Differential fault analysis attack-tolerant hardware implementation of AES

Cryptographic circuits contain various confidential information and are susceptible to fraudulent manipulations, commonly called attacks, performed by ill-intentioned person. The primary goal of the attacker is to retrieve the sensitive information when the device is executing some task. One of the...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 80; no. 4; pp. 4648 - 4681
Main Authors Ghosal, Anit Kumar, Sardar, Amit, Chowdhury, Dipanwita Roy
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
DOI10.1007/s11227-023-05632-2

Cover

Abstract Cryptographic circuits contain various confidential information and are susceptible to fraudulent manipulations, commonly called attacks, performed by ill-intentioned person. The primary goal of the attacker is to retrieve the sensitive information when the device is executing some task. One of the most efficient attack is Differential Fault Analysis attack that exploits the physical or implementation weakness of the device by injecting faults, for example with a laser beam, overheating, etc. AES is vulnerable against Differential Fault Analysis attack. The adversary can form a system of linear equations with a pair of ciphertexts to break AES cryptosystem. In the literature, it is shown that AES key can be recovered using this kind of fault attack with an exhaustive search of 2 32 , which is further improved to 2 8 . Using a 32 cores processor with 2.1 GHz clock speed each, the AES-128 key can be retrieved within 17.5 s. Ghosal et al. as reported by Ghosal (in: Yuan, Bai, Alcaraz, Majumdar (eds) International Conference on Network and System Security, Springer, Cham, 2022) propose an extra diffusion layer to AES cryptosystem, MixColumn - Plus , to strengthen the security of AES against such attack. With the addition of an extra diffusion layer, an attacker has to search exhaustively 2 84 keys. In this work, we propose another matrix for MixColumn - Plus and further, we implement MixColumn - Plus layer with both matrices in hardware platform and compare the delay, LUT, gate count, frequency and execution time with original AES. The complexity of the byte fault attack is improved to 2 116 with the proposed matrix. The proposed hardware implementation of AES with MixColumn-Plus can be called as DFA attack-tolerant module.
AbstractList Cryptographic circuits contain various confidential information and are susceptible to fraudulent manipulations, commonly called attacks, performed by ill-intentioned person. The primary goal of the attacker is to retrieve the sensitive information when the device is executing some task. One of the most efficient attack is Differential Fault Analysis attack that exploits the physical or implementation weakness of the device by injecting faults, for example with a laser beam, overheating, etc. AES is vulnerable against Differential Fault Analysis attack. The adversary can form a system of linear equations with a pair of ciphertexts to break AES cryptosystem. In the literature, it is shown that AES key can be recovered using this kind of fault attack with an exhaustive search of 232, which is further improved to 28. Using a 32 cores processor with 2.1 GHz clock speed each, the AES-128 key can be retrieved within 17.5 s. Ghosal et al. as reported by Ghosal (in: Yuan, Bai, Alcaraz, Majumdar (eds) International Conference on Network and System Security, Springer, Cham, 2022) propose an extra diffusion layer to AES cryptosystem, MixColumn-Plus, to strengthen the security of AES against such attack. With the addition of an extra diffusion layer, an attacker has to search exhaustively 284 keys. In this work, we propose another matrix for MixColumn-Plus and further, we implement MixColumn-Plus layer with both matrices in hardware platform and compare the delay, LUT, gate count, frequency and execution time with original AES. The complexity of the byte fault attack is improved to 2116 with the proposed matrix. The proposed hardware implementation of AES with MixColumn-Plus can be called as DFA attack-tolerant module.
Cryptographic circuits contain various confidential information and are susceptible to fraudulent manipulations, commonly called attacks, performed by ill-intentioned person. The primary goal of the attacker is to retrieve the sensitive information when the device is executing some task. One of the most efficient attack is Differential Fault Analysis attack that exploits the physical or implementation weakness of the device by injecting faults, for example with a laser beam, overheating, etc. AES is vulnerable against Differential Fault Analysis attack. The adversary can form a system of linear equations with a pair of ciphertexts to break AES cryptosystem. In the literature, it is shown that AES key can be recovered using this kind of fault attack with an exhaustive search of 2 32 , which is further improved to 2 8 . Using a 32 cores processor with 2.1 GHz clock speed each, the AES-128 key can be retrieved within 17.5 s. Ghosal et al. as reported by Ghosal (in: Yuan, Bai, Alcaraz, Majumdar (eds) International Conference on Network and System Security, Springer, Cham, 2022) propose an extra diffusion layer to AES cryptosystem, MixColumn - Plus , to strengthen the security of AES against such attack. With the addition of an extra diffusion layer, an attacker has to search exhaustively 2 84 keys. In this work, we propose another matrix for MixColumn - Plus and further, we implement MixColumn - Plus layer with both matrices in hardware platform and compare the delay, LUT, gate count, frequency and execution time with original AES. The complexity of the byte fault attack is improved to 2 116 with the proposed matrix. The proposed hardware implementation of AES with MixColumn-Plus can be called as DFA attack-tolerant module.
Author Ghosal, Anit Kumar
Chowdhury, Dipanwita Roy
Sardar, Amit
Author_xml – sequence: 1
  givenname: Anit Kumar
  surname: Ghosal
  fullname: Ghosal, Anit Kumar
  email: anit.ghosal@gmail.com
  organization: Department of Computer Science and Engineering, IIT Kharagpur
– sequence: 2
  givenname: Amit
  surname: Sardar
  fullname: Sardar, Amit
  organization: Department of Computer Science and Engineering, IIT Kharagpur
– sequence: 3
  givenname: Dipanwita Roy
  surname: Chowdhury
  fullname: Chowdhury, Dipanwita Roy
  organization: Department of Computer Science and Engineering, IIT Kharagpur
BookMark eNp9kMtKAzEUhoNUsK2-gKsB19FcJ9NlqfVGwYW6DmcyiaZOZ2qSIn17oyMILro6HPi_c_kmaNT1nUXonJJLSoi6ipQypjBhHBNZcobZERpTqXIrKjFCYzJjBFdSsBM0iXFNCBFc8TF6uPbO2WC75KEtHOzaVEAH7T76WEBKYN5x6lsboEvFG4TmE4It_Gbb2k2GIPm-K3pXzJdPp-jYQRvt2W-dopeb5fPiDq8eb-8X8xU2nM4SrsDKylWlA2eYk0YJUFzUjVAGyqaiXDlLSieEpBQa6kjNRF0rI4w0hpU1n6KLYe429B87G5Ne97uQb46aM1nKmWJS5BQbUib0MQbr9Db4DYS9pkR_O9ODM52d6R9nmmWo-gcZP_yYAvj2MMoHNOY93asNf1cdoL4AKBKDeg
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3533611
crossref_primary_10_3390_app132212530
Cites_doi 10.1007/s13389-014-0077-7
10.1007/978-3-319-31517-1_9
10.1007/978-3-319-06734-6_17
10.1007/s42835-019-00226-6
10.1007/11767480_16
10.1007/s00145-023-09462-6
10.1007/978-3-642-12678-9_17
10.1007/s41635-017-0006-1
10.46586/tosc.v2017.i4.130-168
10.1007/978-3-662-48800-3_17
10.1007/11506447_4
10.1007/978-3-540-45238-6_7
10.1007/978-3-319-66787-4_6
10.1109/FDTC.2012.19
10.1007/978-3-662-44709-3_24
10.1109/TC.2003.1190587
10.1007/3-540-36400-5_16
10.1007/978-3-540-45203-4_23
10.1109/FDTC.2013.12
10.1007/978-3-642-15031-9_28
10.1007/978-3-662-44709-3_6
10.46586/tches.v2020.i3.508-543
10.1007/978-3-662-53140-2_10
10.1007/11889700_2
10.1007/BFb0052259
10.1109/JPROC.2005.862424
10.1109/SP40000.2020.00057
10.1109/HST.2016.7495584
10.1007/11605805_14
10.1007/978-3-642-33481-8_17
10.1007/978-3-642-02384-2_26
10.1007/978-3-030-45721-1_22
10.1109/FDTC.2009.30
10.1109/TIFS.2021.3089875
10.46586/tosc.v2017.i4.188-211
10.1007/3-540-69053-0_4
10.1007/978-3-031-23020-2_41
10.1007/978-3-642-21040-2_15
10.1007/978-3-319-56620-7_20
10.1007/978-3-540-45126-6_12
10.1109/TCAD.2015.2419623
10.1109/ECCTD.2009.5275006
10.1007/978-3-540-72354-7_18
10.1109/FDTC.2010.10
10.1007/s13389-022-00301-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-023-05632-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 4681
ExternalDocumentID 10_1007_s11227_023_05632_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c319t-8ae58f86fafc2f5c74a734bd47ca6d8137fe06f44511ad1f0b24bb7c4c5cc26b3
IEDL.DBID BENPR
ISSN 0920-8542
IngestDate Mon Oct 06 18:38:14 EDT 2025
Thu Apr 24 22:58:52 EDT 2025
Wed Oct 01 03:43:56 EDT 2025
Fri Feb 21 02:42:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hardware implementation
DFA attack
AES Rijndael
MixColumn-Plus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8ae58f86fafc2f5c74a734bd47ca6d8137fe06f44511ad1f0b24bb7c4c5cc26b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256597254
PQPubID 2043774
PageCount 34
ParticipantIDs proquest_journals_3256597254
crossref_primary_10_1007_s11227_023_05632_2
crossref_citationtrail_10_1007_s11227_023_05632_2
springer_journals_10_1007_s11227_023_05632_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Boneh D, DeMillo RA, Lipton RJ (1997) On the Importance of checking cryptographic protocols for faults. In: Fumy W (ed) EUROCRYPT 1997, LNCS, vol 1233. Springer, Heidelberg, pp 37–51
Tupsamudre H, Bisht S, Mukhopadhyay D (2014) Destroying fault invariant with randomization - a countermeasure for AES against differential fault attacks. In: Batina L, Robshaw M (eds) CHES 2014, LNCS, vol 8731. Springer, Berlin, pp 93–111
JoanDVincentRThe Design of Rijndael2002New YorkSpringer
GruberMDOMREP-An orthogonal countermeasure for arbitrary order side-channel and fault attack protectionIEEE Trans Inf Forensics Secur2021164321433510.1109/TIFS.2021.3089875
Golić JD, Tymen C (2003) Multiplicative masking and power analysis of AES. In: Kaliski Jr BS, Koç CK, Paar C (eds) CHES 2002. LNCS, vol. 2523, Springer, Heidelberg, pp 198–212
Joye M, Ciet M (2005) Practical fault countermeasures for Chinese remaindering based RSA. In: Third International Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
JoshiPMazumdarBSemi-permanent stuck-at fault analysis of AES Rijndael SBoxJ Cryptogr Eng20231320122210.1007/s13389-022-00301-1
Tiri K, Verbauwhede I (2004) A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. In: 2004 Design, Automation and Test in Europe Conference and Exposition, DATE
Banik S, Bogdanov A, Isobe T, Shibutani K, Hiwatari H, Akishita T, Regazzoni F (2015) Midori: a block cipher for low energy. In: Iwata T et al (eds) ASIACRYPT 2015. LNCS, vol 9453. Springer, Heidelberg, pp 411–436
Bar-ElHChoukriHNaccacheDTunstallMWhelanCThe sorcerer’s apprentice guide to fault attacksProc IEEE200694237038210.1109/JPROC.2005.862424
KranzTLeanderGStoffelenKWiemerFShorter linear straight-line programs for MDS matricesIACR Trans Symmetr Cryptol20172017418821110.46586/tosc.v2017.i4.188-211
PatranabisSChakrabortyAMukhopadhyayDFault tolerant infective countermeasure for AESJ Hardw Syst Secur20171131710.1007/s41635-017-0006-1
Kim CH, Quisquater JJ (2007) Fault attacks for CRT based RSA: new attacks, new results, and new countermeasures. In: Sauveron D, Markantonakis K, Bilas A, Quisquater JJ (eds) Information Security Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing Systems, Springer, Berlin, pp 215–228
Gross H, Mangard S (2017) Reconciling d+1 masking in hardware and software. In: CHES 2017
DaemenJDobraunigCEichlsederMGrossHMendelFPrimasRProtecting against statistical ineffective fault attacksIACR Trans Cryptogr Hardw Embed Syst20202020350854310.46586/tches.v2020.i3.508-543
Breier J, Jap D, Bhasin S (2016) The other side of the coin: analyzing software encoding schemes against fault injection attacks. In: 2016 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2016, McLean, VA, USA, pp 209–216
Murdock K, Oswald D, Garcia FD, Van Bulck J, Gruss D, Piessens F (2020) Plundervolt: software-based fault injection attacks against Intel SGX. In: 41st IEEE Symposium on Security and Privacy
Saha D, Mukhopadhyay D, RoyChowdhury D (2009) A diagonal fault attack on the advanced encryption standard, Cryptology ePrint Archive, Report2009/581
Battistello A, Giraud C (2013) Fault analysis of infective AES computations. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp 101–107
Biham E, Shamir A (1997) Differential fault analysis of secret key cryptosystems. In: Kaliski BS Jr (ed) CRYPTO 1997, LNCS, vol 1294. Springer, Heidelberg, pp 513–525
Herbst C, Oswald E, Mangard S (2006) An AES smart card implementation resistant to power analysis attacks. In: Zhou J, Yung M, Bao F (eds) ACNS 2006, LNCS, vol 3989. Springer, Heidelberg, pp 239–252
Bilgin B, Gierlichs B, Nikova S, Nikov V, Rijmen V.: A more efficient AES threshold implementation. In: Pointcheval D, Vergnaud D (eds) Progress in Cryptology - AFRICACRYPT 2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham, pp 267–284
Mukhopadhyay D (2009) An improved fault based attack of the advanced encryption standard. In: Preneel B (ed) AFRICACRYPT 2009, LNCS, vol 5580. Springer, Heidelberg, pp 421–434
Gierlichs B, Schmidt J-M, Tunstall M (2012) Infective computation and dummy rounds: fault protection for block ciphers without check-before-output. In: Hevia A, Neven G (eds) LatinCrypt 2012, LNCS, vol 7533. Springer, Heidelberg, pp 305–321
Sergei P, Ross J (2002) Optical fault induction attacks. In: Revised Papers from the 4th International Workshop on Cryptographic Hardware and Embedded Systems, Springer, Heidelberg, pp 2–12
Christophe Giraud (2004) DFA on AES. In International Conference on Advanced Encryption Standard, Springer, pp 27-41
Medwed M, Standaert F, Großschädl J, Regazzoni F (2010) Fresh rekeying: security against side-channel and fault attacks for low-cost devices. In: AFRICACRYPT
Saha S, Bag A, Basu Roy D, Patranabis S, Mukhopadhyay D, (2010) Fault template attacks on block ciphers exploiting fault propagation. In: Canteaut A, Ishai Y (eds) Advances in Cryptology – EUROCRYPT 2020
Sarkar S, Sim SM (2016) A deeper understanding of the XOR count distribution in the context of lightweight cryptography. In: Pointcheval D, Nitaj A, Rachidi T (eds) AFRICACRYPT 2016, LNCS, vol 9646. Springer, Cham, pp 167–182
Dusart P, Letourneux G, Vivolo O (2003) Differential fault analysis on A.E.S. In: Zhou J, Yung M, Han Y (eds) ACNS 2003. LNCS, vol. 2846. Springer, Heidelberg, pp 293–306
ZhangJWuNZhouFSecuring the AES cryptographic circuit against both power and fault attacksJ Electr Eng Technol201914217121801:CAS:528:DC%2BC1MXjsl2ht7c%3D10.1007/s42835-019-00226-6
BilginBGierlichsBNikovaSNikovVRijmenVTradeoffs for threshold implementations illustrated on AESIEEE Trans Comput Aid Des Integr Circ Syst20153471188120010.1109/TCAD.2015.2419623
De Cnudde T, Reparaz O, Bilgin B, Nikova S, Nikov V, Rijmen V (2016) Masking AES with d+1 shares in hardware. In: Gierlichs B, Poschmann AY (eds) CHES 2016, LNCS, vol 9813. Springer, Heidelberg, pp 194–212
Khoo K, Peyrin T, Poschmann AY, Yap H (2014) FOAM: searching for hardware-optimal SPN structures and components with a fair comparison. In: Batina L, Robshaw M (eds) CHES 2014, LNCS, vol 8731. Springer, Heidelberg, pp 433–450
Barenghi A, Bertoni G, Parrinello E, Pelosi G (2009) Low voltage fault attacks on the RSA cryptosystem. In: Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC 2009, Lausanne, Switzerland, 2009. Proceedings, pp 23–31
Piret G, Quisquater J-J (2003) A differential fault attack technique against SPN structures, with application to the AES and KHAZAD. In: Walter CD, Koç ÇK, Paar C (eds) CHES 2003, LNCS, vol 2779. Springer, Heidelberg, pp 77–88
Rivain M, Prouff E (2010) Provably secure higher-order masking of AES. In: Mangard S, Standaert F-X (eds) CHES 2010, LNCS, vol 6225. Springer, Heidelberg, pp 413–427
YenS-MKimSLimSMoonS-JRSA speedup with Chinese remainder theorem immune against hardware fault cryptanalysisIEEE Trans Comput200352446147210.1109/TC.2003.1190587
Blomer J, Seifert J-P (2003) Fault based cryptanalysis of the advanced encryption standard (AES). In: Wright RN (ed) FC 2003, LNCS, vol 2742. Springer, Heidelberg, pp 162–181
Kim CH (2010) Differential fault analysis against AES-192 and AES-256 with minimal faults. In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), IEEE, pp 3–9
Schramm K, Paar C (2006) Higher order masking of the AES. In: Pointcheval D (ed) CT-RSA 2006, LNCS, vol 3860. Springer, Heidelberg, pp 208–225
MoroNHeydemannKEncrenazERobissonBFormal verification of a software countermeasure against instruction skip attacksJ Cryptogr Eng20144314515610.1007/s13389-014-0077-7
Paul A, Mithili P, Paul V (2009) Fast symmetric cryptography using key and data based masking operations. In: Proceedings of the International Conference on VLSI and Communication Engineering
Yen SM, Kim D (2004) Cryptanalysis of two protocols for RSA with CRT based on fault infection. In: 3rd International Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
Barreto PSLM, Rijmen V (2000) The Khazad legacy-level block cipher. In: Primitive Submitted to NESSIE
SahaSAlamMBagALearn from your faults: leakage assessment in fault attacks using deep learningJ Cryptol20233619458928610.1007/s00145-023-09462-6
Blomer J, Otto M (2006) Wagner’s attack on a secure CRT-RSA algorithm reconsidered. In: Third International Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2006, Yokohama, Japan, Proceedings, pp 13–23
Lomné V, Roche T, Thillard A (2012) On the Need of Randomness in Fault Attack Countermeasures - Application to AES. In: Bertoni G, Gierlichs B (eds) Fault Diagnosis and Tolerance in Cryptography, FDTC 2012, IEEE Computer Society, pp 85–94
Tunstall M, Mukhopadhyay D, Ali S (2011) Differential fault analysis of the advanced encryption standard using a single fault. In: Ardagna CA, Zhou J (eds) WISTP 2011, LNCS, vol 6633. Springer, Heidelberg, pp 224–233
JeanJPeyrinTSimSMTourteauxJOptimizing implementations of lightweight building blocksIACR Trans Symmetr Cryptol20172017413016810.46586/tosc.v2017.i4.130-168
Bernstein DJ (2009) Optimizing linear maps modulo 2. In: Workshop Record of SPEED-CC: Software Performance Enhancement for Encryption and Decryption and Cryptographic Compilers, pp 3–18
Ghosal AK, Roychowdhury D (2022) Strengthening the security of AES against differential fault attack. In: Yuan X, Bai G, Alcaraz C, Majumdar S (eds) International Conference on Network and System Security, pp 727-744
Goudarzi D, Rivain M (2017) How fast can higher-order masking be in software? In: Coron JS, Nielsen J (eds) Advances in Cryptology–EUROCRYPT 2017: 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part I 36, Springer, Cham, pp 567–597
5632_CR1
5632_CR4
5632_CR35
5632_CR5
J Zhang (5632_CR54) 2019; 14
5632_CR3
5632_CR38
5632_CR9
5632_CR6
M Gruber (5632_CR23) 2021; 16
cr-split#-5632_CR37.1
B Bilgin (5632_CR8) 2015; 34
cr-split#-5632_CR12.2
cr-split#-5632_CR12.1
cr-split#-5632_CR37.2
5632_CR31
5632_CR32
5632_CR34
5632_CR30
J Zhang (5632_CR55) 2019; 14
5632_CR29
5632_CR24
N Moro (5632_CR36) 2014; 4
J Jean (5632_CR26) 2017; 2017
J Daemen (5632_CR15) 2020; 2020
5632_CR20
5632_CR21
5632_CR22
J Jean (5632_CR25) 2017; 2017
S Patranabis (5632_CR39) 2017; 1
5632_CR17
5632_CR18
5632_CR19
5632_CR13
5632_CR14
5632_CR16
H Bar-El (5632_CR2) 2006; 94
cr-split#-5632_CR11.1
cr-split#-5632_CR11.2
T Kranz (5632_CR33) 2017; 2017
S-M Yen (5632_CR53) 2003; 52
5632_CR10
cr-split#-5632_CR7.1
P Joshi (5632_CR28) 2023; 13
cr-split#-5632_CR7.2
5632_CR50
5632_CR51
5632_CR52
5632_CR46
D Joan (5632_CR27) 2002
5632_CR48
5632_CR49
cr-split#-5632_CR47.2
cr-split#-5632_CR47.1
5632_CR42
S Saha (5632_CR43) 2023; 36
5632_CR44
5632_CR45
5632_CR40
5632_CR41
References_xml – reference: PatranabisSChakrabortyAMukhopadhyayDFault tolerant infective countermeasure for AESJ Hardw Syst Secur20171131710.1007/s41635-017-0006-1
– reference: De Cnudde T, Reparaz O, Bilgin B, Nikova S, Nikov V, Rijmen V (2016) Masking AES with d+1 shares in hardware. In: Gierlichs B, Poschmann AY (eds) CHES 2016, LNCS, vol 9813. Springer, Heidelberg, pp 194–212
– reference: Goudarzi D, Rivain M (2017) How fast can higher-order masking be in software? In: Coron JS, Nielsen J (eds) Advances in Cryptology–EUROCRYPT 2017: 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part I 36, Springer, Cham, pp 567–597
– reference: Tupsamudre H, Bisht S, Mukhopadhyay D (2014) Destroying fault invariant with randomization - a countermeasure for AES against differential fault attacks. In: Batina L, Robshaw M (eds) CHES 2014, LNCS, vol 8731. Springer, Berlin, pp 93–111
– reference: JeanJPeyrinTSimSMTourteauxJOptimizing implementations of lightweight building blocksIACR Trans Symmetr Cryptol20172017413016810.46586/tosc.v2017.i4.130-168
– reference: Barreto PSLM, Rijmen V (2000) The Khazad legacy-level block cipher. In: Primitive Submitted to NESSIE
– reference: Sergei P, Ross J (2002) Optical fault induction attacks. In: Revised Papers from the 4th International Workshop on Cryptographic Hardware and Embedded Systems, Springer, Heidelberg, pp 2–12
– reference: Saha D, Mukhopadhyay D, RoyChowdhury D (2009) A diagonal fault attack on the advanced encryption standard, Cryptology ePrint Archive, Report2009/581
– reference: Battistello A, Giraud C (2013) Fault analysis of infective AES computations. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp 101–107
– reference: YenS-MKimSLimSMoonS-JRSA speedup with Chinese remainder theorem immune against hardware fault cryptanalysisIEEE Trans Comput200352446147210.1109/TC.2003.1190587
– reference: SahaSAlamMBagALearn from your faults: leakage assessment in fault attacks using deep learningJ Cryptol20233619458928610.1007/s00145-023-09462-6
– reference: Bar-ElHChoukriHNaccacheDTunstallMWhelanCThe sorcerer’s apprentice guide to fault attacksProc IEEE200694237038210.1109/JPROC.2005.862424
– reference: Piret G, Quisquater J-J (2003) A differential fault attack technique against SPN structures, with application to the AES and KHAZAD. In: Walter CD, Koç ÇK, Paar C (eds) CHES 2003, LNCS, vol 2779. Springer, Heidelberg, pp 77–88
– reference: Schramm K, Paar C (2006) Higher order masking of the AES. In: Pointcheval D (ed) CT-RSA 2006, LNCS, vol 3860. Springer, Heidelberg, pp 208–225
– reference: Tunstall M, Mukhopadhyay D, Ali S (2011) Differential fault analysis of the advanced encryption standard using a single fault. In: Ardagna CA, Zhou J (eds) WISTP 2011, LNCS, vol 6633. Springer, Heidelberg, pp 224–233
– reference: Saha S, Bag A, Basu Roy D, Patranabis S, Mukhopadhyay D, (2010) Fault template attacks on block ciphers exploiting fault propagation. In: Canteaut A, Ishai Y (eds) Advances in Cryptology – EUROCRYPT 2020
– reference: GruberMDOMREP-An orthogonal countermeasure for arbitrary order side-channel and fault attack protectionIEEE Trans Inf Forensics Secur2021164321433510.1109/TIFS.2021.3089875
– reference: Banik S, Bogdanov A, Isobe T, Shibutani K, Hiwatari H, Akishita T, Regazzoni F (2015) Midori: a block cipher for low energy. In: Iwata T et al (eds) ASIACRYPT 2015. LNCS, vol 9453. Springer, Heidelberg, pp 411–436
– reference: Murdock K, Oswald D, Garcia FD, Van Bulck J, Gruss D, Piessens F (2020) Plundervolt: software-based fault injection attacks against Intel SGX. In: 41st IEEE Symposium on Security and Privacy
– reference: Bernstein DJ (2009) Optimizing linear maps modulo 2. In: Workshop Record of SPEED-CC: Software Performance Enhancement for Encryption and Decryption and Cryptographic Compilers, pp 3–18
– reference: Kim CH (2010) Differential fault analysis against AES-192 and AES-256 with minimal faults. In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), IEEE, pp 3–9
– reference: Tiri K, Verbauwhede I (2004) A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. In: 2004 Design, Automation and Test in Europe Conference and Exposition, DATE
– reference: KranzTLeanderGStoffelenKWiemerFShorter linear straight-line programs for MDS matricesIACR Trans Symmetr Cryptol20172017418821110.46586/tosc.v2017.i4.188-211
– reference: Mukhopadhyay D (2009) An improved fault based attack of the advanced encryption standard. In: Preneel B (ed) AFRICACRYPT 2009, LNCS, vol 5580. Springer, Heidelberg, pp 421–434
– reference: Gross H, Mangard S (2017) Reconciling d+1 masking in hardware and software. In: CHES 2017
– reference: MoroNHeydemannKEncrenazERobissonBFormal verification of a software countermeasure against instruction skip attacksJ Cryptogr Eng20144314515610.1007/s13389-014-0077-7
– reference: Golić JD, Tymen C (2003) Multiplicative masking and power analysis of AES. In: Kaliski Jr BS, Koç CK, Paar C (eds) CHES 2002. LNCS, vol. 2523, Springer, Heidelberg, pp 198–212
– reference: Joye M, Ciet M (2005) Practical fault countermeasures for Chinese remaindering based RSA. In: Third International Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
– reference: Bilgin B, Gierlichs B, Nikova S, Nikov V, Rijmen V.: A more efficient AES threshold implementation. In: Pointcheval D, Vergnaud D (eds) Progress in Cryptology - AFRICACRYPT 2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham, pp 267–284
– reference: JoanDVincentRThe Design of Rijndael2002New YorkSpringer
– reference: Rivain M, Prouff E (2010) Provably secure higher-order masking of AES. In: Mangard S, Standaert F-X (eds) CHES 2010, LNCS, vol 6225. Springer, Heidelberg, pp 413–427
– reference: Breier J, Jap D, Bhasin S (2016) The other side of the coin: analyzing software encoding schemes against fault injection attacks. In: 2016 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2016, McLean, VA, USA, pp 209–216
– reference: Khoo K, Peyrin T, Poschmann AY, Yap H (2014) FOAM: searching for hardware-optimal SPN structures and components with a fair comparison. In: Batina L, Robshaw M (eds) CHES 2014, LNCS, vol 8731. Springer, Heidelberg, pp 433–450
– reference: Blomer J, Otto M (2006) Wagner’s attack on a secure CRT-RSA algorithm reconsidered. In: Third International Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2006, Yokohama, Japan, Proceedings, pp 13–23
– reference: Kim CH, Quisquater JJ (2007) Fault attacks for CRT based RSA: new attacks, new results, and new countermeasures. In: Sauveron D, Markantonakis K, Bilas A, Quisquater JJ (eds) Information Security Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing Systems, Springer, Berlin, pp 215–228
– reference: Christophe Giraud (2004) DFA on AES. In International Conference on Advanced Encryption Standard, Springer, pp 27-41
– reference: Yen SM, Kim D (2004) Cryptanalysis of two protocols for RSA with CRT based on fault infection. In: 3rd International Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
– reference: Sarkar S, Sim SM (2016) A deeper understanding of the XOR count distribution in the context of lightweight cryptography. In: Pointcheval D, Nitaj A, Rachidi T (eds) AFRICACRYPT 2016, LNCS, vol 9646. Springer, Cham, pp 167–182
– reference: Herbst C, Oswald E, Mangard S (2006) An AES smart card implementation resistant to power analysis attacks. In: Zhou J, Yung M, Bao F (eds) ACNS 2006, LNCS, vol 3989. Springer, Heidelberg, pp 239–252
– reference: DaemenJDobraunigCEichlsederMGrossHMendelFPrimasRProtecting against statistical ineffective fault attacksIACR Trans Cryptogr Hardw Embed Syst20202020350854310.46586/tches.v2020.i3.508-543
– reference: Ghosal AK, Roychowdhury D (2022) Strengthening the security of AES against differential fault attack. In: Yuan X, Bai G, Alcaraz C, Majumdar S (eds) International Conference on Network and System Security, pp 727-744
– reference: Boneh D, DeMillo RA, Lipton RJ (1997) On the Importance of checking cryptographic protocols for faults. In: Fumy W (ed) EUROCRYPT 1997, LNCS, vol 1233. Springer, Heidelberg, pp 37–51
– reference: Barenghi A, Bertoni G, Parrinello E, Pelosi G (2009) Low voltage fault attacks on the RSA cryptosystem. In: Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC 2009, Lausanne, Switzerland, 2009. Proceedings, pp 23–31
– reference: ZhangJWuNZhouFSecuring the AES cryptographic circuit against both power and fault attacksJ Electr Eng Technol201914217121801:CAS:528:DC%2BC1MXjsl2ht7c%3D10.1007/s42835-019-00226-6
– reference: Blomer J, Seifert J-P (2003) Fault based cryptanalysis of the advanced encryption standard (AES). In: Wright RN (ed) FC 2003, LNCS, vol 2742. Springer, Heidelberg, pp 162–181
– reference: JoshiPMazumdarBSemi-permanent stuck-at fault analysis of AES Rijndael SBoxJ Cryptogr Eng20231320122210.1007/s13389-022-00301-1
– reference: Biham E, Shamir A (1997) Differential fault analysis of secret key cryptosystems. In: Kaliski BS Jr (ed) CRYPTO 1997, LNCS, vol 1294. Springer, Heidelberg, pp 513–525
– reference: Dusart P, Letourneux G, Vivolo O (2003) Differential fault analysis on A.E.S. In: Zhou J, Yung M, Han Y (eds) ACNS 2003. LNCS, vol. 2846. Springer, Heidelberg, pp 293–306
– reference: Paul A, Mithili P, Paul V (2009) Fast symmetric cryptography using key and data based masking operations. In: Proceedings of the International Conference on VLSI and Communication Engineering
– reference: BilginBGierlichsBNikovaSNikovVRijmenVTradeoffs for threshold implementations illustrated on AESIEEE Trans Comput Aid Des Integr Circ Syst20153471188120010.1109/TCAD.2015.2419623
– reference: Gierlichs B, Schmidt J-M, Tunstall M (2012) Infective computation and dummy rounds: fault protection for block ciphers without check-before-output. In: Hevia A, Neven G (eds) LatinCrypt 2012, LNCS, vol 7533. Springer, Heidelberg, pp 305–321
– reference: Medwed M, Standaert F, Großschädl J, Regazzoni F (2010) Fresh rekeying: security against side-channel and fault attacks for low-cost devices. In: AFRICACRYPT
– reference: Lomné V, Roche T, Thillard A (2012) On the Need of Randomness in Fault Attack Countermeasures - Application to AES. In: Bertoni G, Gierlichs B (eds) Fault Diagnosis and Tolerance in Cryptography, FDTC 2012, IEEE Computer Society, pp 85–94
– volume: 4
  start-page: 145
  issue: 3
  year: 2014
  ident: 5632_CR36
  publication-title: J Cryptogr Eng
  doi: 10.1007/s13389-014-0077-7
– ident: 5632_CR46
  doi: 10.1007/978-3-319-31517-1_9
– ident: 5632_CR9
  doi: 10.1007/978-3-319-06734-6_17
– volume-title: The Design of Rijndael
  year: 2002
  ident: 5632_CR27
– volume: 14
  start-page: 2171
  year: 2019
  ident: 5632_CR55
  publication-title: J Electr Eng Technol
  doi: 10.1007/s42835-019-00226-6
– ident: #cr-split#-5632_CR7.2
– ident: 5632_CR24
  doi: 10.1007/11767480_16
– ident: 5632_CR6
– volume: 36
  start-page: 19
  year: 2023
  ident: 5632_CR43
  publication-title: J Cryptol
  doi: 10.1007/s00145-023-09462-6
– ident: #cr-split#-5632_CR47.2
– ident: 5632_CR35
  doi: 10.1007/978-3-642-12678-9_17
– volume: 1
  start-page: 3
  issue: 1
  year: 2017
  ident: 5632_CR39
  publication-title: J Hardw Syst Secur
  doi: 10.1007/s41635-017-0006-1
– volume: 2017
  start-page: 130
  issue: 4
  year: 2017
  ident: 5632_CR26
  publication-title: IACR Trans Symmetr Cryptol
  doi: 10.46586/tosc.v2017.i4.130-168
– ident: 5632_CR1
  doi: 10.1007/978-3-662-48800-3_17
– ident: 5632_CR14
  doi: 10.1007/11506447_4
– ident: 5632_CR41
  doi: 10.1007/978-3-540-45238-6_7
– ident: 5632_CR22
  doi: 10.1007/978-3-319-66787-4_6
– ident: #cr-split#-5632_CR11.2
– ident: 5632_CR34
  doi: 10.1109/FDTC.2012.19
– ident: 5632_CR30
  doi: 10.1007/978-3-662-44709-3_24
– volume: 52
  start-page: 461
  issue: 4
  year: 2003
  ident: 5632_CR53
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2003.1190587
– ident: 5632_CR20
  doi: 10.1007/3-540-36400-5_16
– ident: 5632_CR17
  doi: 10.1007/978-3-540-45203-4_23
– ident: 5632_CR5
  doi: 10.1109/FDTC.2013.12
– ident: 5632_CR42
  doi: 10.1007/978-3-642-15031-9_28
– ident: 5632_CR51
  doi: 10.1007/978-3-662-44709-3_6
– volume: 2020
  start-page: 508
  issue: 3
  year: 2020
  ident: 5632_CR15
  publication-title: IACR Trans Cryptogr Hardw Embed Syst
  doi: 10.46586/tches.v2020.i3.508-543
– ident: 5632_CR16
  doi: 10.1007/978-3-662-53140-2_10
– ident: #cr-split#-5632_CR12.2
– volume: 2017
  start-page: 130
  issue: 4
  year: 2017
  ident: 5632_CR25
  publication-title: IACR Trans Symmetr Cryptol
  doi: 10.46586/tosc.v2017.i4.130-168
– ident: 5632_CR10
  doi: 10.1007/11889700_2
– ident: #cr-split#-5632_CR7.1
  doi: 10.1007/BFb0052259
– volume: 94
  start-page: 370
  issue: 2
  year: 2006
  ident: 5632_CR2
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2005.862424
– ident: 5632_CR38
  doi: 10.1109/SP40000.2020.00057
– ident: 5632_CR13
  doi: 10.1109/HST.2016.7495584
– ident: 5632_CR40
– ident: #cr-split#-5632_CR47.1
  doi: 10.1007/11605805_14
– ident: 5632_CR19
  doi: 10.1007/978-3-642-33481-8_17
– ident: 5632_CR45
  doi: 10.1007/978-3-642-02384-2_26
– volume: 14
  start-page: 2171
  year: 2019
  ident: 5632_CR54
  publication-title: J Electr Eng Technol
  doi: 10.1007/s42835-019-00226-6
– ident: 5632_CR44
  doi: 10.1007/978-3-030-45721-1_22
– ident: 5632_CR4
– ident: 5632_CR3
  doi: 10.1109/FDTC.2009.30
– volume: 16
  start-page: 4321
  year: 2021
  ident: 5632_CR23
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2021.3089875
– ident: 5632_CR48
– volume: 2017
  start-page: 188
  issue: 4
  year: 2017
  ident: 5632_CR33
  publication-title: IACR Trans Symmetr Cryptol
  doi: 10.46586/tosc.v2017.i4.188-211
– ident: 5632_CR29
– ident: 5632_CR52
– ident: #cr-split#-5632_CR12.1
  doi: 10.1007/3-540-69053-0_4
– ident: 5632_CR18
  doi: 10.1007/978-3-031-23020-2_41
– ident: 5632_CR50
  doi: 10.1007/978-3-642-21040-2_15
– ident: 5632_CR21
  doi: 10.1007/978-3-319-56620-7_20
– ident: #cr-split#-5632_CR11.1
  doi: 10.1007/978-3-540-45126-6_12
– volume: 34
  start-page: 1188
  issue: 7
  year: 2015
  ident: 5632_CR8
  publication-title: IEEE Trans Comput Aid Des Integr Circ Syst
  doi: 10.1109/TCAD.2015.2419623
– ident: #cr-split#-5632_CR37.1
  doi: 10.1109/ECCTD.2009.5275006
– ident: 5632_CR32
  doi: 10.1007/978-3-540-72354-7_18
– ident: #cr-split#-5632_CR37.2
– ident: 5632_CR31
  doi: 10.1109/FDTC.2010.10
– volume: 13
  start-page: 201
  year: 2023
  ident: 5632_CR28
  publication-title: J Cryptogr Eng
  doi: 10.1007/s13389-022-00301-1
– ident: 5632_CR49
SSID ssj0004373
Score 2.3510094
Snippet Cryptographic circuits contain various confidential information and are susceptible to fraudulent manipulations, commonly called attacks, performed by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4648
SubjectTerms Algorithms
Compilers
Computer Science
Diffusion layers
Embedded systems
Gate counting
Hardware
Infections
Information retrieval
Internet of Things
Interpreters
Laser beams
Linear equations
Microprocessors
Overheating
Processor Architectures
Programming Languages
Security
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA6yvfji_InTKXnwTTPaNG3ax6GbY6IvOphPJUkbEOcmW4bgX--1TSwOFfbc9GjvLrk7ct93CF1AZRwLwQQJkgwKFMYlkb6XERlJMHkiM5YX2OH7h2g4ZqNJOLGgsKXrdndXkuVJXYPdfEo5gRhDIGgHlMDB2yz5thqo2bt9vuvXeMigullOoDSKQ0YtWOZ3KT8DUp1lrl2MlvFm0EJj96VVm8lrd2VkV32ukThu-iu7aMcmoLhXecwe2spn-6jlhjtgu9cP0OjGjk6BI2CKtVhNDRaWwQQLY4QqWP-nOcQ6gwvo1odY5PjlzfWjFwbHc417_cdDNB70n66HxA5eIAp2pCGxyMNYx5EWWlEdKs4EDxjYjSsRZbEfcJ17kS65zUTma09SJiVXTIVK0UgGR6gxm8_yY4QVpUIxT8IKxRKpkyhmjEnGwTVADG8j32k_VZaVvBiOMU1rPuVCWSkoKy2VldI2uvx-573i5Ph3dccZNbX7c5kGkOlBKQXVcRtdORvVj_-WdrLZ8lO0TSELqprWOqhhFqv8DLIYI8-t034BCYHmqQ
  priority: 102
  providerName: Springer Nature
Title Differential fault analysis attack-tolerant hardware implementation of AES
URI https://link.springer.com/article/10.1007/s11227-023-05632-2
https://www.proquest.com/docview/3256597254
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-0484
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0484
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3DhjRiPKQduELGmadMeEBqwDfGYEDAJTlWSNhLS2AYU8fdx2pQKJHbqIY-DHcd2Y38fwAFmxpGUXFI_TjFB4UJR5XVSqkKFKo9VyjPbO3w7DC9H_OopeFqAYdULY8sqqzuxuKjTqbb_yI999M0Y_GI-czp7o5Y1yr6uVhQa0lErpCcFxNgiNJlFxmpA86w3vLuvOyX98s05xqQpCjhzbTRlM53HmKDowygGBT6j7LerquPPP0-mhSfqr8KyCyFJt9T5Gixkk3VYqegZiLPWDbi6cOQnaMRjYuTnOCfSYZAQmedSW9z-cYbeKie2-epLvmfk5bWqKLcqI1NDur2HTRj1e4_nl9RRJ1CNNpXTSGZBZKLQSKOZCbTgUvgcJS-0DNPI84XJOqEp0Mlk6pmOYlwpobkOtGah8regMZlOsm0gmjGpeUfhDM1jZeIw4pwrLlC5uI1ogVdJKdEOV9zSW4yTGhHZSjZBySaFZBPWgsOfNbMSVWPu7L1K-ImzsI-kPg8tOKoUUg__v9vO_N12YYlh3FKWme1BI3__zPYx7shVGxaj_qANze7F7c2D_Q6er3ttd8RwdMS6333d2GE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQX6FMs0NaH9tRa3TiTODmginYXLexDVQsSt9R2bAlp2eURhPhz_DbGidOolcqNc5JRNP4yj9jffAAfqDPOlELF47ykBgWl5jrql1ynmpY81yVazx2eztLRMR6eJCcrcNdyYfyxyjYm1oG6XBr_j_xLTLmZil_qZ76eX3CvGuV3V1sJDRWkFcrdesRYIHaM7e0NtXBXuwcDWu-PQuwPj76PeFAZ4IbgV_FM2SRzWeqUM8IlRqKSMdJLSqPSMoti6Ww_dfUgL1VGrq8Fai0NmsQYkeqY7D6BNYwxp-Zv7dtw9uNnx8yMmz3unJq0LEERaDsNeS8SQnLKmZyKkFhw8Xdq7Ordf7Zo68y3_xzWQ8nK9hqMvYAVu3gJG60cBAvR4RUcDoLYCgWNOXPqel4xFWaeMFVVynidgLml7FgxT_a6UZeWnZ61J9g9RNjSsb3hr9dw_ChOfAOri-XCbgIzQiiDfU13GMy1y9MMETVKAhOZkT2IWi8VJswx93Ia86KbwOw9W5Bni9qzhejBpz_PnDdTPB68e6d1fhG-6Kuiw18PPrcL0l3-v7Wth629h6ejo-mkmBzMxtvwTFDN1Bxx24HV6vLavqWap9LvArAY_H5sLN8DrV4SDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQXzxW5xOzYNvGtamadM-Drcxpw5BB3sLSdqAULsxM_z3vX5ZFRV87vUe7nK5Oy6_3yF0AZ1xKCWTxItiaFAYV0S5TkxUoMDlkYpZkmOH7yfBaMrGM3_2CcVfvHavR5IlpiFnacpsdxGbbgN8cynlBPINgQTuUQKX8DrLiRLgRE9pr0FGeuWMOYImKfQZrWAzP-v4mpqaevPbiLTIPMMdtFWVjLhX-ngXrSXZHtqu1zHgKjr30bhfLTuBoE2xkavUYllxjmBprdQ5T3-aQHayOAdbvcllgp9f6hfkuYvw3ODe4PEATYeDp-sRqVYlEA0xZEkoEz80YWCk0dT4mjPJPQaW5loGceh63CROYAo2Mhm7xlGUKcU1077WNFDeIWpl8yw5QlhTKjVzFEhoFikTBSFjTDEOzgQ1vI3c2kpCVzzi-TqLVDQMyLllBVhWFJYVtI0uP_5ZlCwaf0p3auOLKqJehQe1GTQ_0M-20VXtkObz79qO_yd-jjYe-kNxdzO5PUGbFEqY8sVZB7XscpWcQgli1Vlxyt4BtT3Q2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+fault+analysis+attack-tolerant+hardware+implementation+of+AES&rft.jtitle=The+Journal+of+supercomputing&rft.au=Ghosal%2C+Anit+Kumar&rft.au=Sardar%2C+Amit&rft.au=Chowdhury%2C+Dipanwita+Roy&rft.date=2024-03-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=4&rft.spage=4648&rft.epage=4681&rft_id=info:doi/10.1007%2Fs11227-023-05632-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_023_05632_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon