Coupling artificial neural networks with the artificial bee colony algorithm for global calibration of hydrological models

Hydrological models are widely used tools in water resources management. Their successful application requires an efficient calibration of the model parameters. Nowadays, there are very powerful global search methods applied to this end, but they have the disadvantage of presenting a high computatio...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 33; no. 14; pp. 8479 - 8494
Main Authors Farfán, Juan F., Cea, Luis
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-020-05601-3

Cover

Abstract Hydrological models are widely used tools in water resources management. Their successful application requires an efficient calibration of the model parameters. Nowadays, there are very powerful global search methods applied to this end, but they have the disadvantage of presenting a high computational cost, because the numerical model to be calibrated needs to be evaluated a large number of times with different parameter sets. In this context, surrogate models can reduce significantly the run time of hydrological models, easing the total computational burden of global search methods. In the present work, we propose and explore the combination of a swarm intelligence-based optimization method, the artificial bee colony algorithm, with a surrogate model based on artificial neural networks in order to calibrate hydrological models. The proposed approach (ABC-ANN) is applied to the calibration and validation of a nine-parameter continuous hydrological model in two basins located in the northwest of Spain. Several aspects of the algorithm are evaluated, including its capability to calibrate the model parameters and its efficiency in terms of CPU time compared to a standard implementation of the ABC algorithm. Results show that the ABC-ANN algorithm is able to identify the location of suitable parameter sets with an accuracy rate within 89 and 99 %, and a reduction in CPU time of more than three orders of magnitude when compared to a sequential implementation. In addition, the frequency distribution of the parameter sets identified gives valuable information about the sensitivity of model output to the input parameters.
AbstractList Hydrological models are widely used tools in water resources management. Their successful application requires an efficient calibration of the model parameters. Nowadays, there are very powerful global search methods applied to this end, but they have the disadvantage of presenting a high computational cost, because the numerical model to be calibrated needs to be evaluated a large number of times with different parameter sets. In this context, surrogate models can reduce significantly the run time of hydrological models, easing the total computational burden of global search methods. In the present work, we propose and explore the combination of a swarm intelligence-based optimization method, the artificial bee colony algorithm, with a surrogate model based on artificial neural networks in order to calibrate hydrological models. The proposed approach (ABC-ANN) is applied to the calibration and validation of a nine-parameter continuous hydrological model in two basins located in the northwest of Spain. Several aspects of the algorithm are evaluated, including its capability to calibrate the model parameters and its efficiency in terms of CPU time compared to a standard implementation of the ABC algorithm. Results show that the ABC-ANN algorithm is able to identify the location of suitable parameter sets with an accuracy rate within 89 and 99 %, and a reduction in CPU time of more than three orders of magnitude when compared to a sequential implementation. In addition, the frequency distribution of the parameter sets identified gives valuable information about the sensitivity of model output to the input parameters.
Author Cea, Luis
Farfán, Juan F.
Author_xml – sequence: 1
  givenname: Juan F.
  orcidid: 0000-0001-8503-2324
  surname: Farfán
  fullname: Farfán, Juan F.
  email: j.farfan@udc.es
  organization: Environmental and Water Engineering Group, Department of Civil Engineering, University of A Coruña
– sequence: 2
  givenname: Luis
  surname: Cea
  fullname: Cea, Luis
  organization: Environmental and Water Engineering Group, Department of Civil Engineering, University of A Coruña
BookMark eNp9kE1PAyEQhonRxPrxBzyReF4dFthlj6bxK2niRc8EtrCl0qUCjam_XmxNNB48TTLzPDPwnqDDMYwGoQsCVwSgvU4AvCYV1FABb4BU9ABNCKO0osDFIZpAx8q4YfQYnaS0BADWCD5BH9OwWXs3DljF7KzrnfJ4NJu4K_k9xNeE311e4LwwvxltDO6DD-MWKz-EWJAVtiHiwQdd5r3yTkeVXRhxsHixncdCD6708SrMjU9n6Mgqn8z5dz1FL3e3z9OHavZ0_zi9mVU9JV2uOl6ruWa6YTXh0GleW96pxkJrCTTCmEZrZgUHBjXvDW-tIK0QtCXGUJhreoou93vXMbxtTMpyGTZxLCdlzRkVHafQFKreU30MKUVj5Tq6lYpbSUB-ZSz3GcuSsdxlLGmRxB-pd3n35xyV8_-rdK-mcmccTPx51T_WJ51LlFw
CitedBy_id crossref_primary_10_1007_s12145_024_01454_9
crossref_primary_10_1007_s00521_024_09850_4
crossref_primary_10_1007_s11600_024_01362_y
crossref_primary_10_1007_s40571_025_00928_x
crossref_primary_10_1007_s12145_022_00896_3
crossref_primary_10_1016_j_jhydrol_2023_129961
crossref_primary_10_1007_s00521_022_07406_y
crossref_primary_10_3390_w16050652
crossref_primary_10_1016_j_envsoft_2024_106047
crossref_primary_10_1016_j_eswa_2022_119269
crossref_primary_10_1016_j_jhydrol_2024_132273
crossref_primary_10_1155_2021_7621692
crossref_primary_10_1080_10106049_2022_2066200
crossref_primary_10_1007_s00500_023_08886_3
crossref_primary_10_1061_JCEMD4_COENG_14877
crossref_primary_10_4995_ia_2024_20609
Cites_doi 10.1061/(ASCE)HE.1943-5584.0001350
10.1002/hyp.10697
10.1002/rra.774
10.13031/2013.23153
10.1016/j.envsoft.2019.104587
10.1029/2018WR023194
10.1002/hyp.13319
10.1016/j.jhydrol.2012.12.004
10.1111/jfr3.12522
10.1007/s00521-018-3483-4
10.1029/91WR02985
10.1007/978-3-642-40457-3_25-1
10.1007/978-3-319-12286-1_1
10.1016/j.jhydrol.2009.12.028
10.32614/RJ-2010-006
10.1007/s00477-008-0274-y
10.1016/j.jhydrol.2005.07.007
10.1007/s11069-018-3360-6
10.1007/s10898-007-9149-x
10.1007/s11269-015-1016-9
10.1016/0022-1694(94)90057-4
10.1109/34.295910
10.1109/ICNN.1995.488968
10.7551/mitpress/1090.001.0001
10.1002/2017WR021039
10.1111/j.1752-1688.2009.00302.x
10.1002/hyp.8042
10.1029/2010WR009298
10.1029/91WR01305
10.1007/978-94-009-0257-2_3
10.1029/2005WR004640
10.1007/978-3-642-40457-3_26-1
10.1016/j.amc.2009.03.090
10.1007/BF01009452
10.1061/(ASCE)1084-0699(2001)6:1(52)
10.1007/978-981-15-3242-9_49
10.5194/hess-17-3159-2013
10.1007/s00477-019-01733-8
10.1155/2015/674595
10.14198/INGEO2005.36.03
10.1016/j.ijsrc.2015.03.004
10.1016/S0022-1694(00)00279-1
10.1016/B978-008045405-4.00169-5
10.1623/hysj.52.3.450
10.1109/MCI.2006.329691
10.1029/2011WR011527
10.5194/hess-13-1235-2009
10.1007/0-387-27705-6_6
10.1007/s00521-016-2798-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-05601-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 8494
ExternalDocumentID 10_1007_s00521_020_05601_3
GrantInformation_xml – fundername: Xunta de Galicia
  grantid: ED481A-2019/014
  funderid: http://dx.doi.org/10.13039/501100010801
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-952adb4b6421509b52f59a6f07f1068ee6bb4f8504025ce57f81788371ee30db3
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Sun Sep 07 05:00:22 EDT 2025
Wed Oct 01 02:26:03 EDT 2025
Thu Apr 24 22:55:57 EDT 2025
Fri Feb 21 02:48:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Global optimization
Artificial bee colony
Water resources management
Surrogate model
Artificial neural networks
Hydrological model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-952adb4b6421509b52f59a6f07f1068ee6bb4f8504025ce57f81788371ee30db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8503-2324
PQID 2543895306
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_2543895306
crossref_primary_10_1007_s00521_020_05601_3
crossref_citationtrail_10_1007_s00521_020_05601_3
springer_journals_10_1007_s00521_020_05601_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References CeaLFragaIIncorporating antecedent moisture conditions and intraevent variability of rainfall on flood frequency analysis in poorly gauged basinsWater Resour Res2018541187748791
MadsenHRosbjergDComparison of parameter estimation algorithms in hydrological modellingCalibration Reliab Groundwater Model: From Uncertain Decis Making2006130467
GranvilleVincentKrivánekMirkoRassonJ-PSimulated annealing: a proof of convergenceIEEE Trans Pattern Anal Mach Intell1994166652656
HossainMd ShabbirEl-ShafieAhmedMahzabinMst SadiaZawawiMohd HafizSystem performances analysis of reservoir optimization-simulation model in application of artificial bee colony algorithmNeural Comput Appl201830721012112
AfsharAbbasMassoumiFariborzAfsharAminMariñoMiquel AState of the art review of ant colony optimization applications in water resource managementWater Resour Manag2015291138913904
Zhao J, Lv L, Sun H (2015) Artificial bee colony using opposition-based learning. In Genetic and evolutionary computing, pp 3–10. Springer
ShoemakerChristine ARegisRommel GFlemingRyan CWatershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximationHydrol Sci J2007523450465
DuanQingyunSorooshianSorooshGuptaVijai KOptimal use of the sce-ua global optimization method for calibrating watershed modelsJ Hydrol19941583–4265284
Cabalar Fuentes M (2005) Los temporales de lluvia y viento en galicia. propuesta de clasificación y análisis de tendencias (1961-2001). Investigaciones geográficas, (36): 103-118
HoffmannLucienEl IdrissiAbdelkhalakPfisterLaurentHingrayBenoîtGuexFrédéricMusyAndréHumbertJoëlDrogueGillesLeviandierThierryDevelopment of regionalized hydrological models in an area with short hydrological observation seriesRiver Res Appl2004203243254
HuoJiuyuanLiuLiqunZhangYaonanComparative research of optimization algorithms for parameters calibration of watershed hydrological modelJ Comput Methods Sci Eng2016163653669
BermúdezMaríaCeaLuisSopelanaJavierQuantifying the role of individual flood drivers and their correlations in flooding of coastal river reachesStoch Environ Res Risk Assess2019331018511861
BroccaLLierschSMeloneFMoramarcoTVolkMApplication of a model-based rainfall-runoff database as efficient tool for flood risk managementHydrol Earth Syst Sci20131783159
Kennedy J (2006) Swarm intelligence. In Handbook of nature-inspired and innovative computing, pp 187–219. Springer
Camici S, Tarpanelli A, Brocca L, Melone F, Moramarco T (2011) Design soil moisture estimation by comparing continuous and storm-based rainfall-runoff modeling. Water Resour Res 47(5)
GüntherFraukeFritschStefanneuralnet: Training of neural networksThe R J2010213038
VrugtJasper ATer BraakCajo JFGuptaHoshin VRobinsonBruce AEquifinality of formal (dream) and informal (glue) bayesian approaches in hydrologic modeling?Stochastic Environ Res Risk Assess200923710111026
BermúdezMaríaCeaLuisPuertasJerónimoA rapid flood inundation model for hazard mapping based on least squares support vector machine regressionJ Flood Risk Manag201912e12522
Mugunthan P, Shoemaker CA (2006) Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resour Res 42(10)
WangWenVan GelderPieter HAJMVrijlingJKComparing bayesian regularization and cross-validated early-stopping for streamflow forecasting with ann modelsIAHS Publ-Ser Proc Rep2007311216221
FragaIgnacioCeaLuisPuertasJerónimoEffect of rainfall uncertainty on the performance of physically based rainfall-runoff modelsHydrol Process2019331160173
MoriasiDaniel NArnoldJeffrey GVan LiewMichael WBingnerRonald LDaren HarmelRVeithTamie LModel evaluation guidelines for systematic quantification of accuracy in watershed simulationsTrans ASABE2007503885900
WangQJThe genetic algorithm and its application to calibrating conceptual rainfall-runoff modelsWater Resour Res199127924672471
ChoEJørgensenSven ErikFathBrian DWavelet networkEncyclopedia of ecology2008OxfordAcademic Press37593764
ShresthaDLKayasthaNSolomatineDPA novel approach to parameter uncertainty analysis of hydrological models using neural networksHydrol Earth Syst Sci200913712351248
Yang T, Hsu K, Duan Q, Sorooshian S, Wang C (2018) Method to estimate optimal parameters. Handbook of hydrometeorological ensemble forecasting
Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources. Water Resour Res 48(7)
ChuHaiboWenyan WuQJWangRory NathanWeiJiahuaAn ann-based emulation modelling framework for flood inundation modelling: application, challenges and future directionsEnviron Model Softw2020124104587
ShawAmelia RSawyerHeather SmithLeBoeufEugene JMcDonaldMark PHadjeriouaBoualemHydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality modelWater Resour Res2017531194449461
RitterAxelMuñoz-CarpenaRafaelPerformance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessmentsJ Hydrol20134803345
LiangJinMelchingCharles SExperimental evaluation of the effect of storm movement on peak dischargeInt J Sediment Res2015302167177
Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks, vol 4, pp 1942–1948. IEEE
KirkpatrickScottOptimization by simulated annealing: quantitative studiesJ Stat Phys1984345–6975986751723
TkaczGregSarahHuForecasting GDP growth using artificial neural networks1999New JerseyCiteseer
JinXiaoliChong-YuXuZhangQiSinghVPParameter and modeling uncertainty simulated by glue and a formal bayesian method for a conceptual hydrological modelJ Hydrol20103833–4147155
EberhartRussell CShiYuhuiKennedyJamesSwarm intelligence2001AmsterdamElsevier
BevenKeithA manifesto for the equifinality thesisJ Hydrol20063201–21836
FarfánJuan FPalaciosKarinaUlloaJacintoAvilésAlexA hybrid neural network-based technique to improve the flow forecasting of physical and data-driven models: Methodology and case studies in andean watershedsJ Hydrol: Reg Stud202027100652
CeaLuisLegoutCedricGrangeonThomasNordGuillaumeImpact of model simplifications on soil erosion predictions: application of the glue methodology to a distributed event-based model at the hillslope scaleHydrol Process201630710961113
AnılanTuğçeUzluErgunKankalMuratYuksekOmerThe estimation of flood quantiles in ungauged sites using teaching-learning based optimization and artificial bee colony algorithmsScientia Iranica2018252632645
BroccaLMeloneFMoramarcoTDistributed rainfall-runoff modelling for flood frequency estimation and flood forecastingHydrol Process2011251828012813
LiZejunLiuPanDengChaoGuoShenglianHePingWangCaijunEvaluation of estimation of distribution algorithm to calibrate computationally intensive hydrologic modelJ Hydrol Eng201621604016012
SopelanaJCeaLRuanoSA continuous simulation approach for the estimation of extreme flood inundation in coastal river reaches affected by meso-and macrotidesNatural Hazards201893313371358
DuanQingyunSorooshianSorooshGuptaVijaiEffective and efficient global optimization for conceptual rainfall-runoff modelsWater Resou Res199228410151031
Kavetski D (2018) Parameter estimation and predictive uncertainty quantification in hydrological modelling. In Handbook of hydrometeorological ensemble forecasting, Springer
Raut P, Dani A (2020) Correlation between number of hidden layers and accuracy of artificial neural network. In Advanced Computing Technologies and Applications, pp 513–521. Springer
KarabogaDervisAkayBahriyeA comparative study of artificial bee colony algorithmAppl Math Comput2009214110813225410511169.65053
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, engineering department
Refsgaard JC, Storm B (1990) Construction, calibration and validation of hydrological models. In Distributed hydrological modelling, pp 41–54. Springer
DorigoMarcoBirattariMauroStutzleThomasAnt colony optimizationIEEE Comput Intell Mag2006142839
ZhangXuesongSrinivasanRaghavanVan LiewMichaelApproximating swat model using artificial neural network and support vector machine 1JAWRA J Am Water Res Assoc2009452460474
MacKay David JC (1992) Bayesian methods for adaptive models. PhD thesis, California Institute of Technology
HuoJiuyuanLiuLiqunApplication research of multi-objective artificial bee colony optimization algorithm for parameters calibration of hydrological modelNeural Comput Appl201931947154732
Khu S-T, Savic D, Liu Y, Madsen H (2004) A fast evolutionary-based meta-modelling approach for the calibration of a rainfall-runoff model. paper presented at The First Biennial Meeting of the International Environmental Modelling Software Society, Osnabruck, Germany
HollandJohn HenryAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992CambridgeMIT press
LiongShie-YuiKhuSoon-ThiamChanWeng-TatDerivation of pareto front with genetic algorithm and neural networkJ Hydrol Eng2001615261
KarabogaDervisBasturkBahriyeA powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithmJ Global Optim200739345947123461781149.90186
Qin Quande, Cheng Shi, Zhang Qingyu, Li Li, Shi Yuhui (2015) Artificial bee colony algorithm with time-varying strategy. Discrete Dynamics in Nature and Society 2015
MadsenHenrikAutomatic calibration of a conceptual rainfall-runoff model using multiple objectivesJ Hydrol20002353–4276288
Okkan U, GedïK N (2018) Evaluation of population based evolutionary optimization algorithms in the conceptual hydrological model calibration. In Gastescu, P., Bretcan, P.(edit, 2018), Water resources and wetlands, 4th International Conference Water resources and wetlands, pp 5–9
Marco Dorigo (5601_CR18) 2006; 1
5601_CR33
Zejun Li (5601_CR6) 2016; 21
5601_CR36
Qingyun Duan (5601_CR13) 1992; 28
Jasper A Vrugt (5601_CR60) 2009; 23
Vincent Granville (5601_CR12) 1994; 16
Jiuyuan Huo (5601_CR4) 2019; 31
Dervis Karaboga (5601_CR21) 2007; 39
Keith Beven (5601_CR57) 2006; 320
5601_CR45
Luis Cea (5601_CR58) 2016; 30
Lucien Hoffmann (5601_CR47) 2004; 20
Md Shabbir Hossain (5601_CR35) 2018; 30
E Cho (5601_CR37) 2008
5601_CR42
Greg Tkacz (5601_CR50) 1999
L Cea (5601_CR41) 2018; 54
5601_CR3
Dervis Karaboga (5601_CR55) 2009; 214
5601_CR1
H Madsen (5601_CR7) 2006; 1
Henrik Madsen (5601_CR8) 2000; 235
L Brocca (5601_CR46) 2013; 17
Xiaoli Jin (5601_CR2) 2010; 383
Qingyun Duan (5601_CR14) 1994; 158
María Bermúdez (5601_CR27) 2019; 33
5601_CR5
5601_CR56
Xuesong Zhang (5601_CR26) 2009; 45
5601_CR51
Jin Liang (5601_CR43) 2015; 30
Shie-Yui Liong (5601_CR31) 2001; 6
Tuğçe Anılan (5601_CR34) 2018; 25
Daniel N Moriasi (5601_CR49) 2007; 50
5601_CR53
Amelia R Shaw (5601_CR39) 2017; 53
Scott Kirkpatrick (5601_CR11) 1984; 34
Axel Ritter (5601_CR48) 2013; 480
Ignacio Fraga (5601_CR59) 2019; 33
Wen Wang (5601_CR54) 2007; 311
5601_CR15
DL Shrestha (5601_CR30) 2009; 13
5601_CR17
María Bermúdez (5601_CR28) 2019; 12
Haibo Chu (5601_CR40) 2020; 124
5601_CR23
5601_CR22
5601_CR24
5601_CR20
J Sopelana (5601_CR29) 2018; 93
L Brocca (5601_CR44) 2011; 25
Abbas Afshar (5601_CR19) 2015; 29
Christine A Shoemaker (5601_CR25) 2007; 52
Russell C Eberhart (5601_CR16) 2001
Frauke Günther (5601_CR52) 2010; 2
Jiuyuan Huo (5601_CR32) 2016; 16
Juan F Farfán (5601_CR38) 2020; 27
John Henry Holland (5601_CR9) 1992
QJ Wang (5601_CR10) 1991; 27
References_xml – reference: ChoEJørgensenSven ErikFathBrian DWavelet networkEncyclopedia of ecology2008OxfordAcademic Press37593764
– reference: HossainMd ShabbirEl-ShafieAhmedMahzabinMst SadiaZawawiMohd HafizSystem performances analysis of reservoir optimization-simulation model in application of artificial bee colony algorithmNeural Comput Appl201830721012112
– reference: LiZejunLiuPanDengChaoGuoShenglianHePingWangCaijunEvaluation of estimation of distribution algorithm to calibrate computationally intensive hydrologic modelJ Hydrol Eng201621604016012
– reference: BevenKeithA manifesto for the equifinality thesisJ Hydrol20063201–21836
– reference: AfsharAbbasMassoumiFariborzAfsharAminMariñoMiquel AState of the art review of ant colony optimization applications in water resource managementWater Resour Manag2015291138913904
– reference: FragaIgnacioCeaLuisPuertasJerónimoEffect of rainfall uncertainty on the performance of physically based rainfall-runoff modelsHydrol Process2019331160173
– reference: WangQJThe genetic algorithm and its application to calibrating conceptual rainfall-runoff modelsWater Resour Res199127924672471
– reference: Kennedy J (2006) Swarm intelligence. In Handbook of nature-inspired and innovative computing, pp 187–219. Springer
– reference: Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources. Water Resour Res 48(7)
– reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, engineering department
– reference: DorigoMarcoBirattariMauroStutzleThomasAnt colony optimizationIEEE Comput Intell Mag2006142839
– reference: KarabogaDervisAkayBahriyeA comparative study of artificial bee colony algorithmAppl Math Comput2009214110813225410511169.65053
– reference: CeaLuisLegoutCedricGrangeonThomasNordGuillaumeImpact of model simplifications on soil erosion predictions: application of the glue methodology to a distributed event-based model at the hillslope scaleHydrol Process201630710961113
– reference: HuoJiuyuanLiuLiqunZhangYaonanComparative research of optimization algorithms for parameters calibration of watershed hydrological modelJ Comput Methods Sci Eng2016163653669
– reference: Mugunthan P, Shoemaker CA (2006) Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resour Res 42(10)
– reference: DuanQingyunSorooshianSorooshGuptaVijaiEffective and efficient global optimization for conceptual rainfall-runoff modelsWater Resou Res199228410151031
– reference: Cabalar Fuentes M (2005) Los temporales de lluvia y viento en galicia. propuesta de clasificación y análisis de tendencias (1961-2001). Investigaciones geográficas, (36): 103-118
– reference: Raut P, Dani A (2020) Correlation between number of hidden layers and accuracy of artificial neural network. In Advanced Computing Technologies and Applications, pp 513–521. Springer
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks, vol 4, pp 1942–1948. IEEE
– reference: LiongShie-YuiKhuSoon-ThiamChanWeng-TatDerivation of pareto front with genetic algorithm and neural networkJ Hydrol Eng2001615261
– reference: ChuHaiboWenyan WuQJWangRory NathanWeiJiahuaAn ann-based emulation modelling framework for flood inundation modelling: application, challenges and future directionsEnviron Model Softw2020124104587
– reference: WangWenVan GelderPieter HAJMVrijlingJKComparing bayesian regularization and cross-validated early-stopping for streamflow forecasting with ann modelsIAHS Publ-Ser Proc Rep2007311216221
– reference: HoffmannLucienEl IdrissiAbdelkhalakPfisterLaurentHingrayBenoîtGuexFrédéricMusyAndréHumbertJoëlDrogueGillesLeviandierThierryDevelopment of regionalized hydrological models in an area with short hydrological observation seriesRiver Res Appl2004203243254
– reference: BermúdezMaríaCeaLuisPuertasJerónimoA rapid flood inundation model for hazard mapping based on least squares support vector machine regressionJ Flood Risk Manag201912e12522
– reference: SopelanaJCeaLRuanoSA continuous simulation approach for the estimation of extreme flood inundation in coastal river reaches affected by meso-and macrotidesNatural Hazards201893313371358
– reference: Zhao J, Lv L, Sun H (2015) Artificial bee colony using opposition-based learning. In Genetic and evolutionary computing, pp 3–10. Springer
– reference: RitterAxelMuñoz-CarpenaRafaelPerformance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessmentsJ Hydrol20134803345
– reference: HuoJiuyuanLiuLiqunApplication research of multi-objective artificial bee colony optimization algorithm for parameters calibration of hydrological modelNeural Comput Appl201931947154732
– reference: KirkpatrickScottOptimization by simulated annealing: quantitative studiesJ Stat Phys1984345–6975986751723
– reference: ZhangXuesongSrinivasanRaghavanVan LiewMichaelApproximating swat model using artificial neural network and support vector machine 1JAWRA J Am Water Res Assoc2009452460474
– reference: Okkan U, GedïK N (2018) Evaluation of population based evolutionary optimization algorithms in the conceptual hydrological model calibration. In Gastescu, P., Bretcan, P.(edit, 2018), Water resources and wetlands, 4th International Conference Water resources and wetlands, pp 5–9
– reference: AnılanTuğçeUzluErgunKankalMuratYuksekOmerThe estimation of flood quantiles in ungauged sites using teaching-learning based optimization and artificial bee colony algorithmsScientia Iranica2018252632645
– reference: Refsgaard JC, Storm B (1990) Construction, calibration and validation of hydrological models. In Distributed hydrological modelling, pp 41–54. Springer
– reference: FarfánJuan FPalaciosKarinaUlloaJacintoAvilésAlexA hybrid neural network-based technique to improve the flow forecasting of physical and data-driven models: Methodology and case studies in andean watershedsJ Hydrol: Reg Stud202027100652
– reference: MacKay David JC (1992) Bayesian methods for adaptive models. PhD thesis, California Institute of Technology
– reference: DuanQingyunSorooshianSorooshGuptaVijai KOptimal use of the sce-ua global optimization method for calibrating watershed modelsJ Hydrol19941583–4265284
– reference: VrugtJasper ATer BraakCajo JFGuptaHoshin VRobinsonBruce AEquifinality of formal (dream) and informal (glue) bayesian approaches in hydrologic modeling?Stochastic Environ Res Risk Assess200923710111026
– reference: ShoemakerChristine ARegisRommel GFlemingRyan CWatershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximationHydrol Sci J2007523450465
– reference: BroccaLLierschSMeloneFMoramarcoTVolkMApplication of a model-based rainfall-runoff database as efficient tool for flood risk managementHydrol Earth Syst Sci20131783159
– reference: Qin Quande, Cheng Shi, Zhang Qingyu, Li Li, Shi Yuhui (2015) Artificial bee colony algorithm with time-varying strategy. Discrete Dynamics in Nature and Society 2015
– reference: MadsenHRosbjergDComparison of parameter estimation algorithms in hydrological modellingCalibration Reliab Groundwater Model: From Uncertain Decis Making2006130467
– reference: Kavetski D (2018) Parameter estimation and predictive uncertainty quantification in hydrological modelling. In Handbook of hydrometeorological ensemble forecasting, Springer
– reference: CeaLFragaIIncorporating antecedent moisture conditions and intraevent variability of rainfall on flood frequency analysis in poorly gauged basinsWater Resour Res2018541187748791
– reference: ShawAmelia RSawyerHeather SmithLeBoeufEugene JMcDonaldMark PHadjeriouaBoualemHydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality modelWater Resour Res2017531194449461
– reference: GüntherFraukeFritschStefanneuralnet: Training of neural networksThe R J2010213038
– reference: BermúdezMaríaCeaLuisSopelanaJavierQuantifying the role of individual flood drivers and their correlations in flooding of coastal river reachesStoch Environ Res Risk Assess2019331018511861
– reference: LiangJinMelchingCharles SExperimental evaluation of the effect of storm movement on peak dischargeInt J Sediment Res2015302167177
– reference: HollandJohn HenryAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992CambridgeMIT press
– reference: EberhartRussell CShiYuhuiKennedyJamesSwarm intelligence2001AmsterdamElsevier
– reference: ShresthaDLKayasthaNSolomatineDPA novel approach to parameter uncertainty analysis of hydrological models using neural networksHydrol Earth Syst Sci200913712351248
– reference: Camici S, Tarpanelli A, Brocca L, Melone F, Moramarco T (2011) Design soil moisture estimation by comparing continuous and storm-based rainfall-runoff modeling. Water Resour Res 47(5)
– reference: JinXiaoliChong-YuXuZhangQiSinghVPParameter and modeling uncertainty simulated by glue and a formal bayesian method for a conceptual hydrological modelJ Hydrol20103833–4147155
– reference: MadsenHenrikAutomatic calibration of a conceptual rainfall-runoff model using multiple objectivesJ Hydrol20002353–4276288
– reference: Khu S-T, Savic D, Liu Y, Madsen H (2004) A fast evolutionary-based meta-modelling approach for the calibration of a rainfall-runoff model. paper presented at The First Biennial Meeting of the International Environmental Modelling Software Society, Osnabruck, Germany
– reference: BroccaLMeloneFMoramarcoTDistributed rainfall-runoff modelling for flood frequency estimation and flood forecastingHydrol Process2011251828012813
– reference: MoriasiDaniel NArnoldJeffrey GVan LiewMichael WBingnerRonald LDaren HarmelRVeithTamie LModel evaluation guidelines for systematic quantification of accuracy in watershed simulationsTrans ASABE2007503885900
– reference: Yang T, Hsu K, Duan Q, Sorooshian S, Wang C (2018) Method to estimate optimal parameters. Handbook of hydrometeorological ensemble forecasting
– reference: KarabogaDervisBasturkBahriyeA powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithmJ Global Optim200739345947123461781149.90186
– reference: TkaczGregSarahHuForecasting GDP growth using artificial neural networks1999New JerseyCiteseer
– reference: GranvilleVincentKrivánekMirkoRassonJ-PSimulated annealing: a proof of convergenceIEEE Trans Pattern Anal Mach Intell1994166652656
– volume: 311
  start-page: 216
  year: 2007
  ident: 5601_CR54
  publication-title: IAHS Publ-Ser Proc Rep
– ident: 5601_CR53
– volume: 21
  start-page: 04016012
  issue: 6
  year: 2016
  ident: 5601_CR6
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0001350
– volume: 30
  start-page: 1096
  issue: 7
  year: 2016
  ident: 5601_CR58
  publication-title: Hydrol Process
  doi: 10.1002/hyp.10697
– volume: 20
  start-page: 243
  issue: 3
  year: 2004
  ident: 5601_CR47
  publication-title: River Res Appl
  doi: 10.1002/rra.774
– volume: 50
  start-page: 885
  issue: 3
  year: 2007
  ident: 5601_CR49
  publication-title: Trans ASABE
  doi: 10.13031/2013.23153
– volume: 124
  start-page: 104587
  year: 2020
  ident: 5601_CR40
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2019.104587
– volume: 54
  start-page: 8774
  issue: 11
  year: 2018
  ident: 5601_CR41
  publication-title: Water Resour Res
  doi: 10.1029/2018WR023194
– volume: 33
  start-page: 160
  issue: 1
  year: 2019
  ident: 5601_CR59
  publication-title: Hydrol Process
  doi: 10.1002/hyp.13319
– volume: 480
  start-page: 33
  year: 2013
  ident: 5601_CR48
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.12.004
– volume: 12
  start-page: e12522
  year: 2019
  ident: 5601_CR28
  publication-title: J Flood Risk Manag
  doi: 10.1111/jfr3.12522
– volume: 31
  start-page: 4715
  issue: 9
  year: 2019
  ident: 5601_CR4
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3483-4
– volume: 28
  start-page: 1015
  issue: 4
  year: 1992
  ident: 5601_CR13
  publication-title: Water Resou Res
  doi: 10.1029/91WR02985
– ident: 5601_CR5
  doi: 10.1007/978-3-642-40457-3_25-1
– ident: 5601_CR36
  doi: 10.1007/978-3-319-12286-1_1
– volume: 383
  start-page: 147
  issue: 3–4
  year: 2010
  ident: 5601_CR2
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.12.028
– volume-title: Swarm intelligence
  year: 2001
  ident: 5601_CR16
– volume: 2
  start-page: 30
  issue: 1
  year: 2010
  ident: 5601_CR52
  publication-title: The R J
  doi: 10.32614/RJ-2010-006
– volume: 23
  start-page: 1011
  issue: 7
  year: 2009
  ident: 5601_CR60
  publication-title: Stochastic Environ Res Risk Assess
  doi: 10.1007/s00477-008-0274-y
– volume: 1
  start-page: 67
  issue: 304
  year: 2006
  ident: 5601_CR7
  publication-title: Calibration Reliab Groundwater Model: From Uncertain Decis Making
– ident: 5601_CR33
– volume: 320
  start-page: 18
  issue: 1–2
  year: 2006
  ident: 5601_CR57
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.07.007
– volume: 93
  start-page: 1337
  issue: 3
  year: 2018
  ident: 5601_CR29
  publication-title: Natural Hazards
  doi: 10.1007/s11069-018-3360-6
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 5601_CR21
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 29
  start-page: 3891
  issue: 11
  year: 2015
  ident: 5601_CR19
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-1016-9
– volume: 158
  start-page: 265
  issue: 3–4
  year: 1994
  ident: 5601_CR14
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(94)90057-4
– volume: 16
  start-page: 652
  issue: 6
  year: 1994
  ident: 5601_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.295910
– ident: 5601_CR15
  doi: 10.1109/ICNN.1995.488968
– volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence
  year: 1992
  ident: 5601_CR9
  doi: 10.7551/mitpress/1090.001.0001
– volume: 53
  start-page: 9444
  issue: 11
  year: 2017
  ident: 5601_CR39
  publication-title: Water Resour Res
  doi: 10.1002/2017WR021039
– volume: 45
  start-page: 460
  issue: 2
  year: 2009
  ident: 5601_CR26
  publication-title: JAWRA J Am Water Res Assoc
  doi: 10.1111/j.1752-1688.2009.00302.x
– volume: 25
  start-page: 2801
  issue: 18
  year: 2011
  ident: 5601_CR44
  publication-title: Hydrol Process
  doi: 10.1002/hyp.8042
– volume-title: Forecasting GDP growth using artificial neural networks
  year: 1999
  ident: 5601_CR50
– ident: 5601_CR45
  doi: 10.1029/2010WR009298
– volume: 27
  start-page: 2467
  issue: 9
  year: 1991
  ident: 5601_CR10
  publication-title: Water Resour Res
  doi: 10.1029/91WR01305
– ident: 5601_CR1
  doi: 10.1007/978-94-009-0257-2_3
– volume: 16
  start-page: 653
  issue: 3
  year: 2016
  ident: 5601_CR32
  publication-title: J Comput Methods Sci Eng
– ident: 5601_CR23
  doi: 10.1029/2005WR004640
– ident: 5601_CR3
  doi: 10.1007/978-3-642-40457-3_26-1
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 5601_CR55
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.03.090
– volume: 34
  start-page: 975
  issue: 5–6
  year: 1984
  ident: 5601_CR11
  publication-title: J Stat Phys
  doi: 10.1007/BF01009452
– volume: 6
  start-page: 52
  issue: 1
  year: 2001
  ident: 5601_CR31
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2001)6:1(52)
– volume: 27
  start-page: 100652
  year: 2020
  ident: 5601_CR38
  publication-title: J Hydrol: Reg Stud
– ident: 5601_CR51
  doi: 10.1007/978-981-15-3242-9_49
– volume: 17
  start-page: 3159
  issue: 8
  year: 2013
  ident: 5601_CR46
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-17-3159-2013
– volume: 33
  start-page: 1851
  issue: 10
  year: 2019
  ident: 5601_CR27
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-019-01733-8
– ident: 5601_CR56
  doi: 10.1155/2015/674595
– ident: 5601_CR42
  doi: 10.14198/INGEO2005.36.03
– volume: 30
  start-page: 167
  issue: 2
  year: 2015
  ident: 5601_CR43
  publication-title: Int J Sediment Res
  doi: 10.1016/j.ijsrc.2015.03.004
– volume: 235
  start-page: 276
  issue: 3–4
  year: 2000
  ident: 5601_CR8
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00279-1
– volume: 25
  start-page: 632
  issue: 2
  year: 2018
  ident: 5601_CR34
  publication-title: Scientia Iranica
– start-page: 3759
  volume-title: Encyclopedia of ecology
  year: 2008
  ident: 5601_CR37
  doi: 10.1016/B978-008045405-4.00169-5
– volume: 52
  start-page: 450
  issue: 3
  year: 2007
  ident: 5601_CR25
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.52.3.450
– ident: 5601_CR20
– ident: 5601_CR24
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 5601_CR18
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2006.329691
– ident: 5601_CR22
  doi: 10.1029/2011WR011527
– volume: 13
  start-page: 1235
  issue: 7
  year: 2009
  ident: 5601_CR30
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-13-1235-2009
– ident: 5601_CR17
  doi: 10.1007/0-387-27705-6_6
– volume: 30
  start-page: 2101
  issue: 7
  year: 2018
  ident: 5601_CR35
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2798-2
SSID ssj0004685
Score 2.365091
Snippet Hydrological models are widely used tools in water resources management. Their successful application requires an efficient calibration of the model...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8479
SubjectTerms Artificial Intelligence
Artificial neural networks
Calibration
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computing costs
Data Mining and Knowledge Discovery
Frequency distribution
Hydrologic models
Hydrology
Image Processing and Computer Vision
Neural networks
Numerical models
Optimization
Optimization algorithms
Original Article
Parameter identification
Parameter sensitivity
Probability and Statistics in Computer Science
Run time (computers)
Search algorithms
Search methods
Swarm intelligence
Water resources management
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BWVj4RhQK8sAGEY0Tx8mAEFRUCIkKISqxRXZst0NpS1sG-PXcuQkFJDolSmwPfj77znf3DuA0SUXBnTKBkgoNFM3xTRgZ6FAUQmgphSGP7kMnuevG9y_iZQU6VS4MhVVWe6LfqM2ooDvyC0raTjOBGu7V-C2gqlHkXa1KaKiytIK59BRjq7DGiRmrBms3t53Hpx-Zkr5IJ9o0FO8TR2UajU-moxtS_MrJOYxmShD9PqoW-ucfl6k_idpbsFGqkOx6jvk2rNjhDmxW5RlYKa278NkavVO-bY_R8pgzRTDir_QPH_09ZXQPy1AJ_NlGW8uIzHr4wdSgh5Mw678yVG7ZnD2EIaxkZBOkbORY_8NMqi2U-co60z3otm-fW3dBWWohKFAGZ0EmuDI61pT2iiqEFtyJTCWuKR3ajKm1idaxSwWKPBeFFdKlIRrPkQytjZpGR_tQG46G9gCYKprSqMiFCXcx9k7xmCxkZkMpjQldVoewmtW8KHnIqRzGIP9mUPZI5IhE7pHIozqcffcZz1k4lrZuVGDlpURO88X6qcN5BeDi9_-jHS4f7QjWOYW5-AjeBtRmk3d7jHrKTJ-Ui-8LhgDktw
  priority: 102
  providerName: ProQuest
Title Coupling artificial neural networks with the artificial bee colony algorithm for global calibration of hydrological models
URI https://link.springer.com/article/10.1007/s00521-020-05601-3
https://www.proquest.com/docview/2543895306
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdmHhjSiUygMbRGqcOE7GUvUhEBVCVCpTFMd2GUqK-hjKr-fsJm1BgMSUSDl7yOez7_O9AK6CkKVUJ9JJeIIERVB8Y5I7wmUpY4JzJo1H96Ef9Ab-3ZAN86SwWRHtXrgk7U69TnYzN5hIfalx3iKNcLwSVJgp54WreECbW9mQthEn8hYT0-N7earMz3N8PY42NuY3t6g9bToHsJebiaS5wvUQdlR2BPtFCwaSa-QxfLQmC5NTOyJmCayqQRBTo9I-bIT3jJi7VoKG3raMUIqYgtXZkiTj0WSKIm8EDViyqhBCEDpDpA1sZKLJ61JOi22S2O45sxMYdNrPrZ6Tt1NwUtSzuRMxmkjhC5PaimaCYFSzKAl0g2vkhaFSgRC-DhmqNWWpYlyHLhJkj7tKeQ0pvFMoZ5NMnQFJ0gaXiafdgGofR4d4FKY8Ui7nUro6qoJb_NU4zWuNm5YX43hdJdkiESMSsUUi9qpwvR7zvqq08ad0rQArzrVuFpvE_jBiyIKqcFMAuPn8-2zn_xO_gF1qQlts1G4NyvPpQl2ibTIXdSiFnW4dKs3uy30bn7ft_uNT3S7QT8Kv3wE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAL5VHEUig-wAmibpw4Tg6oanloea0QAolbsGMbDrAL7KJq--P4bcx4HRaQ4MYpUWL74Pk0nvE8PoDVLBcVd8pESip0UDTHN2FkpGNRCaGlFIYiukftrHWW7p-L8zF4rGthKK2y1oleUZtuRXfkv6hoOy8EWri_b-8iYo2i6GpNoaECtYLZ9C3GQmHHgR38Qxeut7m3jfJe43x353SrFQWWgahC-PWjQnBldKqp4hNPTy24E4XKXFM6dJdyazOtU5cLRDsXlRXS5TH6jYmMrU2aRie47heYSJO0QOdv4u9O-_jkRWWmJwVFH4ryi9IklO344j26kcWvnILR6BZFyeujcWTvvgnR-pNvdxqmgsnK_gwxNgNjtjML32o6CBa0wxz83-o-UH3vJSM4DjtTMOqX6R8-27zH6N6XodH5coy2llHz7M6AqetL3PT-1Q1DY5oNu5UwhBE59QQh1nXsamDua5XNPJNP7zucfcqmz8N4p9uxC8BU1ZRGJS7OuEtxdo7HciULG0tpTOyKBsT1rpZV6HtO9BvX5XPHZi-JEiVRekmUSQPWn-fcDrt-fDh6qRZWGTRArxzhtQEbtQBHv99fbfHj1VZgsnV6dFge7rUPfsBXTik2Pnt4Ccb79w92GW2kvv4ZgMjg4rOx_wQUCiB0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbRG2cOE7GqlCVV8VApW5RHNswlLTqYyi_njsnaQsCJKZEytlDPju-L3f3HSGXQchTZhLlJCIBgiIZ3HElHOnylHMpBFcY0X3qBp2ef9_n_ZUqfpvtXoYk85oGVGnKpvWRMvVF4Rv-zQQazDCQC5TC8dbJho9CCbCie6y5Uhlpm3ICh8H8Ht8rymZ-nuPr0bT0N7-FSO3J094l24XLSJs5xntkTWf7ZKdsx0CL3XlAPlrDGdbXvlJcDrkyBEW9Snux2d4Tiv9dKTh9qzZSa4ri1dmcJoPX4RhM3ik4szRXC6EAI5JqhJAODX2bq3H5yaS2k87kkPTaty-tjlO0VnBS2HNTJ-IsUdKXWOYKLoPkzPAoCUxDGOCIodaBlL4JOWxxxlPNhQldIMuecLX2Gkp6R6SSDTN9TGiSNoRKPOMGzPgwOoRjMRWRdoVQyjVRlbjlW43TQncc218M4oViskUiBiRii0TsVcnVYswoV93407pWghUXO3ASY5F_GHFgRFVyXQK4fPz7bCf_M78gm8837fjxrvtwSrYYZrzYZN4aqUzHM30GLstUnttV-QkYuuIV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+artificial+neural+networks+with+the+artificial+bee+colony+algorithm+for+global+calibration+of+hydrological+models&rft.jtitle=Neural+computing+%26+applications&rft.au=Farf%C3%A1n%2C+Juan+F.&rft.au=Cea%2C+Luis&rft.date=2021-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=14&rft.spage=8479&rft.epage=8494&rft_id=info:doi/10.1007%2Fs00521-020-05601-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_020_05601_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon