Fully numerical Laplace transform methods

The role of the Laplace transform in scientific computing has been predominantly that of a semi-numerical tool. That is, typically only the inverse transform is computed numerically, with all steps leading up to that executed by analytical manipulations or table look-up. Here, we consider fully nume...

Full description

Saved in:
Bibliographic Details
Published inNumerical algorithms Vol. 92; no. 1; pp. 985 - 1006
Main Authors Weideman, J. A. C., Fornberg, Bengt
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1017-1398
1572-9265
DOI10.1007/s11075-022-01368-x

Cover

Abstract The role of the Laplace transform in scientific computing has been predominantly that of a semi-numerical tool. That is, typically only the inverse transform is computed numerically, with all steps leading up to that executed by analytical manipulations or table look-up. Here, we consider fully numerical methods, where both forward and inverse transforms are computed numerically. Because the computation of the inverse transform has been studied extensively, this paper focus mainly on the forward transform. Existing methods for computing the forward transform based on exponential sums are considered along with a new method based on the formulas of Weeks. Numerical examples include a nonlinear integral equation of convolution type, a fractional ordinary differential equation, and a partial differential equation with an inhomogeneous boundary condition.
AbstractList The role of the Laplace transform in scientific computing has been predominantly that of a semi-numerical tool. That is, typically only the inverse transform is computed numerically, with all steps leading up to that executed by analytical manipulations or table look-up. Here, we consider fully numerical methods, where both forward and inverse transforms are computed numerically. Because the computation of the inverse transform has been studied extensively, this paper focus mainly on the forward transform. Existing methods for computing the forward transform based on exponential sums are considered along with a new method based on the formulas of Weeks. Numerical examples include a nonlinear integral equation of convolution type, a fractional ordinary differential equation, and a partial differential equation with an inhomogeneous boundary condition.
Author Weideman, J. A. C.
Fornberg, Bengt
Author_xml – sequence: 1
  givenname: J. A. C.
  orcidid: 0000-0002-6833-8222
  surname: Weideman
  fullname: Weideman, J. A. C.
  email: weideman@sun.ac.za
  organization: Department of Mathematical Sciences, Stellenbosch University
– sequence: 2
  givenname: Bengt
  orcidid: 0000-0003-0014-6985
  surname: Fornberg
  fullname: Fornberg, Bengt
  organization: Department of Applied Mathematics, University of Colorado
BookMark eNp9kDFPwzAQhS0EEm3hDzBFYmIwnO0mtkdUUUCqxAKz5Tg2pErsYidS--8xBAmJodO94b737t4cnfrgLUJXBG4JAL9LhAAvMVCKgbBK4P0JmpGSUyxpVZ5mDYRjwqQ4R_OUtgAZo3yGbtZj1x0KP_Y2tkZ3xUbvOm1sMUTtkwuxL3o7fIQmXaAzp7tkL3_nAr2tH15XT3jz8vi8ut9gw4gcsATdVNla2LLhAgittBW8lkwz42rOliCbJWgBsnbOMWsaU8usqWCGLZlkC3Q9-e5i-BxtGtQ2jNHnSEUlEaVkkkLeotOWiSGlaJ3axbbX8aAIqO9K1FSJypWon0rUPkPiH2TaQQ9t8PnbtjuOsglNOce_2_h31RHqC2Y3d3w
CitedBy_id crossref_primary_10_1177_01617346241271240
crossref_primary_10_1098_rsos_221619
crossref_primary_10_1007_s10915_023_02283_6
crossref_primary_10_1090_mcom_3942
crossref_primary_10_2298_TSCI230804224H
Cites_doi 10.1007/BF01396974
10.1016/j.jmaa.2012.03.056
10.1016/j.acha.2009.08.011
10.1090/S0025-5718-07-01945-X
10.1137/130932132
10.1016/j.acha.2005.01.003
10.1090/S0025-5718-1986-0842138-1
10.1145/321341.321351
10.1137/15M1032764
10.1093/imamat/23.1.97
10.1137/1.9781611970425
10.1145/365723.365727
10.1137/0505058
10.3389/fams.2016.00001
10.1007/s11075-021-01115-8
10.1016/j.laa.2012.10.036
10.1093/imanum/23.2.269
10.1093/imanum/drab108
10.1007/s11075-014-9895-z
10.1145/321439.321446
10.1016/j.cpc.2016.09.002
10.1137/0505001
10.1137/S1064827596312432
10.1007/978-1-4612-0571-5_10
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-022-01368-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Computer Science Database
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1006
ExternalDocumentID 10_1007_s11075_022_01368_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-90ad60278e5d780126ae87b93a3cfb73409d40a809bfff3ecdcb99bf283c34393
IEDL.DBID U2A
ISSN 1017-1398
IngestDate Sat Sep 06 14:31:36 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Wed Oct 01 00:39:00 EDT 2025
Fri Feb 21 02:45:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Weeks method
Laplace transform
Exponential sums
Padé approximation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-90ad60278e5d780126ae87b93a3cfb73409d40a809bfff3ecdcb99bf283c34393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0014-6985
0000-0002-6833-8222
PQID 2918593920
PQPubID 2043837
PageCount 22
ParticipantIDs proquest_journals_2918593920
crossref_primary_10_1007_s11075_022_01368_x
crossref_citationtrail_10_1007_s11075_022_01368_x
springer_journals_10_1007_s11075_022_01368_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GottliebDOrszagSANumerical analysis of spectral methods: theory and applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 261977PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611970425
DingfelderBWeidemanJACAn improved Talbot method for numerical Laplace transform inversionNumer Algorithms2015681167183329670510.1007/s11075-014-9895-z1432.65190
Derevianko, N., Plonka, G., Petz, M.: From ESPRIT to ESPIRA: estimation of signal parameters by iterative rational approximation (2022)
XiangSAsymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadratureJ. Math. Anal. Appl.20123932434444292168610.1016/j.jmaa.2012.03.0561259.65058
WeidemanJACTrefethenLNParabolic and hyperbolic contours for computing the Bromwich integralMath. Comp.20077625913411356229977710.1090/S0025-5718-07-01945-X1113.65119
ElliottDTuanPDAsymptotic estimates of Fourier coefficientsSIAM J. Math Anal.1974511034093710.1137/05050010238.42008
Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., Varga, A.: SLICOT—a subroutine library in systems and control theory. In: Applied and Computational Control, Signals, and Circuits, volume 1 of Appl. Comput. Control Signals Circuits, pp 499–539. Boston, Birkhäuser (1999)
WeidemanJACAlgorithms for parameter selection in the Weeks method for inverting the Laplace transformSIAM J. Sci. Comput.1999211111128172208710.1137/S10648275963124320944.65137
SheenDSloanIHThoméeVA parallel method for time discretization of parabolic equations based on Laplace transformation and quadratureIMA J. Numer. Anal.2003232269299197526710.1093/imanum/23.2.2691022.65108
NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds
TerekhovAVGenerating the Laguerre expansion coefficients by solving a one-dimensional transport equationNumer. Algorithms2022891303322435830810.1007/s11075-021-01115-807456978
LukeYLThe special functions and their approximations. Vol. II Mathematics in Science and Engineering, vol. 531969New YorkAcademic Press
DiethelmKThe analysis of fractional differential equations, Volume 2004 of Lecture Notes in Mathematics2010BerlinSpringer
Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications (2014)
CarrierGFKrookMPearsonCEFunctions of a complex variable: Theory and Technique1966New YorkMcGraw-Hill Book Co.0146.29801
LongmanIMBest rational function approximation for Laplace transform inversionSIAM J. Math. Anal.1974557458035927310.1137/05050580253.44002
LynessJNGiuntaGA modification of the Weeks method for numerical inversion of the Laplace transformMath Comp.19864717531332284213810.1090/S0025-5718-1986-0842138-10611.65088
TalbotAThe accurate numerical inversion of Laplace transformsJ. Inst. Math. Appl.19792319712052628610.1093/imamat/23.1.970406.65054
WeeksWTNumerical inversion of Laplace transforms using Laguerre functionsJ. Assoc. Comput. Mach.19661341942919524110.1145/321341.3213510141.33401
Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat., 2 (2016)
DubnerHAbateJNumerical inversion of Laplace transforms by relating them to the finite Fourier cosine transformJ. Assoc Comput. Mach.19681511512323572610.1145/321439.3214460165.51403
Butcher, J.C.: On the numerical inversion of Laplace and Mellin transforms. In: Conference on Data Processing and Automatic Computing Machines. Salisbury (1957)
GiuntaGLaccettiGRizzardiMRMore on the Weeks method for the numerical inversion of the Laplace transformNumer. Math.198854219320096592110.1007/BF013969740659.65138
GilASeguraJTemmeNMEfficient computation of Laguerre polynomialsComput. Phys. Commun.2017210124131357634910.1016/j.cpc.2016.09.0021378.65066
PodlubnyIFractional differential equations, Volume 198 of Mathematics in Science and Engineering1999San DiegoAcademic Press, Inc.
CohenAMNumerical methods for Laplace transform inversion, Volume 5 of Numerical Methods and Algorithms2007New YorkSpringer
PottsDTascheMParameter estimation for nonincreasing exponential sums by Prony-like methodsLinear Algebra Appl.2013439410241039306175310.1016/j.laa.2012.10.0361281.65021
SpiegelMRTheory and problems of Laplace transforms1965New YorkSchaum Publishing Co.
BeylkinGMonzónLApproximation by exponential sums revisitedAppl. Comput. Harmon. Anal.2010282131149259588110.1016/j.acha.2009.08.0111189.65035
WeidemanJACReddySCA MATLAB differentiation matrix suiteACM Trans. Math. Software2000264465519193996210.1145/365723.365727
BeylkinGMonzónLOn approximation of functions by exponential sumsAppl. Comput. Harmon. Anal.20051911748214706010.1016/j.acha.2005.01.0031075.65022
TrefethenLNWeidemanJACThe exponentially convergent trapezoidal ruleSIAM Rev.2014563385458324585810.1137/1309321321307.65031
HaleNWeidemanJACContour integral solution of elliptic PDEs in cylindrical domainsSIAM J. Sci Comput.2015376A2630A2655342162510.1137/15M10327641327.65042
JAC Weideman (1368_CR32) 2007; 76
JAC Weideman (1368_CR30) 1999; 21
1368_CR23
H Dubner (1368_CR12) 1968; 15
GF Carrier (1368_CR5) 1966
JN Lyness (1368_CR20) 1986; 47
LN Trefethen (1368_CR28) 2014; 56
AV Terekhov (1368_CR27) 2022; 89
WT Weeks (1368_CR29) 1966; 13
D Sheen (1368_CR24) 2003; 23
IM Longman (1368_CR18) 1974; 5
1368_CR7
1368_CR4
D Elliott (1368_CR13) 1974; 5
S Xiang (1368_CR33) 2012; 393
YL Luke (1368_CR19) 1969
1368_CR1
G Giunta (1368_CR15) 1988; 54
1368_CR11
1368_CR10
D Gottlieb (1368_CR16) 1977
JAC Weideman (1368_CR31) 2000; 26
G Beylkin (1368_CR3) 2010; 28
A Talbot (1368_CR26) 1979; 23
G Beylkin (1368_CR2) 2005; 19
MR Spiegel (1368_CR25) 1965
K Diethelm (1368_CR8) 2010
B Dingfelder (1368_CR9) 2015; 68
A Gil (1368_CR14) 2017; 210
I Podlubny (1368_CR21) 1999
D Potts (1368_CR22) 2013; 439
AM Cohen (1368_CR6) 2007
N Hale (1368_CR17) 2015; 37
References_xml – reference: WeidemanJACReddySCA MATLAB differentiation matrix suiteACM Trans. Math. Software2000264465519193996210.1145/365723.365727
– reference: LynessJNGiuntaGA modification of the Weeks method for numerical inversion of the Laplace transformMath Comp.19864717531332284213810.1090/S0025-5718-1986-0842138-10611.65088
– reference: Butcher, J.C.: On the numerical inversion of Laplace and Mellin transforms. In: Conference on Data Processing and Automatic Computing Machines. Salisbury (1957)
– reference: CohenAMNumerical methods for Laplace transform inversion, Volume 5 of Numerical Methods and Algorithms2007New YorkSpringer
– reference: GiuntaGLaccettiGRizzardiMRMore on the Weeks method for the numerical inversion of the Laplace transformNumer. Math.198854219320096592110.1007/BF013969740659.65138
– reference: DingfelderBWeidemanJACAn improved Talbot method for numerical Laplace transform inversionNumer Algorithms2015681167183329670510.1007/s11075-014-9895-z1432.65190
– reference: TalbotAThe accurate numerical inversion of Laplace transformsJ. Inst. Math. Appl.19792319712052628610.1093/imamat/23.1.970406.65054
– reference: DubnerHAbateJNumerical inversion of Laplace transforms by relating them to the finite Fourier cosine transformJ. Assoc Comput. Mach.19681511512323572610.1145/321439.3214460165.51403
– reference: SheenDSloanIHThoméeVA parallel method for time discretization of parabolic equations based on Laplace transformation and quadratureIMA J. Numer. Anal.2003232269299197526710.1093/imanum/23.2.2691022.65108
– reference: Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., Varga, A.: SLICOT—a subroutine library in systems and control theory. In: Applied and Computational Control, Signals, and Circuits, volume 1 of Appl. Comput. Control Signals Circuits, pp 499–539. Boston, Birkhäuser (1999)
– reference: BeylkinGMonzónLApproximation by exponential sums revisitedAppl. Comput. Harmon. Anal.2010282131149259588110.1016/j.acha.2009.08.0111189.65035
– reference: LongmanIMBest rational function approximation for Laplace transform inversionSIAM J. Math. Anal.1974557458035927310.1137/05050580253.44002
– reference: CarrierGFKrookMPearsonCEFunctions of a complex variable: Theory and Technique1966New YorkMcGraw-Hill Book Co.0146.29801
– reference: Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications (2014)
– reference: PottsDTascheMParameter estimation for nonincreasing exponential sums by Prony-like methodsLinear Algebra Appl.2013439410241039306175310.1016/j.laa.2012.10.0361281.65021
– reference: BeylkinGMonzónLOn approximation of functions by exponential sumsAppl. Comput. Harmon. Anal.20051911748214706010.1016/j.acha.2005.01.0031075.65022
– reference: TrefethenLNWeidemanJACThe exponentially convergent trapezoidal ruleSIAM Rev.2014563385458324585810.1137/1309321321307.65031
– reference: WeidemanJACTrefethenLNParabolic and hyperbolic contours for computing the Bromwich integralMath. Comp.20077625913411356229977710.1090/S0025-5718-07-01945-X1113.65119
– reference: Derevianko, N., Plonka, G., Petz, M.: From ESPRIT to ESPIRA: estimation of signal parameters by iterative rational approximation (2022)
– reference: PodlubnyIFractional differential equations, Volume 198 of Mathematics in Science and Engineering1999San DiegoAcademic Press, Inc.
– reference: GilASeguraJTemmeNMEfficient computation of Laguerre polynomialsComput. Phys. Commun.2017210124131357634910.1016/j.cpc.2016.09.0021378.65066
– reference: HaleNWeidemanJACContour integral solution of elliptic PDEs in cylindrical domainsSIAM J. Sci Comput.2015376A2630A2655342162510.1137/15M10327641327.65042
– reference: LukeYLThe special functions and their approximations. Vol. II Mathematics in Science and Engineering, vol. 531969New YorkAcademic Press
– reference: ElliottDTuanPDAsymptotic estimates of Fourier coefficientsSIAM J. Math Anal.1974511034093710.1137/05050010238.42008
– reference: Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat., 2 (2016)
– reference: SpiegelMRTheory and problems of Laplace transforms1965New YorkSchaum Publishing Co.
– reference: WeidemanJACAlgorithms for parameter selection in the Weeks method for inverting the Laplace transformSIAM J. Sci. Comput.1999211111128172208710.1137/S10648275963124320944.65137
– reference: DiethelmKThe analysis of fractional differential equations, Volume 2004 of Lecture Notes in Mathematics2010BerlinSpringer
– reference: XiangSAsymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadratureJ. Math. Anal. Appl.20123932434444292168610.1016/j.jmaa.2012.03.0561259.65058
– reference: GottliebDOrszagSANumerical analysis of spectral methods: theory and applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 261977PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611970425
– reference: WeeksWTNumerical inversion of Laplace transforms using Laguerre functionsJ. Assoc. Comput. Mach.19661341942919524110.1145/321341.3213510141.33401
– reference: TerekhovAVGenerating the Laguerre expansion coefficients by solving a one-dimensional transport equationNumer. Algorithms2022891303322435830810.1007/s11075-021-01115-807456978
– reference: NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds
– volume-title: The analysis of fractional differential equations, Volume 2004 of Lecture Notes in Mathematics
  year: 2010
  ident: 1368_CR8
– volume: 54
  start-page: 193
  issue: 2
  year: 1988
  ident: 1368_CR15
  publication-title: Numer. Math.
  doi: 10.1007/BF01396974
– volume-title: Theory and problems of Laplace transforms
  year: 1965
  ident: 1368_CR25
– volume: 393
  start-page: 434
  issue: 2
  year: 2012
  ident: 1368_CR33
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.03.056
– volume-title: Numerical methods for Laplace transform inversion, Volume 5 of Numerical Methods and Algorithms
  year: 2007
  ident: 1368_CR6
– volume: 28
  start-page: 131
  issue: 2
  year: 2010
  ident: 1368_CR3
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.08.011
– volume: 76
  start-page: 1341
  issue: 259
  year: 2007
  ident: 1368_CR32
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-07-01945-X
– volume: 56
  start-page: 385
  issue: 3
  year: 2014
  ident: 1368_CR28
  publication-title: SIAM Rev.
  doi: 10.1137/130932132
– ident: 1368_CR10
– ident: 1368_CR4
– volume: 19
  start-page: 17
  issue: 1
  year: 2005
  ident: 1368_CR2
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2005.01.003
– volume: 47
  start-page: 313
  issue: 175
  year: 1986
  ident: 1368_CR20
  publication-title: Math Comp.
  doi: 10.1090/S0025-5718-1986-0842138-1
– volume: 13
  start-page: 419
  year: 1966
  ident: 1368_CR29
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/321341.321351
– volume: 37
  start-page: A2630
  issue: 6
  year: 2015
  ident: 1368_CR17
  publication-title: SIAM J. Sci Comput.
  doi: 10.1137/15M1032764
– volume: 23
  start-page: 97
  issue: 1
  year: 1979
  ident: 1368_CR26
  publication-title: J. Inst. Math. Appl.
  doi: 10.1093/imamat/23.1.97
– volume-title: Numerical analysis of spectral methods: theory and applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 26
  year: 1977
  ident: 1368_CR16
  doi: 10.1137/1.9781611970425
– volume-title: Functions of a complex variable: Theory and Technique
  year: 1966
  ident: 1368_CR5
– volume: 26
  start-page: 465
  issue: 4
  year: 2000
  ident: 1368_CR31
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/365723.365727
– volume: 5
  start-page: 574
  year: 1974
  ident: 1368_CR18
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0505058
– ident: 1368_CR23
  doi: 10.3389/fams.2016.00001
– volume: 89
  start-page: 303
  issue: 1
  year: 2022
  ident: 1368_CR27
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-021-01115-8
– volume: 439
  start-page: 1024
  issue: 4
  year: 2013
  ident: 1368_CR22
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2012.10.036
– ident: 1368_CR11
– volume: 23
  start-page: 269
  issue: 2
  year: 2003
  ident: 1368_CR24
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/23.2.269
– volume-title: Fractional differential equations, Volume 198 of Mathematics in Science and Engineering
  year: 1999
  ident: 1368_CR21
– ident: 1368_CR7
  doi: 10.1093/imanum/drab108
– volume: 68
  start-page: 167
  issue: 1
  year: 2015
  ident: 1368_CR9
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-014-9895-z
– volume: 15
  start-page: 115
  year: 1968
  ident: 1368_CR12
  publication-title: J. Assoc Comput. Mach.
  doi: 10.1145/321439.321446
– volume: 210
  start-page: 124
  year: 2017
  ident: 1368_CR14
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.09.002
– volume: 5
  start-page: 1
  year: 1974
  ident: 1368_CR13
  publication-title: SIAM J. Math Anal.
  doi: 10.1137/0505001
– volume-title: The special functions and their approximations. Vol. II Mathematics in Science and Engineering, vol. 53
  year: 1969
  ident: 1368_CR19
– volume: 21
  start-page: 111
  issue: 1
  year: 1999
  ident: 1368_CR30
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596312432
– ident: 1368_CR1
  doi: 10.1007/978-1-4612-0571-5_10
SSID ssj0010027
Score 2.3515322
Snippet The role of the Laplace transform in scientific computing has been predominantly that of a semi-numerical tool. That is, typically only the inverse transform...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 985
SubjectTerms Algebra
Algorithms
Boundary conditions
Computation
Computer Science
Integral equations
Laplace transforms
Methods
Numeric Computing
Numerical Analysis
Numerical methods
Original Paper
Partial differential equations
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB1qe9GDH1WxWiUHL6KLSTZNsgcRlZYitohY6C3sV04lrSaF-u_dSTYtCnoLJNnDTHb3Td7OewCXInRlEHCPaF-5JKAmFzEPGeFxqoRHRRxobHAejcPhJHie9qYNGNe9MHissl4Ty4VazSX-I7_1mYfSXMx37xcfBF2jkF2tLTS4tVZQd6XE2Ba0fFTGakLrsT9-fVvzCliFlfynWZsN9oltG03VTGcqIexWxqMKNIzJ6udWtcGfvyjTcica7MOuhZDOQ5XzA2jorA17Fk46drLmbdgZrSVZ80O4wmLzy8mWFUUzc154eR7LKWro6lRu0vkRTAb996chsT4JRJoJVBDmchUig6h7KsIdJ-Q6jgSjnMpURNSUcCpweewykaYp1VJJwcy1QRaSGkBCj6GZzTN9Ag71eGQwmxvwSJgMUuYxzvyQ9Uq61fc74NUhSaQVEUcvi1mykT_GMCYmjEkZxmTVgev1O4tKQuPfp7t1pBM7nfJkk_wO3NTR39z-e7TT_0c7g220j69-qXShWXwu9bkBGYW4sF_ON7U4yrQ
  priority: 102
  providerName: ProQuest
Title Fully numerical Laplace transform methods
URI https://link.springer.com/article/10.1007/s11075-022-01368-x
https://www.proquest.com/docview/2918593920
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AFBBN
  dateStart: 19910201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolCoDC4JISZyHPbaoDwGtEKISTJGdOFMVEEkl-PecE7sRCJCYHDmOhzs_vst3D4BzETqJ73PXll7q2D5BXVAeMpvTLBUuEdSXKsB5Ng-nC__mKXjSQWGF8XY3lGR1UjfBbmipqGhi5UpAQmojcmwHKp0XruKFN1hzB8rSqjhOPH8R31AdKvPzHF-vowZjfqNFq9tmvAc7GiZag1qv-7Ah8w7sasho6Q1ZYJepymD6OrA9W2diLQ7gQtmYH1a-qpmZpXXHKzcsqzSI1aqLSBeHsBiPHq-nti6PYCe4b0qbOTwNFXEogzRSF03IJY0EI5wkmYgIWm6p73DqMJFlGZFJmgiGzwgoEoI4hBxBK3_J5TFYxOURQjXH55FAxRHmMs68kAUVy-p5XXCNlOJE5w5XJSyWcZP1WEk2RsnGlWTj9y5crr95rTNn_Dm6Z4Qf611UxB5zVTo25jlduDIKaV7_PtvJ_4afwpaqIl__WelBq3xbyTPEGqXowyYdT_rQHoyHw7lqJ8-3I2yHo_n9Q79aeJ9stc1m
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4NAEJ7UelAPvo3Vqhz0YJQI7BbYQ2N8prWPGGOT3nAXllPTVqFR_5y_zVlY2miit95IgD18DDPf7LczA3AsXCuklNumdCLLpAS_hc9dZnI_joRNhE-lKnDudN1Gjz70a_0SfBW1MOpYZeETM0cdjUK1R37hMFu15mKOdTl-NdXUKKWuFiM0uB6tENWzFmO6sKMlP98xhUvqzVv83ieOc3_3fNMw9ZQBM0TzS01m8chV-pusRZ7y1y6XvicY4SSMhUcwAYqoxX2LiTiOiQyjUDC8xrgcEgznBNddgEVKKMPkb_H6rvv4NNUxVNaX6a0YC5Br-bpsJy_ew8xLVUeroxHE9c2Pn6Fxxnd_SbRZ5Ltfh1VNWY2r3MY2oCSHm7Cm6auhnUOyCSudaQvYZAtOVXL7aQwnuSQ0MNo8O_9lpAVVNvLp1ck29OaC2A6Uh6Oh3AWD2NxDjmhR7gm0GMJsxpnjslom7zpOBewCkiDUTcvV7IxBMGu3rGAMEMYggzH4qMDZ9J1x3rLj36erBdKB_n2TYGZsFTgv0J_d_nu1vf9XO4KlxnOnHbSb3dY-LKvR9fl2ThXK6dtEHiDBScWhtiIDXuZtuN_sPQf_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hIiEYeBQQgQIZWBBEdWI3iccKqAq0FQOVull24kxVqEgqwb_nnEcDCJDYIsfxcOfHd_l83wFcKJ9EjEnX0V5MHEbRF6H0uSPDJFYuVSHTJsF5PPGHU_Yw680-ZfEXt91rSrLMaTAqTWneXcRJt0l8w6jFZBabawXUDx1EkevMCCXgjJ56_RWPYKKugu_EvRixTlilzfw8xtejqcGb3yjS4uQZ7MJ2BRntfunjPVjTaRt2KvhoV4szw6a6QkPd1oat8UqVNduHSxNvvtvpsmRp5vZIFley7LxGr3ZZUDo7gOng7vlm6FSlEpwI11DucCJj35CIuhcH5tDxpQ4DxamkUaICilFczIgMCVdJklAdxZHi-IzgIqKISeghtNKXVB-BTV0ZIGwjTAYKnUi5yyX3fN4rGFfPs8CtrSSiSkfclLOYi0YB2VhWoGVFYVnxZsHV6ptFqaLxZ-9ObXxRrahMeNw10mzcIxZc1w5pXv8-2vH_up_DxtPtQIzuJ48nsGmKy5c_XDrQyl-X-hQhSK7Oiln2AVEpzv4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+numerical+Laplace+transform+methods&rft.jtitle=Numerical+algorithms&rft.au=Weideman%2C+J.+A.+C.&rft.au=Fornberg%2C+Bengt&rft.date=2023-01-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=92&rft.issue=1&rft.spage=985&rft.epage=1006&rft_id=info:doi/10.1007%2Fs11075-022-01368-x&rft.externalDocID=10_1007_s11075_022_01368_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon