Comparison of different chemometric methods in quantifying total volatile basic-nitrogen (TVB-N) content in chicken meat using a fabricated colorimetric sensor array
Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabri...
        Saved in:
      
    
          | Published in | RSC advances Vol. 6; no. 6; pp. 4663 - 4672 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        01.01.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2046-2069 2046-2069  | 
| DOI | 10.1039/c5ra25375f | 
Cover
| Abstract | Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes (
i.e.
9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and
R
p
of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple.
PSO-SVMR is an efficient chemometric tool to quantify TVB-N content in chicken. | 
    
|---|---|
| AbstractList | Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes (i.e. 9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and Rp of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple. Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes ( i.e. 9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and R p of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple. PSO-SVMR is an efficient chemometric tool to quantify TVB-N content in chicken. Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes ( i.e. 9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and R p of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple. Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes (i.e. 9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and Rₚ of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple.  | 
    
| Author | Hu, Weiwei Khulal, Urmila Chen, Quansheng Zhao, Jiewen  | 
    
| AuthorAffiliation | Jiangsu University School of Food & Biological Engineering  | 
    
| AuthorAffiliation_xml | – sequence: 0 name: School of Food & Biological Engineering – sequence: 0 name: Jiangsu University  | 
    
| Author_xml | – sequence: 1 givenname: Urmila surname: Khulal fullname: Khulal, Urmila – sequence: 2 givenname: Jiewen surname: Zhao fullname: Zhao, Jiewen – sequence: 3 givenname: Weiwei surname: Hu fullname: Hu, Weiwei – sequence: 4 givenname: Quansheng surname: Chen fullname: Chen, Quansheng  | 
    
| BookMark | eNqFkt9rFDEQxxepYK198V3IYxXW5scm6T7Ww6pQWpDD12VudtKL7ibXJCfcH-T_aa5XVERwXmYgn-934Dt53hyFGKhpXgr-VnDVn6NOILWy2j1pjiXvTCu56Y_-mJ81pzl_5bWMFtKI4-bHIs4bSD7HwKJjo3eOEoXCcE1znKkkj6y2dRwz84HdbyEU73Y-3LESC0zse5yg-InYCrLHNviS4h0Fdrb88q69ec0whrI3rGJce_xWn2aCwrZ57wHMwarugEJjRaeY_OPSTCHHxCAl2L1onjqYMp0-9pNmefV-ufjYXt9--LS4vG5Rib60_eqiQ2VRCCu5A-6M7MaO0HLjjFYkreajQbQrZ5RATrofx75TQKNC26uT5uxgu0nxfku5DLPPSNMEgeI2D7Kmq3inpP0vKi6k1kZpKyvKDyimmHMiN6AvNbKaSwI_DYIP-_MNC_358uF8V1Xy5i_JpuYCafdv-NUBThl_cb__gvoJVW-pmg | 
    
| CitedBy_id | crossref_primary_10_1016_j_cej_2024_149804 crossref_primary_10_1016_j_foodcont_2017_07_003 crossref_primary_10_1016_j_microc_2022_107407 crossref_primary_10_1002_pts_2380 crossref_primary_10_1016_j_foodcont_2023_109942 crossref_primary_10_1080_10942912_2017_1354021 crossref_primary_10_1021_acssensors_6b00492 crossref_primary_10_1016_j_saa_2019_117281 crossref_primary_10_3390_s20205857 crossref_primary_10_1016_j_foodchem_2020_127828 crossref_primary_10_1007_s11426_019_9585_5 crossref_primary_10_1021_acssensors_2c00639 crossref_primary_10_1080_10408398_2022_2056573 crossref_primary_10_3390_s16111927 crossref_primary_10_1002_anie_201705264 crossref_primary_10_1002_chem_201700368 crossref_primary_10_2139_ssrn_4170655 crossref_primary_10_1002_slct_201701313 crossref_primary_10_1111_jfpp_13348 crossref_primary_10_1016_j_geoen_2023_211579 crossref_primary_10_1021_acsanm_4c04823 crossref_primary_10_1016_j_tifs_2021_01_006 crossref_primary_10_1016_j_snb_2018_04_078 crossref_primary_10_1002_jsfa_10439 crossref_primary_10_1002_vms3_1017 crossref_primary_10_1021_acs_analchem_0c04151 crossref_primary_10_1111_1541_4337_12823 crossref_primary_10_1016_j_saa_2020_118918 crossref_primary_10_1016_j_foodchem_2024_139940 crossref_primary_10_1007_s12161_021_01963_z crossref_primary_10_1002_ange_201705264 crossref_primary_10_1111_1541_4337_12764 crossref_primary_10_1016_j_saa_2023_122798 crossref_primary_10_1016_j_jclepro_2017_11_075 crossref_primary_10_1016_j_fochx_2024_101494  | 
    
| Cites_doi | 10.1016/j.eswa.2005.09.070 10.1016/j.jfoodeng.2015.08.003 10.1016/j.lwt.2014.02.031 10.1016/j.snb.2007.11.009 10.1016/j.aca.2009.02.009 10.1016/j.aca.2005.01.075 10.1016/b978-155860595-4/50007-3 10.1590/S0100-40422007000300029 10.1016/j.ijleo.2013.09.017 10.1021/ac052111s 10.1016/j.snb.2014.08.025 10.1145/1961189.1961199 10.1166/asl.2012.2980 10.1016/j.foodcont.2004.10.015 10.1017/CBO9780511809682 10.1016/j.meatsci.2014.05.033 10.1016/j.foodchem.2012.11.124 10.1016/j.eswa.2007.11.014 10.1021/tx049782q 10.1016/j.jfoodeng.2014.07.019 10.1016/j.foodchem.2013.08.101 10.1016/j.eswa.2010.09.067 10.1039/C5AY00596E 10.1016/j.mcm.2011.04.017 10.1039/c2an35211g 10.1016/j.asoc.2007.10.007 10.1007/3-540-59119-2_166 10.1016/j.foodchem.2014.03.066 10.1016/j.chemolab.2008.11.005 10.1016/j.foodcont.2015.07.038 10.1016/j.chemolab.2015.05.011 10.1016/j.tet.2004.09.007 10.1016/j.foodcont.2013.06.043 10.1063/1.4774075 10.1016/j.jfoodeng.2014.07.015 10.1016/j.snb.2003.10.028 10.1017/S0043933910000498 10.1016/j.aca.2007.08.040 10.1038/35021028 10.1111/ijfs.12929 10.1016/j.ress.2015.02.001 10.1016/j.procbio.2014.01.006 10.1016/j.eswa.2009.05.011 10.1039/C4AY00014E 10.1142/5089 10.1016/j.amc.2015.03.075 10.1016/j.aca.2006.05.027 10.1016/j.talanta.2003.07.002 10.1023/A:1009715923555 10.1007/s11269-013-0307-2 10.1016/j.snb.2013.04.033 10.1021/jf060110a 10.1016/j.lwt.2014.10.017 10.1016/j.eswa.2007.08.088  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7S9 L.6  | 
    
| DOI | 10.1039/c5ra25375f | 
    
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Materials Research Database CrossRef AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 2046-2069 | 
    
| EndPage | 4672 | 
    
| ExternalDocumentID | 10_1039_C5RA25375F c5ra25375f  | 
    
| GroupedDBID | -JG 0-7 0R~ 53G AAEMU AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABASK ABEMK ABGFH ABPDG ABXOH ACGFS ADMRA AEFDR AENEX AESAV AETIL AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- R7C R7G RAOCF RCNCU RPMJG RRC RSCEA RVUXY SLH AAYXX ABIQK ABJNI ADBBV AFPKN AFRZK AKMSF BCNDV CITATION J3G J3H OK1 PGMZT RPM YAE ZCN 7SR 8BQ 8FD JG9 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c319t-9b84c37c11720fa0f624d4ec706f653e2750d6cc7bf631c0e59dd943aed3c793 | 
    
| ISSN | 2046-2069 | 
    
| IngestDate | Sun Sep 28 04:00:47 EDT 2025 Sun Sep 28 11:30:13 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Tue Jul 01 02:38:47 EDT 2025 Tue Dec 17 20:59:56 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-9b84c37c11720fa0f624d4ec706f653e2750d6cc7bf631c0e59dd943aed3c793 | 
    
| Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c5ra25375f ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1825563572 | 
    
| PQPubID | 23500 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_miscellaneous_2253304327 proquest_miscellaneous_1825563572 crossref_citationtrail_10_1039_C5RA25375F crossref_primary_10_1039_C5RA25375F rsc_primary_c5ra25375f  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-01-01 | 
    
| PublicationDateYYYYMMDD | 2016-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | RSC advances | 
    
| PublicationYear | 2016 | 
    
| References | Janzen (C5RA25375F-(cit11)/*[position()=1]) 2006; 78 Xingyi (C5RA25375F-(cit17)/*[position()=1]) 2011; 42 Burges (C5RA25375F-(cit58)/*[position()=1]) 1998; 2 Huang (C5RA25375F-(cit13)/*[position()=1]) 2015; 50 Qiu (C5RA25375F-(cit56)/*[position()=1]) 2015; 144 Min (C5RA25375F-(cit31)/*[position()=1]) 2006; 31 Wang (C5RA25375F-(cit50)/*[position()=1]) 2014; 125 Ren (C5RA25375F-(cit54)/*[position()=1]) 2006; 572 Ouyang (C5RA25375F-(cit22)/*[position()=1]) 2013; 138 Wang (C5RA25375F-(cit36)/*[position()=1]) 2009; vol. 5552 Suykens (C5RA25375F-(cit29)/*[position()=1]) 2002 Brudzewski (C5RA25375F-(cit57)/*[position()=1]) 2004; 98 Suarez Sanchez (C5RA25375F-(cit45)/*[position()=1]) 2011; 54 Schölkopf (C5RA25375F-(cit46)/*[position()=1]) 2002 Ling (C5RA25375F-(cit9)/*[position()=1]) 2013; 113 Kaneki (C5RA25375F-(cit2)/*[position()=1]) 2004; 62 Huang (C5RA25375F-(cit25)/*[position()=1]) 2014; 98 Safavi (C5RA25375F-(cit44)/*[position()=1]) 2013; 27 Chang (C5RA25375F-(cit43)/*[position()=1]) 2011; 2 Avci (C5RA25375F-(cit30)/*[position()=1]) 2009; 36 Suslick (C5RA25375F-(cit51)/*[position()=1]) 2004; 60 Hertz (C5RA25375F-(cit26)/*[position()=1]) 1991 Garcia Nieto (C5RA25375F-(cit35)/*[position()=1]) 2015; 260 Salinas (C5RA25375F-(cit52)/*[position()=1]) 2012; 137 Zhang (C5RA25375F-(cit41)/*[position()=1]) 2005; 544 Chen (C5RA25375F-(cit28)/*[position()=1]) 2016; 168 Jiang (C5RA25375F-(cit60)/*[position()=1]) 2014; 49 Morsy (C5RA25375F-(cit18)/*[position()=1]) 2016; 60 Lin (C5RA25375F-(cit33)/*[position()=1]) 2008; 35 Wu (C5RA25375F-(cit38)/*[position()=1]) 2010; 37 Fatih (C5RA25375F-(cit5)/*[position()=1]) 2000; 24 Castro (C5RA25375F-(cit4)/*[position()=1]) 2006; 17 Devos (C5RA25375F-(cit48)/*[position()=1]) 2009; 96 Freund (C5RA25375F-(cit42)/*[position()=1]) 1995; vol. 904 Shi (C5RA25375F-(cit53)/*[position()=1]) 2012; 11 Chen (C5RA25375F-(cit23)/*[position()=1]) 2014; 57 Shawe-Taylor (C5RA25375F-(cit47)/*[position()=1]) 2004 Luan (C5RA25375F-(cit55)/*[position()=1]) 2005; 18 Peris (C5RA25375F-(cit7)/*[position()=1]) 2009; 638 Zhang (C5RA25375F-(cit3)/*[position()=1]) 2006; 54 C5RA25375F-(cit40)/*[position()=1] Wang (C5RA25375F-(cit59)/*[position()=1]) 2007; 601 Chen (C5RA25375F-(cit19)/*[position()=1]) 2014; 205 Li (C5RA25375F-(cit15)/*[position()=1]) 2014; 6 Suslick (C5RA25375F-(cit10)/*[position()=1]) 2007; 30 Salinas (C5RA25375F-(cit16)/*[position()=1]) 2014; 35 Garcia Nieto (C5RA25375F-(cit39)/*[position()=1]) 2015; 138 Barbut (C5RA25375F-(cit1)/*[position()=1]) 2010; 66 Huang (C5RA25375F-(cit14)/*[position()=1]) 2014; 145 Zhang (C5RA25375F-(cit34)/*[position()=1]) 2015; 146 Salcedo-Sanz (C5RA25375F-(cit37)/*[position()=1]) 2011; 38 Kennedy (C5RA25375F-(cit49)/*[position()=1]) 2001 Chen (C5RA25375F-(cit21)/*[position()=1]) 2015; 60 Rakow (C5RA25375F-(cit12)/*[position()=1]) 2000; 406 Loutfi (C5RA25375F-(cit6)/*[position()=1]) 2015; 144 Huang (C5RA25375F-(cit32)/*[position()=1]) 2008; 8 Mariani (C5RA25375F-(cit27)/*[position()=1]) 2014; 159 Chen (C5RA25375F-(cit20)/*[position()=1]) 2013; 183 Urmila (C5RA25375F-(cit24)/*[position()=1]) 2015; 7 Sohn (C5RA25375F-(cit8)/*[position()=1]) 2008; 131  | 
    
| References_xml | – issn: 2002 publication-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond doi: Schölkopf Smola – issn: 2001 end-page: p 287-325 publication-title: Swarm Intelligence doi: Kennedy Eberhart Shi – issn: 2004 publication-title: Kernel methods for pattern analysis doi: Shawe-Taylor Cristianini – issn: 2002 publication-title: Least squares support vector machines doi: Suykens van Gestel de Brabanter de Moor Vandewalle – issn: 2009 issue: vol. 5552 end-page: p 382-390 publication-title: Advances in Neural Networks - Isnn 2009, Part 2, Proceedings doi: Wang Wang Du Wang Liang Zhou Huang – issn: 1995 issue: vol. 904 end-page: p 23-37 publication-title: Computational Learning Theory doi: Freund Schapire – issn: 1991 publication-title: Introduction to the Theory of Neural Computation doi: Hertz Krogh Palmer – volume: 31 start-page: 652 year: 2006 ident: C5RA25375F-(cit31)/*[position()=1] publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.070 – volume: 168 start-page: 259 year: 2016 ident: C5RA25375F-(cit28)/*[position()=1] publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2015.08.003 – volume: 57 start-page: 502 year: 2014 ident: C5RA25375F-(cit23)/*[position()=1] publication-title: LWT--Food Sci. Technol. doi: 10.1016/j.lwt.2014.02.031 – volume: 131 start-page: 230 year: 2008 ident: C5RA25375F-(cit8)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2007.11.009 – volume: 638 start-page: 1 year: 2009 ident: C5RA25375F-(cit7)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.02.009 – volume: 544 start-page: 167 year: 2005 ident: C5RA25375F-(cit41)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2005.01.075 – volume-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond year: 2002 ident: C5RA25375F-(cit46)/*[position()=1] – volume-title: Swarm Intelligence year: 2001 ident: C5RA25375F-(cit49)/*[position()=1] doi: 10.1016/b978-155860595-4/50007-3 – volume: 30 start-page: 677 year: 2007 ident: C5RA25375F-(cit10)/*[position()=1] publication-title: Quim. Nova doi: 10.1590/S0100-40422007000300029 – volume: 125 start-page: 1439 year: 2014 ident: C5RA25375F-(cit50)/*[position()=1] publication-title: Optik doi: 10.1016/j.ijleo.2013.09.017 – volume: 78 start-page: 3591 year: 2006 ident: C5RA25375F-(cit11)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac052111s – volume: 205 start-page: 1 year: 2014 ident: C5RA25375F-(cit19)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2014.08.025 – volume: 24 start-page: 113 year: 2000 ident: C5RA25375F-(cit5)/*[position()=1] publication-title: Turk. J. Zool. – volume: 2 start-page: 27 issue: 3 year: 2011 ident: C5RA25375F-(cit43)/*[position()=1] publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 11 start-page: 238 year: 2012 ident: C5RA25375F-(cit53)/*[position()=1] publication-title: Adv. Sci. Lett. doi: 10.1166/asl.2012.2980 – volume: 17 start-page: 245 year: 2006 ident: C5RA25375F-(cit4)/*[position()=1] publication-title: Food Control doi: 10.1016/j.foodcont.2004.10.015 – volume-title: Kernel methods for pattern analysis year: 2004 ident: C5RA25375F-(cit47)/*[position()=1] doi: 10.1017/CBO9780511809682 – volume: 98 start-page: 203 year: 2014 ident: C5RA25375F-(cit25)/*[position()=1] publication-title: Meat Sci. doi: 10.1016/j.meatsci.2014.05.033 – volume: 138 start-page: 1320 year: 2013 ident: C5RA25375F-(cit22)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.11.124 – volume: 36 start-page: 1391 year: 2009 ident: C5RA25375F-(cit30)/*[position()=1] publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.11.014 – volume: 18 start-page: 198 year: 2005 ident: C5RA25375F-(cit55)/*[position()=1] publication-title: Chem. Res. Toxicol. doi: 10.1021/tx049782q – volume: 144 start-page: 103 year: 2015 ident: C5RA25375F-(cit6)/*[position()=1] publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2014.07.019 – volume: 145 start-page: 549 year: 2014 ident: C5RA25375F-(cit14)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.08.101 – volume: 38 start-page: 4052 year: 2011 ident: C5RA25375F-(cit37)/*[position()=1] publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.067 – volume: 7 start-page: 5682 year: 2015 ident: C5RA25375F-(cit24)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C5AY00596E – volume: 54 start-page: 1453 year: 2011 ident: C5RA25375F-(cit45)/*[position()=1] publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2011.04.017 – volume: 137 start-page: 3635 year: 2012 ident: C5RA25375F-(cit52)/*[position()=1] publication-title: Analyst doi: 10.1039/c2an35211g – volume: 8 start-page: 1381 year: 2008 ident: C5RA25375F-(cit32)/*[position()=1] publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.10.007 – ident: C5RA25375F-(cit40)/*[position()=1] – volume: vol. 904 volume-title: Computational Learning Theory year: 1995 ident: C5RA25375F-(cit42)/*[position()=1] doi: 10.1007/3-540-59119-2_166 – volume: 159 start-page: 458 year: 2014 ident: C5RA25375F-(cit27)/*[position()=1] publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.03.066 – volume: 96 start-page: 27 year: 2009 ident: C5RA25375F-(cit48)/*[position()=1] publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2008.11.005 – volume: 60 start-page: 346 year: 2016 ident: C5RA25375F-(cit18)/*[position()=1] publication-title: Food Control doi: 10.1016/j.foodcont.2015.07.038 – volume: 146 start-page: 102 year: 2015 ident: C5RA25375F-(cit34)/*[position()=1] publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.05.011 – volume: 60 start-page: 11133 year: 2004 ident: C5RA25375F-(cit51)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/j.tet.2004.09.007 – volume: 35 start-page: 166 year: 2014 ident: C5RA25375F-(cit16)/*[position()=1] publication-title: Food Control doi: 10.1016/j.foodcont.2013.06.043 – volume: 113 start-page: 024312 issue: 2 year: 2013 ident: C5RA25375F-(cit9)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.4774075 – volume: 144 start-page: 77 year: 2015 ident: C5RA25375F-(cit56)/*[position()=1] publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2014.07.015 – volume: 98 start-page: 291 year: 2004 ident: C5RA25375F-(cit57)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2003.10.028 – volume: 66 start-page: 399 year: 2010 ident: C5RA25375F-(cit1)/*[position()=1] publication-title: World's Poult. Sci. J. doi: 10.1017/S0043933910000498 – volume: 42 start-page: 142 year: 2011 ident: C5RA25375F-(cit17)/*[position()=1] publication-title: J. Agric. Mach. – volume: 601 start-page: 156 year: 2007 ident: C5RA25375F-(cit59)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2007.08.040 – volume: 406 start-page: 710 year: 2000 ident: C5RA25375F-(cit12)/*[position()=1] publication-title: Nature doi: 10.1038/35021028 – volume: 50 start-page: 203 year: 2015 ident: C5RA25375F-(cit13)/*[position()=1] publication-title: Int. J. Food Sci. Technol. doi: 10.1111/ijfs.12929 – volume: 138 start-page: 219 year: 2015 ident: C5RA25375F-(cit39)/*[position()=1] publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.02.001 – volume: 49 start-page: 583 year: 2014 ident: C5RA25375F-(cit60)/*[position()=1] publication-title: Process Biochem. doi: 10.1016/j.procbio.2014.01.006 – volume: 37 start-page: 194 year: 2010 ident: C5RA25375F-(cit38)/*[position()=1] publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.05.011 – volume: 6 start-page: 6271 year: 2014 ident: C5RA25375F-(cit15)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C4AY00014E – volume-title: Least squares support vector machines year: 2002 ident: C5RA25375F-(cit29)/*[position()=1] doi: 10.1142/5089 – volume: 260 start-page: 170 year: 2015 ident: C5RA25375F-(cit35)/*[position()=1] publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.03.075 – volume-title: Introduction to the Theory of Neural Computation year: 1991 ident: C5RA25375F-(cit26)/*[position()=1] – volume: 572 start-page: 272 year: 2006 ident: C5RA25375F-(cit54)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2006.05.027 – volume: 62 start-page: 215 year: 2004 ident: C5RA25375F-(cit2)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2003.07.002 – volume: 2 start-page: 121 year: 1998 ident: C5RA25375F-(cit58)/*[position()=1] publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: vol. 5552 volume-title: Advances in Neural Networks – Isnn 2009, Part 2, Proceedings year: 2009 ident: C5RA25375F-(cit36)/*[position()=1] – volume: 27 start-page: 2623 year: 2013 ident: C5RA25375F-(cit44)/*[position()=1] publication-title: Water Resour. Manag. doi: 10.1007/s11269-013-0307-2 – volume: 183 start-page: 608 year: 2013 ident: C5RA25375F-(cit20)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2013.04.033 – volume: 54 start-page: 4925 year: 2006 ident: C5RA25375F-(cit3)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf060110a – volume: 60 start-page: 781 year: 2015 ident: C5RA25375F-(cit21)/*[position()=1] publication-title: LWT--Food Sci. Technol. doi: 10.1016/j.lwt.2014.10.017 – volume: 35 start-page: 1817 year: 2008 ident: C5RA25375F-(cit33)/*[position()=1] publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.088  | 
    
| SSID | ssj0000651261 | 
    
| Score | 2.3050008 | 
    
| Snippet | Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total... | 
    
| SourceID | proquest crossref rsc  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4663 | 
    
| SubjectTerms | algorithms Chemometrics chicken meat Chickens color Colorimetry dyes freshness least squares Mathematical models Meat neural networks porphyrins poultry industry quantitative analysis Regression Sensor arrays silica gel total volatile basic nitrogen Volatile compounds volatile organic compounds  | 
    
| Title | Comparison of different chemometric methods in quantifying total volatile basic-nitrogen (TVB-N) content in chicken meat using a fabricated colorimetric sensor array | 
    
| URI | https://www.proquest.com/docview/1825563572 https://www.proquest.com/docview/2253304327  | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customers customDbUrl: https://pubs.rsc.org eissn: 2046-2069 dateEnd: 20161231 omitProxy: true ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: AETIL dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QAviNvEuMkIHpiqQBJf0jyOiKlC2iRGhyZeKttxaKQugTTRJB74BfwN_ifHzsWp2CTgJUoTx257vpyLfY4_hF4Gs9iXTDMv8v3UoxmVngwF9VigpM_DWGSBqXc-PuHzM_r-nJ1PJj9HWUtNLV-r71fWlfyPVOEayNVUyf6DZIdO4QKcg3zhCBKG41_JOBmTCA5cJ_UUBHFRXhiuLNVRRNus12-NMKlBtrCpLk0VJOgm6Gqtp2DMcuXB612VMJpxOxef3nonZs7AJLObTk3C-iqHl76APkU9bewsg5hmQlqqIW3q40w-XzfwBgJkk6FZVWJr6fj0Y9JnHriFpFWztswD0zMA3nowFZ9Xol0ZyvWlq1mbNzYzUOeXOnfpCa3-_AC_cQPnX8bTGcF4OkNbtRdCxA5Sbglceh3NR1Ac61vKO_Wou48tD9AfdsEnZltVxSoRMhKxzFm_ISfR3dxBN0KwEYYI5PiHm7EDZy2AeLPf45bEb9wj216NC1V2qp5Hxvorizvodhdo4MMWNXfRRBf30M2k5_e7j3459OAywwN68Ag9uEMPzgs8Qg-26ME9evA2evAri50D3CHHPNwhBxvkYIscLLBDDh4jB7fIwRY5D9Di6N0imXsdaYenQJvXXixnVJFIBeAZ-5nwMx7SlGoV-TzjjGjDJ5BypSKZcRIoX7M4TWNKhE6JAmOxh3aLstAPEeZaUTGTiqgZo1ozmfmxEuCBpoqTlEb76KD_z5eq29De8KqslzaxgsTLhJ0eWvkc7aMXQ9uv7TYuV7Z63otuCcIwS2ei0GWzWUIUbnbSY1F4fRuwjGZykITwzfZA7sNADiaPrrvxGN1yL8MTtFtXjX4K3m4tn1kQ_gbM1bXg | 
    
| linkProvider | ISSN International Centre | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+different+chemometric+methods+in+quantifying+total+volatile+basic-nitrogen+%28TVB-N%29+content+in+chicken+meat+using+a+fabricated+colorimetric+sensor+array&rft.jtitle=RSC+advances&rft.au=Khulal%2C+Urmila&rft.au=Zhao%2C+Jiewen&rft.au=Hu%2C+Weiwei&rft.au=Chen%2C+Quansheng&rft.date=2016-01-01&rft.eissn=2046-2069&rft.volume=6&rft.issue=6&rft.spage=4663&rft.epage=4672&rft_id=info:doi/10.1039%2Fc5ra25375f&rft.externalDocID=c5ra25375f | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |