Double internal loop higher-order recurrent neural network-based adaptive control of the nonlinear dynamical system

Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have intricate nonlinear mathematical relationships. Artificial neural network (ANN) models are a good option for handling such intricate nonlinea...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 27; no. 22; pp. 17313 - 17331
Main Author Kumar, Rajesh
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-023-08061-8

Cover

Abstract Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have intricate nonlinear mathematical relationships. Artificial neural network (ANN) models are a good option for handling such intricate nonlinear systems since they include a number of significant properties like faster learning, adaptation, parallel processing, and nonlinear mapping capabilities. Several recurrent neural networks (RNNs)-based controllers have been suggested in the literature for implementing adaptive control, but the majority of these models have extremely complex topologies and many of them are challenging to train. In this paper, an attempt is made to put forward the RNN model (called as higher-order recurrent neural network (HORNN)) which is based on a higher order Pi-Sigma neural network (PSNN) model and implemented for the indirect adaptive control of the nonlinear dynamical system. The parameters of the proposed controller are tuned using the gradient-descent-based asynchronous back-propagation (BP) method. The proposed controller consists of two additional internal feedback loop layers (denoted by F L 1 and F L 2 ) corresponding to the hidden and the output layer, respectively. The nodes present in F L 1 and F L 2 layers are having weighted connections with the hidden and the output layer neurons, respectively, and these feedback connections enrich the controller with a memory property. The second contribution of the paper is to improve the performance of the learning algorithm which is achieved by incorporating an adaptive learning rate scheme (that ensures the correct setting of the learning rate value in each iteration). Another advantage of the HORNN-based controller is that it is only provided with three inputs irrespective of the dynamics of the plant and only 3 hidden neurons are included in its hidden layer (this reduces the overall structural complexity of the proposed model). The performance of the HORNN-based controller is compared with some of the popular neural networks such as diagonal recurrent neural network (DRNN), Jordan recurrent neural network (JRNN), feed-forward neural network (FFNN), and PSNN. Through simulation experiments, it is observed that the response obtained from the plant under HORNN-based controller is found to be better as compared to responses obtained with other ANN-based controllers. Further, the instantaneous mean square error (IMSE) obtained with HORNN-based controller is quite less and is equal to 0.058 as compared to 0.077, 0.082, 1.74, 13.43, and 1.86 with DRNN, JRNN, PSNN, FFNN, and FFNN (with 30 hidden neurons)-based controllers, respectively.
AbstractList Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have intricate nonlinear mathematical relationships. Artificial neural network (ANN) models are a good option for handling such intricate nonlinear systems since they include a number of significant properties like faster learning, adaptation, parallel processing, and nonlinear mapping capabilities. Several recurrent neural networks (RNNs)-based controllers have been suggested in the literature for implementing adaptive control, but the majority of these models have extremely complex topologies and many of them are challenging to train. In this paper, an attempt is made to put forward the RNN model (called as higher-order recurrent neural network (HORNN)) which is based on a higher order Pi-Sigma neural network (PSNN) model and implemented for the indirect adaptive control of the nonlinear dynamical system. The parameters of the proposed controller are tuned using the gradient-descent-based asynchronous back-propagation (BP) method. The proposed controller consists of two additional internal feedback loop layers (denoted by F L 1 and F L 2 ) corresponding to the hidden and the output layer, respectively. The nodes present in F L 1 and F L 2 layers are having weighted connections with the hidden and the output layer neurons, respectively, and these feedback connections enrich the controller with a memory property. The second contribution of the paper is to improve the performance of the learning algorithm which is achieved by incorporating an adaptive learning rate scheme (that ensures the correct setting of the learning rate value in each iteration). Another advantage of the HORNN-based controller is that it is only provided with three inputs irrespective of the dynamics of the plant and only 3 hidden neurons are included in its hidden layer (this reduces the overall structural complexity of the proposed model). The performance of the HORNN-based controller is compared with some of the popular neural networks such as diagonal recurrent neural network (DRNN), Jordan recurrent neural network (JRNN), feed-forward neural network (FFNN), and PSNN. Through simulation experiments, it is observed that the response obtained from the plant under HORNN-based controller is found to be better as compared to responses obtained with other ANN-based controllers. Further, the instantaneous mean square error (IMSE) obtained with HORNN-based controller is quite less and is equal to 0.058 as compared to 0.077, 0.082, 1.74, 13.43, and 1.86 with DRNN, JRNN, PSNN, FFNN, and FFNN (with 30 hidden neurons)-based controllers, respectively.
Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have intricate nonlinear mathematical relationships. Artificial neural network (ANN) models are a good option for handling such intricate nonlinear systems since they include a number of significant properties like faster learning, adaptation, parallel processing, and nonlinear mapping capabilities. Several recurrent neural networks (RNNs)-based controllers have been suggested in the literature for implementing adaptive control, but the majority of these models have extremely complex topologies and many of them are challenging to train. In this paper, an attempt is made to put forward the RNN model (called as higher-order recurrent neural network (HORNN)) which is based on a higher order Pi-Sigma neural network (PSNN) model and implemented for the indirect adaptive control of the nonlinear dynamical system. The parameters of the proposed controller are tuned using the gradient-descent-based asynchronous back-propagation (BP) method. The proposed controller consists of two additional internal feedback loop layers (denoted by FL1 and FL2) corresponding to the hidden and the output layer, respectively. The nodes present in FL1 and FL2 layers are having weighted connections with the hidden and the output layer neurons, respectively, and these feedback connections enrich the controller with a memory property. The second contribution of the paper is to improve the performance of the learning algorithm which is achieved by incorporating an adaptive learning rate scheme (that ensures the correct setting of the learning rate value in each iteration). Another advantage of the HORNN-based controller is that it is only provided with three inputs irrespective of the dynamics of the plant and only 3 hidden neurons are included in its hidden layer (this reduces the overall structural complexity of the proposed model). The performance of the HORNN-based controller is compared with some of the popular neural networks such as diagonal recurrent neural network (DRNN), Jordan recurrent neural network (JRNN), feed-forward neural network (FFNN), and PSNN. Through simulation experiments, it is observed that the response obtained from the plant under HORNN-based controller is found to be better as compared to responses obtained with other ANN-based controllers. Further, the instantaneous mean square error (IMSE) obtained with HORNN-based controller is quite less and is equal to 0.058 as compared to 0.077, 0.082, 1.74, 13.43, and 1.86 with DRNN, JRNN, PSNN, FFNN, and FFNN (with 30 hidden neurons)-based controllers, respectively.
Author Kumar, Rajesh
Author_xml – sequence: 1
  givenname: Rajesh
  orcidid: 0000-0001-7172-1081
  surname: Kumar
  fullname: Kumar, Rajesh
  email: rajeshmahindru23@gmail.com, rajeshmahindru23@nitkkr.ac.in
  organization: Department of Electrical Engineering, National Institute of Technology
BookMark eNp9kDFv2zAQhYkgARI7-QOZCHRmexQlkxyLtE0LBMjSzgQlnWwmMukeqRb-95HtAgUyeLm74X2H996CXcYUkbF7CR8lgP6UARoAAZUSYGAlhblgN7JWSuha28vjXQm9qtU1W-T8AlBJ3agblr-kqR2Rh1iQoh_5mNKOb8J6gyQS9UicsJuIMBYecaJZErH8TfQqWp-x5773uxL-IO9SLJRGngZeNshnh2OI6In3--i3oZvJvM8Ft7fsavBjxrt_e8l-ffv68-G7eHp-_PHw-Ul0StoirFSdUVajX9WVsa02NTaVAuUBYIDVcXoDDXqlurY3lR28tB7bwWrVtGrJPpz-7ij9njAX95KmQ8jsKisNqFrX9awyJ1VHKWfCwXWh-BIOaXwYnQR3qNidKnZzxe5YsTMzWr1DdxS2nvbnIXWC8iyOa6T_rs5QbwR_kd4
CitedBy_id crossref_primary_10_3788_COL202523_031401
crossref_primary_10_1007_s40747_023_01317_8
crossref_primary_10_1007_s10489_024_06195_2
crossref_primary_10_1007_s11071_024_09755_w
crossref_primary_10_1007_s13369_024_09036_z
crossref_primary_10_1155_2024_1122109
crossref_primary_10_1007_s11768_024_00234_6
crossref_primary_10_1088_1361_6501_adc02b
crossref_primary_10_1371_journal_pone_0305408
crossref_primary_10_1016_j_matcom_2024_08_014
crossref_primary_10_1007_s00500_025_10457_7
crossref_primary_10_1007_s40435_024_01528_y
crossref_primary_10_3390_w16202940
crossref_primary_10_1080_00207721_2025_2468864
crossref_primary_10_26599_AIR_2024_9150039
crossref_primary_10_1109_TNNLS_2024_3379020
crossref_primary_10_1007_s00521_023_09240_2
crossref_primary_10_1016_j_neucom_2024_128602
crossref_primary_10_1038_s41598_024_84961_5
crossref_primary_10_1016_j_engappai_2024_108000
crossref_primary_10_1007_s00500_023_09481_2
crossref_primary_10_1016_j_compeleceng_2024_109887
crossref_primary_10_1007_s13369_024_09629_8
crossref_primary_10_1007_s10462_024_10746_x
Cites_doi 10.1007/s00500-021-06113-5
10.1007/s00521-016-2738-1
10.1007/s41066-022-00320-7
10.1016/j.asoc.2007.03.002
10.1109/IJCNN.1991.155142
10.1109/21.364864
10.1016/j.eswa.2019.113148
10.1109/TIE.2003.812350
10.1016/j.jprocont.2022.06.012
10.1109/TNN.2006.878121
10.1016/j.neucom.2021.10.065
10.1007/s00500-021-06422-9
10.1109/TCYB.2021.3052234
10.1007/s00521-019-04474-5
10.1016/j.engappai.2011.09.019
10.1016/j.neucom.2020.09.026
10.1109/TNNLS.2017.2672998
10.1109/TII.2012.2205582
10.1007/s00500-009-0398-0
10.1016/j.asr.2020.10.052
10.1109/TNNLS.2015.2465174
10.1016/j.compstruc.2007.03.001
10.1007/s00521-019-04195-9
10.1109/72.363441
10.1016/j.jprocont.2022.04.011
10.1109/41.661316
10.1007/s00521-007-0164-0
10.1007/s00521-017-3002-z
10.1142/S0129065792000255
10.1109/TNN.2006.890809
10.1109/87.221350
10.1111/j.1934-6093.2002.tb00350.x
10.1007/s00521-022-07760-x
10.1016/j.engappai.2018.04.017
10.1016/j.engappai.2021.104519
10.1111/exsy.13124
10.1016/j.neucom.2008.06.030
10.23919/ECC.2019.8795809
10.1016/j.neucom.2021.01.096
10.1007/s00521-019-04485-2
10.1109/72.655026
10.1007/s00500-021-05686-5
10.1016/0885-2308(87)90009-X
10.1007/s00500-004-0455-7
10.1007/978-3-642-20998-7_61
10.1016/j.eswa.2022.117831
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-023-08061-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 17331
ExternalDocumentID 10_1007_s00500_023_08061_8
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-913c8397ea64289b784e52303a000f06000f0a805ea33cbd829fa19aebf9735b3
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Fri Aug 29 04:48:59 EDT 2025
Wed Oct 01 03:00:27 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
Fri Feb 21 02:41:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Nonlinear adaptive control
Recurrent neural networks
Adaptive learning rate
Pi-sigma neural network
Higher-order networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-913c8397ea64289b784e52303a000f06000f0a805ea33cbd829fa19aebf9735b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7172-1081
PQID 2918034744
PQPubID 2043697
PageCount 19
ParticipantIDs proquest_journals_2918034744
crossref_citationtrail_10_1007_s00500_023_08061_8
crossref_primary_10_1007_s00500_023_08061_8
springer_journals_10_1007_s00500_023_08061_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Cheng, Tao, Zhan, Li, Li (CR5) 2020; 32
Hussain, Liatsis, Tawfik, Nagar, Al-Jumeily (CR21) 2008; 1
Nayak, Naik, Behera, Abraham (CR33) 2018; 30
Nouri, Dhaouadi, Braiek (CR35) 2008; 8
Fei, Lu (CR11) 2017; 29
Song, Chen, Yuan (CR40) 2007; 18
CR39
Rego, de Araújo (CR37) 2022; 107
Ren, Rad, Chan, Lo (CR38) 2003; 50
Ghosh, Shin (CR15) 1992; 3
CR10
Perrusquía, Yu (CR36) 2021; 438
Hsin, Li, Sun, Sclabassi (CR18) 1995; 25
CR31
Ku, Lee (CR24) 1995; 6
Li, Chen, Yuan (CR28) 2002; 4
Ge, Liang, Marchese (CR13) 2007; 85
Napoli, De Magistris, Ciancarelli, Corallo, Russo, Nardi (CR32) 2022; 206
Machón-González, López-García, Bocos-Barranco (CR30) 2020; 32
Egrioglu, Yolcu, Bas, Dalar (CR9) 2019; 31
Fei, Chen, Liu, Fang (CR12) 2021; 52
Noriega, Wang (CR34) 1998; 9
Ge, Du, Qian, Liang (CR14) 2009; 72
Bonassi, Farina, Xie, Scattolini (CR3) 2022; 114
Tavoosi, Mohammadzadeh, Jermsittiparsert (CR41) 2021; 25
Yan, Wang (CR44) 2012; 8
Yang, Chen, Liu (CR45) 2021
Bas, Grosan, Egrioglu, Yolcu (CR1) 2018; 72
Chow, Fang (CR7) 1998; 45
Dass, Srivastava, Gupta, Khari, Parra, Verdú (CR8) 2022; 25
Ko (CR23) 2012; 25
Yang, Li, Moreira (CR46) 2022; 116
Zhou, Tong, Chen, Zhou, Xu (CR48) 2021; 421
CR27
Behera, Kumar, Patnaik (CR2) 2006; 17
CR22
Kuschewski, Hui, Zak (CR25) 1993; 1
Han, Zhang, Hou, Qiao (CR16) 2015; 27
CR20
Lin, Xu (CR29) 2006; 10
Chan, Fallside (CR4) 1987; 2
Xu, Li, Wu (CR43) 2010; 14
Zhang, Chao, Zeng, Lin, Yang (CR47) 2022; 26
Hsu (CR19) 2009; 18
Han, Ma, Yang, Qiao (CR17) 2022; 469
Waheeb, Ghazali (CR42) 2020; 32
Cheng, Wang, Jiang, Li (CR6) 2021; 67
Lamamra, Batat, Mokhtari (CR26) 2020; 145
8061_CR20
J Zhang (8061_CR47) 2022; 26
8061_CR22
F Yang (8061_CR45) 2021
Z Zhou (8061_CR48) 2021; 421
J Tavoosi (8061_CR41) 2021; 25
H-W Ge (8061_CR13) 2007; 85
X Ren (8061_CR38) 2003; 50
C-N Ko (8061_CR23) 2012; 25
J Ghosh (8061_CR15) 1992; 3
S-B Yang (8061_CR46) 2022; 116
H-G Han (8061_CR17) 2022; 469
K Nouri (8061_CR35) 2008; 8
D Xu (8061_CR43) 2010; 14
C-J Lin (8061_CR29) 2006; 10
J Fei (8061_CR12) 2021; 52
8061_CR39
I Machón-González (8061_CR30) 2020; 32
C-F Hsu (8061_CR19) 2009; 18
K Lamamra (8061_CR26) 2020; 145
Z Yan (8061_CR44) 2012; 8
E Bas (8061_CR1) 2018; 72
8061_CR31
C-C Ku (8061_CR24) 1995; 6
8061_CR10
H-W Ge (8061_CR14) 2009; 72
X Li (8061_CR28) 2002; 4
A Perrusquía (8061_CR36) 2021; 438
C Napoli (8061_CR32) 2022; 206
JR Noriega (8061_CR34) 1998; 9
Y Song (8061_CR40) 2007; 18
J Nayak (8061_CR33) 2018; 30
RC Rego (8061_CR37) 2022; 107
JG Kuschewski (8061_CR25) 1993; 1
L Cheng (8061_CR6) 2021; 67
H-C Hsin (8061_CR18) 1995; 25
J Fei (8061_CR11) 2017; 29
F Bonassi (8061_CR3) 2022; 114
L Behera (8061_CR2) 2006; 17
W Waheeb (8061_CR42) 2020; 32
AJ Hussain (8061_CR21) 2008; 1
K Cheng (8061_CR5) 2020; 32
H-G Han (8061_CR16) 2015; 27
8061_CR27
TW Chow (8061_CR7) 1998; 45
L-W Chan (8061_CR4) 1987; 2
A Dass (8061_CR8) 2022; 25
E Egrioglu (8061_CR9) 2019; 31
References_xml – ident: CR22
– volume: 26
  start-page: 3013
  issue: 6
  year: 2022
  end-page: 3028
  ident: CR47
  article-title: A recurrent wavelet-based brain emotional learning network controller for nonlinear systems
  publication-title: Soft Comput
– volume: 4
  start-page: 231
  issue: 2
  year: 2002
  end-page: 239
  ident: CR28
  article-title: Simple recurrent neural network-based adaptive predictive control for nonlinear systems
  publication-title: Asian J Control
– volume: 2
  start-page: 205
  issue: 3–4
  year: 1987
  end-page: 218
  ident: CR4
  article-title: An adaptive training algorithm for back propagation networks
  publication-title: Comput Speech Language
– volume: 145
  start-page: 113148
  year: 2020
  ident: CR26
  article-title: A new technique with improved control quality of nonlinear systems using an optimized fuzzy logic controller
  publication-title: Exp Syst Appl
– volume: 27
  start-page: 402
  issue: 2
  year: 2015
  end-page: 415
  ident: CR16
  article-title: Nonlinear model predictive control based on a self-organizing recurrent neural network
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: CR39
– volume: 32
  start-page: 5695
  issue: 10
  year: 2020
  end-page: 5712
  ident: CR5
  article-title: Hierarchical attributes learning for pedestrian re-identification via parallel stochastic gradient descent combined with momentum correction and adaptive learning rate
  publication-title: Neural Comput Appl
– volume: 25
  start-page: 533
  issue: 3
  year: 2012
  end-page: 543
  ident: CR23
  article-title: Identification of nonlinear systems with outliers using wavelet neural networks based on annealing dynamical learning algorithm
  publication-title: Eng Appl Artif Intell
– volume: 25
  start-page: e13124
  year: 2022
  ident: CR8
  article-title: Modelling and control of fuzzy-based systems using intelligent water drop algorithm
  publication-title: Exp Syst
– volume: 9
  start-page: 27
  issue: 1
  year: 1998
  end-page: 34
  ident: CR34
  article-title: A direct adaptive neural-network control for unknown nonlinear systems and its application
  publication-title: IEEE Trans Neural Netw
– volume: 8
  start-page: 746
  issue: 4
  year: 2012
  end-page: 756
  ident: CR44
  article-title: Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks
  publication-title: IEEE Trans Indus Inform
– ident: CR10
– year: 2021
  ident: CR45
  article-title: Improved and optimized recurrent neural network based on PSO and its application in stock price prediction
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06113-5
– volume: 67
  start-page: 1114
  issue: 3
  year: 2021
  end-page: 1123
  ident: CR6
  article-title: Adaptive neural network control of nonlinear systems with unknown dynamics
  publication-title: Adv Space Res
– volume: 25
  start-page: 512
  issue: 3
  year: 1995
  end-page: 514
  ident: CR18
  article-title: An adaptive training algorithm for back-propagation neural networks
  publication-title: IEEE Transactions Syst Man Cybern
– volume: 1
  start-page: 130
  issue: 1
  year: 2008
  end-page: 145
  ident: CR21
  article-title: Physical time series prediction using recurrent pi-sigma neural networks
  publication-title: Int J Artif Intell Soft Comput
– volume: 8
  start-page: 371
  issue: 1
  year: 2008
  end-page: 382
  ident: CR35
  article-title: Adaptive control of a nonlinear dc motor drive using recurrent neural networks
  publication-title: Appl Soft Comput
– volume: 32
  start-page: 9621
  issue: 13
  year: 2020
  end-page: 9647
  ident: CR42
  article-title: A novel error-output recurrent neural network model for time series forecasting
  publication-title: Neural Comput Appl
– volume: 14
  start-page: 245
  issue: 3
  year: 2010
  end-page: 250
  ident: CR43
  article-title: Convergence of gradient method for a fully recurrent neural network
  publication-title: Soft Comput
– volume: 421
  start-page: 161
  year: 2021
  end-page: 172
  ident: CR48
  article-title: Adaptive nn control for nonlinear systems with uncertainty based on dynamic surface control
  publication-title: Neurocomputing
– volume: 17
  start-page: 1116
  issue: 5
  year: 2006
  end-page: 1125
  ident: CR2
  article-title: On adaptive learning rate that guarantees convergence in feedforward networks
  publication-title: IEEE Trans Neural Netw
– volume: 1
  start-page: 37
  issue: 1
  year: 1993
  end-page: 49
  ident: CR25
  article-title: Application of feedforward neural networks to dynamical system identification and control
  publication-title: IEEE Trans Control Syst Technol
– volume: 6
  start-page: 144
  issue: 1
  year: 1995
  end-page: 156
  ident: CR24
  article-title: Diagonal recurrent neural networks for dynamic systems control
  publication-title: IEEE Trans Neural Netw
– volume: 72
  start-page: 2857
  issue: 13–15
  year: 2009
  end-page: 2864
  ident: CR14
  article-title: Identification and control of nonlinear systems by a time-delay recurrent neural network
  publication-title: Neurocomputing
– volume: 469
  start-page: 1
  year: 2022
  end-page: 12
  ident: CR17
  article-title: Self-organizing radial basis function neural network using accelerated second-order learning algorithm
  publication-title: Neurocomputing
– ident: CR27
– volume: 438
  start-page: 145
  year: 2021
  end-page: 154
  ident: CR36
  article-title: Identification and optimal control of nonlinear systems using recurrent neural networks and reinforcement learning: an overview
  publication-title: Neurocomputing
– volume: 29
  start-page: 1275
  issue: 4
  year: 2017
  end-page: 1286
  ident: CR11
  article-title: Adaptive sliding mode control of dynamic systems using double loop recurrent neural network structure
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 72
  start-page: 350
  year: 2018
  end-page: 356
  ident: CR1
  article-title: High order fuzzy time series method based on pi-sigma neural network
  publication-title: Eng Appl Artif Intell
– volume: 116
  start-page: 209
  year: 2022
  end-page: 220
  ident: CR46
  article-title: A recurrent neural network-based approach for joint chance constrained stochastic optimal control
  publication-title: J Process Control
– volume: 45
  start-page: 151
  issue: 1
  year: 1998
  end-page: 161
  ident: CR7
  article-title: A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics
  publication-title: IEEE Trans Indus Electron
– volume: 114
  start-page: 92
  year: 2022
  end-page: 104
  ident: CR3
  article-title: On recurrent neural networks for learning-based control: recent results and ideas for future developments
  publication-title: J Process Control
– volume: 32
  start-page: 18123
  issue: 24
  year: 2020
  end-page: 18142
  ident: CR30
  article-title: Dynamics identification and control of nonlinear mimo coupled plant using supervised neural gas and comparison with recurrent neural controller
  publication-title: Neural Comput Appl
– volume: 206
  start-page: 117831
  year: 2022
  ident: CR32
  article-title: Exploiting wavelet recurrent neural networks for satellite telemetry data modeling, prediction and control
  publication-title: Exp Syst Appl
– volume: 31
  start-page: 307
  issue: 1
  year: 2019
  end-page: 316
  ident: CR9
  article-title: Median-pi artificial neural network for forecasting
  publication-title: Neural Comput Appl
– volume: 50
  start-page: 478
  issue: 3
  year: 2003
  end-page: 486
  ident: CR38
  article-title: Identification and control of continuous-time nonlinear systems via dynamic neural networks
  publication-title: IEEE Trans Indus Electron
– volume: 18
  start-page: 115
  issue: 2
  year: 2009
  end-page: 125
  ident: CR19
  article-title: Adaptive recurrent neural network control using a structure adaptation algorithm
  publication-title: Neural Comput Appl
– volume: 10
  start-page: 193
  issue: 3
  year: 2006
  end-page: 205
  ident: CR29
  article-title: A novel evolution learning for recurrent wavelet-based neuro-fuzzy networks
  publication-title: Soft Comput
– ident: CR31
– volume: 30
  start-page: 1445
  issue: 5
  year: 2018
  end-page: 1468
  ident: CR33
  article-title: Elitist teaching-learning-based optimization (etlbo) with higher-order jordan pi-sigma neural network: a comparative performance analysis
  publication-title: Neural Comput Appl
– volume: 107
  start-page: 104519
  year: 2022
  ident: CR37
  article-title: Lyapunov-based continuous-time nonlinear control using deep neural network applied to underactuated systems
  publication-title: Eng Appl Artif Intell
– volume: 85
  start-page: 1611
  issue: 21–22
  year: 2007
  end-page: 1622
  ident: CR13
  article-title: A modified particle swarm optimization-based dynamic recurrent neural network for identifying and controlling nonlinear systems
  publication-title: Comput Struct
– volume: 25
  start-page: 7197
  issue: 10
  year: 2021
  end-page: 7212
  ident: CR41
  article-title: A review on type-2 fuzzy neural networks for system identification
  publication-title: Soft Comput
– volume: 18
  start-page: 595
  issue: 2
  year: 2007
  end-page: 601
  ident: CR40
  article-title: New chaotic PSO-based neural network predictive control for nonlinear process
  publication-title: IEEE Trans Neural Netw
– volume: 52
  start-page: 9519
  year: 2021
  end-page: 9534
  ident: CR12
  article-title: Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller
  publication-title: IEEE Trans Cybern
– ident: CR20
– volume: 3
  start-page: 323
  issue: 04
  year: 1992
  end-page: 350
  ident: CR15
  article-title: Efficient higher-order neural networks for classification and function approximation
  publication-title: Int J Neural Syst
– ident: 8061_CR31
– volume: 30
  start-page: 1445
  issue: 5
  year: 2018
  ident: 8061_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2738-1
– ident: 8061_CR10
  doi: 10.1007/s41066-022-00320-7
– volume: 8
  start-page: 371
  issue: 1
  year: 2008
  ident: 8061_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.03.002
– ident: 8061_CR39
  doi: 10.1109/IJCNN.1991.155142
– volume: 25
  start-page: 512
  issue: 3
  year: 1995
  ident: 8061_CR18
  publication-title: IEEE Transactions Syst Man Cybern
  doi: 10.1109/21.364864
– volume: 145
  start-page: 113148
  year: 2020
  ident: 8061_CR26
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2019.113148
– volume: 50
  start-page: 478
  issue: 3
  year: 2003
  ident: 8061_CR38
  publication-title: IEEE Trans Indus Electron
  doi: 10.1109/TIE.2003.812350
– volume: 116
  start-page: 209
  year: 2022
  ident: 8061_CR46
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2022.06.012
– volume: 17
  start-page: 1116
  issue: 5
  year: 2006
  ident: 8061_CR2
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.878121
– volume: 469
  start-page: 1
  year: 2022
  ident: 8061_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.065
– volume: 26
  start-page: 3013
  issue: 6
  year: 2022
  ident: 8061_CR47
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06422-9
– volume: 52
  start-page: 9519
  year: 2021
  ident: 8061_CR12
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3052234
– volume: 32
  start-page: 9621
  issue: 13
  year: 2020
  ident: 8061_CR42
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04474-5
– volume: 25
  start-page: 533
  issue: 3
  year: 2012
  ident: 8061_CR23
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2011.09.019
– volume: 421
  start-page: 161
  year: 2021
  ident: 8061_CR48
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.026
– volume: 29
  start-page: 1275
  issue: 4
  year: 2017
  ident: 8061_CR11
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2672998
– volume: 8
  start-page: 746
  issue: 4
  year: 2012
  ident: 8061_CR44
  publication-title: IEEE Trans Indus Inform
  doi: 10.1109/TII.2012.2205582
– volume: 14
  start-page: 245
  issue: 3
  year: 2010
  ident: 8061_CR43
  publication-title: Soft Comput
  doi: 10.1007/s00500-009-0398-0
– volume: 67
  start-page: 1114
  issue: 3
  year: 2021
  ident: 8061_CR6
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2020.10.052
– volume: 27
  start-page: 402
  issue: 2
  year: 2015
  ident: 8061_CR16
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2465174
– volume: 85
  start-page: 1611
  issue: 21–22
  year: 2007
  ident: 8061_CR13
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2007.03.001
– volume: 1
  start-page: 130
  issue: 1
  year: 2008
  ident: 8061_CR21
  publication-title: Int J Artif Intell Soft Comput
– volume: 32
  start-page: 18123
  issue: 24
  year: 2020
  ident: 8061_CR30
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04195-9
– volume: 6
  start-page: 144
  issue: 1
  year: 1995
  ident: 8061_CR24
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.363441
– volume: 114
  start-page: 92
  year: 2022
  ident: 8061_CR3
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2022.04.011
– volume: 45
  start-page: 151
  issue: 1
  year: 1998
  ident: 8061_CR7
  publication-title: IEEE Trans Indus Electron
  doi: 10.1109/41.661316
– volume: 18
  start-page: 115
  issue: 2
  year: 2009
  ident: 8061_CR19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-007-0164-0
– volume: 31
  start-page: 307
  issue: 1
  year: 2019
  ident: 8061_CR9
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3002-z
– volume: 3
  start-page: 323
  issue: 04
  year: 1992
  ident: 8061_CR15
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065792000255
– volume: 18
  start-page: 595
  issue: 2
  year: 2007
  ident: 8061_CR40
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.890809
– year: 2021
  ident: 8061_CR45
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06113-5
– volume: 1
  start-page: 37
  issue: 1
  year: 1993
  ident: 8061_CR25
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/87.221350
– volume: 4
  start-page: 231
  issue: 2
  year: 2002
  ident: 8061_CR28
  publication-title: Asian J Control
  doi: 10.1111/j.1934-6093.2002.tb00350.x
– ident: 8061_CR22
  doi: 10.1007/s00521-022-07760-x
– volume: 72
  start-page: 350
  year: 2018
  ident: 8061_CR1
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.017
– volume: 107
  start-page: 104519
  year: 2022
  ident: 8061_CR37
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104519
– volume: 25
  start-page: e13124
  year: 2022
  ident: 8061_CR8
  publication-title: Exp Syst
  doi: 10.1111/exsy.13124
– volume: 72
  start-page: 2857
  issue: 13–15
  year: 2009
  ident: 8061_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.06.030
– ident: 8061_CR27
  doi: 10.23919/ECC.2019.8795809
– volume: 438
  start-page: 145
  year: 2021
  ident: 8061_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.096
– volume: 32
  start-page: 5695
  issue: 10
  year: 2020
  ident: 8061_CR5
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04485-2
– volume: 9
  start-page: 27
  issue: 1
  year: 1998
  ident: 8061_CR34
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.655026
– volume: 25
  start-page: 7197
  issue: 10
  year: 2021
  ident: 8061_CR41
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05686-5
– volume: 2
  start-page: 205
  issue: 3–4
  year: 1987
  ident: 8061_CR4
  publication-title: Comput Speech Language
  doi: 10.1016/0885-2308(87)90009-X
– volume: 10
  start-page: 193
  issue: 3
  year: 2006
  ident: 8061_CR29
  publication-title: Soft Comput
  doi: 10.1007/s00500-004-0455-7
– ident: 8061_CR20
  doi: 10.1007/978-3-642-20998-7_61
– volume: 206
  start-page: 117831
  year: 2022
  ident: 8061_CR32
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2022.117831
SSID ssj0021753
Score 2.514826
Snippet Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17313
SubjectTerms Adaptive control
Adaptive learning
Algorithms
Application of Soft Computing
Artificial Intelligence
Artificial neural networks
Back propagation networks
Complexity
Computational Intelligence
Control
Control theory
Controllers
Dynamical systems
Engineering
Feedback
Feedback loops
Iterative methods
Machine learning
Mathematical Logic and Foundations
Mechatronics
Neural networks
Neurons
Nonlinear control
Nonlinear systems
Parallel processing
Performance enhancement
Recurrent neural networks
Robotics
System theory
Topology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m9uKL3-J0Sh5802Db9CN9EFHZGIJDxMHeStokKJS1bvP_95KmGwr60pcmKfRyd79c7n4HcCmUChIuY9RvpmmotaC8SFLK0gjRMZfMt1mVz5N4PA2fZtGsA5O2FsakVbY20RpqWRUmRn4TpD73WJiE4V39SU3XKHO72rbQEK61gry1FGNb0AsMM1YXeg_Dycvr-gjmeCkRJCCuRGfsymhsMZ2hQvEo-jCKKCr2Kf_pqjb489eVqfVEoz3YcRCS3Dcy34eOmh_AbtuegThtPYQlguO8VOSjCfqVpKyqmrzbxA5qKTfJwkTbDT8TMbyWOGTeZIVT49wkEVLUxhwSl9BOKk0QMJJ5w68hFkQ2De1xZkMJfQTT0fDtcUxdjwVaoPKtzMV7gRgpUcIcRNI84aEygWIm0FZqL7ZPwb1ICcaKXPIg1cJPhcp1mrAoZ8fQxY-qEyB-HAs8HiFE0xr9vuZC8aRAY-trKVkY9MFvf2dWOAJy0wejzNbUyVYEGYogsyLIeB-u1nPqhn7j39GDVkqZU8Vlttk4fbhuJbd5_fdqp_-vdgbbpvV8U5c4gO5q8aXOEaCs8gu3674BISbhLg
  priority: 102
  providerName: ProQuest
Title Double internal loop higher-order recurrent neural network-based adaptive control of the nonlinear dynamical system
URI https://link.springer.com/article/10.1007/s00500-023-08061-8
https://www.proquest.com/docview/2918034744
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-7479
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: U2A
  dateStart: 19970404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9qIPfkzF6Rx58E0DbdOP9HHK5lAcIg7mU0nbBIWyjW3-_17StFNRwZf2oUkKudzdL8nd7wAuhJRexPMQ9Zsp6islKM-imLI4QHTMc-aaqMqHcTia-HfTYGqTwlZVtHt1JWksdZ3spqlKHIo-hiLKCV3KG9AKNJ0XruKJ16-3WZZ7EoEAYkd0uDZV5ucxvrqjDcb8di1qvM1wH3YtTCT9Uq4HsCVnbdirSjAQq5Ft2PnEJ3gIK4TDaSHJW3nMV5BiPl-QVxPKQQ3JJlnq83XNyEQ0kyU2mZVx4FS7s5yIXCy0ASQ2hJ3MFUGISGYlo4ZYkrwsYY89SxLoI5gMB883I2qrKtAM1W2tr9ozREWRFHrrEacR96U-GmYCraNyQvMU3AmkYCxLc-7FSrixkKmKIxak7Bia-FN5AsQNQ4EbIgRlSqGnV1xIHmVoXl2V58z3OuBWk5tklnJcV74okpos2QgkQYEkRiAJ78Bl3WdREm782bpbySyxyrdKvNjlDvMj3-_AVSXHzeffRzv9X_Mz2NbF58vMxC4018t3eY4QZZ32oMGHtz1o9W9f7gf4vh6MH596Zp1-AFC44Bc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HODCGzEYkAOcIGJtsjY9TIinxmtCCCRuJW0SgTRtYxtC_Dl-G06abgIJblx6aZpKsWN_TuzPADtS6zAWKsL9zQzlxkgq8jihLKkjOhaKBS6r8qYVNR_45WP9cQI-y1oYm1ZZ2kRnqFU3t2fkB2ESiBrjMeeHvVdqu0bZ29WyhYb0rRVUw1GM-cKOK_3xjiHcoHFxivLeDcPzs_uTJvVdBmiO6je0V885ooRYSwvFkywWXNujUibRWpha5J5S1OpaMpZnSoSJkUEidWaSmNUzhvNOwjRnPMHgb_r4rHV7Nwr5PA8mghLEsej8fdmOK96z1Cs1ij6TImqLAiq-u8Yx3v1xRes83_kCzHnISo4KHVuECd1ZgvmyHQTx1mEZBgjGs7YmL8UhY5u0u90eeXaJJNRRfJK-Pd23fFDE8mjikE6RhU6tM1VEKtmz5pf4BHrSNQQBKukUfB6yT9RHRzqCA1JQUK_Aw7-s9ipM4U_1GpAgiiSGYwgJjUGcYYTUIs7RuAdGKcbDCgTlcqa5Jzy3fTfa6Yiq2YkgRRGkTgSpqMDe6JteQffx5-hqKaXUb_1BOlbUCuyXkhu__n229b9n24aZ5v3NdXp90bragFnb9r6oiazC1LD_pjcRHA2zLa-BBJ7-W-m_AJZBHME
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAcuEG0tena9DgB03hNHJi0W5U2iUCqtmob_x8nabeBAIlLL01SqY7jz479GeBSKOVHXIao30zTQGtBeRbFlMUdRMdcMs9mVT4Pwv4weBh1RitV_DbbvbqSdDUNhqVpPG8VUrcWhW-GtqRN0d5QRDyhR_k6bASGKAF39NDvLlyukocSQQHiSDS-ZdnMz2t8NU1LvPntitRant4e7JSQkXSdjPdhTY3rsFu1YyCldtZhe4Vb8ABmCI3TXJF3F_LLST6ZFOTNpnVQS7hJpibWbtiZiGG1xCFjlxNOjWmTREhRmMOQlOnsZKIJwkUyduwaYkqka2ePMx0h9CEMe3evN31adligGare3Fy7Z4iQIiWMGxKnEQ-UCRMzgSelbof2KXi7owRjWSq5H2vhxUKlOo5YJ2VHUMOPqmMgXhgKdI4QoGmNVl9zoXiU4VHraSlZ4DfAq35ukpX046YLRp4siJOtQBIUSGIFkvAGXC3mFI5848_RzUpmSamIs8SPPd5mQRQEDbiu5Lh8_ftqJ_8bfgGbL7e95Ol-8HgKW6YnvStYbEJtPv1QZ4hc5um53Zyfs73jKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double+internal+loop+higher-order+recurrent+neural+network-based+adaptive+control+of+the+nonlinear+dynamical+system&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Kumar%2C+Rajesh&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=27&rft.issue=22&rft.spage=17313&rft.epage=17331&rft_id=info:doi/10.1007%2Fs00500-023-08061-8&rft.externalDocID=10_1007_s00500_023_08061_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon