545 year: 2023 ident: 12020_CR64 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.106545 – volume: 10 start-page: 55924 year: 2022 ident: 12020_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3177537 – volume: 3 start-page: 172 year: 2012 ident: 12020_CR40 publication-title: Int J Lean Six Sigma doi: 10.1108/20401461211282691 – volume-title: Applied predictive modeling year: 2013 ident: 12020_CR94 doi: 10.1007/978-1-4614-6849-3 – volume: 20 start-page: 163 year: 2021 ident: 12020_CR11 publication-title: J Adv Manuf Syst doi: 10.1142/S0219686721500098 – volume-title: Lean thinking: banish waste and create wealth in your corporation year: 2003 ident: 12020_CR5 – volume: 46 start-page: 252 year: 2019 ident: 12020_CR49 publication-title: Int J Inf Manag doi: 10.1016/j.ijinfomgt.2018.10.006 – volume: 24 start-page: 403 year: 2011 ident: 12020_CR37 publication-title: Int J Public Sect Manag doi: 10.1108/09513551111147141 – volume: 122 start-page: 108331 year: 2022 ident: 12020_CR99 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108331 – volume: 123 start-page: 1973 year: 2022 ident: 12020_CR128 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-10329-6 – volume: 48 start-page: 78 year: 2018 ident: 12020_CR74 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.05.011 – start-page: 0306 volume-title: 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Photovoltaic Specialists Conference (PVSC) year: 2021 ident: 12020_CR31 doi: 10.1109/PVSC43889.2021.9518796 – volume-title: UCI Machine Learning Repository year: 2019 ident: 12020_CR61 – volume: 7 start-page: 815 issue: 4 year: 1997 ident: 12020_CR95 publication-title: Statistica sinica – start-page: 785 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 12020_CR109 doi: 10.1145/2939672.2939785 – volume: 123 start-page: 2017 year: 2022 ident: 12020_CR122 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-022-10259-3 – start-page: 235 volume-title: C4.5: programs for machine learning year: 1994 ident: 12020_CR97 doi: 10.1007/BF00993309 – volume-title: A deterioration model for establishing an optimal mix of time-based maintenance (TbM) and condition-based maintenance (CbM) for the enclosure system year: 2015 ident: 12020_CR25 – ident: 12020_CR60 – volume: 172 start-page: 1 year: 2018 ident: 12020_CR77 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.11.021 – volume: 58 start-page: 109 year: 2021 ident: 12020_CR57 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.11.016 – start-page: 1 volume-title: 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Artificial Intelligence and Machine Vision (AIMV) year: 2021 ident: 12020_CR65 doi: 10.1109/AIMV53313.2021.9670994 – volume-title: Neural networks with R year: 2017 ident: 12020_CR121 – volume: 45 start-page: 5 year: 2001 ident: 12020_CR98 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 65 start-page: 1539 year: 2017 ident: 12020_CR71 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2733438 – volume: 151 start-page: 15 year: 2016 ident: 12020_CR90 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2015.11.010 – volume: 9 start-page: 811 year: 2016 ident: 12020_CR39 publication-title: J Ind Eng Manag – start-page: 618 volume-title: In: Advances in production management systems innovative and knowledge-based production management in a global-local world year: 2014 ident: 12020_CR2 – volume: 34 start-page: 129 year: 2010 ident: 12020_CR6 publication-title: Annu Rev Control doi: 10.1016/j.arcontrol.2010.02.008 – volume: 44 start-page: 2077 year: 2018 ident: 12020_CR84 publication-title: Comput Aided Chem Eng doi: 10.1016/B978-0-444-64241-7.50341-4 – volume: 29 start-page: 1189 year: 2001 ident: 12020_CR108 publication-title: Ann Stat doi: 10.1214/aos/1013203451 – volume-title: Big Data Analytics for Predictive Maintenance Strategies year: 2017 ident: 12020_CR44 doi: 10.4018/978-1-5225-0956-1.ch004 – volume: 116 start-page: 1074 year: 2019 ident: 12020_CR63 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1821594116 – ident: 12020_CR10 – volume: 57 start-page: 5705 year: 2019 ident: 12020_CR24 publication-title: Int J Prod Res doi: 10.1080/00207543.2018.1542181 – volume: 127 start-page: 123 year: 2018 ident: 12020_CR73 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.01.106 – volume-title: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations year: 2015 ident: 12020_CR119 – volume: 50 start-page: 297 year: 2010 ident: 12020_CR17 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2482-0 – volume: 100 start-page: 421 year: 2019 ident: 12020_CR86 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-2548-y – volume-title: Parallel distributed processing: explorations in the microstructure of cognition year: 1986 ident: 12020_CR116 doi: 10.7551/mitpress/5236.001.0001 – volume: 14 start-page: 1 year: 2022 ident: 12020_CR46 publication-title: Sustainability doi: 10.3390/su14063387 – volume: 118 start-page: 61 year: 2018 ident: 12020_CR82 publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2018.04.002 – start-page: 8104 volume-title: Chinese Control Conference, CCC year: 2018 ident: 12020_CR79 – volume: 3 start-page: 236 year: 2015 ident: 12020_CR41 publication-title: Prod Manuf Res doi: 10.1080/21693277.2015.1074124 – volume: 24 start-page: 99 year: 2006 ident: 12020_CR8 publication-title: J Oper Manag doi: 10.1016/j.jom.2005.04.001 – start-page: 318 volume-title: Parallel distributed processing: explorations in the microstructure of cognition year: 1986 ident: 12020_CR117 doi: 10.7551/mitpress/5236.001.0001 – volume: 117 start-page: 108421 year: 2022 ident: 12020_CR126 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.108421 – volume: 12 start-page: 1 year: 2020 ident: 12020_CR59 publication-title: Adv Mech Eng doi: 10.1177/1687814020919207 – volume: 29 start-page: 119 year: 1980 ident: 12020_CR96 publication-title: J R Stat Soc Ser C doi: 10.2307/2986296 – volume-title: In: 2015 IEEE Conference on Prognostics and Health Management: Enhancing Safety, Efficiency, Availability, and Effectiveness of Systems Through PHAf Technology and Application, PHM 2015 year: 2015 ident: 12020_CR85 – volume: 89 start-page: 120 year: 2018 ident: 12020_CR89 publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2017.12.015 – volume: 176 start-page: 419 year: 2019 ident: 12020_CR104 publication-title: CATENA doi: 10.1016/j.catena.2019.01.030 – start-page: 1401 volume-title: In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence year: 1999 ident: 12020_CR110 – volume: 1 start-page: 62 year: 2013 ident: 12020_CR55 publication-title: Adv Manuf doi: 10.1007/s40436-013-0010-9 – volume: 13 start-page: 135 year: 2017 ident: 12020_CR100 publication-title: J Inf Syst Secur – volume: 251 start-page: 695 year: 2016 ident: 12020_CR13 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.08.045 – volume: 6 start-page: 59 year: 2018 ident: 12020_CR83 publication-title: Machines doi: 10.3390/MACHINES6040059 – volume: 11 start-page: 21 year: 2013 ident: 12020_CR70 publication-title: Inf Technol Control doi: 10.2478/itc-2013-0004 – ident: 12020_CR102 doi: 10.3390/math11030682 – volume: 173 start-page: 684 year: 2013 ident: 12020_CR3 publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2013.3577 – volume: 62 start-page: 450 year: 2022 ident: 12020_CR68 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.12.013 – ident: 12020_CR130 doi: 10.24963/ijcai.2017/497 – volume: 18 start-page: 384 year: 2012 ident: 12020_CR16 publication-title: J Qual Maint Eng doi: 10.1108/13552511211281552 – volume: 39 start-page: 43 year: 1997 ident: 12020_CR115 publication-title: Chemom Intell Lab Syst doi: 10.1016/S0169-7439(97)00061-0 – volume: 231 start-page: 1670 year: 2017 ident: 12020_CR54 publication-title: J Eng Manuf doi: 10.1177/0954405415601640 – volume-title: Exploring engineering - an introduction to engineering and design year: 2020 ident: 12020_CR33 – volume: 15 start-page: 1129 year: 2001 ident: 12020_CR15 publication-title: Mech Syst Signal Process doi: 10.1006/mssp.2000.1395 – volume: 84 start-page: 661 year: 2019 ident: 12020_CR78 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2018.09.044 – volume: 76 start-page: 1263 year: 2014 ident: 12020_CR14 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6341-2 – volume: 215 start-page: 107864 year: 2021 ident: 12020_CR34 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107864 – volume: 61 start-page: 87 year: 2021 ident: 12020_CR51 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.08.012 – start-page: 1 volume-title: 2021 3rd International Conference on Industrial Artificial Intelligence (IAI) year: 2021 ident: 12020_CR131 doi: 10.1109/IAI53119.2021.9619276 – ident: 12020_CR9 – volume: 63 start-page: 550 year: 2022 ident: 12020_CR47 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2022.05.010 – volume: 26 start-page: 68 year: 2020 ident: 12020_CR58 publication-title: J Qual Maint Eng – volume-title: From prognostics and health systems management to predictive maintenance 1: monitoring and prognostics year: 2016 ident: 12020_CR23 doi: 10.1002/9781119371052 – volume: 60 start-page: 3480 year: 2011 ident: 12020_CR52 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2009.2036347 – volume-title: Feature engineering for machine learning : principles and techniques for data scientists year: 2018 ident: 12020_CR91 – volume: 61 start-page: 830 year: 2021 ident: 12020_CR50 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.02.006 – volume: 468 start-page: 148 year: 2022 ident: 12020_CR103 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.005 – start-page: 525 volume-title: 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Science and Technology Innovation (IAECST) year: 2021 ident: 12020_CR129 doi: 10.1109/IAECST54258.2021.9695668 – volume: 3 start-page: 294 year: 2008 ident: 12020_CR1 publication-title: Int J Manag Sci Eng Manag doi: 10.1080/17509653.2008.10671056 – volume: 55 start-page: 5841 year: 2017 ident: 12020_CR12 publication-title: Int J Prod Res doi: 10.1080/00207543.2017.1346843 – volume: 10 start-page: 247 year: 2018 ident: 12020_CR45 publication-title: Sustainability doi: 10.3390/su10010247 – volume: 107 start-page: 2927 year: 2020 ident: 12020_CR42 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05124-0 – volume-title: Data mining : practical machine learning tools and techniques year: 2017 ident: 12020_CR92 – start-page: 116 volume-title: Hey ML, what can you do for me? 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Artificial Intelligence and Knowledge Engineering (AIKE), 2020 year: 2020 ident: 12020_CR62 doi: 10.1109/AIKE48582.2020.00023 – volume: 117 start-page: 107981 year: 2021 ident: 12020_CR114 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.107981 – volume: 207 start-page: 214 year: 2015 ident: 12020_CR35 publication-title: Procedia Soc Behav Sci doi: 10.1016/j.sbspro.2015.10.090 – volume-title: Support vector machines : theory and applications year: 2005 ident: 12020_CR101 doi: 10.1007/b95439 – volume: 104 start-page: 1948 year: 2021 ident: 12020_CR48 publication-title: Procedia – volume: 23 start-page: 589 year: 1968 ident: 12020_CR113 publication-title: J Financ doi: 10.2307/2978933 – volume: 39 start-page: 13492 year: 2012 ident: 12020_CR106 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.009 – volume: 28 start-page: 337 year: 2000 ident: 12020_CR107 publication-title: Ann Stat doi: 10.1214/aos/1016218223 – volume: 28 start-page: 1012 year: 2006 ident: 12020_CR18 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-004-2131-6 – start-page: 46 volume-title: Proceedings of the 2020 5th International Conference on Machine Learning Technologies year: 2020 ident: 12020_CR120 doi: 10.1145/3409073.3409096 – volume: 61 start-page: 576 year: 2021 ident: 12020_CR69 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.10.011 – ident: 12020_CR43 doi: 10.1007/s10696-023-09497-8 – volume: 214 start-page: 107812 year: 2021 ident: 12020_CR32 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107812 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.5696225 |
| Snippet | Accurate detection of possible machine failure allows manufacturers to identify potential fault situations in processes to avoid downtimes caused by unexpected... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3857 |
| SubjectTerms | Accuracy Algorithms CAE) and Design Computer-Aided Engineering (CAD Deep learning Downtime Engineering Failure detection Fault detection Industrial and Production Engineering Machine learning Mechanical Engineering Media Management Optimization Original Article Performance measurement Predictive maintenance Tool wear Workpieces |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_q9UUfxI-Kp63kwbca2mSzya4gYqWlCD1EWujbks1HLfS2p7elf4n_rzPZ7F0r2NfsZlgyM8lkZ-b3A3ivtDdOxMhN2eIFRcqaW21bboQ02sU6qkANziczfXymvp2X5xswG3thqKxy3BPTRu2vHf0j35OVxo1Uo4N9XvzixBpF2dWRQsNmagX_KUGMPYJNSchYE9g8OJx9_zFamKgNsWSuLFDWRE2_tvBClcWQ98p5CC1SMx1eVCpyxSq33aTmuwQ9w_HM40LSJez2_tG2jlf_SbGmk-voGTzNISf7MtjIc9gI3Qt4cgeI8CX8SZUDbJ4qKwPLVBIXzHae-RAWd0auLnBV-p_zJcNwl3m8xBM9PSOIknnu6WSXHYrqbqhpInVBsgEvevkRBbJAkMos2ksqiEfpfSoG65gfiv7wI9ly2MC24Ozo8PTrMc-EDdyhJ_e8DgIXqnKtk623PggvPdlAdPvWKI-xV2uswiFX-RpPRV0FjE5iEYxTldsvilcw6a678BoYzi8jZX2F1aosfStVa2U0RUHVcU5MQYxr3biMZk6kGlfNCoc56adB_TRJP83tFHZXcxYDlseDb2-PKmyyXy-btRVO4cOo1vXj_0t787C0t_BYJkuiKsFtmPS_b8IORjt9-y6b8F8x5vpE priority: 102 providerName: ProQuest |
| Title | Using machine learning and deep learning algorithms for downtime minimization in manufacturing systems: an early failure detection diagnostic service |
| URI | https://link.springer.com/article/10.1007/s00170-023-12020-w https://www.proquest.com/docview/2868476219 |
| Volume | 128 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3015 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3015 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ADMLS dateStart: 19850901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3015 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdYd4ED41Mr2yofuEGm2XHsZLfC2k3AJgRUGqfIn6NiTaclVaX9H_y_PDtOOyZA2imSYzux_ez3rPd7v4fQa8aN0MS5RGQKLiiUFonkUiWCUMG1KxyzPsD59IyfTNiH8-w8BoXVHdq9c0mGk3oV7BaoXhLQMQmh_tKz3ECbgW-rhzaHx98_jjo5IoXwuTBXckYLn4B-Lccpy9LWuxW9DZyEkDm4juR-w-UxuObvX_1Tga2t0juO1KCfxlto0o2shaX83F80al_f3CF9vO_Qn6DH0WDFw1bCnqIHtnqGHt2iMXyOfgXcAZ4FXKbFMRHFBZaVwcbaq1sllxfz62nzY1ZjMJaxmS8rn9wee4KTWYwIxdMKuqoWPuQixFDilm26PoQOsfWEzNjJqYfTQ-9NgJJV2LSQQfhJXLfH3ws0GY--vT9JYrqHRMM50CSFJbAAuVaaKiONJYYaL0FOH0jBDFhuSkgGRTo3BehUnluwbVxqhWa5PkjTl6hXzSu7jTC0z5z3GRPJWZYZRZmS1Ik09dg6TfqIdGtY6siF7lNyXJYrFucw5SVMeRmmvFz20ZtVm6uWCeS_tXc70SjjqVCXNOdgDHBQEn30tlvp9et_9_bqftV30EMahMVjDndRr7le2D2wnRo1QBv5-HgAG-bo9NPXQdw48Hw3Ovv8Bd5O6PA3EmUTJA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYQHNoeqv6qW2jrQ3tqrWLHsZNKqAIKWgqsqgokbqljO4DEZpcmaNUH6ev02ZhxnF1aqdy4ZjejKDOen8x83xDyViqnLa8qptMSChQhcmaUKZnmQitb5ZX0CHA-HKnhsfx6kp4skT89FgbHKnufGBy1m1j8Rv5RZAocqYID9nl6yXBrFHZX-xUaJq5WcBuBYiwCO_b9rxmUcM3G3hfQ9zshdneOtocsbhlgFsyvZbnnQmWZLa0onXGeO-HwwSu7brR0kDCU2ki4ZDOXgytXmYeQWiVeW5nZdfwgCiFgRSYyh-JvZWtn9O17b9E817iVc27xIocERy9OVCLTpOuzxb6H4gG8B4VRhkc_izCfAPYLVDcMYizjAou-2d-hdJEf_9PSDZFy9xF5GFNcutnZ5GOy5Osn5MEN4sOn5HeYVKDjMMnpaVxdcUpN7ajzfnrjysUpaKE9GzcU0mvqJjN4_2NPkRJlHDGk9LwGUfUVgjQC6pJ2_NTNJxBIPVI408qc4wA-SG_D8FlNXTdkCA9Jm85hPiPHd6K652S5ntT-BaFwf1phl5kbJdPUlUKWRlQ6SXAaz_IB4f27LmxkT8clHhfFnPc56KcA_RRBP8VsQN7P75l23CG3_nutV2ER_UhTLKx-QD70al38_H9pL2-X9obcGx4dHhQHe6P9VXJfBKvCCcU1stz-vPKvINNqy9fRnCn5cdcn6BoOejfV |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELZYkabxgNgYWqEwP-yNRWDHsRPeEFDBBoiHVeItcvyDVaJp1Qbxl_D_cuckbTcBEq9OfIl8Z99Zd993hPwQ0irDvI9UUsAFhfMs0lIXkWJcSeMzLxwCnK-u5flA_LpNbpdQ_KHavU1J1pgGZGkqq4OJ9Qdz4FugfYnA30SM4wXo8QNZFUiUABY94MetRbFMYVfMucXxDFvRLyw6Fklc57mavINkATwHF5MUt17awGxe_ua_rmwRn_6XUg2eqr9B1psQkx7XNvGZrLjyC1lbIh7cJE-hUoCOQiWlo03riDuqS0utc5Olkfu78XRY_R3NKIS31MKlHdvRU6QkGTUYTjosQVT5gCCJgHqkNT_07AgEUocUytTrIRbAg_QqFH-V1NZFfvCTdFYfWF_JoH_25-Q8aho0RAZ2bhVljsFCpaYwvLDaOma5RZ17c6iVsBBrFUoLGDKpzcALytRBNOJjp4xIzWEcb5FOOS7dN0JhfuIxy8u0FEliCy4Kzb2KY6yGM6xLWLvWuWnYy7GJxn0-510O-slBP3nQT_7YJfvzOZOau-PNt3utCvNmH89ynkpw3xKO9S752ap18fh1advve_07-Xhz2s8vL65_75BPPBgZFgz2SKeaPrhdCHyqYi_Y9jMzJ_gS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+and+deep+learning+algorithms+for+downtime+minimization+in+manufacturing+systems%3A+an+early+failure+detection+diagnostic+service&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Shahin%2C+Mohammad&rft.au=Chen%2C+F.+Frank&rft.au=Hosseinzadeh%2C+Ali&rft.au=Zand%2C+Neda&rft.date=2023-10-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=128&rft.issue=9-10&rft.spage=3857&rft.epage=3883&rft_id=info:doi/10.1007%2Fs00170-023-12020-w&rft.externalDocID=10_1007_s00170_023_12020_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |