A feature selection algorithm based on redundancy analysis and interaction weight

The performance of some three-dimensional mutual information-based algorithms can be affected, since only relevance and interaction are considered. Aiming at solving the problem, a feature selection algorithm based on redundancy analysis and interaction weight is proposed in this paper. The proposed...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 51; no. 4; pp. 2672 - 2686
Main Authors Gu, Xiangyuan, Guo, Jichang, Li, Chongyi, Xiao, Lijun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-020-01936-5

Cover

Abstract The performance of some three-dimensional mutual information-based algorithms can be affected, since only relevance and interaction are considered. Aiming at solving the problem, a feature selection algorithm based on redundancy analysis and interaction weight is proposed in this paper. The proposed algorithm adopts three-way interaction information to measure the interaction among the class label and features, and processes features for interaction weight analysis. Then, it employs symmetric uncertainty to measure the relevance between features and the class label as well as the redundancy between features, and selects the features with greater relevance and interaction as well as smaller redundancy. To validate the performance, the proposed algorithm is compared with several feature selection algorithms. Since relevance, redundancy, and interaction analysis are all presented, the proposed algorithm can obtain better feature selection performance.
AbstractList The performance of some three-dimensional mutual information-based algorithms can be affected, since only relevance and interaction are considered. Aiming at solving the problem, a feature selection algorithm based on redundancy analysis and interaction weight is proposed in this paper. The proposed algorithm adopts three-way interaction information to measure the interaction among the class label and features, and processes features for interaction weight analysis. Then, it employs symmetric uncertainty to measure the relevance between features and the class label as well as the redundancy between features, and selects the features with greater relevance and interaction as well as smaller redundancy. To validate the performance, the proposed algorithm is compared with several feature selection algorithms. Since relevance, redundancy, and interaction analysis are all presented, the proposed algorithm can obtain better feature selection performance.
Author Guo, Jichang
Xiao, Lijun
Gu, Xiangyuan
Li, Chongyi
Author_xml – sequence: 1
  givenname: Xiangyuan
  surname: Gu
  fullname: Gu, Xiangyuan
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 2
  givenname: Jichang
  surname: Guo
  fullname: Guo, Jichang
  email: jcguo@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 3
  givenname: Chongyi
  surname: Li
  fullname: Li, Chongyi
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 4
  givenname: Lijun
  surname: Xiao
  fullname: Xiao, Lijun
  organization: School of Electrical and Information Engineering, Tianjin University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Lnlcnm2yzOZbiFxRE6MFbSJPZNmWbrUkW6b936wqCh55mGN5neHkmZORbj4TcUrinAOIhUuCVzKGAHKhks7y8IGNaCpYLLsWIjEEWPJ_N5McVmcS4AwDGgI7J-zyrUacuYBaxQZNc6zPdbNrg0nafrXVEm_WngLbzVntzzLTXzTG62C82cz5h0AP2hW6zTdfkstZNxJvfOSWrp8fV4iVfvj2_LubL3DAqU15hRaWkkmrKOVhAw6C0KGvBzRpQltyCqGqEwhopallrRutCCyo0Z5VlU3I3vD2E9rPDmNSu7UJfLaqihP4zkxT6VDWkTGhjDFgr45I-tU1Bu0ZRUCd_avCnen_qx58qe7T4hx6C2-twPA-xAYp92G8w_LU6Q30DgL6FOQ
CitedBy_id crossref_primary_10_1016_j_knosys_2022_109523
crossref_primary_10_1016_j_jfca_2021_104248
crossref_primary_10_3233_JIFS_224474
crossref_primary_10_1007_s11042_023_15821_z
crossref_primary_10_1016_j_patcog_2022_109254
crossref_primary_10_1109_TFUZZ_2022_3169625
crossref_primary_10_3389_fpls_2022_839044
crossref_primary_10_1007_s10489_022_03922_5
crossref_primary_10_1016_j_eswa_2022_117923
crossref_primary_10_1016_j_sigpro_2023_109133
crossref_primary_10_1016_j_eswa_2023_120455
crossref_primary_10_1016_j_asoc_2023_110319
crossref_primary_10_1016_j_asoc_2025_112804
crossref_primary_10_1007_s10489_024_06026_4
Cites_doi 10.1016/j.knosys.2013.09.019
10.1016/j.patrec.2018.06.005
10.1007/s11063-019-10144-3
10.1145/3136625
10.1109/TKDE.2017.2650906
10.1109/TGRS.2014.2324971
10.1145/1656274.1656278
10.1109/TCYB.2015.2415032
10.1109/TNN.2008.2005601
10.1016/j.eswa.2015.07.007
10.1007/s11042-019-7285-1
10.1016/j.patcog.2018.02.020
10.1007/s10489-017-1010-4
10.1016/j.patcog.2015.02.025
10.1007/s10489-017-0992-2
10.1016/j.knosys.2012.10.001
10.1109/TPAMI.2005.159
10.1109/TKDE.2016.2563436
10.1109/72.298224
10.1016/j.eswa.2011.07.048
10.1007/s00500-019-03910-x
10.1145/1015330.1015377
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-020-01936-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 2686
ExternalDocumentID 10_1007_s10489_020_01936_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61771334
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-8e8199191a1440d0ec305de9f74cb0e954d078fe02dc97f9fa31f2a717a438d3
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Fri Jul 25 12:21:55 EDT 2025
Wed Oct 01 04:09:47 EDT 2025
Thu Apr 24 22:50:28 EDT 2025
Fri Feb 21 02:48:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Feature selection
Three-way interaction information
Symmetric uncertainty
Redundancy analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8e8199191a1440d0ec305de9f74cb0e954d078fe02dc97f9fa31f2a717a438d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2509913910
PQPubID 326365
PageCount 15
ParticipantIDs proquest_journals_2509913910
crossref_citationtrail_10_1007_s10489_020_01936_5
crossref_primary_10_1007_s10489_020_01936_5
springer_journals_10_1007_s10489_020_01936_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (CR22) 2018; 50
Gu, Guo, Wei, He (CR7) 2020; 24
Zhang, Chan, Biggio, Yeung, Roli (CR8) 2016; 46
Wang, Feng, Zhu (CR3) 2018; 48
Gu, Guo (CR6) 2019; 78
Estevez, Tesmer, Perez, Zurada (CR14) 2009; 20
CR16
Fei, Kraus, Zoubir (CR9) 2015; 53
Wang, Wei, Yang, Wang (CR18) 2017; 29
Gao, Hu, Zhang, He (CR19) 2018; 112
Huang, Zhang, Wang, Li, Zhang (CR2) 2018; 48
Zeng, Zhang, Zhang, Yin (CR13) 2015; 48
Sun, Liu, Xu, Chen, Han, Wang (CR12) 2013; 37
Shang, Li, Feng, Jiang, Fan (CR5) 2013; 54
Foithong, Pinngern, Attachoo (CR15) 2012; 39
Gu, Guo, Xiao, Ming, Li (CR26) 2020; 51
CR25
CR23
Gao, Hu, Zhang (CR20) 2018; 79
CR21
Guyon, Elisseeff (CR1) 2003; 3
Peng, Long, Ding (CR11) 2005; 27
Battiti (CR10) 1994; 5
Bennasar, Hicks, Setchi (CR17) 2015; 42
Tang, Kay, He (CR4) 2016; 28
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (CR24) 2009; 11
WF Gao (1936_CR20) 2018; 79
YW Wang (1936_CR3) 2018; 48
I Guyon (1936_CR1) 2003; 3
JD Li (1936_CR22) 2018; 50
B Tang (1936_CR4) 2016; 28
XY Gu (1936_CR7) 2020; 24
1936_CR16
HC Peng (1936_CR11) 2005; 27
M Bennasar (1936_CR17) 2015; 42
PA Estevez (1936_CR14) 2009; 20
WF Gao (1936_CR19) 2018; 112
T Fei (1936_CR9) 2015; 53
ZL Zeng (1936_CR13) 2015; 48
F Zhang (1936_CR8) 2016; 46
R Battiti (1936_CR10) 1994; 5
X Sun (1936_CR12) 2013; 37
MA Hall (1936_CR24) 2009; 11
XJ Huang (1936_CR2) 2018; 48
XY Gu (1936_CR26) 2020; 51
J Wang (1936_CR18) 2017; 29
CX Shang (1936_CR5) 2013; 54
1936_CR21
XY Gu (1936_CR6) 2019; 78
S Foithong (1936_CR15) 2012; 39
1936_CR25
1936_CR23
References_xml – volume: 54
  start-page: 298
  year: 2013
  end-page: 309
  ident: CR5
  article-title: Feature selection via maximizing global information gain for text classification
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.09.019
– volume: 112
  start-page: 70
  year: 2018
  end-page: 74
  ident: CR19
  article-title: Feature selection considering the composition of feature relevancy
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.06.005
– volume: 51
  start-page: 1237
  issue: 2
  year: 2020
  end-page: 1263
  ident: CR26
  article-title: A feature selection algorithm based on equal interval division and minimal-redundancy-maximal-relevance
  publication-title: neural process lett
  doi: 10.1007/s11063-019-10144-3
– volume: 50
  start-page: 1
  issue: 6
  year: 2018
  end-page: 45
  ident: CR22
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput Surv
  doi: 10.1145/3136625
– ident: CR16
– volume: 29
  start-page: 828
  issue: 4
  year: 2017
  end-page: 841
  ident: CR18
  article-title: Feature selection by maximizing independent classification information
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2650906
– volume: 53
  start-page: 505
  issue: 1
  year: 2015
  end-page: 518
  ident: CR9
  article-title: Contributions to automatic target recognition systems for underwater mine classification
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2014.2324971
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  end-page: 18
  ident: CR24
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explorations
  doi: 10.1145/1656274.1656278
– volume: 46
  start-page: 766
  issue: 3
  year: 2016
  end-page: 777
  ident: CR8
  article-title: Adversarial feature selection against evasion attacks
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2415032
– volume: 20
  start-page: 189
  issue: 2
  year: 2009
  end-page: 201
  ident: CR14
  article-title: Normalized mutual information feature selection
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005601
– ident: CR25
– volume: 42
  start-page: 8520
  issue: 22
  year: 2015
  end-page: 8532
  ident: CR17
  article-title: Feature selection using joint mutual information maximisation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.07.007
– ident: CR23
– volume: 78
  start-page: 19681
  issue: 14
  year: 2019
  end-page: 19695
  ident: CR6
  article-title: A study on subtractive pixel adjacency matrix features
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7285-1
– ident: CR21
– volume: 79
  start-page: 328
  year: 2018
  end-page: 339
  ident: CR20
  article-title: Class-specific mutual information variation for feature selection
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.02.020
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: CR1
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– volume: 48
  start-page: 868
  issue: 4
  year: 2018
  end-page: 885
  ident: CR3
  article-title: Novel artificial bee colony based feature selection method for filtering redundant information
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1010-4
– volume: 48
  start-page: 2656
  issue: 8
  year: 2015
  end-page: 2666
  ident: CR13
  article-title: A novel feature selection method considering feature interaction
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.02.025
– volume: 48
  start-page: 594
  issue: 3
  year: 2018
  end-page: 607
  ident: CR2
  article-title: Feature clustering based support vector machine recursive feature elimination for gene selection
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-0992-2
– volume: 37
  start-page: 541
  year: 2013
  end-page: 549
  ident: CR12
  article-title: Feature selection using dynamic weights for classification
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.10.001
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  end-page: 1238
  ident: CR11
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 28
  start-page: 2508
  issue: 9
  year: 2016
  end-page: 2521
  ident: CR4
  article-title: Toward optimal feature selection in naive bayes for text categorization
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2563436
– volume: 5
  start-page: 537
  issue: 4
  year: 1994
  end-page: 550
  ident: CR10
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.298224
– volume: 39
  start-page: 574
  issue: 1
  year: 2012
  end-page: 584
  ident: CR15
  article-title: Feature subset selection wrapper based on mutual information and rough sets
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.048
– volume: 24
  start-page: 333
  issue: 1
  year: 2020
  end-page: 340
  ident: CR7
  article-title: Spatial-domain steganalytic feature selection based on three-way interaction information and KS test
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03910-x
– volume: 20
  start-page: 189
  issue: 2
  year: 2009
  ident: 1936_CR14
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005601
– volume: 5
  start-page: 537
  issue: 4
  year: 1994
  ident: 1936_CR10
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.298224
– volume: 28
  start-page: 2508
  issue: 9
  year: 2016
  ident: 1936_CR4
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2563436
– volume: 42
  start-page: 8520
  issue: 22
  year: 2015
  ident: 1936_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.07.007
– volume: 54
  start-page: 298
  year: 2013
  ident: 1936_CR5
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.09.019
– volume: 46
  start-page: 766
  issue: 3
  year: 2016
  ident: 1936_CR8
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2415032
– ident: 1936_CR23
– volume: 48
  start-page: 2656
  issue: 8
  year: 2015
  ident: 1936_CR13
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.02.025
– ident: 1936_CR21
– volume: 48
  start-page: 594
  issue: 3
  year: 2018
  ident: 1936_CR2
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-0992-2
– volume: 53
  start-page: 505
  issue: 1
  year: 2015
  ident: 1936_CR9
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2014.2324971
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 1936_CR24
  publication-title: SIGKDD Explorations
  doi: 10.1145/1656274.1656278
– ident: 1936_CR25
– ident: 1936_CR16
  doi: 10.1145/1015330.1015377
– volume: 24
  start-page: 333
  issue: 1
  year: 2020
  ident: 1936_CR7
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03910-x
– volume: 112
  start-page: 70
  year: 2018
  ident: 1936_CR19
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.06.005
– volume: 50
  start-page: 1
  issue: 6
  year: 2018
  ident: 1936_CR22
  publication-title: ACM Comput Surv
  doi: 10.1145/3136625
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 1936_CR11
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 48
  start-page: 868
  issue: 4
  year: 2018
  ident: 1936_CR3
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1010-4
– volume: 29
  start-page: 828
  issue: 4
  year: 2017
  ident: 1936_CR18
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2650906
– volume: 51
  start-page: 1237
  issue: 2
  year: 2020
  ident: 1936_CR26
  publication-title: neural process lett
  doi: 10.1007/s11063-019-10144-3
– volume: 3
  start-page: 1157
  year: 2003
  ident: 1936_CR1
  publication-title: J Mach Learn Res
– volume: 37
  start-page: 541
  year: 2013
  ident: 1936_CR12
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.10.001
– volume: 39
  start-page: 574
  issue: 1
  year: 2012
  ident: 1936_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.07.048
– volume: 79
  start-page: 328
  year: 2018
  ident: 1936_CR20
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.02.020
– volume: 78
  start-page: 19681
  issue: 14
  year: 2019
  ident: 1936_CR6
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7285-1
SSID ssj0003301
Score 2.3434067
Snippet The performance of some three-dimensional mutual information-based algorithms can be affected, since only relevance and interaction are considered. Aiming at...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2672
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Feature selection
Machines
Manufacturing
Mechanical Engineering
Processes
Redundancy
Weight analysis
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60Xrz4FqtVcvCmC7vZ7CPHIpYiKAgt9Bby1ENtpa34952k2VZFBW_LbjYLM5nkm52ZbwAurUIMK02VMKPQQaEaTaqmMinLVFaZpJlyvjj5_qHsD9ndqBjForB5k-3ehCTDTv2p2I359B7qE6l4XibFJmwVns4LV_GQdlf7L3rooU8eehb4ST6KpTI_z_H1OFpjzG9h0XDa9PZgJ8JE0l3qdR827OQAdpsWDCRa5CE8domzgZuTzENHGxQzkeOnKfr8zy_En1GG4K2Z9dVificlMtKQ4IUhni1itqxtIO_hL-kRDHq3g5t-ErskJBrNZ5HUtvbpSzyTPk5rUqvRhI3lrmJapZYXzCAMcDalRvPKcSfzzFFURCVZXpv8GFqT6cSeAGFcOrRwplF5TEkna8Q2KE3OrFGytm3IGlkJHRnEfSOLsVhzH3v5CpSvCPIVRRuuVu-8Lvkz_hzdaVQgoi3NBYI07slLs7QN141a1o9_n-30f8PPYJv6hJWQltOB1mL2Zs8RcSzURVhgH6oIzBE
  priority: 102
  providerName: Springer Nature
Title A feature selection algorithm based on redundancy analysis and interaction weight
URI https://link.springer.com/article/10.1007/s10489-020-01936-5
https://www.proquest.com/docview/2509913910
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4ovPjibyOKpA--6eJWClsfjAEDGI1EDST4tHRrqw-Kihj_fe9KB9FEnras27Ld9a7X9u77AI5NhjGs0nEgdIYTFJ6jSSVcBc1mqOJI8SizVJx8229eDcX1qDFagX5RC0NplYVPdI5av-W0Rn6GQ7UkCMsovHj_CIg1inZXCwoN5akV9LmDGFuFMidkrBKU253-3cPcN-Ps3XHo4awDP0eOfBmNL6YTlD7EKVFL1ptB4_dQtYg__2yZupGouwnrPoRkrZnOt2DFjLdho6BnYN5ad-C-xaxxuJ3s07HdoAqYennCv5o-vzIavzTDSxNDlWTkZZnyECV4ohkhSUxmdQ_s262g7sKg2xlcXgWeQSHI0bSmQWISSm2SkaI9XB2aHM1bG2ljkWehkQ2hMUSwJuQ6l7GVVtUjy1FJsRL1RNf3oDR-G5t9YEIqi9YvclSsyJRVCcY9KE0pjM5UYioQFbJKc48uTiQXL-kCF5nkm6J8UyfftFGBk_kz7zNsjaV3VwsVpN7OPtNFr6jAaaGWRfP_bztY_rZDWOOUvOJSdKpQmk6-zBFGH9OsBqtJt1eDcqvbbvfp2Hu86dR8R8PWIW_9AF0w2oA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7R5NBeKLSgpg3gQ3tqV-x6nez6ECEeQaGQqK2ClJvlXdvlQANNUkX8OP4bM46XqEjkxm21D0s7M54Z2zPfB_DZFpjDapNFwhS4QOElTqmc66jdjnWWaJ4UjpqT-4N271J8H7VGa3Bf9cJQWWXlE72jNjcl7ZHvY6iWBGGZxAe3fyNijaLT1YpCQwdqBdPxEGOhsePc3s1xCTftnJ2gvr9wftodHveiwDIQlWh-syi3OZX_yETTOaeJbYlTwFjpMlEWsZUtYTCMOhtzU8rMSafTxHH8kUyLNDcpDvsK6iIVEtd-9aPu4Mevx1CQpp5_OcZFDv69HIWundC7J6haiVNdmEzbUev_yLhMd5-c0PrAd7oB6yFjZYcLE9uENTt-B28rNggWnMN7-HnInPUwoWzqyXVQ40xf_0Yhzq7-MAqXhuGtiaXGNXLqTAdEFLwwjIArJos2Czb3G7ZbMHwJUW5DbXwzth-ACakdOhtRoh2JQjudY5qF0pTCmkLntgFJJStVBjBz4tS4VksYZpKvQvkqL1_VasDXx29uF1AeK99uVipQYVpP1dIIG_CtUsvy8fOjfVw92h687g37F-ribHD-Cd5wqpvx1UFNqM0m_-wOJj6zYjeYFwP1wgb9ALxOEb4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gHjxLa7PHPSkxTbNbpuDiKjrWxQU9hbSJtGDrrq7Iv40_50z2dRFQW_eSh-BznyZmSQz3wCs2wJjWG2ySJgCFyi8xCmVcx01GrHOEs2TwlFx8sVl4_hWnLbqrSH4qGphKK2ysoneUJunkvbIt9FVS6KwTOJtF9Iirg6au88vEXWQopPWqp1GHyJn9v0Nl2_dnZMD1PUG583Dm_3jKHQYiEqEXi_KbU6pPzLRdMZpYlsi_I2VLhNlEVtZFwZdqLMxN6XMnHQ6TRzHn8i0SHOT4rDDMJoRiTsVqTePvpxAmvrOyzEub_C_ZSvU64SqPUF5SpwywmTaiOrffeIg0P1xNutdXnMKJkKsyvb64JqGIduegcmqDwQLZmEWrveYs54glHV9Wx3UNdMPdyiy3v0jI0dpGN7qWCpZI3POdOBCwQvDiLKi0y-wYG9-q3YObv5DkPMw0n5q2wVgQmqHZkaUiCBRaKdzDLBQmlJYU-jc1iCpZKXKQGNO3TQe1ICAmeSrUL7Ky1fVa7D59c1zn8Tjz7eXKxWoMKG7agC_GmxVahk8_n20xb9HW4MxhLE6P7k8W4JxTgkzPi1oGUZ6nVe7ghFPr1j12GKg_hnLnzFpD1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feature+selection+algorithm+based+on+redundancy+analysis+and+interaction+weight&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Gu+Xiangyuan&rft.au=Guo+Jichang&rft.au=Li%2C+Chongyi&rft.au=Xiao+Lijun&rft.date=2021-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=4&rft.spage=2672&rft.epage=2686&rft_id=info:doi/10.1007%2Fs10489-020-01936-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon