Fully numerical Laplace transform methods
The role of the Laplace transform in scientific computing has been predominantly that of a semi-numerical tool. That is, typically only the inverse transform is computed numerically, with all steps leading up to that executed by analytical manipulations or table look-up. Here, we consider fully nume...
        Saved in:
      
    
          | Published in | Numerical algorithms Vol. 92; no. 1; pp. 985 - 1006 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.01.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1017-1398 1572-9265  | 
| DOI | 10.1007/s11075-022-01368-x | 
Cover
| Abstract | The role of the Laplace transform in scientific computing has been predominantly that of a semi-numerical tool. That is, typically only the inverse transform is computed numerically, with all steps leading up to that executed by analytical manipulations or table look-up. Here, we consider fully numerical methods, where both forward and inverse transforms are computed numerically. Because the computation of the inverse transform has been studied extensively, this paper focus mainly on the forward transform. Existing methods for computing the forward transform based on exponential sums are considered along with a new method based on the formulas of Weeks. Numerical examples include a nonlinear integral equation of convolution type, a fractional ordinary differential equation, and a partial differential equation with an inhomogeneous boundary condition. | 
    
|---|---|
| AbstractList | The role of the Laplace transform in scientific computing has been predominantly that of a semi-numerical tool. That is, typically only the inverse transform is computed numerically, with all steps leading up to that executed by analytical manipulations or table look-up. Here, we consider fully numerical methods, where both forward and inverse transforms are computed numerically. Because the computation of the inverse transform has been studied extensively, this paper focus mainly on the forward transform. Existing methods for computing the forward transform based on exponential sums are considered along with a new method based on the formulas of Weeks. Numerical examples include a nonlinear integral equation of convolution type, a fractional ordinary differential equation, and a partial differential equation with an inhomogeneous boundary condition. | 
    
| Author | Weideman, J. A. C. Fornberg, Bengt  | 
    
| Author_xml | – sequence: 1 givenname: J. A. C. orcidid: 0000-0002-6833-8222 surname: Weideman fullname: Weideman, J. A. C. email: weideman@sun.ac.za organization: Department of Mathematical Sciences, Stellenbosch University – sequence: 2 givenname: Bengt orcidid: 0000-0003-0014-6985 surname: Fornberg fullname: Fornberg, Bengt organization: Department of Applied Mathematics, University of Colorado  | 
    
| BookMark | eNp9kDFPwzAQhS0EEm3hDzBFYmIwnO0mtkdUUUCqxAKz5Tg2pErsYidS--8xBAmJodO94b737t4cnfrgLUJXBG4JAL9LhAAvMVCKgbBK4P0JmpGSUyxpVZ5mDYRjwqQ4R_OUtgAZo3yGbtZj1x0KP_Y2tkZ3xUbvOm1sMUTtkwuxL3o7fIQmXaAzp7tkL3_nAr2tH15XT3jz8vi8ut9gw4gcsATdVNla2LLhAgittBW8lkwz42rOliCbJWgBsnbOMWsaU8usqWCGLZlkC3Q9-e5i-BxtGtQ2jNHnSEUlEaVkkkLeotOWiSGlaJ3axbbX8aAIqO9K1FSJypWon0rUPkPiH2TaQQ9t8PnbtjuOsglNOce_2_h31RHqC2Y3d3w | 
    
| CitedBy_id | crossref_primary_10_1177_01617346241271240 crossref_primary_10_1098_rsos_221619 crossref_primary_10_1007_s10915_023_02283_6 crossref_primary_10_1090_mcom_3942 crossref_primary_10_2298_TSCI230804224H  | 
    
| Cites_doi | 10.1007/BF01396974 10.1016/j.jmaa.2012.03.056 10.1016/j.acha.2009.08.011 10.1090/S0025-5718-07-01945-X 10.1137/130932132 10.1016/j.acha.2005.01.003 10.1090/S0025-5718-1986-0842138-1 10.1145/321341.321351 10.1137/15M1032764 10.1093/imamat/23.1.97 10.1137/1.9781611970425 10.1145/365723.365727 10.1137/0505058 10.3389/fams.2016.00001 10.1007/s11075-021-01115-8 10.1016/j.laa.2012.10.036 10.1093/imanum/23.2.269 10.1093/imanum/drab108 10.1007/s11075-014-9895-z 10.1145/321439.321446 10.1016/j.cpc.2016.09.002 10.1137/0505001 10.1137/S1064827596312432 10.1007/978-1-4612-0571-5_10  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| DOI | 10.1007/s11075-022-01368-x | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Computer Science Database ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Mathematics Computer Science  | 
    
| EISSN | 1572-9265 | 
    
| EndPage | 1006 | 
    
| ExternalDocumentID | 10_1007_s11075_022_01368_x | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c319t-90ad60278e5d780126ae87b93a3cfb73409d40a809bfff3ecdcb99bf283c34393 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1017-1398 | 
    
| IngestDate | Sat Sep 06 14:31:36 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Wed Oct 01 00:39:00 EDT 2025 Fri Feb 21 02:45:54 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Weeks method Laplace transform Exponential sums Padé approximation  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-90ad60278e5d780126ae87b93a3cfb73409d40a809bfff3ecdcb99bf283c34393 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0014-6985 0000-0002-6833-8222  | 
    
| PQID | 2918593920 | 
    
| PQPubID | 2043837 | 
    
| PageCount | 22 | 
    
| ParticipantIDs | proquest_journals_2918593920 crossref_primary_10_1007_s11075_022_01368_x crossref_citationtrail_10_1007_s11075_022_01368_x springer_journals_10_1007_s11075_022_01368_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230100 2023-01-00 20230101  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Numerical algorithms | 
    
| PublicationTitleAbbrev | Numer Algor | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | GottliebDOrszagSANumerical analysis of spectral methods: theory and applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 261977PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611970425 DingfelderBWeidemanJACAn improved Talbot method for numerical Laplace transform inversionNumer Algorithms2015681167183329670510.1007/s11075-014-9895-z1432.65190 Derevianko, N., Plonka, G., Petz, M.: From ESPRIT to ESPIRA: estimation of signal parameters by iterative rational approximation (2022) XiangSAsymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadratureJ. Math. Anal. Appl.20123932434444292168610.1016/j.jmaa.2012.03.0561259.65058 WeidemanJACTrefethenLNParabolic and hyperbolic contours for computing the Bromwich integralMath. Comp.20077625913411356229977710.1090/S0025-5718-07-01945-X1113.65119 ElliottDTuanPDAsymptotic estimates of Fourier coefficientsSIAM J. Math Anal.1974511034093710.1137/05050010238.42008 Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., Varga, A.: SLICOT—a subroutine library in systems and control theory. In: Applied and Computational Control, Signals, and Circuits, volume 1 of Appl. Comput. Control Signals Circuits, pp 499–539. Boston, Birkhäuser (1999) WeidemanJACAlgorithms for parameter selection in the Weeks method for inverting the Laplace transformSIAM J. Sci. Comput.1999211111128172208710.1137/S10648275963124320944.65137 SheenDSloanIHThoméeVA parallel method for time discretization of parabolic equations based on Laplace transformation and quadratureIMA J. Numer. Anal.2003232269299197526710.1093/imanum/23.2.2691022.65108 NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds TerekhovAVGenerating the Laguerre expansion coefficients by solving a one-dimensional transport equationNumer. Algorithms2022891303322435830810.1007/s11075-021-01115-807456978 LukeYLThe special functions and their approximations. Vol. II Mathematics in Science and Engineering, vol. 531969New YorkAcademic Press DiethelmKThe analysis of fractional differential equations, Volume 2004 of Lecture Notes in Mathematics2010BerlinSpringer Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications (2014) CarrierGFKrookMPearsonCEFunctions of a complex variable: Theory and Technique1966New YorkMcGraw-Hill Book Co.0146.29801 LongmanIMBest rational function approximation for Laplace transform inversionSIAM J. Math. Anal.1974557458035927310.1137/05050580253.44002 LynessJNGiuntaGA modification of the Weeks method for numerical inversion of the Laplace transformMath Comp.19864717531332284213810.1090/S0025-5718-1986-0842138-10611.65088 TalbotAThe accurate numerical inversion of Laplace transformsJ. Inst. Math. Appl.19792319712052628610.1093/imamat/23.1.970406.65054 WeeksWTNumerical inversion of Laplace transforms using Laguerre functionsJ. Assoc. Comput. Mach.19661341942919524110.1145/321341.3213510141.33401 Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat., 2 (2016) DubnerHAbateJNumerical inversion of Laplace transforms by relating them to the finite Fourier cosine transformJ. Assoc Comput. Mach.19681511512323572610.1145/321439.3214460165.51403 Butcher, J.C.: On the numerical inversion of Laplace and Mellin transforms. In: Conference on Data Processing and Automatic Computing Machines. Salisbury (1957) GiuntaGLaccettiGRizzardiMRMore on the Weeks method for the numerical inversion of the Laplace transformNumer. Math.198854219320096592110.1007/BF013969740659.65138 GilASeguraJTemmeNMEfficient computation of Laguerre polynomialsComput. Phys. Commun.2017210124131357634910.1016/j.cpc.2016.09.0021378.65066 PodlubnyIFractional differential equations, Volume 198 of Mathematics in Science and Engineering1999San DiegoAcademic Press, Inc. CohenAMNumerical methods for Laplace transform inversion, Volume 5 of Numerical Methods and Algorithms2007New YorkSpringer PottsDTascheMParameter estimation for nonincreasing exponential sums by Prony-like methodsLinear Algebra Appl.2013439410241039306175310.1016/j.laa.2012.10.0361281.65021 SpiegelMRTheory and problems of Laplace transforms1965New YorkSchaum Publishing Co. BeylkinGMonzónLApproximation by exponential sums revisitedAppl. Comput. Harmon. Anal.2010282131149259588110.1016/j.acha.2009.08.0111189.65035 WeidemanJACReddySCA MATLAB differentiation matrix suiteACM Trans. Math. Software2000264465519193996210.1145/365723.365727 BeylkinGMonzónLOn approximation of functions by exponential sumsAppl. Comput. Harmon. Anal.20051911748214706010.1016/j.acha.2005.01.0031075.65022 TrefethenLNWeidemanJACThe exponentially convergent trapezoidal ruleSIAM Rev.2014563385458324585810.1137/1309321321307.65031 HaleNWeidemanJACContour integral solution of elliptic PDEs in cylindrical domainsSIAM J. Sci Comput.2015376A2630A2655342162510.1137/15M10327641327.65042 JAC Weideman (1368_CR32) 2007; 76 JAC Weideman (1368_CR30) 1999; 21 1368_CR23 H Dubner (1368_CR12) 1968; 15 GF Carrier (1368_CR5) 1966 JN Lyness (1368_CR20) 1986; 47 LN Trefethen (1368_CR28) 2014; 56 AV Terekhov (1368_CR27) 2022; 89 WT Weeks (1368_CR29) 1966; 13 D Sheen (1368_CR24) 2003; 23 IM Longman (1368_CR18) 1974; 5 1368_CR7 1368_CR4 D Elliott (1368_CR13) 1974; 5 S Xiang (1368_CR33) 2012; 393 YL Luke (1368_CR19) 1969 1368_CR1 G Giunta (1368_CR15) 1988; 54 1368_CR11 1368_CR10 D Gottlieb (1368_CR16) 1977 JAC Weideman (1368_CR31) 2000; 26 G Beylkin (1368_CR3) 2010; 28 A Talbot (1368_CR26) 1979; 23 G Beylkin (1368_CR2) 2005; 19 MR Spiegel (1368_CR25) 1965 K Diethelm (1368_CR8) 2010 B Dingfelder (1368_CR9) 2015; 68 A Gil (1368_CR14) 2017; 210 I Podlubny (1368_CR21) 1999 D Potts (1368_CR22) 2013; 439 AM Cohen (1368_CR6) 2007 N Hale (1368_CR17) 2015; 37  | 
    
| References_xml | – reference: WeidemanJACReddySCA MATLAB differentiation matrix suiteACM Trans. Math. Software2000264465519193996210.1145/365723.365727 – reference: LynessJNGiuntaGA modification of the Weeks method for numerical inversion of the Laplace transformMath Comp.19864717531332284213810.1090/S0025-5718-1986-0842138-10611.65088 – reference: Butcher, J.C.: On the numerical inversion of Laplace and Mellin transforms. In: Conference on Data Processing and Automatic Computing Machines. Salisbury (1957) – reference: CohenAMNumerical methods for Laplace transform inversion, Volume 5 of Numerical Methods and Algorithms2007New YorkSpringer – reference: GiuntaGLaccettiGRizzardiMRMore on the Weeks method for the numerical inversion of the Laplace transformNumer. Math.198854219320096592110.1007/BF013969740659.65138 – reference: DingfelderBWeidemanJACAn improved Talbot method for numerical Laplace transform inversionNumer Algorithms2015681167183329670510.1007/s11075-014-9895-z1432.65190 – reference: TalbotAThe accurate numerical inversion of Laplace transformsJ. Inst. Math. Appl.19792319712052628610.1093/imamat/23.1.970406.65054 – reference: DubnerHAbateJNumerical inversion of Laplace transforms by relating them to the finite Fourier cosine transformJ. Assoc Comput. Mach.19681511512323572610.1145/321439.3214460165.51403 – reference: SheenDSloanIHThoméeVA parallel method for time discretization of parabolic equations based on Laplace transformation and quadratureIMA J. Numer. Anal.2003232269299197526710.1093/imanum/23.2.2691022.65108 – reference: Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., Varga, A.: SLICOT—a subroutine library in systems and control theory. In: Applied and Computational Control, Signals, and Circuits, volume 1 of Appl. Comput. Control Signals Circuits, pp 499–539. Boston, Birkhäuser (1999) – reference: BeylkinGMonzónLApproximation by exponential sums revisitedAppl. Comput. Harmon. Anal.2010282131149259588110.1016/j.acha.2009.08.0111189.65035 – reference: LongmanIMBest rational function approximation for Laplace transform inversionSIAM J. Math. Anal.1974557458035927310.1137/05050580253.44002 – reference: CarrierGFKrookMPearsonCEFunctions of a complex variable: Theory and Technique1966New YorkMcGraw-Hill Book Co.0146.29801 – reference: Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications (2014) – reference: PottsDTascheMParameter estimation for nonincreasing exponential sums by Prony-like methodsLinear Algebra Appl.2013439410241039306175310.1016/j.laa.2012.10.0361281.65021 – reference: BeylkinGMonzónLOn approximation of functions by exponential sumsAppl. Comput. Harmon. Anal.20051911748214706010.1016/j.acha.2005.01.0031075.65022 – reference: TrefethenLNWeidemanJACThe exponentially convergent trapezoidal ruleSIAM Rev.2014563385458324585810.1137/1309321321307.65031 – reference: WeidemanJACTrefethenLNParabolic and hyperbolic contours for computing the Bromwich integralMath. Comp.20077625913411356229977710.1090/S0025-5718-07-01945-X1113.65119 – reference: Derevianko, N., Plonka, G., Petz, M.: From ESPRIT to ESPIRA: estimation of signal parameters by iterative rational approximation (2022) – reference: PodlubnyIFractional differential equations, Volume 198 of Mathematics in Science and Engineering1999San DiegoAcademic Press, Inc. – reference: GilASeguraJTemmeNMEfficient computation of Laguerre polynomialsComput. Phys. Commun.2017210124131357634910.1016/j.cpc.2016.09.0021378.65066 – reference: HaleNWeidemanJACContour integral solution of elliptic PDEs in cylindrical domainsSIAM J. Sci Comput.2015376A2630A2655342162510.1137/15M10327641327.65042 – reference: LukeYLThe special functions and their approximations. Vol. II Mathematics in Science and Engineering, vol. 531969New YorkAcademic Press – reference: ElliottDTuanPDAsymptotic estimates of Fourier coefficientsSIAM J. Math Anal.1974511034093710.1137/05050010238.42008 – reference: Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat., 2 (2016) – reference: SpiegelMRTheory and problems of Laplace transforms1965New YorkSchaum Publishing Co. – reference: WeidemanJACAlgorithms for parameter selection in the Weeks method for inverting the Laplace transformSIAM J. Sci. Comput.1999211111128172208710.1137/S10648275963124320944.65137 – reference: DiethelmKThe analysis of fractional differential equations, Volume 2004 of Lecture Notes in Mathematics2010BerlinSpringer – reference: XiangSAsymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadratureJ. Math. Anal. Appl.20123932434444292168610.1016/j.jmaa.2012.03.0561259.65058 – reference: GottliebDOrszagSANumerical analysis of spectral methods: theory and applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 261977PhiladelphiaSociety for Industrial and Applied Mathematics10.1137/1.9781611970425 – reference: WeeksWTNumerical inversion of Laplace transforms using Laguerre functionsJ. Assoc. Comput. Mach.19661341942919524110.1145/321341.3213510141.33401 – reference: TerekhovAVGenerating the Laguerre expansion coefficients by solving a one-dimensional transport equationNumer. Algorithms2022891303322435830810.1007/s11075-021-01115-807456978 – reference: NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds – volume-title: The analysis of fractional differential equations, Volume 2004 of Lecture Notes in Mathematics year: 2010 ident: 1368_CR8 – volume: 54 start-page: 193 issue: 2 year: 1988 ident: 1368_CR15 publication-title: Numer. Math. doi: 10.1007/BF01396974 – volume-title: Theory and problems of Laplace transforms year: 1965 ident: 1368_CR25 – volume: 393 start-page: 434 issue: 2 year: 2012 ident: 1368_CR33 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.03.056 – volume-title: Numerical methods for Laplace transform inversion, Volume 5 of Numerical Methods and Algorithms year: 2007 ident: 1368_CR6 – volume: 28 start-page: 131 issue: 2 year: 2010 ident: 1368_CR3 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2009.08.011 – volume: 76 start-page: 1341 issue: 259 year: 2007 ident: 1368_CR32 publication-title: Math. Comp. doi: 10.1090/S0025-5718-07-01945-X – volume: 56 start-page: 385 issue: 3 year: 2014 ident: 1368_CR28 publication-title: SIAM Rev. doi: 10.1137/130932132 – ident: 1368_CR10 – ident: 1368_CR4 – volume: 19 start-page: 17 issue: 1 year: 2005 ident: 1368_CR2 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2005.01.003 – volume: 47 start-page: 313 issue: 175 year: 1986 ident: 1368_CR20 publication-title: Math Comp. doi: 10.1090/S0025-5718-1986-0842138-1 – volume: 13 start-page: 419 year: 1966 ident: 1368_CR29 publication-title: J. Assoc. Comput. Mach. doi: 10.1145/321341.321351 – volume: 37 start-page: A2630 issue: 6 year: 2015 ident: 1368_CR17 publication-title: SIAM J. Sci Comput. doi: 10.1137/15M1032764 – volume: 23 start-page: 97 issue: 1 year: 1979 ident: 1368_CR26 publication-title: J. Inst. Math. Appl. doi: 10.1093/imamat/23.1.97 – volume-title: Numerical analysis of spectral methods: theory and applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 26 year: 1977 ident: 1368_CR16 doi: 10.1137/1.9781611970425 – volume-title: Functions of a complex variable: Theory and Technique year: 1966 ident: 1368_CR5 – volume: 26 start-page: 465 issue: 4 year: 2000 ident: 1368_CR31 publication-title: ACM Trans. Math. Software doi: 10.1145/365723.365727 – volume: 5 start-page: 574 year: 1974 ident: 1368_CR18 publication-title: SIAM J. Math. Anal. doi: 10.1137/0505058 – ident: 1368_CR23 doi: 10.3389/fams.2016.00001 – volume: 89 start-page: 303 issue: 1 year: 2022 ident: 1368_CR27 publication-title: Numer. Algorithms doi: 10.1007/s11075-021-01115-8 – volume: 439 start-page: 1024 issue: 4 year: 2013 ident: 1368_CR22 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2012.10.036 – ident: 1368_CR11 – volume: 23 start-page: 269 issue: 2 year: 2003 ident: 1368_CR24 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/23.2.269 – volume-title: Fractional differential equations, Volume 198 of Mathematics in Science and Engineering year: 1999 ident: 1368_CR21 – ident: 1368_CR7 doi: 10.1093/imanum/drab108 – volume: 68 start-page: 167 issue: 1 year: 2015 ident: 1368_CR9 publication-title: Numer Algorithms doi: 10.1007/s11075-014-9895-z – volume: 15 start-page: 115 year: 1968 ident: 1368_CR12 publication-title: J. Assoc Comput. Mach. doi: 10.1145/321439.321446 – volume: 210 start-page: 124 year: 2017 ident: 1368_CR14 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.09.002 – volume: 5 start-page: 1 year: 1974 ident: 1368_CR13 publication-title: SIAM J. Math Anal. doi: 10.1137/0505001 – volume-title: The special functions and their approximations. Vol. II Mathematics in Science and Engineering, vol. 53 year: 1969 ident: 1368_CR19 – volume: 21 start-page: 111 issue: 1 year: 1999 ident: 1368_CR30 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827596312432 – ident: 1368_CR1 doi: 10.1007/978-1-4612-0571-5_10  | 
    
| SSID | ssj0010027 | 
    
| Score | 2.3515322 | 
    
| Snippet | The role of the Laplace transform in scientific computing has been predominantly that of a semi-numerical tool. That is, typically only the inverse transform... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 985 | 
    
| SubjectTerms | Algebra Algorithms Boundary conditions Computation Computer Science Integral equations Laplace transforms Methods Numeric Computing Numerical Analysis Numerical methods Original Paper Partial differential equations Theory of Computation  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB1qe9GDH1WxWiUHL6KLSTZNsgcRlZYitohY6C3sV04lrSaF-u_dSTYtCnoLJNnDTHb3Td7OewCXInRlEHCPaF-5JKAmFzEPGeFxqoRHRRxobHAejcPhJHie9qYNGNe9MHissl4Ty4VazSX-I7_1mYfSXMx37xcfBF2jkF2tLTS4tVZQd6XE2Ba0fFTGakLrsT9-fVvzCliFlfynWZsN9oltG03VTGcqIexWxqMKNIzJ6udWtcGfvyjTcica7MOuhZDOQ5XzA2jorA17Fk46drLmbdgZrSVZ80O4wmLzy8mWFUUzc154eR7LKWro6lRu0vkRTAb996chsT4JRJoJVBDmchUig6h7KsIdJ-Q6jgSjnMpURNSUcCpweewykaYp1VJJwcy1QRaSGkBCj6GZzTN9Ag71eGQwmxvwSJgMUuYxzvyQ9Uq61fc74NUhSaQVEUcvi1mykT_GMCYmjEkZxmTVgev1O4tKQuPfp7t1pBM7nfJkk_wO3NTR39z-e7TT_0c7g220j69-qXShWXwu9bkBGYW4sF_ON7U4yrQ priority: 102 providerName: ProQuest  | 
    
| Title | Fully numerical Laplace transform methods | 
    
| URI | https://link.springer.com/article/10.1007/s11075-022-01368-x https://www.proquest.com/docview/2918593920  | 
    
| Volume | 92 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: AFBBN dateStart: 19910201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolCoDC4JISZyHPbaoDwGtEKISTJGdOFMVEEkl-PecE7sRCJCYHDmOhzs_vst3D4BzETqJ73PXll7q2D5BXVAeMpvTLBUuEdSXKsB5Ng-nC__mKXjSQWGF8XY3lGR1UjfBbmipqGhi5UpAQmojcmwHKp0XruKFN1hzB8rSqjhOPH8R31AdKvPzHF-vowZjfqNFq9tmvAc7GiZag1qv-7Ah8w7sasho6Q1ZYJepymD6OrA9W2diLQ7gQtmYH1a-qpmZpXXHKzcsqzSI1aqLSBeHsBiPHq-nti6PYCe4b0qbOTwNFXEogzRSF03IJY0EI5wkmYgIWm6p73DqMJFlGZFJmgiGzwgoEoI4hBxBK3_J5TFYxOURQjXH55FAxRHmMs68kAUVy-p5XXCNlOJE5w5XJSyWcZP1WEk2RsnGlWTj9y5crr95rTNn_Dm6Z4Qf611UxB5zVTo25jlduDIKaV7_PtvJ_4afwpaqIl__WelBq3xbyTPEGqXowyYdT_rQHoyHw7lqJ8-3I2yHo_n9Q79aeJ9stc1m | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4NAEJ7UelAPvo3Vqhz0YJQI7BbYQ2N8prWPGGOT3nAXllPTVqFR_5y_zVlY2miit95IgD18DDPf7LczA3AsXCuklNumdCLLpAS_hc9dZnI_joRNhE-lKnDudN1Gjz70a_0SfBW1MOpYZeETM0cdjUK1R37hMFu15mKOdTl-NdXUKKWuFiM0uB6tENWzFmO6sKMlP98xhUvqzVv83ieOc3_3fNMw9ZQBM0TzS01m8chV-pusRZ7y1y6XvicY4SSMhUcwAYqoxX2LiTiOiQyjUDC8xrgcEgznBNddgEVKKMPkb_H6rvv4NNUxVNaX6a0YC5Br-bpsJy_ew8xLVUeroxHE9c2Pn6Fxxnd_SbRZ5Ltfh1VNWY2r3MY2oCSHm7Cm6auhnUOyCSudaQvYZAtOVXL7aQwnuSQ0MNo8O_9lpAVVNvLp1ck29OaC2A6Uh6Oh3AWD2NxDjmhR7gm0GMJsxpnjslom7zpOBewCkiDUTcvV7IxBMGu3rGAMEMYggzH4qMDZ9J1x3rLj36erBdKB_n2TYGZsFTgv0J_d_nu1vf9XO4KlxnOnHbSb3dY-LKvR9fl2ThXK6dtEHiDBScWhtiIDXuZtuN_sPQf_ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hIiEYeBQQgQIZWBBEdWI3iccKqAq0FQOVull24kxVqEgqwb_nnEcDCJDYIsfxcOfHd_l83wFcKJ9EjEnX0V5MHEbRF6H0uSPDJFYuVSHTJsF5PPGHU_Yw680-ZfEXt91rSrLMaTAqTWneXcRJt0l8w6jFZBabawXUDx1EkevMCCXgjJ56_RWPYKKugu_EvRixTlilzfw8xtejqcGb3yjS4uQZ7MJ2BRntfunjPVjTaRt2KvhoV4szw6a6QkPd1oat8UqVNduHSxNvvtvpsmRp5vZIFley7LxGr3ZZUDo7gOng7vlm6FSlEpwI11DucCJj35CIuhcH5tDxpQ4DxamkUaICilFczIgMCVdJklAdxZHi-IzgIqKISeghtNKXVB-BTV0ZIGwjTAYKnUi5yyX3fN4rGFfPs8CtrSSiSkfclLOYi0YB2VhWoGVFYVnxZsHV6ptFqaLxZ-9ObXxRrahMeNw10mzcIxZc1w5pXv8-2vH_up_DxtPtQIzuJ48nsGmKy5c_XDrQyl-X-hQhSK7Oiln2AVEpzv4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+numerical+Laplace+transform+methods&rft.jtitle=Numerical+algorithms&rft.au=Weideman%2C+J.+A.+C.&rft.au=Fornberg%2C+Bengt&rft.date=2023-01-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=92&rft.issue=1&rft.spage=985&rft.epage=1006&rft_id=info:doi/10.1007%2Fs11075-022-01368-x&rft.externalDocID=10_1007_s11075_022_01368_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |