Coupling artificial neural networks with the artificial bee colony algorithm for global calibration of hydrological models
Hydrological models are widely used tools in water resources management. Their successful application requires an efficient calibration of the model parameters. Nowadays, there are very powerful global search methods applied to this end, but they have the disadvantage of presenting a high computatio...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 33; no. 14; pp. 8479 - 8494 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.07.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-020-05601-3 | 
Cover
| Abstract | Hydrological models are widely used tools in water resources management. Their successful application requires an efficient calibration of the model parameters. Nowadays, there are very powerful global search methods applied to this end, but they have the disadvantage of presenting a high computational cost, because the numerical model to be calibrated needs to be evaluated a large number of times with different parameter sets. In this context, surrogate models can reduce significantly the run time of hydrological models, easing the total computational burden of global search methods. In the present work, we propose and explore the combination of a swarm intelligence-based optimization method, the artificial bee colony algorithm, with a surrogate model based on artificial neural networks in order to calibrate hydrological models. The proposed approach (ABC-ANN) is applied to the calibration and validation of a nine-parameter continuous hydrological model in two basins located in the northwest of Spain. Several aspects of the algorithm are evaluated, including its capability to calibrate the model parameters and its efficiency in terms of CPU time compared to a standard implementation of the ABC algorithm. Results show that the ABC-ANN algorithm is able to identify the location of suitable parameter sets with an accuracy rate within 89 and 99 %, and a reduction in CPU time of more than three orders of magnitude when compared to a sequential implementation. In addition, the frequency distribution of the parameter sets identified gives valuable information about the sensitivity of model output to the input parameters. | 
    
|---|---|
| AbstractList | Hydrological models are widely used tools in water resources management. Their successful application requires an efficient calibration of the model parameters. Nowadays, there are very powerful global search methods applied to this end, but they have the disadvantage of presenting a high computational cost, because the numerical model to be calibrated needs to be evaluated a large number of times with different parameter sets. In this context, surrogate models can reduce significantly the run time of hydrological models, easing the total computational burden of global search methods. In the present work, we propose and explore the combination of a swarm intelligence-based optimization method, the artificial bee colony algorithm, with a surrogate model based on artificial neural networks in order to calibrate hydrological models. The proposed approach (ABC-ANN) is applied to the calibration and validation of a nine-parameter continuous hydrological model in two basins located in the northwest of Spain. Several aspects of the algorithm are evaluated, including its capability to calibrate the model parameters and its efficiency in terms of CPU time compared to a standard implementation of the ABC algorithm. Results show that the ABC-ANN algorithm is able to identify the location of suitable parameter sets with an accuracy rate within 89 and 99 %, and a reduction in CPU time of more than three orders of magnitude when compared to a sequential implementation. In addition, the frequency distribution of the parameter sets identified gives valuable information about the sensitivity of model output to the input parameters. | 
    
| Author | Cea, Luis Farfán, Juan F.  | 
    
| Author_xml | – sequence: 1 givenname: Juan F. orcidid: 0000-0001-8503-2324 surname: Farfán fullname: Farfán, Juan F. email: j.farfan@udc.es organization: Environmental and Water Engineering Group, Department of Civil Engineering, University of A Coruña – sequence: 2 givenname: Luis surname: Cea fullname: Cea, Luis organization: Environmental and Water Engineering Group, Department of Civil Engineering, University of A Coruña  | 
    
| BookMark | eNp9kE1PAyEQhonRxPrxBzyReF4dFthlj6bxK2niRc8EtrCl0qUCjam_XmxNNB48TTLzPDPwnqDDMYwGoQsCVwSgvU4AvCYV1FABb4BU9ABNCKO0osDFIZpAx8q4YfQYnaS0BADWCD5BH9OwWXs3DljF7KzrnfJ4NJu4K_k9xNeE311e4LwwvxltDO6DD-MWKz-EWJAVtiHiwQdd5r3yTkeVXRhxsHixncdCD6708SrMjU9n6Mgqn8z5dz1FL3e3z9OHavZ0_zi9mVU9JV2uOl6ruWa6YTXh0GleW96pxkJrCTTCmEZrZgUHBjXvDW-tIK0QtCXGUJhreoou93vXMbxtTMpyGTZxLCdlzRkVHafQFKreU30MKUVj5Tq6lYpbSUB-ZSz3GcuSsdxlLGmRxB-pd3n35xyV8_-rdK-mcmccTPx51T_WJ51LlFw | 
    
| CitedBy_id | crossref_primary_10_1007_s12145_024_01454_9 crossref_primary_10_1007_s00521_024_09850_4 crossref_primary_10_1007_s11600_024_01362_y crossref_primary_10_1007_s40571_025_00928_x crossref_primary_10_1007_s12145_022_00896_3 crossref_primary_10_1016_j_jhydrol_2023_129961 crossref_primary_10_1007_s00521_022_07406_y crossref_primary_10_3390_w16050652 crossref_primary_10_1016_j_envsoft_2024_106047 crossref_primary_10_1016_j_eswa_2022_119269 crossref_primary_10_1016_j_jhydrol_2024_132273 crossref_primary_10_1155_2021_7621692 crossref_primary_10_1080_10106049_2022_2066200 crossref_primary_10_1007_s00500_023_08886_3 crossref_primary_10_1061_JCEMD4_COENG_14877 crossref_primary_10_4995_ia_2024_20609  | 
    
| Cites_doi | 10.1061/(ASCE)HE.1943-5584.0001350 10.1002/hyp.10697 10.1002/rra.774 10.13031/2013.23153 10.1016/j.envsoft.2019.104587 10.1029/2018WR023194 10.1002/hyp.13319 10.1016/j.jhydrol.2012.12.004 10.1111/jfr3.12522 10.1007/s00521-018-3483-4 10.1029/91WR02985 10.1007/978-3-642-40457-3_25-1 10.1007/978-3-319-12286-1_1 10.1016/j.jhydrol.2009.12.028 10.32614/RJ-2010-006 10.1007/s00477-008-0274-y 10.1016/j.jhydrol.2005.07.007 10.1007/s11069-018-3360-6 10.1007/s10898-007-9149-x 10.1007/s11269-015-1016-9 10.1016/0022-1694(94)90057-4 10.1109/34.295910 10.1109/ICNN.1995.488968 10.7551/mitpress/1090.001.0001 10.1002/2017WR021039 10.1111/j.1752-1688.2009.00302.x 10.1002/hyp.8042 10.1029/2010WR009298 10.1029/91WR01305 10.1007/978-94-009-0257-2_3 10.1029/2005WR004640 10.1007/978-3-642-40457-3_26-1 10.1016/j.amc.2009.03.090 10.1007/BF01009452 10.1061/(ASCE)1084-0699(2001)6:1(52) 10.1007/978-981-15-3242-9_49 10.5194/hess-17-3159-2013 10.1007/s00477-019-01733-8 10.1155/2015/674595 10.14198/INGEO2005.36.03 10.1016/j.ijsrc.2015.03.004 10.1016/S0022-1694(00)00279-1 10.1016/B978-008045405-4.00169-5 10.1623/hysj.52.3.450 10.1109/MCI.2006.329691 10.1029/2011WR011527 10.5194/hess-13-1235-2009 10.1007/0-387-27705-6_6 10.1007/s00521-016-2798-2  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.  | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS  | 
    
| DOI | 10.1007/s00521-020-05601-3 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 8494 | 
    
| ExternalDocumentID | 10_1007_s00521_020_05601_3 | 
    
| GrantInformation_xml | – fundername: Xunta de Galicia grantid: ED481A-2019/014 funderid: http://dx.doi.org/10.13039/501100010801  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c319t-952adb4b6421509b52f59a6f07f1068ee6bb4f8504025ce57f81788371ee30db3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Sun Sep 07 05:00:22 EDT 2025 Wed Oct 01 02:26:03 EDT 2025 Thu Apr 24 22:55:57 EDT 2025 Fri Feb 21 02:48:59 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 14 | 
    
| Keywords | Global optimization Artificial bee colony Water resources management Surrogate model Artificial neural networks Hydrological model  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-952adb4b6421509b52f59a6f07f1068ee6bb4f8504025ce57f81788371ee30db3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8503-2324 | 
    
| PQID | 2543895306 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_2543895306 crossref_primary_10_1007_s00521_020_05601_3 crossref_citationtrail_10_1007_s00521_020_05601_3 springer_journals_10_1007_s00521_020_05601_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210700 2021-07-00 20210701  | 
    
| PublicationDateYYYYMMDD | 2021-07-01 | 
    
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | CeaLFragaIIncorporating antecedent moisture conditions and intraevent variability of rainfall on flood frequency analysis in poorly gauged basinsWater Resour Res2018541187748791 MadsenHRosbjergDComparison of parameter estimation algorithms in hydrological modellingCalibration Reliab Groundwater Model: From Uncertain Decis Making2006130467 GranvilleVincentKrivánekMirkoRassonJ-PSimulated annealing: a proof of convergenceIEEE Trans Pattern Anal Mach Intell1994166652656 HossainMd ShabbirEl-ShafieAhmedMahzabinMst SadiaZawawiMohd HafizSystem performances analysis of reservoir optimization-simulation model in application of artificial bee colony algorithmNeural Comput Appl201830721012112 AfsharAbbasMassoumiFariborzAfsharAminMariñoMiquel AState of the art review of ant colony optimization applications in water resource managementWater Resour Manag2015291138913904 Zhao J, Lv L, Sun H (2015) Artificial bee colony using opposition-based learning. In Genetic and evolutionary computing, pp 3–10. Springer ShoemakerChristine ARegisRommel GFlemingRyan CWatershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximationHydrol Sci J2007523450465 DuanQingyunSorooshianSorooshGuptaVijai KOptimal use of the sce-ua global optimization method for calibrating watershed modelsJ Hydrol19941583–4265284 Cabalar Fuentes M (2005) Los temporales de lluvia y viento en galicia. propuesta de clasificación y análisis de tendencias (1961-2001). Investigaciones geográficas, (36): 103-118 HoffmannLucienEl IdrissiAbdelkhalakPfisterLaurentHingrayBenoîtGuexFrédéricMusyAndréHumbertJoëlDrogueGillesLeviandierThierryDevelopment of regionalized hydrological models in an area with short hydrological observation seriesRiver Res Appl2004203243254 HuoJiuyuanLiuLiqunZhangYaonanComparative research of optimization algorithms for parameters calibration of watershed hydrological modelJ Comput Methods Sci Eng2016163653669 BermúdezMaríaCeaLuisSopelanaJavierQuantifying the role of individual flood drivers and their correlations in flooding of coastal river reachesStoch Environ Res Risk Assess2019331018511861 BroccaLLierschSMeloneFMoramarcoTVolkMApplication of a model-based rainfall-runoff database as efficient tool for flood risk managementHydrol Earth Syst Sci20131783159 Kennedy J (2006) Swarm intelligence. In Handbook of nature-inspired and innovative computing, pp 187–219. Springer Camici S, Tarpanelli A, Brocca L, Melone F, Moramarco T (2011) Design soil moisture estimation by comparing continuous and storm-based rainfall-runoff modeling. Water Resour Res 47(5) GüntherFraukeFritschStefanneuralnet: Training of neural networksThe R J2010213038 VrugtJasper ATer BraakCajo JFGuptaHoshin VRobinsonBruce AEquifinality of formal (dream) and informal (glue) bayesian approaches in hydrologic modeling?Stochastic Environ Res Risk Assess200923710111026 BermúdezMaríaCeaLuisPuertasJerónimoA rapid flood inundation model for hazard mapping based on least squares support vector machine regressionJ Flood Risk Manag201912e12522 Mugunthan P, Shoemaker CA (2006) Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resour Res 42(10) WangWenVan GelderPieter HAJMVrijlingJKComparing bayesian regularization and cross-validated early-stopping for streamflow forecasting with ann modelsIAHS Publ-Ser Proc Rep2007311216221 FragaIgnacioCeaLuisPuertasJerónimoEffect of rainfall uncertainty on the performance of physically based rainfall-runoff modelsHydrol Process2019331160173 MoriasiDaniel NArnoldJeffrey GVan LiewMichael WBingnerRonald LDaren HarmelRVeithTamie LModel evaluation guidelines for systematic quantification of accuracy in watershed simulationsTrans ASABE2007503885900 WangQJThe genetic algorithm and its application to calibrating conceptual rainfall-runoff modelsWater Resour Res199127924672471 ChoEJørgensenSven ErikFathBrian DWavelet networkEncyclopedia of ecology2008OxfordAcademic Press37593764 ShresthaDLKayasthaNSolomatineDPA novel approach to parameter uncertainty analysis of hydrological models using neural networksHydrol Earth Syst Sci200913712351248 Yang T, Hsu K, Duan Q, Sorooshian S, Wang C (2018) Method to estimate optimal parameters. Handbook of hydrometeorological ensemble forecasting Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources. Water Resour Res 48(7) ChuHaiboWenyan WuQJWangRory NathanWeiJiahuaAn ann-based emulation modelling framework for flood inundation modelling: application, challenges and future directionsEnviron Model Softw2020124104587 ShawAmelia RSawyerHeather SmithLeBoeufEugene JMcDonaldMark PHadjeriouaBoualemHydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality modelWater Resour Res2017531194449461 RitterAxelMuñoz-CarpenaRafaelPerformance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessmentsJ Hydrol20134803345 LiangJinMelchingCharles SExperimental evaluation of the effect of storm movement on peak dischargeInt J Sediment Res2015302167177 Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks, vol 4, pp 1942–1948. IEEE KirkpatrickScottOptimization by simulated annealing: quantitative studiesJ Stat Phys1984345–6975986751723 TkaczGregSarahHuForecasting GDP growth using artificial neural networks1999New JerseyCiteseer JinXiaoliChong-YuXuZhangQiSinghVPParameter and modeling uncertainty simulated by glue and a formal bayesian method for a conceptual hydrological modelJ Hydrol20103833–4147155 EberhartRussell CShiYuhuiKennedyJamesSwarm intelligence2001AmsterdamElsevier BevenKeithA manifesto for the equifinality thesisJ Hydrol20063201–21836 FarfánJuan FPalaciosKarinaUlloaJacintoAvilésAlexA hybrid neural network-based technique to improve the flow forecasting of physical and data-driven models: Methodology and case studies in andean watershedsJ Hydrol: Reg Stud202027100652 CeaLuisLegoutCedricGrangeonThomasNordGuillaumeImpact of model simplifications on soil erosion predictions: application of the glue methodology to a distributed event-based model at the hillslope scaleHydrol Process201630710961113 AnılanTuğçeUzluErgunKankalMuratYuksekOmerThe estimation of flood quantiles in ungauged sites using teaching-learning based optimization and artificial bee colony algorithmsScientia Iranica2018252632645 BroccaLMeloneFMoramarcoTDistributed rainfall-runoff modelling for flood frequency estimation and flood forecastingHydrol Process2011251828012813 LiZejunLiuPanDengChaoGuoShenglianHePingWangCaijunEvaluation of estimation of distribution algorithm to calibrate computationally intensive hydrologic modelJ Hydrol Eng201621604016012 SopelanaJCeaLRuanoSA continuous simulation approach for the estimation of extreme flood inundation in coastal river reaches affected by meso-and macrotidesNatural Hazards201893313371358 DuanQingyunSorooshianSorooshGuptaVijaiEffective and efficient global optimization for conceptual rainfall-runoff modelsWater Resou Res199228410151031 Kavetski D (2018) Parameter estimation and predictive uncertainty quantification in hydrological modelling. In Handbook of hydrometeorological ensemble forecasting, Springer Raut P, Dani A (2020) Correlation between number of hidden layers and accuracy of artificial neural network. In Advanced Computing Technologies and Applications, pp 513–521. Springer KarabogaDervisAkayBahriyeA comparative study of artificial bee colony algorithmAppl Math Comput2009214110813225410511169.65053 Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, engineering department Refsgaard JC, Storm B (1990) Construction, calibration and validation of hydrological models. In Distributed hydrological modelling, pp 41–54. Springer DorigoMarcoBirattariMauroStutzleThomasAnt colony optimizationIEEE Comput Intell Mag2006142839 ZhangXuesongSrinivasanRaghavanVan LiewMichaelApproximating swat model using artificial neural network and support vector machine 1JAWRA J Am Water Res Assoc2009452460474 MacKay David JC (1992) Bayesian methods for adaptive models. PhD thesis, California Institute of Technology HuoJiuyuanLiuLiqunApplication research of multi-objective artificial bee colony optimization algorithm for parameters calibration of hydrological modelNeural Comput Appl201931947154732 Khu S-T, Savic D, Liu Y, Madsen H (2004) A fast evolutionary-based meta-modelling approach for the calibration of a rainfall-runoff model. paper presented at The First Biennial Meeting of the International Environmental Modelling Software Society, Osnabruck, Germany HollandJohn HenryAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992CambridgeMIT press LiongShie-YuiKhuSoon-ThiamChanWeng-TatDerivation of pareto front with genetic algorithm and neural networkJ Hydrol Eng2001615261 KarabogaDervisBasturkBahriyeA powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithmJ Global Optim200739345947123461781149.90186 Qin Quande, Cheng Shi, Zhang Qingyu, Li Li, Shi Yuhui (2015) Artificial bee colony algorithm with time-varying strategy. Discrete Dynamics in Nature and Society 2015 MadsenHenrikAutomatic calibration of a conceptual rainfall-runoff model using multiple objectivesJ Hydrol20002353–4276288 Okkan U, GedïK N (2018) Evaluation of population based evolutionary optimization algorithms in the conceptual hydrological model calibration. In Gastescu, P., Bretcan, P.(edit, 2018), Water resources and wetlands, 4th International Conference Water resources and wetlands, pp 5–9 Marco Dorigo (5601_CR18) 2006; 1 5601_CR33 Zejun Li (5601_CR6) 2016; 21 5601_CR36 Qingyun Duan (5601_CR13) 1992; 28 Jasper A Vrugt (5601_CR60) 2009; 23 Vincent Granville (5601_CR12) 1994; 16 Jiuyuan Huo (5601_CR4) 2019; 31 Dervis Karaboga (5601_CR21) 2007; 39 Keith Beven (5601_CR57) 2006; 320 5601_CR45 Luis Cea (5601_CR58) 2016; 30 Lucien Hoffmann (5601_CR47) 2004; 20 Md Shabbir Hossain (5601_CR35) 2018; 30 E Cho (5601_CR37) 2008 5601_CR42 Greg Tkacz (5601_CR50) 1999 L Cea (5601_CR41) 2018; 54 5601_CR3 Dervis Karaboga (5601_CR55) 2009; 214 5601_CR1 H Madsen (5601_CR7) 2006; 1 Henrik Madsen (5601_CR8) 2000; 235 L Brocca (5601_CR46) 2013; 17 Xiaoli Jin (5601_CR2) 2010; 383 Qingyun Duan (5601_CR14) 1994; 158 María Bermúdez (5601_CR27) 2019; 33 5601_CR5 5601_CR56 Xuesong Zhang (5601_CR26) 2009; 45 5601_CR51 Jin Liang (5601_CR43) 2015; 30 Shie-Yui Liong (5601_CR31) 2001; 6 Tuğçe Anılan (5601_CR34) 2018; 25 Daniel N Moriasi (5601_CR49) 2007; 50 5601_CR53 Amelia R Shaw (5601_CR39) 2017; 53 Scott Kirkpatrick (5601_CR11) 1984; 34 Axel Ritter (5601_CR48) 2013; 480 Ignacio Fraga (5601_CR59) 2019; 33 Wen Wang (5601_CR54) 2007; 311 5601_CR15 DL Shrestha (5601_CR30) 2009; 13 5601_CR17 María Bermúdez (5601_CR28) 2019; 12 Haibo Chu (5601_CR40) 2020; 124 5601_CR23 5601_CR22 5601_CR24 5601_CR20 J Sopelana (5601_CR29) 2018; 93 L Brocca (5601_CR44) 2011; 25 Abbas Afshar (5601_CR19) 2015; 29 Christine A Shoemaker (5601_CR25) 2007; 52 Russell C Eberhart (5601_CR16) 2001 Frauke Günther (5601_CR52) 2010; 2 Jiuyuan Huo (5601_CR32) 2016; 16 Juan F Farfán (5601_CR38) 2020; 27 John Henry Holland (5601_CR9) 1992 QJ Wang (5601_CR10) 1991; 27  | 
    
| References_xml | – reference: ChoEJørgensenSven ErikFathBrian DWavelet networkEncyclopedia of ecology2008OxfordAcademic Press37593764 – reference: HossainMd ShabbirEl-ShafieAhmedMahzabinMst SadiaZawawiMohd HafizSystem performances analysis of reservoir optimization-simulation model in application of artificial bee colony algorithmNeural Comput Appl201830721012112 – reference: LiZejunLiuPanDengChaoGuoShenglianHePingWangCaijunEvaluation of estimation of distribution algorithm to calibrate computationally intensive hydrologic modelJ Hydrol Eng201621604016012 – reference: BevenKeithA manifesto for the equifinality thesisJ Hydrol20063201–21836 – reference: AfsharAbbasMassoumiFariborzAfsharAminMariñoMiquel AState of the art review of ant colony optimization applications in water resource managementWater Resour Manag2015291138913904 – reference: FragaIgnacioCeaLuisPuertasJerónimoEffect of rainfall uncertainty on the performance of physically based rainfall-runoff modelsHydrol Process2019331160173 – reference: WangQJThe genetic algorithm and its application to calibrating conceptual rainfall-runoff modelsWater Resour Res199127924672471 – reference: Kennedy J (2006) Swarm intelligence. In Handbook of nature-inspired and innovative computing, pp 187–219. Springer – reference: Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources. Water Resour Res 48(7) – reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, engineering department – reference: DorigoMarcoBirattariMauroStutzleThomasAnt colony optimizationIEEE Comput Intell Mag2006142839 – reference: KarabogaDervisAkayBahriyeA comparative study of artificial bee colony algorithmAppl Math Comput2009214110813225410511169.65053 – reference: CeaLuisLegoutCedricGrangeonThomasNordGuillaumeImpact of model simplifications on soil erosion predictions: application of the glue methodology to a distributed event-based model at the hillslope scaleHydrol Process201630710961113 – reference: HuoJiuyuanLiuLiqunZhangYaonanComparative research of optimization algorithms for parameters calibration of watershed hydrological modelJ Comput Methods Sci Eng2016163653669 – reference: Mugunthan P, Shoemaker CA (2006) Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resour Res 42(10) – reference: DuanQingyunSorooshianSorooshGuptaVijaiEffective and efficient global optimization for conceptual rainfall-runoff modelsWater Resou Res199228410151031 – reference: Cabalar Fuentes M (2005) Los temporales de lluvia y viento en galicia. propuesta de clasificación y análisis de tendencias (1961-2001). Investigaciones geográficas, (36): 103-118 – reference: Raut P, Dani A (2020) Correlation between number of hidden layers and accuracy of artificial neural network. In Advanced Computing Technologies and Applications, pp 513–521. Springer – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks, vol 4, pp 1942–1948. IEEE – reference: LiongShie-YuiKhuSoon-ThiamChanWeng-TatDerivation of pareto front with genetic algorithm and neural networkJ Hydrol Eng2001615261 – reference: ChuHaiboWenyan WuQJWangRory NathanWeiJiahuaAn ann-based emulation modelling framework for flood inundation modelling: application, challenges and future directionsEnviron Model Softw2020124104587 – reference: WangWenVan GelderPieter HAJMVrijlingJKComparing bayesian regularization and cross-validated early-stopping for streamflow forecasting with ann modelsIAHS Publ-Ser Proc Rep2007311216221 – reference: HoffmannLucienEl IdrissiAbdelkhalakPfisterLaurentHingrayBenoîtGuexFrédéricMusyAndréHumbertJoëlDrogueGillesLeviandierThierryDevelopment of regionalized hydrological models in an area with short hydrological observation seriesRiver Res Appl2004203243254 – reference: BermúdezMaríaCeaLuisPuertasJerónimoA rapid flood inundation model for hazard mapping based on least squares support vector machine regressionJ Flood Risk Manag201912e12522 – reference: SopelanaJCeaLRuanoSA continuous simulation approach for the estimation of extreme flood inundation in coastal river reaches affected by meso-and macrotidesNatural Hazards201893313371358 – reference: Zhao J, Lv L, Sun H (2015) Artificial bee colony using opposition-based learning. In Genetic and evolutionary computing, pp 3–10. Springer – reference: RitterAxelMuñoz-CarpenaRafaelPerformance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessmentsJ Hydrol20134803345 – reference: HuoJiuyuanLiuLiqunApplication research of multi-objective artificial bee colony optimization algorithm for parameters calibration of hydrological modelNeural Comput Appl201931947154732 – reference: KirkpatrickScottOptimization by simulated annealing: quantitative studiesJ Stat Phys1984345–6975986751723 – reference: ZhangXuesongSrinivasanRaghavanVan LiewMichaelApproximating swat model using artificial neural network and support vector machine 1JAWRA J Am Water Res Assoc2009452460474 – reference: Okkan U, GedïK N (2018) Evaluation of population based evolutionary optimization algorithms in the conceptual hydrological model calibration. In Gastescu, P., Bretcan, P.(edit, 2018), Water resources and wetlands, 4th International Conference Water resources and wetlands, pp 5–9 – reference: AnılanTuğçeUzluErgunKankalMuratYuksekOmerThe estimation of flood quantiles in ungauged sites using teaching-learning based optimization and artificial bee colony algorithmsScientia Iranica2018252632645 – reference: Refsgaard JC, Storm B (1990) Construction, calibration and validation of hydrological models. In Distributed hydrological modelling, pp 41–54. Springer – reference: FarfánJuan FPalaciosKarinaUlloaJacintoAvilésAlexA hybrid neural network-based technique to improve the flow forecasting of physical and data-driven models: Methodology and case studies in andean watershedsJ Hydrol: Reg Stud202027100652 – reference: MacKay David JC (1992) Bayesian methods for adaptive models. PhD thesis, California Institute of Technology – reference: DuanQingyunSorooshianSorooshGuptaVijai KOptimal use of the sce-ua global optimization method for calibrating watershed modelsJ Hydrol19941583–4265284 – reference: VrugtJasper ATer BraakCajo JFGuptaHoshin VRobinsonBruce AEquifinality of formal (dream) and informal (glue) bayesian approaches in hydrologic modeling?Stochastic Environ Res Risk Assess200923710111026 – reference: ShoemakerChristine ARegisRommel GFlemingRyan CWatershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximationHydrol Sci J2007523450465 – reference: BroccaLLierschSMeloneFMoramarcoTVolkMApplication of a model-based rainfall-runoff database as efficient tool for flood risk managementHydrol Earth Syst Sci20131783159 – reference: Qin Quande, Cheng Shi, Zhang Qingyu, Li Li, Shi Yuhui (2015) Artificial bee colony algorithm with time-varying strategy. Discrete Dynamics in Nature and Society 2015 – reference: MadsenHRosbjergDComparison of parameter estimation algorithms in hydrological modellingCalibration Reliab Groundwater Model: From Uncertain Decis Making2006130467 – reference: Kavetski D (2018) Parameter estimation and predictive uncertainty quantification in hydrological modelling. In Handbook of hydrometeorological ensemble forecasting, Springer – reference: CeaLFragaIIncorporating antecedent moisture conditions and intraevent variability of rainfall on flood frequency analysis in poorly gauged basinsWater Resour Res2018541187748791 – reference: ShawAmelia RSawyerHeather SmithLeBoeufEugene JMcDonaldMark PHadjeriouaBoualemHydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality modelWater Resour Res2017531194449461 – reference: GüntherFraukeFritschStefanneuralnet: Training of neural networksThe R J2010213038 – reference: BermúdezMaríaCeaLuisSopelanaJavierQuantifying the role of individual flood drivers and their correlations in flooding of coastal river reachesStoch Environ Res Risk Assess2019331018511861 – reference: LiangJinMelchingCharles SExperimental evaluation of the effect of storm movement on peak dischargeInt J Sediment Res2015302167177 – reference: HollandJohn HenryAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992CambridgeMIT press – reference: EberhartRussell CShiYuhuiKennedyJamesSwarm intelligence2001AmsterdamElsevier – reference: ShresthaDLKayasthaNSolomatineDPA novel approach to parameter uncertainty analysis of hydrological models using neural networksHydrol Earth Syst Sci200913712351248 – reference: Camici S, Tarpanelli A, Brocca L, Melone F, Moramarco T (2011) Design soil moisture estimation by comparing continuous and storm-based rainfall-runoff modeling. Water Resour Res 47(5) – reference: JinXiaoliChong-YuXuZhangQiSinghVPParameter and modeling uncertainty simulated by glue and a formal bayesian method for a conceptual hydrological modelJ Hydrol20103833–4147155 – reference: MadsenHenrikAutomatic calibration of a conceptual rainfall-runoff model using multiple objectivesJ Hydrol20002353–4276288 – reference: Khu S-T, Savic D, Liu Y, Madsen H (2004) A fast evolutionary-based meta-modelling approach for the calibration of a rainfall-runoff model. paper presented at The First Biennial Meeting of the International Environmental Modelling Software Society, Osnabruck, Germany – reference: BroccaLMeloneFMoramarcoTDistributed rainfall-runoff modelling for flood frequency estimation and flood forecastingHydrol Process2011251828012813 – reference: MoriasiDaniel NArnoldJeffrey GVan LiewMichael WBingnerRonald LDaren HarmelRVeithTamie LModel evaluation guidelines for systematic quantification of accuracy in watershed simulationsTrans ASABE2007503885900 – reference: Yang T, Hsu K, Duan Q, Sorooshian S, Wang C (2018) Method to estimate optimal parameters. Handbook of hydrometeorological ensemble forecasting – reference: KarabogaDervisBasturkBahriyeA powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithmJ Global Optim200739345947123461781149.90186 – reference: TkaczGregSarahHuForecasting GDP growth using artificial neural networks1999New JerseyCiteseer – reference: GranvilleVincentKrivánekMirkoRassonJ-PSimulated annealing: a proof of convergenceIEEE Trans Pattern Anal Mach Intell1994166652656 – volume: 311 start-page: 216 year: 2007 ident: 5601_CR54 publication-title: IAHS Publ-Ser Proc Rep – ident: 5601_CR53 – volume: 21 start-page: 04016012 issue: 6 year: 2016 ident: 5601_CR6 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0001350 – volume: 30 start-page: 1096 issue: 7 year: 2016 ident: 5601_CR58 publication-title: Hydrol Process doi: 10.1002/hyp.10697 – volume: 20 start-page: 243 issue: 3 year: 2004 ident: 5601_CR47 publication-title: River Res Appl doi: 10.1002/rra.774 – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 5601_CR49 publication-title: Trans ASABE doi: 10.13031/2013.23153 – volume: 124 start-page: 104587 year: 2020 ident: 5601_CR40 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2019.104587 – volume: 54 start-page: 8774 issue: 11 year: 2018 ident: 5601_CR41 publication-title: Water Resour Res doi: 10.1029/2018WR023194 – volume: 33 start-page: 160 issue: 1 year: 2019 ident: 5601_CR59 publication-title: Hydrol Process doi: 10.1002/hyp.13319 – volume: 480 start-page: 33 year: 2013 ident: 5601_CR48 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.12.004 – volume: 12 start-page: e12522 year: 2019 ident: 5601_CR28 publication-title: J Flood Risk Manag doi: 10.1111/jfr3.12522 – volume: 31 start-page: 4715 issue: 9 year: 2019 ident: 5601_CR4 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3483-4 – volume: 28 start-page: 1015 issue: 4 year: 1992 ident: 5601_CR13 publication-title: Water Resou Res doi: 10.1029/91WR02985 – ident: 5601_CR5 doi: 10.1007/978-3-642-40457-3_25-1 – ident: 5601_CR36 doi: 10.1007/978-3-319-12286-1_1 – volume: 383 start-page: 147 issue: 3–4 year: 2010 ident: 5601_CR2 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.12.028 – volume-title: Swarm intelligence year: 2001 ident: 5601_CR16 – volume: 2 start-page: 30 issue: 1 year: 2010 ident: 5601_CR52 publication-title: The R J doi: 10.32614/RJ-2010-006 – volume: 23 start-page: 1011 issue: 7 year: 2009 ident: 5601_CR60 publication-title: Stochastic Environ Res Risk Assess doi: 10.1007/s00477-008-0274-y – volume: 1 start-page: 67 issue: 304 year: 2006 ident: 5601_CR7 publication-title: Calibration Reliab Groundwater Model: From Uncertain Decis Making – ident: 5601_CR33 – volume: 320 start-page: 18 issue: 1–2 year: 2006 ident: 5601_CR57 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.07.007 – volume: 93 start-page: 1337 issue: 3 year: 2018 ident: 5601_CR29 publication-title: Natural Hazards doi: 10.1007/s11069-018-3360-6 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 5601_CR21 publication-title: J Global Optim doi: 10.1007/s10898-007-9149-x – volume: 29 start-page: 3891 issue: 11 year: 2015 ident: 5601_CR19 publication-title: Water Resour Manag doi: 10.1007/s11269-015-1016-9 – volume: 158 start-page: 265 issue: 3–4 year: 1994 ident: 5601_CR14 publication-title: J Hydrol doi: 10.1016/0022-1694(94)90057-4 – volume: 16 start-page: 652 issue: 6 year: 1994 ident: 5601_CR12 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.295910 – ident: 5601_CR15 doi: 10.1109/ICNN.1995.488968 – volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence year: 1992 ident: 5601_CR9 doi: 10.7551/mitpress/1090.001.0001 – volume: 53 start-page: 9444 issue: 11 year: 2017 ident: 5601_CR39 publication-title: Water Resour Res doi: 10.1002/2017WR021039 – volume: 45 start-page: 460 issue: 2 year: 2009 ident: 5601_CR26 publication-title: JAWRA J Am Water Res Assoc doi: 10.1111/j.1752-1688.2009.00302.x – volume: 25 start-page: 2801 issue: 18 year: 2011 ident: 5601_CR44 publication-title: Hydrol Process doi: 10.1002/hyp.8042 – volume-title: Forecasting GDP growth using artificial neural networks year: 1999 ident: 5601_CR50 – ident: 5601_CR45 doi: 10.1029/2010WR009298 – volume: 27 start-page: 2467 issue: 9 year: 1991 ident: 5601_CR10 publication-title: Water Resour Res doi: 10.1029/91WR01305 – ident: 5601_CR1 doi: 10.1007/978-94-009-0257-2_3 – volume: 16 start-page: 653 issue: 3 year: 2016 ident: 5601_CR32 publication-title: J Comput Methods Sci Eng – ident: 5601_CR23 doi: 10.1029/2005WR004640 – ident: 5601_CR3 doi: 10.1007/978-3-642-40457-3_26-1 – volume: 214 start-page: 108 issue: 1 year: 2009 ident: 5601_CR55 publication-title: Appl Math Comput doi: 10.1016/j.amc.2009.03.090 – volume: 34 start-page: 975 issue: 5–6 year: 1984 ident: 5601_CR11 publication-title: J Stat Phys doi: 10.1007/BF01009452 – volume: 6 start-page: 52 issue: 1 year: 2001 ident: 5601_CR31 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2001)6:1(52) – volume: 27 start-page: 100652 year: 2020 ident: 5601_CR38 publication-title: J Hydrol: Reg Stud – ident: 5601_CR51 doi: 10.1007/978-981-15-3242-9_49 – volume: 17 start-page: 3159 issue: 8 year: 2013 ident: 5601_CR46 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-17-3159-2013 – volume: 33 start-page: 1851 issue: 10 year: 2019 ident: 5601_CR27 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-019-01733-8 – ident: 5601_CR56 doi: 10.1155/2015/674595 – ident: 5601_CR42 doi: 10.14198/INGEO2005.36.03 – volume: 30 start-page: 167 issue: 2 year: 2015 ident: 5601_CR43 publication-title: Int J Sediment Res doi: 10.1016/j.ijsrc.2015.03.004 – volume: 235 start-page: 276 issue: 3–4 year: 2000 ident: 5601_CR8 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00279-1 – volume: 25 start-page: 632 issue: 2 year: 2018 ident: 5601_CR34 publication-title: Scientia Iranica – start-page: 3759 volume-title: Encyclopedia of ecology year: 2008 ident: 5601_CR37 doi: 10.1016/B978-008045405-4.00169-5 – volume: 52 start-page: 450 issue: 3 year: 2007 ident: 5601_CR25 publication-title: Hydrol Sci J doi: 10.1623/hysj.52.3.450 – ident: 5601_CR20 – ident: 5601_CR24 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 5601_CR18 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.329691 – ident: 5601_CR22 doi: 10.1029/2011WR011527 – volume: 13 start-page: 1235 issue: 7 year: 2009 ident: 5601_CR30 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-13-1235-2009 – ident: 5601_CR17 doi: 10.1007/0-387-27705-6_6 – volume: 30 start-page: 2101 issue: 7 year: 2018 ident: 5601_CR35 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2798-2  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.365091 | 
    
| Snippet | Hydrological models are widely used tools in water resources management. Their successful application requires an efficient calibration of the model... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 8479 | 
    
| SubjectTerms | Artificial Intelligence Artificial neural networks Calibration Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computing costs Data Mining and Knowledge Discovery Frequency distribution Hydrologic models Hydrology Image Processing and Computer Vision Neural networks Numerical models Optimization Optimization algorithms Original Article Parameter identification Parameter sensitivity Probability and Statistics in Computer Science Run time (computers) Search algorithms Search methods Swarm intelligence Water resources management  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BWVj4RhQK8sAGEY0Tx8mAEFRUCIkKISqxRXZst0NpS1sG-PXcuQkFJDolSmwPfj77znf3DuA0SUXBnTKBkgoNFM3xTRgZ6FAUQmgphSGP7kMnuevG9y_iZQU6VS4MhVVWe6LfqM2ooDvyC0raTjOBGu7V-C2gqlHkXa1KaKiytIK59BRjq7DGiRmrBms3t53Hpx-Zkr5IJ9o0FO8TR2UajU-moxtS_MrJOYxmShD9PqoW-ucfl6k_idpbsFGqkOx6jvk2rNjhDmxW5RlYKa278NkavVO-bY_R8pgzRTDir_QPH_09ZXQPy1AJ_NlGW8uIzHr4wdSgh5Mw678yVG7ZnD2EIaxkZBOkbORY_8NMqi2U-co60z3otm-fW3dBWWohKFAGZ0EmuDI61pT2iiqEFtyJTCWuKR3ajKm1idaxSwWKPBeFFdKlIRrPkQytjZpGR_tQG46G9gCYKprSqMiFCXcx9k7xmCxkZkMpjQldVoewmtW8KHnIqRzGIP9mUPZI5IhE7pHIozqcffcZz1k4lrZuVGDlpURO88X6qcN5BeDi9_-jHS4f7QjWOYW5-AjeBtRmk3d7jHrKTJ-Ui-8LhgDktw priority: 102 providerName: ProQuest  | 
    
| Title | Coupling artificial neural networks with the artificial bee colony algorithm for global calibration of hydrological models | 
    
| URI | https://link.springer.com/article/10.1007/s00521-020-05601-3 https://www.proquest.com/docview/2543895306  | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdmHhjSiUygMbRGqcOE7GUvUhEBVCVCpTFMd2GUqK-hjKr-fsJm1BgMSUSDl7yOez7_O9AK6CkKVUJ9JJeIIERVB8Y5I7wmUpY4JzJo1H96Ef9Ab-3ZAN86SwWRHtXrgk7U69TnYzN5hIfalx3iKNcLwSVJgp54WreECbW9mQthEn8hYT0-N7earMz3N8PY42NuY3t6g9bToHsJebiaS5wvUQdlR2BPtFCwaSa-QxfLQmC5NTOyJmCayqQRBTo9I-bIT3jJi7VoKG3raMUIqYgtXZkiTj0WSKIm8EDViyqhBCEDpDpA1sZKLJ61JOi22S2O45sxMYdNrPrZ6Tt1NwUtSzuRMxmkjhC5PaimaCYFSzKAl0g2vkhaFSgRC-DhmqNWWpYlyHLhJkj7tKeQ0pvFMoZ5NMnQFJ0gaXiafdgGofR4d4FKY8Ui7nUro6qoJb_NU4zWuNm5YX43hdJdkiESMSsUUi9qpwvR7zvqq08ad0rQArzrVuFpvE_jBiyIKqcFMAuPn8-2zn_xO_gF1qQlts1G4NyvPpQl2ibTIXdSiFnW4dKs3uy30bn7ft_uNT3S7QT8Kv3wE | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAL5VHEUig-wAmibpw4Tg6oanloea0QAolbsGMbDrAL7KJq--P4bcx4HRaQ4MYpUWL74Pk0nvE8PoDVLBcVd8pESip0UDTHN2FkpGNRCaGlFIYiukftrHWW7p-L8zF4rGthKK2y1oleUZtuRXfkv6hoOy8EWri_b-8iYo2i6GpNoaECtYLZ9C3GQmHHgR38Qxeut7m3jfJe43x353SrFQWWgahC-PWjQnBldKqp4hNPTy24E4XKXFM6dJdyazOtU5cLRDsXlRXS5TH6jYmMrU2aRie47heYSJO0QOdv4u9O-_jkRWWmJwVFH4ryi9IklO344j26kcWvnILR6BZFyeujcWTvvgnR-pNvdxqmgsnK_gwxNgNjtjML32o6CBa0wxz83-o-UH3vJSM4DjtTMOqX6R8-27zH6N6XodH5coy2llHz7M6AqetL3PT-1Q1DY5oNu5UwhBE59QQh1nXsamDua5XNPJNP7zucfcqmz8N4p9uxC8BU1ZRGJS7OuEtxdo7HciULG0tpTOyKBsT1rpZV6HtO9BvX5XPHZi-JEiVRekmUSQPWn-fcDrt-fDh6qRZWGTRArxzhtQEbtQBHv99fbfHj1VZgsnV6dFge7rUPfsBXTik2Pnt4Ccb79w92GW2kvv4ZgMjg4rOx_wQUCiB0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbRG2cOE7GqlCVV8VApW5RHNswlLTqYyi_njsnaQsCJKZEytlDPju-L3f3HSGXQchTZhLlJCIBgiIZ3HElHOnylHMpBFcY0X3qBp2ef9_n_ZUqfpvtXoYk85oGVGnKpvWRMvVF4Rv-zQQazDCQC5TC8dbJho9CCbCie6y5Uhlpm3ICh8H8Ht8rymZ-nuPr0bT0N7-FSO3J094l24XLSJs5xntkTWf7ZKdsx0CL3XlAPlrDGdbXvlJcDrkyBEW9Snux2d4Tiv9dKTh9qzZSa4ri1dmcJoPX4RhM3ik4szRXC6EAI5JqhJAODX2bq3H5yaS2k87kkPTaty-tjlO0VnBS2HNTJ-IsUdKXWOYKLoPkzPAoCUxDGOCIodaBlL4JOWxxxlPNhQldIMuecLX2Gkp6R6SSDTN9TGiSNoRKPOMGzPgwOoRjMRWRdoVQyjVRlbjlW43TQncc218M4oViskUiBiRii0TsVcnVYswoV93407pWghUXO3ASY5F_GHFgRFVyXQK4fPz7bCf_M78gm8837fjxrvtwSrYYZrzYZN4aqUzHM30GLstUnttV-QkYuuIV | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+artificial+neural+networks+with+the+artificial+bee+colony+algorithm+for+global+calibration+of+hydrological+models&rft.jtitle=Neural+computing+%26+applications&rft.au=Farf%C3%A1n%2C+Juan+F.&rft.au=Cea%2C+Luis&rft.date=2021-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=14&rft.spage=8479&rft.epage=8494&rft_id=info:doi/10.1007%2Fs00521-020-05601-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_020_05601_3 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |