Data repair accelerating scheme for erasure-coded storage system based on FPGA and hierarchical parallel decoding structure
Erasure coding has been widely used in commodity datacenter to tolerate faults, due to its ability to simultaneously provide high storage space utilization and data reliability. However, when data loss occurs, the extra data decoding and traffic overhead makes it difficult to improve their data repa...
        Saved in:
      
    
          | Published in | Cluster computing Vol. 27; no. 6; pp. 7803 - 7823 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.09.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1386-7857 1573-7543  | 
| DOI | 10.1007/s10586-024-04401-x | 
Cover
| Abstract | Erasure coding has been widely used in commodity datacenter to tolerate faults, due to its ability to simultaneously provide high storage space utilization and data reliability. However, when data loss occurs, the extra data decoding and traffic overhead makes it difficult to improve their data repair efficiency, limiting their further application in the hot data storage systems. In this paper, we proposed an FPGA-based Data Repair accelerating scheme (FPGA-ECDR) for erasure-coded storage system, which employs the Cauchy Reed-Solomon(CRS) code, to overcome the aforementioned limitation. In FPGA-ECDR, multiple modules are designed to work collaboratively, enhancing the efficiency of data flow and ensuring the reliability of the data repair process. Then, a CRS decoding algorithm based on check matrix is used to reduce the complexity of matrix inversion in the decoding process, and hardware acceleration of the algorithm is realized by FPGA. Moreover, we proposed a Hierarchical Parallel Decoding Structure (HPDS) to optimize cache data reading timing and XOR logic operations in the decoding process. HPDS can effectively reduce the impact of Column Address Strobe (CAS) latency and improve repair efficiency. Finally, we conducted FPGA board-level verification of the proposed scheme, testing on CRS codes with different data sizes and parameters. The experimental results show that compared with the schemes of the current mainstream open-source erasure coding library Jerasure and Intel ISA-L acceleration library, as well as the Xilinx RS code decoding acceleration scheme based on the same FPGA platform, our proposed scheme has lower decoding latency and can improve the data decoding rate by 3.2 to 148.5 times and enhances the repair throughput by up to 21.4 times in fault-tolerant storage system. | 
    
|---|---|
| AbstractList | Erasure coding has been widely used in commodity datacenter to tolerate faults, due to its ability to simultaneously provide high storage space utilization and data reliability. However, when data loss occurs, the extra data decoding and traffic overhead makes it difficult to improve their data repair efficiency, limiting their further application in the hot data storage systems. In this paper, we proposed an FPGA-based Data Repair accelerating scheme (FPGA-ECDR) for erasure-coded storage system, which employs the Cauchy Reed-Solomon(CRS) code, to overcome the aforementioned limitation. In FPGA-ECDR, multiple modules are designed to work collaboratively, enhancing the efficiency of data flow and ensuring the reliability of the data repair process. Then, a CRS decoding algorithm based on check matrix is used to reduce the complexity of matrix inversion in the decoding process, and hardware acceleration of the algorithm is realized by FPGA. Moreover, we proposed a Hierarchical Parallel Decoding Structure (HPDS) to optimize cache data reading timing and XOR logic operations in the decoding process. HPDS can effectively reduce the impact of Column Address Strobe (CAS) latency and improve repair efficiency. Finally, we conducted FPGA board-level verification of the proposed scheme, testing on CRS codes with different data sizes and parameters. The experimental results show that compared with the schemes of the current mainstream open-source erasure coding library Jerasure and Intel ISA-L acceleration library, as well as the Xilinx RS code decoding acceleration scheme based on the same FPGA platform, our proposed scheme has lower decoding latency and can improve the data decoding rate by 3.2 to 148.5 times and enhances the repair throughput by up to 21.4 times in fault-tolerant storage system. | 
    
| Author | Ye, Miao Lei, Fan Chen, Junqi Yang, Sijie Wang, Yong  | 
    
| Author_xml | – sequence: 1 givenname: Junqi surname: Chen fullname: Chen, Junqi organization: School of Computer Science and Information Security, Guilin University of Electronic Technology – sequence: 2 givenname: Sijie surname: Yang fullname: Yang, Sijie organization: School of Computer Science and Information Security, Guilin University of Electronic Technology – sequence: 3 givenname: Yong surname: Wang fullname: Wang, Yong email: ywang@guet.edu.cn organization: School of Computer Science and Information Security, Guilin University of Electronic Technology, Guangxi Engineering Technology Research Center of Cloud Security and Cloud Service, Guilin University of Electronic Technology – sequence: 4 givenname: Miao surname: Ye fullname: Ye, Miao organization: School of Computer Science and Information Security, Guilin University of Electronic Technology, Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology – sequence: 5 givenname: Fan surname: Lei fullname: Lei, Fan organization: School of Computer Science and Information Security, Guilin University of Electronic Technology  | 
    
| BookMark | eNp9kMFKxDAQhoMouK6-gKeA52rSpJv0KKuugqAHPYc0ne5Wuk2dpLDiyxu3guDB0wyT-f4J3wk57H0PhJxzdskZU1eBs0IvMpbLjEnJeLY7IDNeKJGpQorD1Iv0rHShjslJCG-MsVLl5Yx83thoKcJgW6TWOegAbWz7NQ1uA1ugjUeaRmFEyJyvoaYherRroOEjRNjSyoY09D29e15dU9vXdNMmAN2mdbajg0XbddDRGhK-D444upjyTslRY7sAZz91Tl7vbl-W99nj0-phef2YOcHLmOkGXM14xRWrNYNG587lBdcgpK5kI0UuxKKoqipvaqVlJWTBbeWEK10piroRc3Ix5Q7o30cI0bz5Eft00ohkb6FyqUTayqcthz4EhMYM2G4tfhjOzLdkM0k2SbLZSza7BOk_kGtj8uf7iLbt_kfFhIZ0p18D_v7qH-oLfDSV5A | 
    
| CitedBy_id | crossref_primary_10_3390_sym16060672 | 
    
| Cites_doi | 10.1109/TPDS.2022.3188656 10.1109/TIM.2023.3309357 10.1109/TC.2020.3028353 10.1016/j.jnca.2017.08.011 10.1109/INFOCOM53939.2023.10228984 10.1109/TDSC.2017.2774299 10.1145/3625005 10.1109/TPDS.2018.2791438 10.1109/TR.2022.3161638 10.1109/TIT.2019.2902835 10.1109/TVLSI.2021.3066804 10.27157/d.cnki.ghzku.2020.003437 10.1109/TC.2021.3060701 10.27157/d.cnki.ghzku.2020.005337 10.7544/issn1000-1239.202220580 10.1007/s10586-022-03575-6 10.1109/ICCD56317.2022.00102 10.1109/TMAG.2017.2778053 10.1145/3568428 10.1109/TPDS.2022.3153061 10.1007/s11432-018-9482-6 10.1145/3530775 10.1109/TPDS.2023.3282180 10.1145/3436890 10.1145/3453417.3453426 10.1145/3605573.3605619 10.1109/TC.2021.3110131 10.1145/3506713 10.7544/issn1000-1239.20210575  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS  | 
    
| DOI | 10.1007/s10586-024-04401-x | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-7543 | 
    
| EndPage | 7823 | 
    
| ExternalDocumentID | 10_1007_s10586_024_04401_x | 
    
| GrantInformation_xml | – fundername: Innovation Project of GUET Graduate Education grantid: 2023YCXB06; 2023YCXB06; 2023YCXB06; 2023YCXB06 – fundername: Foundation of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing grantid: GXKL06220110 – fundername: Guangxi Innovation-Driven Development Project grantid: AA18118031 funderid: http://dx.doi.org/10.13039/501100018602 – fundername: National Natural Science Foundation of China grantid: 61861018; 61861018; 62161006 funderid: http://dx.doi.org/10.13039/501100001809  | 
    
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c319t-8fecd01b170d80ef82cc2518e348b4f4323365bbb2fd784b3451abc3c9c935df3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1386-7857 | 
    
| IngestDate | Tue Sep 02 03:18:49 EDT 2025 Thu Apr 24 22:59:12 EDT 2025 Wed Oct 01 04:12:10 EDT 2025 Fri Feb 21 02:39:25 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | Data repair Erasure code Fault-tolerant storage FPGA Hardware acceleration  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-8fecd01b170d80ef82cc2518e348b4f4323365bbb2fd784b3451abc3c9c935df3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3100672473 | 
    
| PQPubID | 2043865 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | proquest_journals_3100672473 crossref_primary_10_1007_s10586_024_04401_x crossref_citationtrail_10_1007_s10586_024_04401_x springer_journals_10_1007_s10586_024_04401_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240900 2024-09-00 20240901  | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications | 
    
| PublicationTitle | Cluster computing | 
    
| PublicationTitleAbbrev | Cluster Comput | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | ChenHFuSParallel erasure coding: exploring task parallelism in erasure coding for enhanced bandwidth and energy efficiency2016 IEEE International Conference on Networking, Architecture and Storage (NAS)2016IEEE14 Apache hadoop 3.3.5, 2023. https://hadoop.apache.org/docs/r3.3.5/. Accessed 21 Sept 2023 LiuCWangQChuXLeungYWG-CRS: GPU accelerated Cauchy Reed-Solomon codingIEEE Trans. Parallel Distrib. Syst.201810.1109/TPDS.2018.2791438 TangYJZhangXFast en/decoding of Reed-Solomon codes for failure recoveryIEEE Trans. Comput.202110.1109/TC.2021.3060701 Muralidhar S., Lloyd W., Roy S., et al.: f4: Facebook’s warm {BLOB} storage system. 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), 2014: pp. 383–398 (2014). LiuHChenYZengZA low power and low latency FPGA-based spiking neural network accelerator2023 International Joint Conference on Neural Networks (IJCNN)2023IEEE18 LiSCaoQWanSgPPM: a generalized matrix operation and parallel algorithm to accelerate the encoding/decoding process of erasure codesACM Trans. Archit Code Optim.202310.1145/3625005 KouGYiKXiaoHPengRReliability of a distributed data storage system considering the external impactsIEEE Trans. Reliab.202210.1109/TR.2022.3161638 Mascareñas González A., Boniol F., Bouchebaba Y., et al.: Heterogeneous multicore SDRAM interference analysis. 29th International Conference on Real-Time Networks and Systems, pp. 12–23 (2021). PlankJSGreenanKMMillerELScreaming fast Galois field arithmetic using intel SIMD instructions11th USENIX Conference on File and Storage Technologies2013BerkeleyUSENIX Association299306 BobdaCMbongueJMChowPEwaisMTarafdarNVegaJCEguroKKochDHandagalaSLeeserMHerbordtMShahzadHHofstePRingleinBSzeferJSanaullahATessierRThe future of FPGA acceleration in datacenters and the cloudACM Trans. Reconfigurable Technol. Syst. (TRETS)202210.1145/3506713 LiSCaoQWanSXiaWXieCgPPM: a generalized matrix operation and parallel algorithm to accelerate the encoding/decoding process of erasure codesACM Trans. Architect. Code Optim.202310.1145/3625005 Tsuraan. Jerasure (2015). https://github.com/tsuraan/Jerasure. Accessed 21 Sept 2023 Intel. ISA-L (2023). https://github.com/intel/isa-l. Accessed 21 Sept 2023 Xu Jiahao. Design and implementation of LRC coding acceleration optimization based on cheap GPU [D]. Wuhan: Huazhong University of Science and Technology (2020). https://doi.org/10.27157/d.cnki.ghzku.2020.003437 ShenZLinSShuJXieCHuangZFuYCluster-aware scattered repair in erasure-coded storage: design and analysisIEEE Trans. Comput.202110.1109/TC.2020.3028353 MakovenkoMChengMTianCRevisiting the optimization of Cauchy Reed-Solomon coding matrix for fault-tolerant data storageIEEE Trans. Comput.202110.1109/TC.2021.3110131 NachiappanRJavadiBCalheirosRNMatawieKMCloud storage reliability for big data applications: a state of the art surveyJ. Netw. Comput. Appl.201710.1016/j.jnca.2017.08.011 XuXWangYWuBWangZZhouYA high-resolution nanosecond-scale on-chip voltage sensor for FPGA applicationsIEEE Trans. Instrum. Measure202310.1109/TIM.2023.3309357 ZhouHFengDBoosting erasure-coded multi-stripe repair in rack architecture and heterogeneous clusters: design and analysisIEEE Trans. Parallel Distrib. Syst.202310.1109/TPDS.2023.3282180 Kadekodi S, Rashmi K V, Ganger G R: Cluster storage systems gotta have {HeART}: improving storage efficiency by exploiting disk-reliability heterogeneity. 17th USENIX Conference on File and Storage Technologies (FAST), pp. 345–358 (2019). LiXChengKTangKParaRC: embracing sub-packetization for repair parallelization in MSR-coded storageProceedings of the 21st USENIX Conference on File and Storage Technologies (FAST)2023BerkeleyUSENIX Association1731 MaSMaTChenKWuYA survey of storage systems in the RDMA eraIEEE Trans. Parallel Distrib. Syst.202210.1109/TPDS.2022.3188656 Wang Xianpeng. Adaptive fault tolerance scheme for SSD based on erasure code and its performance optimization. Wuhan: Huazhong University of Science and Technology (2020) https://doi.org/10.27157/d.cnki.ghzku.2020.005337 Tang K, Cheng K, Chan H H W, et al.: Balancing repair bandwidth and sub-packetization in erasure-coded storage via elastic transformation. IEEE INFOCOM 2023-IEEE Conference on Computer Communications (INFOCOM), pp. 1–10 (2023) ZhouHFengDHuYA stripe-schedule aware repair technique in the heterogeneous network for erasure-coded clusters2022 IEEE 40th International Conference on Computer Design (ICCD)2022IEEE66467110.1109/ICCD56317.2022.00102 MondalAThatimattalaSYalamaddiVKGaraniSSEfficient coding architectures for Reed-Solomon and low-density parity-check decoders for magnetic and other data storage systemsIEEE Trans. Magn.201810.1109/TMAG.2017.2778053 TorabiEGhobaei-AraniMShahidinejadAData replica placement approaches in fog computing: a reviewClust. Comput.202210.1007/s10586-022-03575-6 ZhouHFengDHuYBandwidth-aware scheduling repair techniques in erasure-coded clusters: design and analysisIEEE Trans. Parallel Distrib. Syst.202210.1109/TPDS.2022.3153061 HouHLeePPShumKWHuYRack-aware regenerating codes for data centersIEEE Trans. Inf. Theory2019398851810.1109/TIT.2019.2902835 LiXYangZLiJLiRLeePHuangQHuYRepair pipelining for erasure-coded storage: algorithms and evaluationACM Trans. Storage202110.1145/3436890 BaoHWangYA fast construction method of the erasure code with small cross-cloud data center repair trafficJ. Comput. Res. Dev.202310.7544/issn1000-1239.202220580 GaoZZhangLChengYGuoKUllahAReviriegoPDesign of FPGA-implemented Reed-Solomon erasure code (RS-EC) decoders with fault detection and location on user memoryIEEE Trans. Very Large Scale Integr. (VLSI) Syst.202110.1109/TVLSI.2021.3066804 LiaoXLuYYangZShuJEfficient crash consistency for NVMe over PCIe and RDMAACM Trans. Storage202310.1145/3568428 CongJLauJLiuGNeuendorfferSPanPVissersKZhangZFPGA HLS today: successes, challenges, and opportunitiesACM Trans. Reconfigurable Technol. Syst. (TRETS)202210.1145/3530775 TangDCaiHGengWDecoding method of Reed-Solomon erasure codesJ. Comput. Res. Dev.202210.7544/issn1000-1239.20210575 BalajiSBKrishnanMNVajhaMRamkumarVSasidharanBKumarPErasure coding for distributed storage: An overviewSci. China Inf. Sci.201810.1007/s11432-018-9482-6 Zhang M., Kang Q., Lee P P C.: Minimizing network and storage costs for consensus with flexible erasure coding. Proceedings of the 52nd International Conference on Parallel Processing (ICPP), pp. 41–50 (2023). ShenZLeePPShuJGuoWCross-rack-aware single failure recovery for clustered file systemsIEEE Trans. Dependable Secure Comput.201710.1109/TDSC.2017.2774299 H Chen (4401_CR29) 2016 H Zhou (4401_CR10) 2022 D Tang (4401_CR39) 2022 X Xu (4401_CR23) 2023 H Zhou (4401_CR12) 2023 C Bobda (4401_CR22) 2022 4401_CR35 R Nachiappan (4401_CR28) 2017 S Li (4401_CR32) 2023 4401_CR33 4401_CR31 E Torabi (4401_CR5) 2022 Z Shen (4401_CR13) 2021 G Kou (4401_CR2) 2022 X Li (4401_CR7) 2023 Z Shen (4401_CR14) 2017 4401_CR19 4401_CR36 S Li (4401_CR38) 2023 4401_CR37 H Zhou (4401_CR15) 2022 H Liu (4401_CR25) 2023 H Bao (4401_CR9) 2023 Z Gao (4401_CR30) 2021 4401_CR8 M Makovenko (4401_CR27) 2021 4401_CR1 4401_CR3 JS Plank (4401_CR17) 2013 4401_CR4 YJ Tang (4401_CR26) 2021 H Hou (4401_CR16) 2019 J Cong (4401_CR24) 2022 A Mondal (4401_CR34) 2018 X Liao (4401_CR21) 2023 C Liu (4401_CR18) 2018 SB Balaji (4401_CR6) 2018 X Li (4401_CR11) 2021 S Ma (4401_CR20) 2022  | 
    
| References_xml | – reference: KouGYiKXiaoHPengRReliability of a distributed data storage system considering the external impactsIEEE Trans. Reliab.202210.1109/TR.2022.3161638 – reference: XuXWangYWuBWangZZhouYA high-resolution nanosecond-scale on-chip voltage sensor for FPGA applicationsIEEE Trans. Instrum. Measure202310.1109/TIM.2023.3309357 – reference: NachiappanRJavadiBCalheirosRNMatawieKMCloud storage reliability for big data applications: a state of the art surveyJ. Netw. Comput. Appl.201710.1016/j.jnca.2017.08.011 – reference: LiuHChenYZengZA low power and low latency FPGA-based spiking neural network accelerator2023 International Joint Conference on Neural Networks (IJCNN)2023IEEE18 – reference: TangYJZhangXFast en/decoding of Reed-Solomon codes for failure recoveryIEEE Trans. Comput.202110.1109/TC.2021.3060701 – reference: MondalAThatimattalaSYalamaddiVKGaraniSSEfficient coding architectures for Reed-Solomon and low-density parity-check decoders for magnetic and other data storage systemsIEEE Trans. Magn.201810.1109/TMAG.2017.2778053 – reference: Kadekodi S, Rashmi K V, Ganger G R: Cluster storage systems gotta have {HeART}: improving storage efficiency by exploiting disk-reliability heterogeneity. 17th USENIX Conference on File and Storage Technologies (FAST), pp. 345–358 (2019). – reference: Wang Xianpeng. Adaptive fault tolerance scheme for SSD based on erasure code and its performance optimization. Wuhan: Huazhong University of Science and Technology (2020) https://doi.org/10.27157/d.cnki.ghzku.2020.005337 – reference: ChenHFuSParallel erasure coding: exploring task parallelism in erasure coding for enhanced bandwidth and energy efficiency2016 IEEE International Conference on Networking, Architecture and Storage (NAS)2016IEEE14 – reference: HouHLeePPShumKWHuYRack-aware regenerating codes for data centersIEEE Trans. Inf. Theory2019398851810.1109/TIT.2019.2902835 – reference: ShenZLinSShuJXieCHuangZFuYCluster-aware scattered repair in erasure-coded storage: design and analysisIEEE Trans. Comput.202110.1109/TC.2020.3028353 – reference: Tang K, Cheng K, Chan H H W, et al.: Balancing repair bandwidth and sub-packetization in erasure-coded storage via elastic transformation. IEEE INFOCOM 2023-IEEE Conference on Computer Communications (INFOCOM), pp. 1–10 (2023) – reference: ZhouHFengDHuYBandwidth-aware scheduling repair techniques in erasure-coded clusters: design and analysisIEEE Trans. Parallel Distrib. Syst.202210.1109/TPDS.2022.3153061 – reference: MaSMaTChenKWuYA survey of storage systems in the RDMA eraIEEE Trans. Parallel Distrib. Syst.202210.1109/TPDS.2022.3188656 – reference: CongJLauJLiuGNeuendorfferSPanPVissersKZhangZFPGA HLS today: successes, challenges, and opportunitiesACM Trans. Reconfigurable Technol. Syst. (TRETS)202210.1145/3530775 – reference: MakovenkoMChengMTianCRevisiting the optimization of Cauchy Reed-Solomon coding matrix for fault-tolerant data storageIEEE Trans. Comput.202110.1109/TC.2021.3110131 – reference: Intel. ISA-L (2023). https://github.com/intel/isa-l. Accessed 21 Sept 2023 – reference: ZhouHFengDHuYA stripe-schedule aware repair technique in the heterogeneous network for erasure-coded clusters2022 IEEE 40th International Conference on Computer Design (ICCD)2022IEEE66467110.1109/ICCD56317.2022.00102 – reference: LiuCWangQChuXLeungYWG-CRS: GPU accelerated Cauchy Reed-Solomon codingIEEE Trans. Parallel Distrib. Syst.201810.1109/TPDS.2018.2791438 – reference: BalajiSBKrishnanMNVajhaMRamkumarVSasidharanBKumarPErasure coding for distributed storage: An overviewSci. China Inf. Sci.201810.1007/s11432-018-9482-6 – reference: Muralidhar S., Lloyd W., Roy S., et al.: f4: Facebook’s warm {BLOB} storage system. 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), 2014: pp. 383–398 (2014). – reference: LiSCaoQWanSXiaWXieCgPPM: a generalized matrix operation and parallel algorithm to accelerate the encoding/decoding process of erasure codesACM Trans. Architect. Code Optim.202310.1145/3625005 – reference: TangDCaiHGengWDecoding method of Reed-Solomon erasure codesJ. Comput. Res. Dev.202210.7544/issn1000-1239.20210575 – reference: Mascareñas González A., Boniol F., Bouchebaba Y., et al.: Heterogeneous multicore SDRAM interference analysis. 29th International Conference on Real-Time Networks and Systems, pp. 12–23 (2021). – reference: PlankJSGreenanKMMillerELScreaming fast Galois field arithmetic using intel SIMD instructions11th USENIX Conference on File and Storage Technologies2013BerkeleyUSENIX Association299306 – reference: BaoHWangYA fast construction method of the erasure code with small cross-cloud data center repair trafficJ. Comput. Res. Dev.202310.7544/issn1000-1239.202220580 – reference: LiXYangZLiJLiRLeePHuangQHuYRepair pipelining for erasure-coded storage: algorithms and evaluationACM Trans. Storage202110.1145/3436890 – reference: Apache hadoop 3.3.5, 2023. https://hadoop.apache.org/docs/r3.3.5/. Accessed 21 Sept 2023 – reference: LiaoXLuYYangZShuJEfficient crash consistency for NVMe over PCIe and RDMAACM Trans. Storage202310.1145/3568428 – reference: TorabiEGhobaei-AraniMShahidinejadAData replica placement approaches in fog computing: a reviewClust. Comput.202210.1007/s10586-022-03575-6 – reference: Xu Jiahao. Design and implementation of LRC coding acceleration optimization based on cheap GPU [D]. Wuhan: Huazhong University of Science and Technology (2020). https://doi.org/10.27157/d.cnki.ghzku.2020.003437 – reference: ZhouHFengDBoosting erasure-coded multi-stripe repair in rack architecture and heterogeneous clusters: design and analysisIEEE Trans. Parallel Distrib. Syst.202310.1109/TPDS.2023.3282180 – reference: LiXChengKTangKParaRC: embracing sub-packetization for repair parallelization in MSR-coded storageProceedings of the 21st USENIX Conference on File and Storage Technologies (FAST)2023BerkeleyUSENIX Association1731 – reference: ShenZLeePPShuJGuoWCross-rack-aware single failure recovery for clustered file systemsIEEE Trans. Dependable Secure Comput.201710.1109/TDSC.2017.2774299 – reference: BobdaCMbongueJMChowPEwaisMTarafdarNVegaJCEguroKKochDHandagalaSLeeserMHerbordtMShahzadHHofstePRingleinBSzeferJSanaullahATessierRThe future of FPGA acceleration in datacenters and the cloudACM Trans. Reconfigurable Technol. Syst. (TRETS)202210.1145/3506713 – reference: Zhang M., Kang Q., Lee P P C.: Minimizing network and storage costs for consensus with flexible erasure coding. Proceedings of the 52nd International Conference on Parallel Processing (ICPP), pp. 41–50 (2023). – reference: GaoZZhangLChengYGuoKUllahAReviriegoPDesign of FPGA-implemented Reed-Solomon erasure code (RS-EC) decoders with fault detection and location on user memoryIEEE Trans. Very Large Scale Integr. (VLSI) Syst.202110.1109/TVLSI.2021.3066804 – reference: Tsuraan. Jerasure (2015). https://github.com/tsuraan/Jerasure. Accessed 21 Sept 2023 – reference: LiSCaoQWanSgPPM: a generalized matrix operation and parallel algorithm to accelerate the encoding/decoding process of erasure codesACM Trans. Archit Code Optim.202310.1145/3625005 – start-page: 17 volume-title: Proceedings of the 21st USENIX Conference on File and Storage Technologies (FAST) year: 2023 ident: 4401_CR7 – year: 2022 ident: 4401_CR20 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2022.3188656 – year: 2023 ident: 4401_CR23 publication-title: IEEE Trans. Instrum. Measure doi: 10.1109/TIM.2023.3309357 – year: 2021 ident: 4401_CR13 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2020.3028353 – year: 2017 ident: 4401_CR28 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2017.08.011 – ident: 4401_CR37 doi: 10.1109/INFOCOM53939.2023.10228984 – year: 2017 ident: 4401_CR14 publication-title: IEEE Trans. Dependable Secure Comput. doi: 10.1109/TDSC.2017.2774299 – year: 2023 ident: 4401_CR38 publication-title: ACM Trans. Archit Code Optim. doi: 10.1145/3625005 – year: 2018 ident: 4401_CR18 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2018.2791438 – year: 2022 ident: 4401_CR2 publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2022.3161638 – year: 2019 ident: 4401_CR16 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2019.2902835 – year: 2021 ident: 4401_CR30 publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2021.3066804 – ident: 4401_CR35 – ident: 4401_CR19 doi: 10.27157/d.cnki.ghzku.2020.003437 – year: 2023 ident: 4401_CR32 publication-title: ACM Trans. Architect. Code Optim. doi: 10.1145/3625005 – year: 2021 ident: 4401_CR26 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2021.3060701 – start-page: 1 volume-title: 2023 International Joint Conference on Neural Networks (IJCNN) year: 2023 ident: 4401_CR25 – ident: 4401_CR4 – ident: 4401_CR31 doi: 10.27157/d.cnki.ghzku.2020.005337 – year: 2023 ident: 4401_CR9 publication-title: J. Comput. Res. Dev. doi: 10.7544/issn1000-1239.202220580 – year: 2022 ident: 4401_CR5 publication-title: Clust. Comput. doi: 10.1007/s10586-022-03575-6 – start-page: 664 volume-title: 2022 IEEE 40th International Conference on Computer Design (ICCD) year: 2022 ident: 4401_CR10 doi: 10.1109/ICCD56317.2022.00102 – year: 2018 ident: 4401_CR34 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2017.2778053 – year: 2023 ident: 4401_CR21 publication-title: ACM Trans. Storage doi: 10.1145/3568428 – year: 2022 ident: 4401_CR15 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2022.3153061 – year: 2018 ident: 4401_CR6 publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-018-9482-6 – year: 2022 ident: 4401_CR24 publication-title: ACM Trans. Reconfigurable Technol. Syst. (TRETS) doi: 10.1145/3530775 – year: 2023 ident: 4401_CR12 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2023.3282180 – year: 2021 ident: 4401_CR11 publication-title: ACM Trans. Storage doi: 10.1145/3436890 – ident: 4401_CR33 doi: 10.1145/3453417.3453426 – ident: 4401_CR8 doi: 10.1145/3605573.3605619 – ident: 4401_CR36 – year: 2021 ident: 4401_CR27 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2021.3110131 – start-page: 1 volume-title: 2016 IEEE International Conference on Networking, Architecture and Storage (NAS) year: 2016 ident: 4401_CR29 – year: 2022 ident: 4401_CR22 publication-title: ACM Trans. Reconfigurable Technol. Syst. (TRETS) doi: 10.1145/3506713 – start-page: 299 volume-title: 11th USENIX Conference on File and Storage Technologies year: 2013 ident: 4401_CR17 – year: 2022 ident: 4401_CR39 publication-title: J. Comput. Res. Dev. doi: 10.7544/issn1000-1239.20210575 – ident: 4401_CR1 – ident: 4401_CR3  | 
    
| SSID | ssj0009729 | 
    
| Score | 2.342476 | 
    
| Snippet | Erasure coding has been widely used in commodity datacenter to tolerate faults, due to its ability to simultaneously provide high storage space utilization and... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 7803 | 
    
| SubjectTerms | Algorithms Bandwidths Codes Coding Columnar structure Computer Communication Networks Computer Science Data loss Data storage Decoding Efficiency Fault tolerance Field programmable gate arrays Operating Systems Processor Architectures Repair Source code Storage systems Structural reliability  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9sKFlpdYWtAcuIFFEttr54Cq0napkFhVVSv1FvmJkJZsafdQqX-eGa9DBBK95jGK8tmeGXvm-xh7V9tQ6VY53khHCYoU3NnQ8JaaLisVVPLU4PxtMTu9lF-v1NUWWwy9MFRWOayJeaEOK0975B9pI3qmG6nFwfUvTqpRdLo6SGjYIq0QPmWKsUdsuyFmrAnb_nyyODsfaXh11i2rhZlxbZQubTSlmU4ZKsilwgzMOvjd365qjD__OTLNnmi-y56UEBION5g_ZVuxf8Z2BnkGKLP1Obs_tmsLN-hvftwAfjo6GIK7_w6Y0cafETBeBbxEe4ScWtsDUKkkLjCw4XcGcnEBVj3Mz74cgu0DkHJ2PntAaIFow5fLuISAOWzIhjMbLdp7wS7nJxdHp7xoLXCPk3DNTYo-VLWrdRVMFZNpvMfQx0QhjZNJikaImXLONSloI52QqrbOC9_6VqiQxEs26Vd9fMXAtqm1xJPmdZLRJyNkbCluwFgkYDo6ZfXwWztfiMhJD2PZjRTKBEWHUHQZiu5uyt7_eed6Q8Px4NP7A1pdmZK33TiApuzDgOB4-__WXj9sbY89bvKgobqzfTbBHx3fYKCydm_L6PsN9-blQg priority: 102 providerName: ProQuest  | 
    
| Title | Data repair accelerating scheme for erasure-coded storage system based on FPGA and hierarchical parallel decoding structure | 
    
| URI | https://link.springer.com/article/10.1007/s10586-024-04401-x https://www.proquest.com/docview/3100672473  | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7543 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELX4uHCB0oJYCqs59EYjJbG9do4L3V0EAiHUleAU-bOqtA0V7AGJP98Zb8LSqiBxipQ4PuTZnjeZmTeMfSmMz1UlbVYKSw6K4Jk1vswqKrrMpZfRUYHzxeXgdCrObuRNWxT20GW7dyHJdFK_KHaTmhJmKXECvYIMmeO6JDkvXMXTcriU2lWpN1nBcbTSUrWlMv-f429ztOSY_4RFk7UZf2CbLU2E4QLXbbYSmo9sq2vBAO2O_MSevpm5gXu0KT_vwTiHRoQgbX4Aeq3hVwDkpIC36D9gRuXrHigdEg8RWGg4A5kxD3cNjK8mQzCNB-qOneILCB-QNPhsFmbg0U_1aeKkOIvz7bDpePT95DRr-ylkDjfaPNMxOJ8XtlC513mIunQO6Y0OXGgrouAl5wNprS2jV1pYLmRhrOOuchWXPvJdttbcNWGPgaliZUgLzakogouai1ARN0C-4dHl7LGi-6y1a8XGqefFrF7KJBMUNUJRJyjqxx47en7n90Jq483RBx1adbvtHmqKVgxUKRTvsa8dgsvHr8-2_77hn9lGmRYR5ZodsDX88OEQycnc9tmqHk_6bH04uT0f4fV4dHl13U8r9A9hEOBI | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEO4gHPQCPuMiah_0pB1n-rHTcyAGhXUR2BADCbexn4ZkmUXYBIz_zd9mVW-PE03kxnUedaiq1KO76vsIeVUaX1S1soxLiw2KFMwaz1mNS5eF8io6XHA-mAzHx_LziTpZIr-6XRgcq-xiYgrUfubwjPwdHkQPKy4r8f78O0PWKLxd7Sg0TKZW8JsJYiwvduyFH1fQwl1u7m6DvV9zPto5-jhmmWWAOXC_OdMxOF-UtqwKr4sQNXcOkr4OQmoroxRciKGy1vLoKy2tkKo01glXu1ooHwXIvUNWpJA1NH8rH3Ymh1962N8q8aSVQg9ZpVWV13by8p7SOACMgyDQ5bDrv1NjX-_-c0WbMt_oPlnNJSvdWvjYA7IU2odkraODoDk6PCI_t83c0AvIb6cXFFQFCQ3dq_1GoYMOZ4FCfUzhEZ5JMlyl9xRHMyGg0QWeNMWU6umspaPDT1vUtJ4iU3e66wBXoghTPp2GKfXQM_skOKHfgrzH5PhWtP6ELLezNjwl1NSxNojL5qoog4tayFBjnQK1j4f2d0DKTq2Ny8DnyL8xbXrIZjRFA6Zokima6wF58-ef8wXsx41fb3TWanIIuGx6hx2Qt50F-9f_l7Z-s7SX5O746GC_2d-d7D0j93hyIJx52yDLoPTwHIqkuX2RPZGSr7ft_L8BfUoiwQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUqKlVc-ChULFCYQ280IonttXNcFRYodMWBlbhF_qyQloBgD0j8eWa8SXepaCWuiTOHPDvzJjPzhrFvhfG5qqTNSmEpQBE8s8aXWUVNl7n0MjpqcP416p-Oxc9reb3QxZ-q3buU5KyngVSamunhvY-HC41vUlPxLBVRYISQIYv8KEgoAXf0uBzMZXdVmlNWcFyttFRt28zbNl67pjnf_CtFmjzPcI2ttJQRBjOM19mH0Hxmq904BmhP5wZ7PjJTAw_oX24ewDiHDoXgbX4DRrDhNgDyU8BL9E8wo1Z2D1QaiR8UmOk5A7k0D3cNDC9PBmAaDzQpO-UaEEogmfDJJEzAY8zqk-GkPov2Ntl4eHz14zRrZytkDg_dNNMxOJ8XtlC513mIunQOqY4OXGgrouAl531prS2jV1pYLmRhrOOuchWXPvIvbKm5a8IWA1PFypAumlNRBBc1F6EinoDcw2P42WNF91pr1wqP0_yLST2XTCYoaoSiTlDUTz128OeZ-5nsxn9X73Zo1e0RfKwpc9FXpVC8x753CM5v_9va9vuW77NPl0fD-uJsdL7Dlsu0n6gEbZctIQbhK3KWqd1L2_IFpkLjXA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+repair+accelerating+scheme+for+erasure-coded+storage+system+based+on+FPGA+and+hierarchical+parallel+decoding+structure&rft.jtitle=Cluster+computing&rft.au=Chen%2C+Junqi&rft.au=Yang%2C+Sijie&rft.au=Wang%2C+Yong&rft.au=Ye%2C+Miao&rft.date=2024-09-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=27&rft.issue=6&rft.spage=7803&rft.epage=7823&rft_id=info:doi/10.1007%2Fs10586-024-04401-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_024_04401_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |