Data repair accelerating scheme for erasure-coded storage system based on FPGA and hierarchical parallel decoding structure

Erasure coding has been widely used in commodity datacenter to tolerate faults, due to its ability to simultaneously provide high storage space utilization and data reliability. However, when data loss occurs, the extra data decoding and traffic overhead makes it difficult to improve their data repa...

Full description

Saved in:
Bibliographic Details
Published inCluster computing Vol. 27; no. 6; pp. 7803 - 7823
Main Authors Chen, Junqi, Yang, Sijie, Wang, Yong, Ye, Miao, Lei, Fan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1386-7857
1573-7543
DOI10.1007/s10586-024-04401-x

Cover

Abstract Erasure coding has been widely used in commodity datacenter to tolerate faults, due to its ability to simultaneously provide high storage space utilization and data reliability. However, when data loss occurs, the extra data decoding and traffic overhead makes it difficult to improve their data repair efficiency, limiting their further application in the hot data storage systems. In this paper, we proposed an FPGA-based Data Repair accelerating scheme (FPGA-ECDR) for erasure-coded storage system, which employs the Cauchy Reed-Solomon(CRS) code, to overcome the aforementioned limitation. In FPGA-ECDR, multiple modules are designed to work collaboratively, enhancing the efficiency of data flow and ensuring the reliability of the data repair process. Then, a CRS decoding algorithm based on check matrix is used to reduce the complexity of matrix inversion in the decoding process, and hardware acceleration of the algorithm is realized by FPGA. Moreover, we proposed a Hierarchical Parallel Decoding Structure (HPDS) to optimize cache data reading timing and XOR logic operations in the decoding process. HPDS can effectively reduce the impact of Column Address Strobe (CAS) latency and improve repair efficiency. Finally, we conducted FPGA board-level verification of the proposed scheme, testing on CRS codes with different data sizes and parameters. The experimental results show that compared with the schemes of the current mainstream open-source erasure coding library Jerasure and Intel ISA-L acceleration library, as well as the Xilinx RS code decoding acceleration scheme based on the same FPGA platform, our proposed scheme has lower decoding latency and can improve the data decoding rate by 3.2 to 148.5 times and enhances the repair throughput by up to 21.4 times in fault-tolerant storage system.
AbstractList Erasure coding has been widely used in commodity datacenter to tolerate faults, due to its ability to simultaneously provide high storage space utilization and data reliability. However, when data loss occurs, the extra data decoding and traffic overhead makes it difficult to improve their data repair efficiency, limiting their further application in the hot data storage systems. In this paper, we proposed an FPGA-based Data Repair accelerating scheme (FPGA-ECDR) for erasure-coded storage system, which employs the Cauchy Reed-Solomon(CRS) code, to overcome the aforementioned limitation. In FPGA-ECDR, multiple modules are designed to work collaboratively, enhancing the efficiency of data flow and ensuring the reliability of the data repair process. Then, a CRS decoding algorithm based on check matrix is used to reduce the complexity of matrix inversion in the decoding process, and hardware acceleration of the algorithm is realized by FPGA. Moreover, we proposed a Hierarchical Parallel Decoding Structure (HPDS) to optimize cache data reading timing and XOR logic operations in the decoding process. HPDS can effectively reduce the impact of Column Address Strobe (CAS) latency and improve repair efficiency. Finally, we conducted FPGA board-level verification of the proposed scheme, testing on CRS codes with different data sizes and parameters. The experimental results show that compared with the schemes of the current mainstream open-source erasure coding library Jerasure and Intel ISA-L acceleration library, as well as the Xilinx RS code decoding acceleration scheme based on the same FPGA platform, our proposed scheme has lower decoding latency and can improve the data decoding rate by 3.2 to 148.5 times and enhances the repair throughput by up to 21.4 times in fault-tolerant storage system.
Author Ye, Miao
Lei, Fan
Chen, Junqi
Yang, Sijie
Wang, Yong
Author_xml – sequence: 1
  givenname: Junqi
  surname: Chen
  fullname: Chen, Junqi
  organization: School of Computer Science and Information Security, Guilin University of Electronic Technology
– sequence: 2
  givenname: Sijie
  surname: Yang
  fullname: Yang, Sijie
  organization: School of Computer Science and Information Security, Guilin University of Electronic Technology
– sequence: 3
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: ywang@guet.edu.cn
  organization: School of Computer Science and Information Security, Guilin University of Electronic Technology, Guangxi Engineering Technology Research Center of Cloud Security and Cloud Service, Guilin University of Electronic Technology
– sequence: 4
  givenname: Miao
  surname: Ye
  fullname: Ye, Miao
  organization: School of Computer Science and Information Security, Guilin University of Electronic Technology, Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology
– sequence: 5
  givenname: Fan
  surname: Lei
  fullname: Lei, Fan
  organization: School of Computer Science and Information Security, Guilin University of Electronic Technology
BookMark eNp9kMFKxDAQhoMouK6-gKeA52rSpJv0KKuugqAHPYc0ne5Wuk2dpLDiyxu3guDB0wyT-f4J3wk57H0PhJxzdskZU1eBs0IvMpbLjEnJeLY7IDNeKJGpQorD1Iv0rHShjslJCG-MsVLl5Yx83thoKcJgW6TWOegAbWz7NQ1uA1ugjUeaRmFEyJyvoaYherRroOEjRNjSyoY09D29e15dU9vXdNMmAN2mdbajg0XbddDRGhK-D444upjyTslRY7sAZz91Tl7vbl-W99nj0-phef2YOcHLmOkGXM14xRWrNYNG587lBdcgpK5kI0UuxKKoqipvaqVlJWTBbeWEK10piroRc3Ix5Q7o30cI0bz5Eft00ohkb6FyqUTayqcthz4EhMYM2G4tfhjOzLdkM0k2SbLZSza7BOk_kGtj8uf7iLbt_kfFhIZ0p18D_v7qH-oLfDSV5A
CitedBy_id crossref_primary_10_3390_sym16060672
Cites_doi 10.1109/TPDS.2022.3188656
10.1109/TIM.2023.3309357
10.1109/TC.2020.3028353
10.1016/j.jnca.2017.08.011
10.1109/INFOCOM53939.2023.10228984
10.1109/TDSC.2017.2774299
10.1145/3625005
10.1109/TPDS.2018.2791438
10.1109/TR.2022.3161638
10.1109/TIT.2019.2902835
10.1109/TVLSI.2021.3066804
10.27157/d.cnki.ghzku.2020.003437
10.1109/TC.2021.3060701
10.27157/d.cnki.ghzku.2020.005337
10.7544/issn1000-1239.202220580
10.1007/s10586-022-03575-6
10.1109/ICCD56317.2022.00102
10.1109/TMAG.2017.2778053
10.1145/3568428
10.1109/TPDS.2022.3153061
10.1007/s11432-018-9482-6
10.1145/3530775
10.1109/TPDS.2023.3282180
10.1145/3436890
10.1145/3453417.3453426
10.1145/3605573.3605619
10.1109/TC.2021.3110131
10.1145/3506713
10.7544/issn1000-1239.20210575
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s10586-024-04401-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 7823
ExternalDocumentID 10_1007_s10586_024_04401_x
GrantInformation_xml – fundername: Innovation Project of GUET Graduate Education
  grantid: 2023YCXB06; 2023YCXB06; 2023YCXB06; 2023YCXB06
– fundername: Foundation of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing
  grantid: GXKL06220110
– fundername: Guangxi Innovation-Driven Development Project
  grantid: AA18118031
  funderid: http://dx.doi.org/10.13039/501100018602
– fundername: National Natural Science Foundation of China
  grantid: 61861018; 61861018; 62161006
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-8fecd01b170d80ef82cc2518e348b4f4323365bbb2fd784b3451abc3c9c935df3
IEDL.DBID U2A
ISSN 1386-7857
IngestDate Tue Sep 02 03:18:49 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Wed Oct 01 04:12:10 EDT 2025
Fri Feb 21 02:39:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Data repair
Erasure code
Fault-tolerant storage
FPGA
Hardware acceleration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8fecd01b170d80ef82cc2518e348b4f4323365bbb2fd784b3451abc3c9c935df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3100672473
PQPubID 2043865
PageCount 21
ParticipantIDs proquest_journals_3100672473
crossref_primary_10_1007_s10586_024_04401_x
crossref_citationtrail_10_1007_s10586_024_04401_x
springer_journals_10_1007_s10586_024_04401_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChenHFuSParallel erasure coding: exploring task parallelism in erasure coding for enhanced bandwidth and energy efficiency2016 IEEE International Conference on Networking, Architecture and Storage (NAS)2016IEEE14
Apache hadoop 3.3.5, 2023. https://hadoop.apache.org/docs/r3.3.5/. Accessed 21 Sept 2023
LiuCWangQChuXLeungYWG-CRS: GPU accelerated Cauchy Reed-Solomon codingIEEE Trans. Parallel Distrib. Syst.201810.1109/TPDS.2018.2791438
TangYJZhangXFast en/decoding of Reed-Solomon codes for failure recoveryIEEE Trans. Comput.202110.1109/TC.2021.3060701
Muralidhar S., Lloyd W., Roy S., et al.: f4: Facebook’s warm {BLOB} storage system. 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), 2014: pp. 383–398 (2014).
LiuHChenYZengZA low power and low latency FPGA-based spiking neural network accelerator2023 International Joint Conference on Neural Networks (IJCNN)2023IEEE18
LiSCaoQWanSgPPM: a generalized matrix operation and parallel algorithm to accelerate the encoding/decoding process of erasure codesACM Trans. Archit Code Optim.202310.1145/3625005
KouGYiKXiaoHPengRReliability of a distributed data storage system considering the external impactsIEEE Trans. Reliab.202210.1109/TR.2022.3161638
Mascareñas González A., Boniol F., Bouchebaba Y., et al.: Heterogeneous multicore SDRAM interference analysis. 29th International Conference on Real-Time Networks and Systems, pp. 12–23 (2021).
PlankJSGreenanKMMillerELScreaming fast Galois field arithmetic using intel SIMD instructions11th USENIX Conference on File and Storage Technologies2013BerkeleyUSENIX Association299306
BobdaCMbongueJMChowPEwaisMTarafdarNVegaJCEguroKKochDHandagalaSLeeserMHerbordtMShahzadHHofstePRingleinBSzeferJSanaullahATessierRThe future of FPGA acceleration in datacenters and the cloudACM Trans. Reconfigurable Technol. Syst. (TRETS)202210.1145/3506713
LiSCaoQWanSXiaWXieCgPPM: a generalized matrix operation and parallel algorithm to accelerate the encoding/decoding process of erasure codesACM Trans. Architect. Code Optim.202310.1145/3625005
Tsuraan. Jerasure (2015). https://github.com/tsuraan/Jerasure. Accessed 21 Sept 2023
Intel. ISA-L (2023). https://github.com/intel/isa-l. Accessed 21 Sept 2023
Xu Jiahao. Design and implementation of LRC coding acceleration optimization based on cheap GPU [D]. Wuhan: Huazhong University of Science and Technology (2020). https://doi.org/10.27157/d.cnki.ghzku.2020.003437
ShenZLinSShuJXieCHuangZFuYCluster-aware scattered repair in erasure-coded storage: design and analysisIEEE Trans. Comput.202110.1109/TC.2020.3028353
MakovenkoMChengMTianCRevisiting the optimization of Cauchy Reed-Solomon coding matrix for fault-tolerant data storageIEEE Trans. Comput.202110.1109/TC.2021.3110131
NachiappanRJavadiBCalheirosRNMatawieKMCloud storage reliability for big data applications: a state of the art surveyJ. Netw. Comput. Appl.201710.1016/j.jnca.2017.08.011
XuXWangYWuBWangZZhouYA high-resolution nanosecond-scale on-chip voltage sensor for FPGA applicationsIEEE Trans. Instrum. Measure202310.1109/TIM.2023.3309357
ZhouHFengDBoosting erasure-coded multi-stripe repair in rack architecture and heterogeneous clusters: design and analysisIEEE Trans. Parallel Distrib. Syst.202310.1109/TPDS.2023.3282180
Kadekodi S, Rashmi K V, Ganger G R: Cluster storage systems gotta have {HeART}: improving storage efficiency by exploiting disk-reliability heterogeneity. 17th USENIX Conference on File and Storage Technologies (FAST), pp. 345–358 (2019).
LiXChengKTangKParaRC: embracing sub-packetization for repair parallelization in MSR-coded storageProceedings of the 21st USENIX Conference on File and Storage Technologies (FAST)2023BerkeleyUSENIX Association1731
MaSMaTChenKWuYA survey of storage systems in the RDMA eraIEEE Trans. Parallel Distrib. Syst.202210.1109/TPDS.2022.3188656
Wang Xianpeng. Adaptive fault tolerance scheme for SSD based on erasure code and its performance optimization. Wuhan: Huazhong University of Science and Technology (2020) https://doi.org/10.27157/d.cnki.ghzku.2020.005337
Tang K, Cheng K, Chan H H W, et al.: Balancing repair bandwidth and sub-packetization in erasure-coded storage via elastic transformation. IEEE INFOCOM 2023-IEEE Conference on Computer Communications (INFOCOM), pp. 1–10 (2023)
ZhouHFengDHuYA stripe-schedule aware repair technique in the heterogeneous network for erasure-coded clusters2022 IEEE 40th International Conference on Computer Design (ICCD)2022IEEE66467110.1109/ICCD56317.2022.00102
MondalAThatimattalaSYalamaddiVKGaraniSSEfficient coding architectures for Reed-Solomon and low-density parity-check decoders for magnetic and other data storage systemsIEEE Trans. Magn.201810.1109/TMAG.2017.2778053
TorabiEGhobaei-AraniMShahidinejadAData replica placement approaches in fog computing: a reviewClust. Comput.202210.1007/s10586-022-03575-6
ZhouHFengDHuYBandwidth-aware scheduling repair techniques in erasure-coded clusters: design and analysisIEEE Trans. Parallel Distrib. Syst.202210.1109/TPDS.2022.3153061
HouHLeePPShumKWHuYRack-aware regenerating codes for data centersIEEE Trans. Inf. Theory2019398851810.1109/TIT.2019.2902835
LiXYangZLiJLiRLeePHuangQHuYRepair pipelining for erasure-coded storage: algorithms and evaluationACM Trans. Storage202110.1145/3436890
BaoHWangYA fast construction method of the erasure code with small cross-cloud data center repair trafficJ. Comput. Res. Dev.202310.7544/issn1000-1239.202220580
GaoZZhangLChengYGuoKUllahAReviriegoPDesign of FPGA-implemented Reed-Solomon erasure code (RS-EC) decoders with fault detection and location on user memoryIEEE Trans. Very Large Scale Integr. (VLSI) Syst.202110.1109/TVLSI.2021.3066804
LiaoXLuYYangZShuJEfficient crash consistency for NVMe over PCIe and RDMAACM Trans. Storage202310.1145/3568428
CongJLauJLiuGNeuendorfferSPanPVissersKZhangZFPGA HLS today: successes, challenges, and opportunitiesACM Trans. Reconfigurable Technol. Syst. (TRETS)202210.1145/3530775
TangDCaiHGengWDecoding method of Reed-Solomon erasure codesJ. Comput. Res. Dev.202210.7544/issn1000-1239.20210575
BalajiSBKrishnanMNVajhaMRamkumarVSasidharanBKumarPErasure coding for distributed storage: An overviewSci. China Inf. Sci.201810.1007/s11432-018-9482-6
Zhang M., Kang Q., Lee P P C.: Minimizing network and storage costs for consensus with flexible erasure coding. Proceedings of the 52nd International Conference on Parallel Processing (ICPP), pp. 41–50 (2023).
ShenZLeePPShuJGuoWCross-rack-aware single failure recovery for clustered file systemsIEEE Trans. Dependable Secure Comput.201710.1109/TDSC.2017.2774299
H Chen (4401_CR29) 2016
H Zhou (4401_CR10) 2022
D Tang (4401_CR39) 2022
X Xu (4401_CR23) 2023
H Zhou (4401_CR12) 2023
C Bobda (4401_CR22) 2022
4401_CR35
R Nachiappan (4401_CR28) 2017
S Li (4401_CR32) 2023
4401_CR33
4401_CR31
E Torabi (4401_CR5) 2022
Z Shen (4401_CR13) 2021
G Kou (4401_CR2) 2022
X Li (4401_CR7) 2023
Z Shen (4401_CR14) 2017
4401_CR19
4401_CR36
S Li (4401_CR38) 2023
4401_CR37
H Zhou (4401_CR15) 2022
H Liu (4401_CR25) 2023
H Bao (4401_CR9) 2023
Z Gao (4401_CR30) 2021
4401_CR8
M Makovenko (4401_CR27) 2021
4401_CR1
4401_CR3
JS Plank (4401_CR17) 2013
4401_CR4
YJ Tang (4401_CR26) 2021
H Hou (4401_CR16) 2019
J Cong (4401_CR24) 2022
A Mondal (4401_CR34) 2018
X Liao (4401_CR21) 2023
C Liu (4401_CR18) 2018
SB Balaji (4401_CR6) 2018
X Li (4401_CR11) 2021
S Ma (4401_CR20) 2022
References_xml – reference: KouGYiKXiaoHPengRReliability of a distributed data storage system considering the external impactsIEEE Trans. Reliab.202210.1109/TR.2022.3161638
– reference: XuXWangYWuBWangZZhouYA high-resolution nanosecond-scale on-chip voltage sensor for FPGA applicationsIEEE Trans. Instrum. Measure202310.1109/TIM.2023.3309357
– reference: NachiappanRJavadiBCalheirosRNMatawieKMCloud storage reliability for big data applications: a state of the art surveyJ. Netw. Comput. Appl.201710.1016/j.jnca.2017.08.011
– reference: LiuHChenYZengZA low power and low latency FPGA-based spiking neural network accelerator2023 International Joint Conference on Neural Networks (IJCNN)2023IEEE18
– reference: TangYJZhangXFast en/decoding of Reed-Solomon codes for failure recoveryIEEE Trans. Comput.202110.1109/TC.2021.3060701
– reference: MondalAThatimattalaSYalamaddiVKGaraniSSEfficient coding architectures for Reed-Solomon and low-density parity-check decoders for magnetic and other data storage systemsIEEE Trans. Magn.201810.1109/TMAG.2017.2778053
– reference: Kadekodi S, Rashmi K V, Ganger G R: Cluster storage systems gotta have {HeART}: improving storage efficiency by exploiting disk-reliability heterogeneity. 17th USENIX Conference on File and Storage Technologies (FAST), pp. 345–358 (2019).
– reference: Wang Xianpeng. Adaptive fault tolerance scheme for SSD based on erasure code and its performance optimization. Wuhan: Huazhong University of Science and Technology (2020) https://doi.org/10.27157/d.cnki.ghzku.2020.005337
– reference: ChenHFuSParallel erasure coding: exploring task parallelism in erasure coding for enhanced bandwidth and energy efficiency2016 IEEE International Conference on Networking, Architecture and Storage (NAS)2016IEEE14
– reference: HouHLeePPShumKWHuYRack-aware regenerating codes for data centersIEEE Trans. Inf. Theory2019398851810.1109/TIT.2019.2902835
– reference: ShenZLinSShuJXieCHuangZFuYCluster-aware scattered repair in erasure-coded storage: design and analysisIEEE Trans. Comput.202110.1109/TC.2020.3028353
– reference: Tang K, Cheng K, Chan H H W, et al.: Balancing repair bandwidth and sub-packetization in erasure-coded storage via elastic transformation. IEEE INFOCOM 2023-IEEE Conference on Computer Communications (INFOCOM), pp. 1–10 (2023)
– reference: ZhouHFengDHuYBandwidth-aware scheduling repair techniques in erasure-coded clusters: design and analysisIEEE Trans. Parallel Distrib. Syst.202210.1109/TPDS.2022.3153061
– reference: MaSMaTChenKWuYA survey of storage systems in the RDMA eraIEEE Trans. Parallel Distrib. Syst.202210.1109/TPDS.2022.3188656
– reference: CongJLauJLiuGNeuendorfferSPanPVissersKZhangZFPGA HLS today: successes, challenges, and opportunitiesACM Trans. Reconfigurable Technol. Syst. (TRETS)202210.1145/3530775
– reference: MakovenkoMChengMTianCRevisiting the optimization of Cauchy Reed-Solomon coding matrix for fault-tolerant data storageIEEE Trans. Comput.202110.1109/TC.2021.3110131
– reference: Intel. ISA-L (2023). https://github.com/intel/isa-l. Accessed 21 Sept 2023
– reference: ZhouHFengDHuYA stripe-schedule aware repair technique in the heterogeneous network for erasure-coded clusters2022 IEEE 40th International Conference on Computer Design (ICCD)2022IEEE66467110.1109/ICCD56317.2022.00102
– reference: LiuCWangQChuXLeungYWG-CRS: GPU accelerated Cauchy Reed-Solomon codingIEEE Trans. Parallel Distrib. Syst.201810.1109/TPDS.2018.2791438
– reference: BalajiSBKrishnanMNVajhaMRamkumarVSasidharanBKumarPErasure coding for distributed storage: An overviewSci. China Inf. Sci.201810.1007/s11432-018-9482-6
– reference: Muralidhar S., Lloyd W., Roy S., et al.: f4: Facebook’s warm {BLOB} storage system. 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), 2014: pp. 383–398 (2014).
– reference: LiSCaoQWanSXiaWXieCgPPM: a generalized matrix operation and parallel algorithm to accelerate the encoding/decoding process of erasure codesACM Trans. Architect. Code Optim.202310.1145/3625005
– reference: TangDCaiHGengWDecoding method of Reed-Solomon erasure codesJ. Comput. Res. Dev.202210.7544/issn1000-1239.20210575
– reference: Mascareñas González A., Boniol F., Bouchebaba Y., et al.: Heterogeneous multicore SDRAM interference analysis. 29th International Conference on Real-Time Networks and Systems, pp. 12–23 (2021).
– reference: PlankJSGreenanKMMillerELScreaming fast Galois field arithmetic using intel SIMD instructions11th USENIX Conference on File and Storage Technologies2013BerkeleyUSENIX Association299306
– reference: BaoHWangYA fast construction method of the erasure code with small cross-cloud data center repair trafficJ. Comput. Res. Dev.202310.7544/issn1000-1239.202220580
– reference: LiXYangZLiJLiRLeePHuangQHuYRepair pipelining for erasure-coded storage: algorithms and evaluationACM Trans. Storage202110.1145/3436890
– reference: Apache hadoop 3.3.5, 2023. https://hadoop.apache.org/docs/r3.3.5/. Accessed 21 Sept 2023
– reference: LiaoXLuYYangZShuJEfficient crash consistency for NVMe over PCIe and RDMAACM Trans. Storage202310.1145/3568428
– reference: TorabiEGhobaei-AraniMShahidinejadAData replica placement approaches in fog computing: a reviewClust. Comput.202210.1007/s10586-022-03575-6
– reference: Xu Jiahao. Design and implementation of LRC coding acceleration optimization based on cheap GPU [D]. Wuhan: Huazhong University of Science and Technology (2020). https://doi.org/10.27157/d.cnki.ghzku.2020.003437
– reference: ZhouHFengDBoosting erasure-coded multi-stripe repair in rack architecture and heterogeneous clusters: design and analysisIEEE Trans. Parallel Distrib. Syst.202310.1109/TPDS.2023.3282180
– reference: LiXChengKTangKParaRC: embracing sub-packetization for repair parallelization in MSR-coded storageProceedings of the 21st USENIX Conference on File and Storage Technologies (FAST)2023BerkeleyUSENIX Association1731
– reference: ShenZLeePPShuJGuoWCross-rack-aware single failure recovery for clustered file systemsIEEE Trans. Dependable Secure Comput.201710.1109/TDSC.2017.2774299
– reference: BobdaCMbongueJMChowPEwaisMTarafdarNVegaJCEguroKKochDHandagalaSLeeserMHerbordtMShahzadHHofstePRingleinBSzeferJSanaullahATessierRThe future of FPGA acceleration in datacenters and the cloudACM Trans. Reconfigurable Technol. Syst. (TRETS)202210.1145/3506713
– reference: Zhang M., Kang Q., Lee P P C.: Minimizing network and storage costs for consensus with flexible erasure coding. Proceedings of the 52nd International Conference on Parallel Processing (ICPP), pp. 41–50 (2023).
– reference: GaoZZhangLChengYGuoKUllahAReviriegoPDesign of FPGA-implemented Reed-Solomon erasure code (RS-EC) decoders with fault detection and location on user memoryIEEE Trans. Very Large Scale Integr. (VLSI) Syst.202110.1109/TVLSI.2021.3066804
– reference: Tsuraan. Jerasure (2015). https://github.com/tsuraan/Jerasure. Accessed 21 Sept 2023
– reference: LiSCaoQWanSgPPM: a generalized matrix operation and parallel algorithm to accelerate the encoding/decoding process of erasure codesACM Trans. Archit Code Optim.202310.1145/3625005
– start-page: 17
  volume-title: Proceedings of the 21st USENIX Conference on File and Storage Technologies (FAST)
  year: 2023
  ident: 4401_CR7
– year: 2022
  ident: 4401_CR20
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2022.3188656
– year: 2023
  ident: 4401_CR23
  publication-title: IEEE Trans. Instrum. Measure
  doi: 10.1109/TIM.2023.3309357
– year: 2021
  ident: 4401_CR13
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2020.3028353
– year: 2017
  ident: 4401_CR28
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2017.08.011
– ident: 4401_CR37
  doi: 10.1109/INFOCOM53939.2023.10228984
– year: 2017
  ident: 4401_CR14
  publication-title: IEEE Trans. Dependable Secure Comput.
  doi: 10.1109/TDSC.2017.2774299
– year: 2023
  ident: 4401_CR38
  publication-title: ACM Trans. Archit Code Optim.
  doi: 10.1145/3625005
– year: 2018
  ident: 4401_CR18
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2791438
– year: 2022
  ident: 4401_CR2
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2022.3161638
– year: 2019
  ident: 4401_CR16
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2019.2902835
– year: 2021
  ident: 4401_CR30
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2021.3066804
– ident: 4401_CR35
– ident: 4401_CR19
  doi: 10.27157/d.cnki.ghzku.2020.003437
– year: 2023
  ident: 4401_CR32
  publication-title: ACM Trans. Architect. Code Optim.
  doi: 10.1145/3625005
– year: 2021
  ident: 4401_CR26
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2021.3060701
– start-page: 1
  volume-title: 2023 International Joint Conference on Neural Networks (IJCNN)
  year: 2023
  ident: 4401_CR25
– ident: 4401_CR4
– ident: 4401_CR31
  doi: 10.27157/d.cnki.ghzku.2020.005337
– year: 2023
  ident: 4401_CR9
  publication-title: J. Comput. Res. Dev.
  doi: 10.7544/issn1000-1239.202220580
– year: 2022
  ident: 4401_CR5
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-022-03575-6
– start-page: 664
  volume-title: 2022 IEEE 40th International Conference on Computer Design (ICCD)
  year: 2022
  ident: 4401_CR10
  doi: 10.1109/ICCD56317.2022.00102
– year: 2018
  ident: 4401_CR34
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2017.2778053
– year: 2023
  ident: 4401_CR21
  publication-title: ACM Trans. Storage
  doi: 10.1145/3568428
– year: 2022
  ident: 4401_CR15
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2022.3153061
– year: 2018
  ident: 4401_CR6
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-018-9482-6
– year: 2022
  ident: 4401_CR24
  publication-title: ACM Trans. Reconfigurable Technol. Syst. (TRETS)
  doi: 10.1145/3530775
– year: 2023
  ident: 4401_CR12
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2023.3282180
– year: 2021
  ident: 4401_CR11
  publication-title: ACM Trans. Storage
  doi: 10.1145/3436890
– ident: 4401_CR33
  doi: 10.1145/3453417.3453426
– ident: 4401_CR8
  doi: 10.1145/3605573.3605619
– ident: 4401_CR36
– year: 2021
  ident: 4401_CR27
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2021.3110131
– start-page: 1
  volume-title: 2016 IEEE International Conference on Networking, Architecture and Storage (NAS)
  year: 2016
  ident: 4401_CR29
– year: 2022
  ident: 4401_CR22
  publication-title: ACM Trans. Reconfigurable Technol. Syst. (TRETS)
  doi: 10.1145/3506713
– start-page: 299
  volume-title: 11th USENIX Conference on File and Storage Technologies
  year: 2013
  ident: 4401_CR17
– year: 2022
  ident: 4401_CR39
  publication-title: J. Comput. Res. Dev.
  doi: 10.7544/issn1000-1239.20210575
– ident: 4401_CR1
– ident: 4401_CR3
SSID ssj0009729
Score 2.342476
Snippet Erasure coding has been widely used in commodity datacenter to tolerate faults, due to its ability to simultaneously provide high storage space utilization and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7803
SubjectTerms Algorithms
Bandwidths
Codes
Coding
Columnar structure
Computer Communication Networks
Computer Science
Data loss
Data storage
Decoding
Efficiency
Fault tolerance
Field programmable gate arrays
Operating Systems
Processor Architectures
Repair
Source code
Storage systems
Structural reliability
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9sKFlpdYWtAcuIFFEttr54Cq0napkFhVVSv1FvmJkJZsafdQqX-eGa9DBBK95jGK8tmeGXvm-xh7V9tQ6VY53khHCYoU3NnQ8JaaLisVVPLU4PxtMTu9lF-v1NUWWwy9MFRWOayJeaEOK0975B9pI3qmG6nFwfUvTqpRdLo6SGjYIq0QPmWKsUdsuyFmrAnb_nyyODsfaXh11i2rhZlxbZQubTSlmU4ZKsilwgzMOvjd365qjD__OTLNnmi-y56UEBION5g_ZVuxf8Z2BnkGKLP1Obs_tmsLN-hvftwAfjo6GIK7_w6Y0cafETBeBbxEe4ScWtsDUKkkLjCw4XcGcnEBVj3Mz74cgu0DkHJ2PntAaIFow5fLuISAOWzIhjMbLdp7wS7nJxdHp7xoLXCPk3DNTYo-VLWrdRVMFZNpvMfQx0QhjZNJikaImXLONSloI52QqrbOC9_6VqiQxEs26Vd9fMXAtqm1xJPmdZLRJyNkbCluwFgkYDo6ZfXwWztfiMhJD2PZjRTKBEWHUHQZiu5uyt7_eed6Q8Px4NP7A1pdmZK33TiApuzDgOB4-__WXj9sbY89bvKgobqzfTbBHx3fYKCydm_L6PsN9-blQg
  priority: 102
  providerName: ProQuest
Title Data repair accelerating scheme for erasure-coded storage system based on FPGA and hierarchical parallel decoding structure
URI https://link.springer.com/article/10.1007/s10586-024-04401-x
https://www.proquest.com/docview/3100672473
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7543
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELX4uHCB0oJYCqs59EYjJbG9do4L3V0EAiHUleAU-bOqtA0V7AGJP98Zb8LSqiBxipQ4PuTZnjeZmTeMfSmMz1UlbVYKSw6K4Jk1vswqKrrMpZfRUYHzxeXgdCrObuRNWxT20GW7dyHJdFK_KHaTmhJmKXECvYIMmeO6JDkvXMXTcriU2lWpN1nBcbTSUrWlMv-f429ztOSY_4RFk7UZf2CbLU2E4QLXbbYSmo9sq2vBAO2O_MSevpm5gXu0KT_vwTiHRoQgbX4Aeq3hVwDkpIC36D9gRuXrHigdEg8RWGg4A5kxD3cNjK8mQzCNB-qOneILCB-QNPhsFmbg0U_1aeKkOIvz7bDpePT95DRr-ylkDjfaPNMxOJ8XtlC513mIunQO6Y0OXGgrouAl5wNprS2jV1pYLmRhrOOuchWXPvJdttbcNWGPgaliZUgLzakogouai1ARN0C-4dHl7LGi-6y1a8XGqefFrF7KJBMUNUJRJyjqxx47en7n90Jq483RBx1adbvtHmqKVgxUKRTvsa8dgsvHr8-2_77hn9lGmRYR5ZodsDX88OEQycnc9tmqHk_6bH04uT0f4fV4dHl13U8r9A9hEOBI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO4gHPQCPuMiah_0pB1n-rHTcyAGhXUR2BADCbexn4ZkmUXYBIz_zd9mVW-PE03kxnUedaiq1KO76vsIeVUaX1S1soxLiw2KFMwaz1mNS5eF8io6XHA-mAzHx_LziTpZIr-6XRgcq-xiYgrUfubwjPwdHkQPKy4r8f78O0PWKLxd7Sg0TKZW8JsJYiwvduyFH1fQwl1u7m6DvV9zPto5-jhmmWWAOXC_OdMxOF-UtqwKr4sQNXcOkr4OQmoroxRciKGy1vLoKy2tkKo01glXu1ooHwXIvUNWpJA1NH8rH3Ymh1962N8q8aSVQg9ZpVWV13by8p7SOACMgyDQ5bDrv1NjX-_-c0WbMt_oPlnNJSvdWvjYA7IU2odkraODoDk6PCI_t83c0AvIb6cXFFQFCQ3dq_1GoYMOZ4FCfUzhEZ5JMlyl9xRHMyGg0QWeNMWU6umspaPDT1vUtJ4iU3e66wBXoghTPp2GKfXQM_skOKHfgrzH5PhWtP6ELLezNjwl1NSxNojL5qoog4tayFBjnQK1j4f2d0DKTq2Ny8DnyL8xbXrIZjRFA6Zokima6wF58-ef8wXsx41fb3TWanIIuGx6hx2Qt50F-9f_l7Z-s7SX5O746GC_2d-d7D0j93hyIJx52yDLoPTwHIqkuX2RPZGSr7ft_L8BfUoiwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUqKlVc-ChULFCYQ280IonttXNcFRYodMWBlbhF_qyQloBgD0j8eWa8SXepaCWuiTOHPDvzJjPzhrFvhfG5qqTNSmEpQBE8s8aXWUVNl7n0MjpqcP416p-Oxc9reb3QxZ-q3buU5KyngVSamunhvY-HC41vUlPxLBVRYISQIYv8KEgoAXf0uBzMZXdVmlNWcFyttFRt28zbNl67pjnf_CtFmjzPcI2ttJQRBjOM19mH0Hxmq904BmhP5wZ7PjJTAw_oX24ewDiHDoXgbX4DRrDhNgDyU8BL9E8wo1Z2D1QaiR8UmOk5A7k0D3cNDC9PBmAaDzQpO-UaEEogmfDJJEzAY8zqk-GkPov2Ntl4eHz14zRrZytkDg_dNNMxOJ8XtlC513mIunQOqY4OXGgrouAl531prS2jV1pYLmRhrOOuchWXPvIvbKm5a8IWA1PFypAumlNRBBc1F6EinoDcw2P42WNF91pr1wqP0_yLST2XTCYoaoSiTlDUTz128OeZ-5nsxn9X73Zo1e0RfKwpc9FXpVC8x753CM5v_9va9vuW77NPl0fD-uJsdL7Dlsu0n6gEbZctIQbhK3KWqd1L2_IFpkLjXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+repair+accelerating+scheme+for+erasure-coded+storage+system+based+on+FPGA+and+hierarchical+parallel+decoding+structure&rft.jtitle=Cluster+computing&rft.au=Chen%2C+Junqi&rft.au=Yang%2C+Sijie&rft.au=Wang%2C+Yong&rft.au=Ye%2C+Miao&rft.date=2024-09-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=27&rft.issue=6&rft.spage=7803&rft.epage=7823&rft_id=info:doi/10.1007%2Fs10586-024-04401-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_024_04401_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon