Double internal loop higher-order recurrent neural network-based adaptive control of the nonlinear dynamical system
Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have intricate nonlinear mathematical relationships. Artificial neural network (ANN) models are a good option for handling such intricate nonlinea...
Saved in:
| Published in | Soft computing (Berlin, Germany) Vol. 27; no. 22; pp. 17313 - 17331 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-7643 1433-7479 |
| DOI | 10.1007/s00500-023-08061-8 |
Cover
| Abstract | Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have intricate nonlinear mathematical relationships. Artificial neural network (ANN) models are a good option for handling such intricate nonlinear systems since they include a number of significant properties like faster learning, adaptation, parallel processing, and nonlinear mapping capabilities. Several recurrent neural networks (RNNs)-based controllers have been suggested in the literature for implementing adaptive control, but the majority of these models have extremely complex topologies and many of them are challenging to train. In this paper, an attempt is made to put forward the RNN model (called as higher-order recurrent neural network (HORNN)) which is based on a higher order Pi-Sigma neural network (PSNN) model and implemented for the indirect adaptive control of the nonlinear dynamical system. The parameters of the proposed controller are tuned using the gradient-descent-based asynchronous back-propagation (BP) method. The proposed controller consists of two additional internal feedback loop layers (denoted by
F
L
1
and
F
L
2
) corresponding to the hidden and the output layer, respectively. The nodes present in
F
L
1
and
F
L
2
layers are having weighted connections with the hidden and the output layer neurons, respectively, and these feedback connections enrich the controller with a memory property. The second contribution of the paper is to improve the performance of the learning algorithm which is achieved by incorporating an adaptive learning rate scheme (that ensures the correct setting of the learning rate value in each iteration). Another advantage of the HORNN-based controller is that it is only provided with three inputs irrespective of the dynamics of the plant and only 3 hidden neurons are included in its hidden layer (this reduces the overall structural complexity of the proposed model). The performance of the HORNN-based controller is compared with some of the popular neural networks such as diagonal recurrent neural network (DRNN), Jordan recurrent neural network (JRNN), feed-forward neural network (FFNN), and PSNN. Through simulation experiments, it is observed that the response obtained from the plant under HORNN-based controller is found to be better as compared to responses obtained with other ANN-based controllers. Further, the instantaneous mean square error (IMSE) obtained with HORNN-based controller is quite less and is equal to 0.058 as compared to 0.077, 0.082, 1.74, 13.43, and 1.86 with DRNN, JRNN, PSNN, FFNN, and FFNN (with 30 hidden neurons)-based controllers, respectively. |
|---|---|
| AbstractList | Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have intricate nonlinear mathematical relationships. Artificial neural network (ANN) models are a good option for handling such intricate nonlinear systems since they include a number of significant properties like faster learning, adaptation, parallel processing, and nonlinear mapping capabilities. Several recurrent neural networks (RNNs)-based controllers have been suggested in the literature for implementing adaptive control, but the majority of these models have extremely complex topologies and many of them are challenging to train. In this paper, an attempt is made to put forward the RNN model (called as higher-order recurrent neural network (HORNN)) which is based on a higher order Pi-Sigma neural network (PSNN) model and implemented for the indirect adaptive control of the nonlinear dynamical system. The parameters of the proposed controller are tuned using the gradient-descent-based asynchronous back-propagation (BP) method. The proposed controller consists of two additional internal feedback loop layers (denoted by
F
L
1
and
F
L
2
) corresponding to the hidden and the output layer, respectively. The nodes present in
F
L
1
and
F
L
2
layers are having weighted connections with the hidden and the output layer neurons, respectively, and these feedback connections enrich the controller with a memory property. The second contribution of the paper is to improve the performance of the learning algorithm which is achieved by incorporating an adaptive learning rate scheme (that ensures the correct setting of the learning rate value in each iteration). Another advantage of the HORNN-based controller is that it is only provided with three inputs irrespective of the dynamics of the plant and only 3 hidden neurons are included in its hidden layer (this reduces the overall structural complexity of the proposed model). The performance of the HORNN-based controller is compared with some of the popular neural networks such as diagonal recurrent neural network (DRNN), Jordan recurrent neural network (JRNN), feed-forward neural network (FFNN), and PSNN. Through simulation experiments, it is observed that the response obtained from the plant under HORNN-based controller is found to be better as compared to responses obtained with other ANN-based controllers. Further, the instantaneous mean square error (IMSE) obtained with HORNN-based controller is quite less and is equal to 0.058 as compared to 0.077, 0.082, 1.74, 13.43, and 1.86 with DRNN, JRNN, PSNN, FFNN, and FFNN (with 30 hidden neurons)-based controllers, respectively. Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have intricate nonlinear mathematical relationships. Artificial neural network (ANN) models are a good option for handling such intricate nonlinear systems since they include a number of significant properties like faster learning, adaptation, parallel processing, and nonlinear mapping capabilities. Several recurrent neural networks (RNNs)-based controllers have been suggested in the literature for implementing adaptive control, but the majority of these models have extremely complex topologies and many of them are challenging to train. In this paper, an attempt is made to put forward the RNN model (called as higher-order recurrent neural network (HORNN)) which is based on a higher order Pi-Sigma neural network (PSNN) model and implemented for the indirect adaptive control of the nonlinear dynamical system. The parameters of the proposed controller are tuned using the gradient-descent-based asynchronous back-propagation (BP) method. The proposed controller consists of two additional internal feedback loop layers (denoted by FL1 and FL2) corresponding to the hidden and the output layer, respectively. The nodes present in FL1 and FL2 layers are having weighted connections with the hidden and the output layer neurons, respectively, and these feedback connections enrich the controller with a memory property. The second contribution of the paper is to improve the performance of the learning algorithm which is achieved by incorporating an adaptive learning rate scheme (that ensures the correct setting of the learning rate value in each iteration). Another advantage of the HORNN-based controller is that it is only provided with three inputs irrespective of the dynamics of the plant and only 3 hidden neurons are included in its hidden layer (this reduces the overall structural complexity of the proposed model). The performance of the HORNN-based controller is compared with some of the popular neural networks such as diagonal recurrent neural network (DRNN), Jordan recurrent neural network (JRNN), feed-forward neural network (FFNN), and PSNN. Through simulation experiments, it is observed that the response obtained from the plant under HORNN-based controller is found to be better as compared to responses obtained with other ANN-based controllers. Further, the instantaneous mean square error (IMSE) obtained with HORNN-based controller is quite less and is equal to 0.058 as compared to 0.077, 0.082, 1.74, 13.43, and 1.86 with DRNN, JRNN, PSNN, FFNN, and FFNN (with 30 hidden neurons)-based controllers, respectively. |
| Author | Kumar, Rajesh |
| Author_xml | – sequence: 1 givenname: Rajesh orcidid: 0000-0001-7172-1081 surname: Kumar fullname: Kumar, Rajesh email: rajeshmahindru23@gmail.com, rajeshmahindru23@nitkkr.ac.in organization: Department of Electrical Engineering, National Institute of Technology |
| BookMark | eNp9kDFv2zAQhYkgARI7-QOZCHRmexQlkxyLtE0LBMjSzgQlnWwmMukeqRb-95HtAgUyeLm74X2H996CXcYUkbF7CR8lgP6UARoAAZUSYGAlhblgN7JWSuha28vjXQm9qtU1W-T8AlBJ3agblr-kqR2Rh1iQoh_5mNKOb8J6gyQS9UicsJuIMBYecaJZErH8TfQqWp-x5773uxL-IO9SLJRGngZeNshnh2OI6In3--i3oZvJvM8Ft7fsavBjxrt_e8l-ffv68-G7eHp-_PHw-Ul0StoirFSdUVajX9WVsa02NTaVAuUBYIDVcXoDDXqlurY3lR28tB7bwWrVtGrJPpz-7ij9njAX95KmQ8jsKisNqFrX9awyJ1VHKWfCwXWh-BIOaXwYnQR3qNidKnZzxe5YsTMzWr1DdxS2nvbnIXWC8iyOa6T_rs5QbwR_kd4 |
| CitedBy_id | crossref_primary_10_3788_COL202523_031401 crossref_primary_10_1007_s40747_023_01317_8 crossref_primary_10_1007_s10489_024_06195_2 crossref_primary_10_1007_s11071_024_09755_w crossref_primary_10_1007_s13369_024_09036_z crossref_primary_10_1155_2024_1122109 crossref_primary_10_1007_s11768_024_00234_6 crossref_primary_10_1088_1361_6501_adc02b crossref_primary_10_1371_journal_pone_0305408 crossref_primary_10_1016_j_matcom_2024_08_014 crossref_primary_10_1007_s00500_025_10457_7 crossref_primary_10_1007_s40435_024_01528_y crossref_primary_10_3390_w16202940 crossref_primary_10_1080_00207721_2025_2468864 crossref_primary_10_26599_AIR_2024_9150039 crossref_primary_10_1109_TNNLS_2024_3379020 crossref_primary_10_1007_s00521_023_09240_2 crossref_primary_10_1016_j_neucom_2024_128602 crossref_primary_10_1038_s41598_024_84961_5 crossref_primary_10_1016_j_engappai_2024_108000 crossref_primary_10_1007_s00500_023_09481_2 crossref_primary_10_1016_j_compeleceng_2024_109887 crossref_primary_10_1007_s13369_024_09629_8 crossref_primary_10_1007_s10462_024_10746_x |
| Cites_doi | 10.1007/s00500-021-06113-5 10.1007/s00521-016-2738-1 10.1007/s41066-022-00320-7 10.1016/j.asoc.2007.03.002 10.1109/IJCNN.1991.155142 10.1109/21.364864 10.1016/j.eswa.2019.113148 10.1109/TIE.2003.812350 10.1016/j.jprocont.2022.06.012 10.1109/TNN.2006.878121 10.1016/j.neucom.2021.10.065 10.1007/s00500-021-06422-9 10.1109/TCYB.2021.3052234 10.1007/s00521-019-04474-5 10.1016/j.engappai.2011.09.019 10.1016/j.neucom.2020.09.026 10.1109/TNNLS.2017.2672998 10.1109/TII.2012.2205582 10.1007/s00500-009-0398-0 10.1016/j.asr.2020.10.052 10.1109/TNNLS.2015.2465174 10.1016/j.compstruc.2007.03.001 10.1007/s00521-019-04195-9 10.1109/72.363441 10.1016/j.jprocont.2022.04.011 10.1109/41.661316 10.1007/s00521-007-0164-0 10.1007/s00521-017-3002-z 10.1142/S0129065792000255 10.1109/TNN.2006.890809 10.1109/87.221350 10.1111/j.1934-6093.2002.tb00350.x 10.1007/s00521-022-07760-x 10.1016/j.engappai.2018.04.017 10.1016/j.engappai.2021.104519 10.1111/exsy.13124 10.1016/j.neucom.2008.06.030 10.23919/ECC.2019.8795809 10.1016/j.neucom.2021.01.096 10.1007/s00521-019-04485-2 10.1109/72.655026 10.1007/s00500-021-05686-5 10.1016/0885-2308(87)90009-X 10.1007/s00500-004-0455-7 10.1007/978-3-642-20998-7_61 10.1016/j.eswa.2022.117831 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-023-08061-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 17331 |
| ExternalDocumentID | 10_1007_s00500_023_08061_8 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-913c8397ea64289b784e52303a000f06000f0a805ea33cbd829fa19aebf9735b3 |
| IEDL.DBID | U2A |
| ISSN | 1432-7643 |
| IngestDate | Fri Aug 29 04:48:59 EDT 2025 Wed Oct 01 03:00:27 EDT 2025 Thu Apr 24 23:03:59 EDT 2025 Fri Feb 21 02:41:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | Nonlinear adaptive control Recurrent neural networks Adaptive learning rate Pi-sigma neural network Higher-order networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-913c8397ea64289b784e52303a000f06000f0a805ea33cbd829fa19aebf9735b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7172-1081 |
| PQID | 2918034744 |
| PQPubID | 2043697 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2918034744 crossref_citationtrail_10_1007_s00500_023_08061_8 crossref_primary_10_1007_s00500_023_08061_8 springer_journals_10_1007_s00500_023_08061_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Cheng, Tao, Zhan, Li, Li (CR5) 2020; 32 Hussain, Liatsis, Tawfik, Nagar, Al-Jumeily (CR21) 2008; 1 Nayak, Naik, Behera, Abraham (CR33) 2018; 30 Nouri, Dhaouadi, Braiek (CR35) 2008; 8 Fei, Lu (CR11) 2017; 29 Song, Chen, Yuan (CR40) 2007; 18 CR39 Rego, de Araújo (CR37) 2022; 107 Ren, Rad, Chan, Lo (CR38) 2003; 50 Ghosh, Shin (CR15) 1992; 3 CR10 Perrusquía, Yu (CR36) 2021; 438 Hsin, Li, Sun, Sclabassi (CR18) 1995; 25 CR31 Ku, Lee (CR24) 1995; 6 Li, Chen, Yuan (CR28) 2002; 4 Ge, Liang, Marchese (CR13) 2007; 85 Napoli, De Magistris, Ciancarelli, Corallo, Russo, Nardi (CR32) 2022; 206 Machón-González, López-García, Bocos-Barranco (CR30) 2020; 32 Egrioglu, Yolcu, Bas, Dalar (CR9) 2019; 31 Fei, Chen, Liu, Fang (CR12) 2021; 52 Noriega, Wang (CR34) 1998; 9 Ge, Du, Qian, Liang (CR14) 2009; 72 Bonassi, Farina, Xie, Scattolini (CR3) 2022; 114 Tavoosi, Mohammadzadeh, Jermsittiparsert (CR41) 2021; 25 Yan, Wang (CR44) 2012; 8 Yang, Chen, Liu (CR45) 2021 Bas, Grosan, Egrioglu, Yolcu (CR1) 2018; 72 Chow, Fang (CR7) 1998; 45 Dass, Srivastava, Gupta, Khari, Parra, Verdú (CR8) 2022; 25 Ko (CR23) 2012; 25 Yang, Li, Moreira (CR46) 2022; 116 Zhou, Tong, Chen, Zhou, Xu (CR48) 2021; 421 CR27 Behera, Kumar, Patnaik (CR2) 2006; 17 CR22 Kuschewski, Hui, Zak (CR25) 1993; 1 Han, Zhang, Hou, Qiao (CR16) 2015; 27 CR20 Lin, Xu (CR29) 2006; 10 Chan, Fallside (CR4) 1987; 2 Xu, Li, Wu (CR43) 2010; 14 Zhang, Chao, Zeng, Lin, Yang (CR47) 2022; 26 Hsu (CR19) 2009; 18 Han, Ma, Yang, Qiao (CR17) 2022; 469 Waheeb, Ghazali (CR42) 2020; 32 Cheng, Wang, Jiang, Li (CR6) 2021; 67 Lamamra, Batat, Mokhtari (CR26) 2020; 145 8061_CR20 J Zhang (8061_CR47) 2022; 26 8061_CR22 F Yang (8061_CR45) 2021 Z Zhou (8061_CR48) 2021; 421 J Tavoosi (8061_CR41) 2021; 25 H-W Ge (8061_CR13) 2007; 85 X Ren (8061_CR38) 2003; 50 C-N Ko (8061_CR23) 2012; 25 J Ghosh (8061_CR15) 1992; 3 S-B Yang (8061_CR46) 2022; 116 H-G Han (8061_CR17) 2022; 469 K Nouri (8061_CR35) 2008; 8 D Xu (8061_CR43) 2010; 14 C-J Lin (8061_CR29) 2006; 10 J Fei (8061_CR12) 2021; 52 8061_CR39 I Machón-González (8061_CR30) 2020; 32 C-F Hsu (8061_CR19) 2009; 18 K Lamamra (8061_CR26) 2020; 145 Z Yan (8061_CR44) 2012; 8 E Bas (8061_CR1) 2018; 72 8061_CR31 C-C Ku (8061_CR24) 1995; 6 8061_CR10 H-W Ge (8061_CR14) 2009; 72 X Li (8061_CR28) 2002; 4 A Perrusquía (8061_CR36) 2021; 438 C Napoli (8061_CR32) 2022; 206 JR Noriega (8061_CR34) 1998; 9 Y Song (8061_CR40) 2007; 18 J Nayak (8061_CR33) 2018; 30 RC Rego (8061_CR37) 2022; 107 JG Kuschewski (8061_CR25) 1993; 1 L Cheng (8061_CR6) 2021; 67 H-C Hsin (8061_CR18) 1995; 25 J Fei (8061_CR11) 2017; 29 F Bonassi (8061_CR3) 2022; 114 L Behera (8061_CR2) 2006; 17 W Waheeb (8061_CR42) 2020; 32 AJ Hussain (8061_CR21) 2008; 1 K Cheng (8061_CR5) 2020; 32 H-G Han (8061_CR16) 2015; 27 8061_CR27 TW Chow (8061_CR7) 1998; 45 L-W Chan (8061_CR4) 1987; 2 A Dass (8061_CR8) 2022; 25 E Egrioglu (8061_CR9) 2019; 31 |
| References_xml | – ident: CR22 – volume: 26 start-page: 3013 issue: 6 year: 2022 end-page: 3028 ident: CR47 article-title: A recurrent wavelet-based brain emotional learning network controller for nonlinear systems publication-title: Soft Comput – volume: 4 start-page: 231 issue: 2 year: 2002 end-page: 239 ident: CR28 article-title: Simple recurrent neural network-based adaptive predictive control for nonlinear systems publication-title: Asian J Control – volume: 2 start-page: 205 issue: 3–4 year: 1987 end-page: 218 ident: CR4 article-title: An adaptive training algorithm for back propagation networks publication-title: Comput Speech Language – volume: 145 start-page: 113148 year: 2020 ident: CR26 article-title: A new technique with improved control quality of nonlinear systems using an optimized fuzzy logic controller publication-title: Exp Syst Appl – volume: 27 start-page: 402 issue: 2 year: 2015 end-page: 415 ident: CR16 article-title: Nonlinear model predictive control based on a self-organizing recurrent neural network publication-title: IEEE Trans Neural Netw Learn Syst – ident: CR39 – volume: 32 start-page: 5695 issue: 10 year: 2020 end-page: 5712 ident: CR5 article-title: Hierarchical attributes learning for pedestrian re-identification via parallel stochastic gradient descent combined with momentum correction and adaptive learning rate publication-title: Neural Comput Appl – volume: 25 start-page: 533 issue: 3 year: 2012 end-page: 543 ident: CR23 article-title: Identification of nonlinear systems with outliers using wavelet neural networks based on annealing dynamical learning algorithm publication-title: Eng Appl Artif Intell – volume: 25 start-page: e13124 year: 2022 ident: CR8 article-title: Modelling and control of fuzzy-based systems using intelligent water drop algorithm publication-title: Exp Syst – volume: 9 start-page: 27 issue: 1 year: 1998 end-page: 34 ident: CR34 article-title: A direct adaptive neural-network control for unknown nonlinear systems and its application publication-title: IEEE Trans Neural Netw – volume: 8 start-page: 746 issue: 4 year: 2012 end-page: 756 ident: CR44 article-title: Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks publication-title: IEEE Trans Indus Inform – ident: CR10 – year: 2021 ident: CR45 article-title: Improved and optimized recurrent neural network based on PSO and its application in stock price prediction publication-title: Soft Comput doi: 10.1007/s00500-021-06113-5 – volume: 67 start-page: 1114 issue: 3 year: 2021 end-page: 1123 ident: CR6 article-title: Adaptive neural network control of nonlinear systems with unknown dynamics publication-title: Adv Space Res – volume: 25 start-page: 512 issue: 3 year: 1995 end-page: 514 ident: CR18 article-title: An adaptive training algorithm for back-propagation neural networks publication-title: IEEE Transactions Syst Man Cybern – volume: 1 start-page: 130 issue: 1 year: 2008 end-page: 145 ident: CR21 article-title: Physical time series prediction using recurrent pi-sigma neural networks publication-title: Int J Artif Intell Soft Comput – volume: 8 start-page: 371 issue: 1 year: 2008 end-page: 382 ident: CR35 article-title: Adaptive control of a nonlinear dc motor drive using recurrent neural networks publication-title: Appl Soft Comput – volume: 32 start-page: 9621 issue: 13 year: 2020 end-page: 9647 ident: CR42 article-title: A novel error-output recurrent neural network model for time series forecasting publication-title: Neural Comput Appl – volume: 14 start-page: 245 issue: 3 year: 2010 end-page: 250 ident: CR43 article-title: Convergence of gradient method for a fully recurrent neural network publication-title: Soft Comput – volume: 421 start-page: 161 year: 2021 end-page: 172 ident: CR48 article-title: Adaptive nn control for nonlinear systems with uncertainty based on dynamic surface control publication-title: Neurocomputing – volume: 17 start-page: 1116 issue: 5 year: 2006 end-page: 1125 ident: CR2 article-title: On adaptive learning rate that guarantees convergence in feedforward networks publication-title: IEEE Trans Neural Netw – volume: 1 start-page: 37 issue: 1 year: 1993 end-page: 49 ident: CR25 article-title: Application of feedforward neural networks to dynamical system identification and control publication-title: IEEE Trans Control Syst Technol – volume: 6 start-page: 144 issue: 1 year: 1995 end-page: 156 ident: CR24 article-title: Diagonal recurrent neural networks for dynamic systems control publication-title: IEEE Trans Neural Netw – volume: 72 start-page: 2857 issue: 13–15 year: 2009 end-page: 2864 ident: CR14 article-title: Identification and control of nonlinear systems by a time-delay recurrent neural network publication-title: Neurocomputing – volume: 469 start-page: 1 year: 2022 end-page: 12 ident: CR17 article-title: Self-organizing radial basis function neural network using accelerated second-order learning algorithm publication-title: Neurocomputing – ident: CR27 – volume: 438 start-page: 145 year: 2021 end-page: 154 ident: CR36 article-title: Identification and optimal control of nonlinear systems using recurrent neural networks and reinforcement learning: an overview publication-title: Neurocomputing – volume: 29 start-page: 1275 issue: 4 year: 2017 end-page: 1286 ident: CR11 article-title: Adaptive sliding mode control of dynamic systems using double loop recurrent neural network structure publication-title: IEEE Trans Neural Netw Learn Syst – volume: 72 start-page: 350 year: 2018 end-page: 356 ident: CR1 article-title: High order fuzzy time series method based on pi-sigma neural network publication-title: Eng Appl Artif Intell – volume: 116 start-page: 209 year: 2022 end-page: 220 ident: CR46 article-title: A recurrent neural network-based approach for joint chance constrained stochastic optimal control publication-title: J Process Control – volume: 45 start-page: 151 issue: 1 year: 1998 end-page: 161 ident: CR7 article-title: A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics publication-title: IEEE Trans Indus Electron – volume: 114 start-page: 92 year: 2022 end-page: 104 ident: CR3 article-title: On recurrent neural networks for learning-based control: recent results and ideas for future developments publication-title: J Process Control – volume: 32 start-page: 18123 issue: 24 year: 2020 end-page: 18142 ident: CR30 article-title: Dynamics identification and control of nonlinear mimo coupled plant using supervised neural gas and comparison with recurrent neural controller publication-title: Neural Comput Appl – volume: 206 start-page: 117831 year: 2022 ident: CR32 article-title: Exploiting wavelet recurrent neural networks for satellite telemetry data modeling, prediction and control publication-title: Exp Syst Appl – volume: 31 start-page: 307 issue: 1 year: 2019 end-page: 316 ident: CR9 article-title: Median-pi artificial neural network for forecasting publication-title: Neural Comput Appl – volume: 50 start-page: 478 issue: 3 year: 2003 end-page: 486 ident: CR38 article-title: Identification and control of continuous-time nonlinear systems via dynamic neural networks publication-title: IEEE Trans Indus Electron – volume: 18 start-page: 115 issue: 2 year: 2009 end-page: 125 ident: CR19 article-title: Adaptive recurrent neural network control using a structure adaptation algorithm publication-title: Neural Comput Appl – volume: 10 start-page: 193 issue: 3 year: 2006 end-page: 205 ident: CR29 article-title: A novel evolution learning for recurrent wavelet-based neuro-fuzzy networks publication-title: Soft Comput – ident: CR31 – volume: 30 start-page: 1445 issue: 5 year: 2018 end-page: 1468 ident: CR33 article-title: Elitist teaching-learning-based optimization (etlbo) with higher-order jordan pi-sigma neural network: a comparative performance analysis publication-title: Neural Comput Appl – volume: 107 start-page: 104519 year: 2022 ident: CR37 article-title: Lyapunov-based continuous-time nonlinear control using deep neural network applied to underactuated systems publication-title: Eng Appl Artif Intell – volume: 85 start-page: 1611 issue: 21–22 year: 2007 end-page: 1622 ident: CR13 article-title: A modified particle swarm optimization-based dynamic recurrent neural network for identifying and controlling nonlinear systems publication-title: Comput Struct – volume: 25 start-page: 7197 issue: 10 year: 2021 end-page: 7212 ident: CR41 article-title: A review on type-2 fuzzy neural networks for system identification publication-title: Soft Comput – volume: 18 start-page: 595 issue: 2 year: 2007 end-page: 601 ident: CR40 article-title: New chaotic PSO-based neural network predictive control for nonlinear process publication-title: IEEE Trans Neural Netw – volume: 52 start-page: 9519 year: 2021 end-page: 9534 ident: CR12 article-title: Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller publication-title: IEEE Trans Cybern – ident: CR20 – volume: 3 start-page: 323 issue: 04 year: 1992 end-page: 350 ident: CR15 article-title: Efficient higher-order neural networks for classification and function approximation publication-title: Int J Neural Syst – ident: 8061_CR31 – volume: 30 start-page: 1445 issue: 5 year: 2018 ident: 8061_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2738-1 – ident: 8061_CR10 doi: 10.1007/s41066-022-00320-7 – volume: 8 start-page: 371 issue: 1 year: 2008 ident: 8061_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.03.002 – ident: 8061_CR39 doi: 10.1109/IJCNN.1991.155142 – volume: 25 start-page: 512 issue: 3 year: 1995 ident: 8061_CR18 publication-title: IEEE Transactions Syst Man Cybern doi: 10.1109/21.364864 – volume: 145 start-page: 113148 year: 2020 ident: 8061_CR26 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2019.113148 – volume: 50 start-page: 478 issue: 3 year: 2003 ident: 8061_CR38 publication-title: IEEE Trans Indus Electron doi: 10.1109/TIE.2003.812350 – volume: 116 start-page: 209 year: 2022 ident: 8061_CR46 publication-title: J Process Control doi: 10.1016/j.jprocont.2022.06.012 – volume: 17 start-page: 1116 issue: 5 year: 2006 ident: 8061_CR2 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.878121 – volume: 469 start-page: 1 year: 2022 ident: 8061_CR17 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.065 – volume: 26 start-page: 3013 issue: 6 year: 2022 ident: 8061_CR47 publication-title: Soft Comput doi: 10.1007/s00500-021-06422-9 – volume: 52 start-page: 9519 year: 2021 ident: 8061_CR12 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3052234 – volume: 32 start-page: 9621 issue: 13 year: 2020 ident: 8061_CR42 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04474-5 – volume: 25 start-page: 533 issue: 3 year: 2012 ident: 8061_CR23 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2011.09.019 – volume: 421 start-page: 161 year: 2021 ident: 8061_CR48 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.026 – volume: 29 start-page: 1275 issue: 4 year: 2017 ident: 8061_CR11 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2672998 – volume: 8 start-page: 746 issue: 4 year: 2012 ident: 8061_CR44 publication-title: IEEE Trans Indus Inform doi: 10.1109/TII.2012.2205582 – volume: 14 start-page: 245 issue: 3 year: 2010 ident: 8061_CR43 publication-title: Soft Comput doi: 10.1007/s00500-009-0398-0 – volume: 67 start-page: 1114 issue: 3 year: 2021 ident: 8061_CR6 publication-title: Adv Space Res doi: 10.1016/j.asr.2020.10.052 – volume: 27 start-page: 402 issue: 2 year: 2015 ident: 8061_CR16 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2465174 – volume: 85 start-page: 1611 issue: 21–22 year: 2007 ident: 8061_CR13 publication-title: Comput Struct doi: 10.1016/j.compstruc.2007.03.001 – volume: 1 start-page: 130 issue: 1 year: 2008 ident: 8061_CR21 publication-title: Int J Artif Intell Soft Comput – volume: 32 start-page: 18123 issue: 24 year: 2020 ident: 8061_CR30 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04195-9 – volume: 6 start-page: 144 issue: 1 year: 1995 ident: 8061_CR24 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.363441 – volume: 114 start-page: 92 year: 2022 ident: 8061_CR3 publication-title: J Process Control doi: 10.1016/j.jprocont.2022.04.011 – volume: 45 start-page: 151 issue: 1 year: 1998 ident: 8061_CR7 publication-title: IEEE Trans Indus Electron doi: 10.1109/41.661316 – volume: 18 start-page: 115 issue: 2 year: 2009 ident: 8061_CR19 publication-title: Neural Comput Appl doi: 10.1007/s00521-007-0164-0 – volume: 31 start-page: 307 issue: 1 year: 2019 ident: 8061_CR9 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3002-z – volume: 3 start-page: 323 issue: 04 year: 1992 ident: 8061_CR15 publication-title: Int J Neural Syst doi: 10.1142/S0129065792000255 – volume: 18 start-page: 595 issue: 2 year: 2007 ident: 8061_CR40 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.890809 – year: 2021 ident: 8061_CR45 publication-title: Soft Comput doi: 10.1007/s00500-021-06113-5 – volume: 1 start-page: 37 issue: 1 year: 1993 ident: 8061_CR25 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/87.221350 – volume: 4 start-page: 231 issue: 2 year: 2002 ident: 8061_CR28 publication-title: Asian J Control doi: 10.1111/j.1934-6093.2002.tb00350.x – ident: 8061_CR22 doi: 10.1007/s00521-022-07760-x – volume: 72 start-page: 350 year: 2018 ident: 8061_CR1 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.04.017 – volume: 107 start-page: 104519 year: 2022 ident: 8061_CR37 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104519 – volume: 25 start-page: e13124 year: 2022 ident: 8061_CR8 publication-title: Exp Syst doi: 10.1111/exsy.13124 – volume: 72 start-page: 2857 issue: 13–15 year: 2009 ident: 8061_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.06.030 – ident: 8061_CR27 doi: 10.23919/ECC.2019.8795809 – volume: 438 start-page: 145 year: 2021 ident: 8061_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.096 – volume: 32 start-page: 5695 issue: 10 year: 2020 ident: 8061_CR5 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04485-2 – volume: 9 start-page: 27 issue: 1 year: 1998 ident: 8061_CR34 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.655026 – volume: 25 start-page: 7197 issue: 10 year: 2021 ident: 8061_CR41 publication-title: Soft Comput doi: 10.1007/s00500-021-05686-5 – volume: 2 start-page: 205 issue: 3–4 year: 1987 ident: 8061_CR4 publication-title: Comput Speech Language doi: 10.1016/0885-2308(87)90009-X – volume: 10 start-page: 193 issue: 3 year: 2006 ident: 8061_CR29 publication-title: Soft Comput doi: 10.1007/s00500-004-0455-7 – ident: 8061_CR20 doi: 10.1007/978-3-642-20998-7_61 – volume: 206 start-page: 117831 year: 2022 ident: 8061_CR32 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2022.117831 |
| SSID | ssj0021753 |
| Score | 2.514826 |
| Snippet | Controlling complex nonlinear dynamical systems using traditional methods has always been a difficult task because the majority of systems seen in nature have... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17313 |
| SubjectTerms | Adaptive control Adaptive learning Algorithms Application of Soft Computing Artificial Intelligence Artificial neural networks Back propagation networks Complexity Computational Intelligence Control Control theory Controllers Dynamical systems Engineering Feedback Feedback loops Iterative methods Machine learning Mathematical Logic and Foundations Mechatronics Neural networks Neurons Nonlinear control Nonlinear systems Parallel processing Performance enhancement Recurrent neural networks Robotics System theory Topology |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m9uKL3-J0Sh5802Db9CN9EFHZGIJDxMHeStokKJS1bvP_95KmGwr60pcmKfRyd79c7n4HcCmUChIuY9RvpmmotaC8SFLK0gjRMZfMt1mVz5N4PA2fZtGsA5O2FsakVbY20RpqWRUmRn4TpD73WJiE4V39SU3XKHO72rbQEK61gry1FGNb0AsMM1YXeg_Dycvr-gjmeCkRJCCuRGfsymhsMZ2hQvEo-jCKKCr2Kf_pqjb489eVqfVEoz3YcRCS3Dcy34eOmh_AbtuegThtPYQlguO8VOSjCfqVpKyqmrzbxA5qKTfJwkTbDT8TMbyWOGTeZIVT49wkEVLUxhwSl9BOKk0QMJJ5w68hFkQ2De1xZkMJfQTT0fDtcUxdjwVaoPKtzMV7gRgpUcIcRNI84aEygWIm0FZqL7ZPwb1ICcaKXPIg1cJPhcp1mrAoZ8fQxY-qEyB-HAs8HiFE0xr9vuZC8aRAY-trKVkY9MFvf2dWOAJy0wejzNbUyVYEGYogsyLIeB-u1nPqhn7j39GDVkqZU8Vlttk4fbhuJbd5_fdqp_-vdgbbpvV8U5c4gO5q8aXOEaCs8gu3674BISbhLg priority: 102 providerName: ProQuest |
| Title | Double internal loop higher-order recurrent neural network-based adaptive control of the nonlinear dynamical system |
| URI | https://link.springer.com/article/10.1007/s00500-023-08061-8 https://www.proquest.com/docview/2918034744 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9qIPfkzF6Rx58E0DbdOP9HHK5lAcIg7mU0nbBIWyjW3-_17StFNRwZf2oUkKudzdL8nd7wAuhJRexPMQ9Zsp6islKM-imLI4QHTMc-aaqMqHcTia-HfTYGqTwlZVtHt1JWksdZ3spqlKHIo-hiLKCV3KG9AKNJ0XruKJ16-3WZZ7EoEAYkd0uDZV5ucxvrqjDcb8di1qvM1wH3YtTCT9Uq4HsCVnbdirSjAQq5Ft2PnEJ3gIK4TDaSHJW3nMV5BiPl-QVxPKQQ3JJlnq83XNyEQ0kyU2mZVx4FS7s5yIXCy0ASQ2hJ3MFUGISGYlo4ZYkrwsYY89SxLoI5gMB883I2qrKtAM1W2tr9ozREWRFHrrEacR96U-GmYCraNyQvMU3AmkYCxLc-7FSrixkKmKIxak7Bia-FN5AsQNQ4EbIgRlSqGnV1xIHmVoXl2V58z3OuBWk5tklnJcV74okpos2QgkQYEkRiAJ78Bl3WdREm782bpbySyxyrdKvNjlDvMj3-_AVSXHzeffRzv9X_Mz2NbF58vMxC4018t3eY4QZZ32oMGHtz1o9W9f7gf4vh6MH596Zp1-AFC44Bc |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HODCGzEYkAOcIGJtsjY9TIinxmtCCCRuJW0SgTRtYxtC_Dl-G06abgIJblx6aZpKsWN_TuzPADtS6zAWKsL9zQzlxkgq8jihLKkjOhaKBS6r8qYVNR_45WP9cQI-y1oYm1ZZ2kRnqFU3t2fkB2ESiBrjMeeHvVdqu0bZ29WyhYb0rRVUw1GM-cKOK_3xjiHcoHFxivLeDcPzs_uTJvVdBmiO6je0V885ooRYSwvFkywWXNujUibRWpha5J5S1OpaMpZnSoSJkUEidWaSmNUzhvNOwjRnPMHgb_r4rHV7Nwr5PA8mghLEsej8fdmOK96z1Cs1ij6TImqLAiq-u8Yx3v1xRes83_kCzHnISo4KHVuECd1ZgvmyHQTx1mEZBgjGs7YmL8UhY5u0u90eeXaJJNRRfJK-Pd23fFDE8mjikE6RhU6tM1VEKtmz5pf4BHrSNQQBKukUfB6yT9RHRzqCA1JQUK_Aw7-s9ipM4U_1GpAgiiSGYwgJjUGcYYTUIs7RuAdGKcbDCgTlcqa5Jzy3fTfa6Yiq2YkgRRGkTgSpqMDe6JteQffx5-hqKaXUb_1BOlbUCuyXkhu__n229b9n24aZ5v3NdXp90bragFnb9r6oiazC1LD_pjcRHA2zLa-BBJ7-W-m_AJZBHME |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAcuEG0tena9DgB03hNHJi0W5U2iUCqtmob_x8nabeBAIlLL01SqY7jz479GeBSKOVHXIao30zTQGtBeRbFlMUdRMdcMs9mVT4Pwv4weBh1RitV_DbbvbqSdDUNhqVpPG8VUrcWhW-GtqRN0d5QRDyhR_k6bASGKAF39NDvLlyukocSQQHiSDS-ZdnMz2t8NU1LvPntitRant4e7JSQkXSdjPdhTY3rsFu1YyCldtZhe4Vb8ABmCI3TXJF3F_LLST6ZFOTNpnVQS7hJpibWbtiZiGG1xCFjlxNOjWmTREhRmMOQlOnsZKIJwkUyduwaYkqka2ePMx0h9CEMe3evN31adligGare3Fy7Z4iQIiWMGxKnEQ-UCRMzgSelbof2KXi7owRjWSq5H2vhxUKlOo5YJ2VHUMOPqmMgXhgKdI4QoGmNVl9zoXiU4VHraSlZ4DfAq35ukpX046YLRp4siJOtQBIUSGIFkvAGXC3mFI5848_RzUpmSamIs8SPPd5mQRQEDbiu5Lh8_ftqJ_8bfgGbL7e95Ol-8HgKW6YnvStYbEJtPv1QZ4hc5um53Zyfs73jKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double+internal+loop+higher-order+recurrent+neural+network-based+adaptive+control+of+the+nonlinear+dynamical+system&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Kumar%2C+Rajesh&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=27&rft.issue=22&rft.spage=17313&rft.epage=17331&rft_id=info:doi/10.1007%2Fs00500-023-08061-8&rft.externalDocID=10_1007_s00500_023_08061_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |