Comparison of different chemometric methods in quantifying total volatile basic-nitrogen (TVB-N) content in chicken meat using a fabricated colorimetric sensor array

Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabri...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 6; no. 6; pp. 4663 - 4672
Main Authors Khulal, Urmila, Zhao, Jiewen, Hu, Weiwei, Chen, Quansheng
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text
ISSN2046-2069
2046-2069
DOI10.1039/c5ra25375f

Cover

Abstract Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes ( i.e. 9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and R p of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple. PSO-SVMR is an efficient chemometric tool to quantify TVB-N content in chicken.
AbstractList Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes (i.e. 9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and Rp of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple.
Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes ( i.e. 9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and R p of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple. PSO-SVMR is an efficient chemometric tool to quantify TVB-N content in chicken.
Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes ( i.e. 9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and R p of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple.
Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total Volatile Basic-Nitrogen (TVB-N) content in chicken meat by a low cost colorimetric sensor array with the help of chemometric analysis. We fabricated a colorimetric sensor array by printing 12 chemically responsive dyes (i.e. 9 porphyrins/metalloporphyrins and 3 pH indicators) on a C2 reverse silica-gel flat plate for the fast and non-destructive quantitative determination of TVB-N content in chicken. A colour change profile for each sample was obtained by differentiating the image of the sensor array before and after exposure to volatile organic compounds (VOCs). Linear algorithm; partial least squares regression (PLSR) and nonlinear algorithms; back propagation artificial neural network (BPANN), Adaptive Boosting BPANN (BP-AdaBoost) and support vector machine regression (SVMR) methods based on particle swarm optimization (PSO) were used to build the TVB-N prediction model. Experimental results showed that the predictive precision of the PSO-SVMR model was superior to linear and classic non-linear models. The optimum PSO-SVMR model was obtained with 4 support vectors and Rₚ of 0.8981, RMSEP of 5.5255. The overall results are encouraging for the application of low cost colorimetric sensors combined with an appropriate chemometric method in the poultry industry for quality assessment because it is practical, non-invasive, rapid and simple.
Author Hu, Weiwei
Khulal, Urmila
Chen, Quansheng
Zhao, Jiewen
AuthorAffiliation Jiangsu University
School of Food & Biological Engineering
AuthorAffiliation_xml – sequence: 0
  name: School of Food & Biological Engineering
– sequence: 0
  name: Jiangsu University
Author_xml – sequence: 1
  givenname: Urmila
  surname: Khulal
  fullname: Khulal, Urmila
– sequence: 2
  givenname: Jiewen
  surname: Zhao
  fullname: Zhao, Jiewen
– sequence: 3
  givenname: Weiwei
  surname: Hu
  fullname: Hu, Weiwei
– sequence: 4
  givenname: Quansheng
  surname: Chen
  fullname: Chen, Quansheng
BookMark eNqFkt9rFDEQxxepYK198V3IYxXW5scm6T7Ww6pQWpDD12VudtKL7ibXJCfcH-T_aa5XVERwXmYgn-934Dt53hyFGKhpXgr-VnDVn6NOILWy2j1pjiXvTCu56Y_-mJ81pzl_5bWMFtKI4-bHIs4bSD7HwKJjo3eOEoXCcE1znKkkj6y2dRwz84HdbyEU73Y-3LESC0zse5yg-InYCrLHNviS4h0Fdrb88q69ec0whrI3rGJce_xWn2aCwrZ57wHMwarugEJjRaeY_OPSTCHHxCAl2L1onjqYMp0-9pNmefV-ufjYXt9--LS4vG5Rib60_eqiQ2VRCCu5A-6M7MaO0HLjjFYkreajQbQrZ5RATrofx75TQKNC26uT5uxgu0nxfku5DLPPSNMEgeI2D7Kmq3inpP0vKi6k1kZpKyvKDyimmHMiN6AvNbKaSwI_DYIP-_MNC_358uF8V1Xy5i_JpuYCafdv-NUBThl_cb__gvoJVW-pmg
CitedBy_id crossref_primary_10_1016_j_cej_2024_149804
crossref_primary_10_1016_j_foodcont_2017_07_003
crossref_primary_10_1016_j_microc_2022_107407
crossref_primary_10_1002_pts_2380
crossref_primary_10_1016_j_foodcont_2023_109942
crossref_primary_10_1080_10942912_2017_1354021
crossref_primary_10_1021_acssensors_6b00492
crossref_primary_10_1016_j_saa_2019_117281
crossref_primary_10_3390_s20205857
crossref_primary_10_1016_j_foodchem_2020_127828
crossref_primary_10_1007_s11426_019_9585_5
crossref_primary_10_1021_acssensors_2c00639
crossref_primary_10_1080_10408398_2022_2056573
crossref_primary_10_3390_s16111927
crossref_primary_10_1002_anie_201705264
crossref_primary_10_1002_chem_201700368
crossref_primary_10_2139_ssrn_4170655
crossref_primary_10_1002_slct_201701313
crossref_primary_10_1111_jfpp_13348
crossref_primary_10_1016_j_geoen_2023_211579
crossref_primary_10_1021_acsanm_4c04823
crossref_primary_10_1016_j_tifs_2021_01_006
crossref_primary_10_1016_j_snb_2018_04_078
crossref_primary_10_1002_jsfa_10439
crossref_primary_10_1002_vms3_1017
crossref_primary_10_1021_acs_analchem_0c04151
crossref_primary_10_1111_1541_4337_12823
crossref_primary_10_1016_j_saa_2020_118918
crossref_primary_10_1016_j_foodchem_2024_139940
crossref_primary_10_1007_s12161_021_01963_z
crossref_primary_10_1002_ange_201705264
crossref_primary_10_1111_1541_4337_12764
crossref_primary_10_1016_j_saa_2023_122798
crossref_primary_10_1016_j_jclepro_2017_11_075
crossref_primary_10_1016_j_fochx_2024_101494
Cites_doi 10.1016/j.eswa.2005.09.070
10.1016/j.jfoodeng.2015.08.003
10.1016/j.lwt.2014.02.031
10.1016/j.snb.2007.11.009
10.1016/j.aca.2009.02.009
10.1016/j.aca.2005.01.075
10.1016/b978-155860595-4/50007-3
10.1590/S0100-40422007000300029
10.1016/j.ijleo.2013.09.017
10.1021/ac052111s
10.1016/j.snb.2014.08.025
10.1145/1961189.1961199
10.1166/asl.2012.2980
10.1016/j.foodcont.2004.10.015
10.1017/CBO9780511809682
10.1016/j.meatsci.2014.05.033
10.1016/j.foodchem.2012.11.124
10.1016/j.eswa.2007.11.014
10.1021/tx049782q
10.1016/j.jfoodeng.2014.07.019
10.1016/j.foodchem.2013.08.101
10.1016/j.eswa.2010.09.067
10.1039/C5AY00596E
10.1016/j.mcm.2011.04.017
10.1039/c2an35211g
10.1016/j.asoc.2007.10.007
10.1007/3-540-59119-2_166
10.1016/j.foodchem.2014.03.066
10.1016/j.chemolab.2008.11.005
10.1016/j.foodcont.2015.07.038
10.1016/j.chemolab.2015.05.011
10.1016/j.tet.2004.09.007
10.1016/j.foodcont.2013.06.043
10.1063/1.4774075
10.1016/j.jfoodeng.2014.07.015
10.1016/j.snb.2003.10.028
10.1017/S0043933910000498
10.1016/j.aca.2007.08.040
10.1038/35021028
10.1111/ijfs.12929
10.1016/j.ress.2015.02.001
10.1016/j.procbio.2014.01.006
10.1016/j.eswa.2009.05.011
10.1039/C4AY00014E
10.1142/5089
10.1016/j.amc.2015.03.075
10.1016/j.aca.2006.05.027
10.1016/j.talanta.2003.07.002
10.1023/A:1009715923555
10.1007/s11269-013-0307-2
10.1016/j.snb.2013.04.033
10.1021/jf060110a
10.1016/j.lwt.2014.10.017
10.1016/j.eswa.2007.08.088
ContentType Journal Article
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7S9
L.6
DOI 10.1039/c5ra25375f
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database

CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 4672
ExternalDocumentID 10_1039_C5RA25375F
c5ra25375f
GroupedDBID -JG
0-7
0R~
53G
AAEMU
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABASK
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADMRA
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AUNWK
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
R7C
R7G
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SLH
AAYXX
ABIQK
ABJNI
ADBBV
AFPKN
AFRZK
AKMSF
BCNDV
CITATION
J3G
J3H
OK1
PGMZT
RPM
YAE
ZCN
7SR
8BQ
8FD
JG9
7S9
L.6
ID FETCH-LOGICAL-c319t-9b84c37c11720fa0f624d4ec706f653e2750d6cc7bf631c0e59dd943aed3c793
ISSN 2046-2069
IngestDate Sun Sep 28 04:00:47 EDT 2025
Sun Sep 28 11:30:13 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Tue Jul 01 02:38:47 EDT 2025
Tue Dec 17 20:59:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-9b84c37c11720fa0f624d4ec706f653e2750d6cc7bf631c0e59dd943aed3c793
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c5ra25375f
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825563572
PQPubID 23500
PageCount 1
ParticipantIDs proquest_miscellaneous_2253304327
proquest_miscellaneous_1825563572
crossref_citationtrail_10_1039_C5RA25375F
crossref_primary_10_1039_C5RA25375F
rsc_primary_c5ra25375f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle RSC advances
PublicationYear 2016
References Janzen (C5RA25375F-(cit11)/*[position()=1]) 2006; 78
Xingyi (C5RA25375F-(cit17)/*[position()=1]) 2011; 42
Burges (C5RA25375F-(cit58)/*[position()=1]) 1998; 2
Huang (C5RA25375F-(cit13)/*[position()=1]) 2015; 50
Qiu (C5RA25375F-(cit56)/*[position()=1]) 2015; 144
Min (C5RA25375F-(cit31)/*[position()=1]) 2006; 31
Wang (C5RA25375F-(cit50)/*[position()=1]) 2014; 125
Ren (C5RA25375F-(cit54)/*[position()=1]) 2006; 572
Ouyang (C5RA25375F-(cit22)/*[position()=1]) 2013; 138
Wang (C5RA25375F-(cit36)/*[position()=1]) 2009; vol. 5552
Suykens (C5RA25375F-(cit29)/*[position()=1]) 2002
Brudzewski (C5RA25375F-(cit57)/*[position()=1]) 2004; 98
Suarez Sanchez (C5RA25375F-(cit45)/*[position()=1]) 2011; 54
Schölkopf (C5RA25375F-(cit46)/*[position()=1]) 2002
Ling (C5RA25375F-(cit9)/*[position()=1]) 2013; 113
Kaneki (C5RA25375F-(cit2)/*[position()=1]) 2004; 62
Huang (C5RA25375F-(cit25)/*[position()=1]) 2014; 98
Safavi (C5RA25375F-(cit44)/*[position()=1]) 2013; 27
Chang (C5RA25375F-(cit43)/*[position()=1]) 2011; 2
Avci (C5RA25375F-(cit30)/*[position()=1]) 2009; 36
Suslick (C5RA25375F-(cit51)/*[position()=1]) 2004; 60
Hertz (C5RA25375F-(cit26)/*[position()=1]) 1991
Garcia Nieto (C5RA25375F-(cit35)/*[position()=1]) 2015; 260
Salinas (C5RA25375F-(cit52)/*[position()=1]) 2012; 137
Zhang (C5RA25375F-(cit41)/*[position()=1]) 2005; 544
Chen (C5RA25375F-(cit28)/*[position()=1]) 2016; 168
Jiang (C5RA25375F-(cit60)/*[position()=1]) 2014; 49
Morsy (C5RA25375F-(cit18)/*[position()=1]) 2016; 60
Lin (C5RA25375F-(cit33)/*[position()=1]) 2008; 35
Wu (C5RA25375F-(cit38)/*[position()=1]) 2010; 37
Fatih (C5RA25375F-(cit5)/*[position()=1]) 2000; 24
Castro (C5RA25375F-(cit4)/*[position()=1]) 2006; 17
Devos (C5RA25375F-(cit48)/*[position()=1]) 2009; 96
Freund (C5RA25375F-(cit42)/*[position()=1]) 1995; vol. 904
Shi (C5RA25375F-(cit53)/*[position()=1]) 2012; 11
Chen (C5RA25375F-(cit23)/*[position()=1]) 2014; 57
Shawe-Taylor (C5RA25375F-(cit47)/*[position()=1]) 2004
Luan (C5RA25375F-(cit55)/*[position()=1]) 2005; 18
Peris (C5RA25375F-(cit7)/*[position()=1]) 2009; 638
Zhang (C5RA25375F-(cit3)/*[position()=1]) 2006; 54
C5RA25375F-(cit40)/*[position()=1]
Wang (C5RA25375F-(cit59)/*[position()=1]) 2007; 601
Chen (C5RA25375F-(cit19)/*[position()=1]) 2014; 205
Li (C5RA25375F-(cit15)/*[position()=1]) 2014; 6
Suslick (C5RA25375F-(cit10)/*[position()=1]) 2007; 30
Salinas (C5RA25375F-(cit16)/*[position()=1]) 2014; 35
Garcia Nieto (C5RA25375F-(cit39)/*[position()=1]) 2015; 138
Barbut (C5RA25375F-(cit1)/*[position()=1]) 2010; 66
Huang (C5RA25375F-(cit14)/*[position()=1]) 2014; 145
Zhang (C5RA25375F-(cit34)/*[position()=1]) 2015; 146
Salcedo-Sanz (C5RA25375F-(cit37)/*[position()=1]) 2011; 38
Kennedy (C5RA25375F-(cit49)/*[position()=1]) 2001
Chen (C5RA25375F-(cit21)/*[position()=1]) 2015; 60
Rakow (C5RA25375F-(cit12)/*[position()=1]) 2000; 406
Loutfi (C5RA25375F-(cit6)/*[position()=1]) 2015; 144
Huang (C5RA25375F-(cit32)/*[position()=1]) 2008; 8
Mariani (C5RA25375F-(cit27)/*[position()=1]) 2014; 159
Chen (C5RA25375F-(cit20)/*[position()=1]) 2013; 183
Urmila (C5RA25375F-(cit24)/*[position()=1]) 2015; 7
Sohn (C5RA25375F-(cit8)/*[position()=1]) 2008; 131
References_xml – issn: 2002
  publication-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond
  doi: Schölkopf Smola
– issn: 2001
  end-page: p 287-325
  publication-title: Swarm Intelligence
  doi: Kennedy Eberhart Shi
– issn: 2004
  publication-title: Kernel methods for pattern analysis
  doi: Shawe-Taylor Cristianini
– issn: 2002
  publication-title: Least squares support vector machines
  doi: Suykens van Gestel de Brabanter de Moor Vandewalle
– issn: 2009
  issue: vol. 5552
  end-page: p 382-390
  publication-title: Advances in Neural Networks - Isnn 2009, Part 2, Proceedings
  doi: Wang Wang Du Wang Liang Zhou Huang
– issn: 1995
  issue: vol. 904
  end-page: p 23-37
  publication-title: Computational Learning Theory
  doi: Freund Schapire
– issn: 1991
  publication-title: Introduction to the Theory of Neural Computation
  doi: Hertz Krogh Palmer
– volume: 31
  start-page: 652
  year: 2006
  ident: C5RA25375F-(cit31)/*[position()=1]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.070
– volume: 168
  start-page: 259
  year: 2016
  ident: C5RA25375F-(cit28)/*[position()=1]
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2015.08.003
– volume: 57
  start-page: 502
  year: 2014
  ident: C5RA25375F-(cit23)/*[position()=1]
  publication-title: LWT--Food Sci. Technol.
  doi: 10.1016/j.lwt.2014.02.031
– volume: 131
  start-page: 230
  year: 2008
  ident: C5RA25375F-(cit8)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2007.11.009
– volume: 638
  start-page: 1
  year: 2009
  ident: C5RA25375F-(cit7)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.02.009
– volume: 544
  start-page: 167
  year: 2005
  ident: C5RA25375F-(cit41)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.01.075
– volume-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond
  year: 2002
  ident: C5RA25375F-(cit46)/*[position()=1]
– volume-title: Swarm Intelligence
  year: 2001
  ident: C5RA25375F-(cit49)/*[position()=1]
  doi: 10.1016/b978-155860595-4/50007-3
– volume: 30
  start-page: 677
  year: 2007
  ident: C5RA25375F-(cit10)/*[position()=1]
  publication-title: Quim. Nova
  doi: 10.1590/S0100-40422007000300029
– volume: 125
  start-page: 1439
  year: 2014
  ident: C5RA25375F-(cit50)/*[position()=1]
  publication-title: Optik
  doi: 10.1016/j.ijleo.2013.09.017
– volume: 78
  start-page: 3591
  year: 2006
  ident: C5RA25375F-(cit11)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac052111s
– volume: 205
  start-page: 1
  year: 2014
  ident: C5RA25375F-(cit19)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2014.08.025
– volume: 24
  start-page: 113
  year: 2000
  ident: C5RA25375F-(cit5)/*[position()=1]
  publication-title: Turk. J. Zool.
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: C5RA25375F-(cit43)/*[position()=1]
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 11
  start-page: 238
  year: 2012
  ident: C5RA25375F-(cit53)/*[position()=1]
  publication-title: Adv. Sci. Lett.
  doi: 10.1166/asl.2012.2980
– volume: 17
  start-page: 245
  year: 2006
  ident: C5RA25375F-(cit4)/*[position()=1]
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2004.10.015
– volume-title: Kernel methods for pattern analysis
  year: 2004
  ident: C5RA25375F-(cit47)/*[position()=1]
  doi: 10.1017/CBO9780511809682
– volume: 98
  start-page: 203
  year: 2014
  ident: C5RA25375F-(cit25)/*[position()=1]
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2014.05.033
– volume: 138
  start-page: 1320
  year: 2013
  ident: C5RA25375F-(cit22)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.11.124
– volume: 36
  start-page: 1391
  year: 2009
  ident: C5RA25375F-(cit30)/*[position()=1]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.11.014
– volume: 18
  start-page: 198
  year: 2005
  ident: C5RA25375F-(cit55)/*[position()=1]
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx049782q
– volume: 144
  start-page: 103
  year: 2015
  ident: C5RA25375F-(cit6)/*[position()=1]
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2014.07.019
– volume: 145
  start-page: 549
  year: 2014
  ident: C5RA25375F-(cit14)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.08.101
– volume: 38
  start-page: 4052
  year: 2011
  ident: C5RA25375F-(cit37)/*[position()=1]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.067
– volume: 7
  start-page: 5682
  year: 2015
  ident: C5RA25375F-(cit24)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C5AY00596E
– volume: 54
  start-page: 1453
  year: 2011
  ident: C5RA25375F-(cit45)/*[position()=1]
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.04.017
– volume: 137
  start-page: 3635
  year: 2012
  ident: C5RA25375F-(cit52)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c2an35211g
– volume: 8
  start-page: 1381
  year: 2008
  ident: C5RA25375F-(cit32)/*[position()=1]
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.10.007
– ident: C5RA25375F-(cit40)/*[position()=1]
– volume: vol. 904
  volume-title: Computational Learning Theory
  year: 1995
  ident: C5RA25375F-(cit42)/*[position()=1]
  doi: 10.1007/3-540-59119-2_166
– volume: 159
  start-page: 458
  year: 2014
  ident: C5RA25375F-(cit27)/*[position()=1]
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.03.066
– volume: 96
  start-page: 27
  year: 2009
  ident: C5RA25375F-(cit48)/*[position()=1]
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2008.11.005
– volume: 60
  start-page: 346
  year: 2016
  ident: C5RA25375F-(cit18)/*[position()=1]
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2015.07.038
– volume: 146
  start-page: 102
  year: 2015
  ident: C5RA25375F-(cit34)/*[position()=1]
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.05.011
– volume: 60
  start-page: 11133
  year: 2004
  ident: C5RA25375F-(cit51)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2004.09.007
– volume: 35
  start-page: 166
  year: 2014
  ident: C5RA25375F-(cit16)/*[position()=1]
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2013.06.043
– volume: 113
  start-page: 024312
  issue: 2
  year: 2013
  ident: C5RA25375F-(cit9)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4774075
– volume: 144
  start-page: 77
  year: 2015
  ident: C5RA25375F-(cit56)/*[position()=1]
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2014.07.015
– volume: 98
  start-page: 291
  year: 2004
  ident: C5RA25375F-(cit57)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2003.10.028
– volume: 66
  start-page: 399
  year: 2010
  ident: C5RA25375F-(cit1)/*[position()=1]
  publication-title: World's Poult. Sci. J.
  doi: 10.1017/S0043933910000498
– volume: 42
  start-page: 142
  year: 2011
  ident: C5RA25375F-(cit17)/*[position()=1]
  publication-title: J. Agric. Mach.
– volume: 601
  start-page: 156
  year: 2007
  ident: C5RA25375F-(cit59)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2007.08.040
– volume: 406
  start-page: 710
  year: 2000
  ident: C5RA25375F-(cit12)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35021028
– volume: 50
  start-page: 203
  year: 2015
  ident: C5RA25375F-(cit13)/*[position()=1]
  publication-title: Int. J. Food Sci. Technol.
  doi: 10.1111/ijfs.12929
– volume: 138
  start-page: 219
  year: 2015
  ident: C5RA25375F-(cit39)/*[position()=1]
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.02.001
– volume: 49
  start-page: 583
  year: 2014
  ident: C5RA25375F-(cit60)/*[position()=1]
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2014.01.006
– volume: 37
  start-page: 194
  year: 2010
  ident: C5RA25375F-(cit38)/*[position()=1]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.011
– volume: 6
  start-page: 6271
  year: 2014
  ident: C5RA25375F-(cit15)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C4AY00014E
– volume-title: Least squares support vector machines
  year: 2002
  ident: C5RA25375F-(cit29)/*[position()=1]
  doi: 10.1142/5089
– volume: 260
  start-page: 170
  year: 2015
  ident: C5RA25375F-(cit35)/*[position()=1]
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.03.075
– volume-title: Introduction to the Theory of Neural Computation
  year: 1991
  ident: C5RA25375F-(cit26)/*[position()=1]
– volume: 572
  start-page: 272
  year: 2006
  ident: C5RA25375F-(cit54)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2006.05.027
– volume: 62
  start-page: 215
  year: 2004
  ident: C5RA25375F-(cit2)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2003.07.002
– volume: 2
  start-page: 121
  year: 1998
  ident: C5RA25375F-(cit58)/*[position()=1]
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: vol. 5552
  volume-title: Advances in Neural Networks – Isnn 2009, Part 2, Proceedings
  year: 2009
  ident: C5RA25375F-(cit36)/*[position()=1]
– volume: 27
  start-page: 2623
  year: 2013
  ident: C5RA25375F-(cit44)/*[position()=1]
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-013-0307-2
– volume: 183
  start-page: 608
  year: 2013
  ident: C5RA25375F-(cit20)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2013.04.033
– volume: 54
  start-page: 4925
  year: 2006
  ident: C5RA25375F-(cit3)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf060110a
– volume: 60
  start-page: 781
  year: 2015
  ident: C5RA25375F-(cit21)/*[position()=1]
  publication-title: LWT--Food Sci. Technol.
  doi: 10.1016/j.lwt.2014.10.017
– volume: 35
  start-page: 1817
  year: 2008
  ident: C5RA25375F-(cit33)/*[position()=1]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.088
SSID ssj0000651261
Score 2.3050008
Snippet Total Volatile Basic-Nitrogen (TVB-N) content is one of core measures in evaluating chicken freshness. This study reported the feasibility to quantify Total...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4663
SubjectTerms algorithms
Chemometrics
chicken meat
Chickens
color
Colorimetry
dyes
freshness
least squares
Mathematical models
Meat
neural networks
porphyrins
poultry industry
quantitative analysis
Regression
Sensor arrays
silica gel
total volatile basic nitrogen
Volatile compounds
volatile organic compounds
Title Comparison of different chemometric methods in quantifying total volatile basic-nitrogen (TVB-N) content in chicken meat using a fabricated colorimetric sensor array
URI https://www.proquest.com/docview/1825563572
https://www.proquest.com/docview/2253304327
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customers
  customDbUrl: https://pubs.rsc.org
  eissn: 2046-2069
  dateEnd: 20161231
  omitProxy: true
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: AETIL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QAviNvEuMkIHpiqQBJf0jyOiKlC2iRGhyZeKttxaKQugTTRJB74BfwN_ifHzsWp2CTgJUoTx257vpyLfY4_hF4Gs9iXTDMv8v3UoxmVngwF9VigpM_DWGSBqXc-PuHzM_r-nJ1PJj9HWUtNLV-r71fWlfyPVOEayNVUyf6DZIdO4QKcg3zhCBKG41_JOBmTCA5cJ_UUBHFRXhiuLNVRRNus12-NMKlBtrCpLk0VJOgm6Gqtp2DMcuXB612VMJpxOxef3nonZs7AJLObTk3C-iqHl76APkU9bewsg5hmQlqqIW3q40w-XzfwBgJkk6FZVWJr6fj0Y9JnHriFpFWztswD0zMA3nowFZ9Xol0ZyvWlq1mbNzYzUOeXOnfpCa3-_AC_cQPnX8bTGcF4OkNbtRdCxA5Sbglceh3NR1Ac61vKO_Wou48tD9AfdsEnZltVxSoRMhKxzFm_ISfR3dxBN0KwEYYI5PiHm7EDZy2AeLPf45bEb9wj216NC1V2qp5Hxvorizvodhdo4MMWNXfRRBf30M2k5_e7j3459OAywwN68Ag9uEMPzgs8Qg-26ME9evA2evAri50D3CHHPNwhBxvkYIscLLBDDh4jB7fIwRY5D9Di6N0imXsdaYenQJvXXixnVJFIBeAZ-5nwMx7SlGoV-TzjjGjDJ5BypSKZcRIoX7M4TWNKhE6JAmOxh3aLstAPEeZaUTGTiqgZo1ozmfmxEuCBpoqTlEb76KD_z5eq29De8KqslzaxgsTLhJ0eWvkc7aMXQ9uv7TYuV7Z63otuCcIwS2ei0GWzWUIUbnbSY1F4fRuwjGZykITwzfZA7sNADiaPrrvxGN1yL8MTtFtXjX4K3m4tn1kQ_gbM1bXg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+different+chemometric+methods+in+quantifying+total+volatile+basic-nitrogen+%28TVB-N%29+content+in+chicken+meat+using+a+fabricated+colorimetric+sensor+array&rft.jtitle=RSC+advances&rft.au=Khulal%2C+Urmila&rft.au=Zhao%2C+Jiewen&rft.au=Hu%2C+Weiwei&rft.au=Chen%2C+Quansheng&rft.date=2016-01-01&rft.eissn=2046-2069&rft.volume=6&rft.issue=6&rft.spage=4663&rft.epage=4672&rft_id=info:doi/10.1039%2Fc5ra25375f&rft.externalDocID=c5ra25375f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon