Modelling Failure Of Polymers: An Optimization Strategy Based on Genetic Algorithms and Instrumented Impact Tests

Modelling the failure of engineering polymers used in critical structural applications is still a challenging task that is increasingly demanded by the industry to optimize part design and estimate component service life. The difficulties include not only developing constitutive models capable of re...

Full description

Saved in:
Bibliographic Details
Published inJournal of dynamic behavior of materials Vol. 7; no. 4; pp. 538 - 552
Main Authors Rueda, F., Rull, N., Quintana, C., Torres, J. P., Messiha, M., Frank, A., Arbeiter, F., Frontini, P. M., Pinter, G.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2199-7446
2199-7454
DOI10.1007/s40870-021-00297-5

Cover

Abstract Modelling the failure of engineering polymers used in critical structural applications is still a challenging task that is increasingly demanded by the industry to optimize part design and estimate component service life. The difficulties include not only developing constitutive models capable of reproducing the complex polymer response at a reasonable computational cost, but also calibrating related parameters. That is to say, a way to find specific parameters which best represent the actual behavior of a material within the scope and limitations of a given constitutive or failure model. The aim of this study is to contribute in developing a robust inverse method calibration strategy. To address this issue, a novel approach based on genetic algorithms optimization (GA) together with finite element analysis (FEA) is proposed to blindly extract key constitutive and failure parameters from instrumented impact tests on single edge notched bending (SENB) specimens. The method was implemented to infer eight constitutive and failure parameters of a polyamide 12 (PA12) with an elasto-plastic ductile damage model. Triaxiality induced stable-unstable transition was successfully achieved by varying the notch depth of SENB specimens. Accordingly, three optimization schemes were conducted: (i) using only unstable experimental data; (ii) using only stable experimental data and (iii) using both simultaneously (multi-objective). The set of parameters obtained from each scheme were used to perform predictive FEA simulations, which were verified with experimental data. It was proven that both propagation regimes provide substantial information to obtain the mechanical response of the material. Simulation results evidenced the capability of the proposed strategy to predict the PA12 impact response and furthermore to fairly reproduce a completely different load case: a dynamic tensile test.
AbstractList Modelling the failure of engineering polymers used in critical structural applications is still a challenging task that is increasingly demanded by the industry to optimize part design and estimate component service life. The difficulties include not only developing constitutive models capable of reproducing the complex polymer response at a reasonable computational cost, but also calibrating related parameters. That is to say, a way to find specific parameters which best represent the actual behavior of a material within the scope and limitations of a given constitutive or failure model. The aim of this study is to contribute in developing a robust inverse method calibration strategy. To address this issue, a novel approach based on genetic algorithms optimization (GA) together with finite element analysis (FEA) is proposed to blindly extract key constitutive and failure parameters from instrumented impact tests on single edge notched bending (SENB) specimens. The method was implemented to infer eight constitutive and failure parameters of a polyamide 12 (PA12) with an elasto-plastic ductile damage model. Triaxiality induced stable-unstable transition was successfully achieved by varying the notch depth of SENB specimens. Accordingly, three optimization schemes were conducted: (i) using only unstable experimental data; (ii) using only stable experimental data and (iii) using both simultaneously (multi-objective). The set of parameters obtained from each scheme were used to perform predictive FEA simulations, which were verified with experimental data. It was proven that both propagation regimes provide substantial information to obtain the mechanical response of the material. Simulation results evidenced the capability of the proposed strategy to predict the PA12 impact response and furthermore to fairly reproduce a completely different load case: a dynamic tensile test.
Author Torres, J. P.
Rueda, F.
Frontini, P. M.
Messiha, M.
Frank, A.
Arbeiter, F.
Pinter, G.
Rull, N.
Quintana, C.
Author_xml – sequence: 1
  givenname: F.
  orcidid: 0000-0003-2961-8130
  surname: Rueda
  fullname: Rueda, F.
  email: federico.rueda@fi.mdp.edu.ar
  organization: Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)
– sequence: 2
  givenname: N.
  surname: Rull
  fullname: Rull, N.
  organization: Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)
– sequence: 3
  givenname: C.
  surname: Quintana
  fullname: Quintana, C.
  organization: Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)
– sequence: 4
  givenname: J. P.
  surname: Torres
  fullname: Torres, J. P.
  organization: Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP)
– sequence: 5
  givenname: M.
  surname: Messiha
  fullname: Messiha, M.
  organization: Polymer Competence Center Leoben GmbH (PCCL)
– sequence: 6
  givenname: A.
  surname: Frank
  fullname: Frank, A.
  organization: Polymer Competence Center Leoben GmbH (PCCL)
– sequence: 7
  givenname: F.
  surname: Arbeiter
  fullname: Arbeiter, F.
  organization: Montanuniversität Leoben
– sequence: 8
  givenname: P. M.
  surname: Frontini
  fullname: Frontini, P. M.
  organization: Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)
– sequence: 9
  givenname: G.
  surname: Pinter
  fullname: Pinter, G.
  organization: Montanuniversität Leoben
BookMark eNp9kE9PwyAYh4nRxDn3BTyReK4C_Qfe5uLmkpmZuDuhLVSWlm5AD_PTy1ajiYedIOT58Xvf5wZcms5IAO4wesAI5Y8uQTRHESI4QoiwPEovwIhgxqI8SZPL33uSXYOJc1sUKIxpgvMR2L91lWwabWo4F7rprYRrBd-75tBK657g1MD1zutWfwmvOwM_vBVe1gf4LJysYHhZSCO9LuG0qTur_WfroDAVXBrnbd9K4wO2bHei9HAjnXe34EqJxsnJzzkGm_nLZvYardaL5Wy6isoYMx9RQVIZM5IRlRNFkkIUcVGgUlKSEFWRMqNClbmoUixYQVmVSoxylaVFRWOcxmNwP3y7s92-D8V82_XWhEZOUkbiJFhggaIDVdrOOSsVL7U_bRr21A3HiB8V80ExD974STE_FpB_0Z3VrbCH86F4CLkAm1rav6nOpL4BZFqROA
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2022_107864
Cites_doi 10.1016/j.polymertesting.2004.09.003
10.1007/BF00591482
10.7551/mitpress/1090.001.0001
10.1016/0013-7944(85)90015-3
10.31399/asm.tb.tt2.9781627083553
10.1007/978-3-540-87700-4_83
10.1007/3-540-45356-3_83
10.1007/s11340-010-9342-6
10.1021/ma048884k
10.1007/s10118-019-2180-9
10.1016/j.polymertesting.2012.12.002
10.1016/j.ijsolstr.2003.09.058
10.1016/j.matdes.2009.10.050
10.1007/s11665-019-04087-y
10.1115/1.1633573
10.1002/pen.10703
10.1007/978-3-319-71919-1
10.1007/s11047-018-9685-y
10.1016/j.mechmat.2012.04.011
10.1007/978-94-011-3650-1_119
10.1016/S1665-6423(15)30013-4
10.1016/j.ijimpeng.2016.08.004
10.1111/str.12249
10.1016/j.swevo.2019.02.001
10.1016/j.matdes.2010.06.039
10.1016/j.ijsolstr.2016.02.010
10.1007/s12206-008-0302-3
ContentType Journal Article
Copyright Society for Experimental Mechanics, Inc 2021. corrected publication 2021
Society for Experimental Mechanics, Inc 2021. corrected publication 2021.
Copyright_xml – notice: Society for Experimental Mechanics, Inc 2021. corrected publication 2021
– notice: Society for Experimental Mechanics, Inc 2021. corrected publication 2021.
DBID AAYXX
CITATION
DOI 10.1007/s40870-021-00297-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-7454
EndPage 552
ExternalDocumentID 10_1007_s40870_021_00297_5
GroupedDBID -EM
0R~
203
4.4
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
GQ6
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7R
Z7V
Z7Y
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-8a25e39262f72f24bab3bb0ce8242fd2c68afc7ad51a9b89d5e107f65bd83153
ISSN 2199-7446
IngestDate Wed Sep 17 23:58:13 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Wed Oct 01 03:52:48 EDT 2025
Fri Feb 21 02:47:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Impact behavior
Ductile damage
Failure of polymers
PA12
Inverse method
Genetic algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-8a25e39262f72f24bab3bb0ce8242fd2c68afc7ad51a9b89d5e107f65bd83153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2961-8130
PQID 2592340009
PQPubID 2044304
PageCount 15
ParticipantIDs proquest_journals_2592340009
crossref_citationtrail_10_1007_s40870_021_00297_5
crossref_primary_10_1007_s40870_021_00297_5
springer_journals_10_1007_s40870_021_00297_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of dynamic behavior of materials
PublicationTitleAbbrev J. dynamic behavior mater
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References EmmerichMTMDeutzAHA tutorial on multiobjective optimization: fundamentals and evolutionary methodsNatl Comput20181735856091:CAS:528:DC%2BC1cXhtVKjur3P10.1007/s11047-018-9685-y
ŞerbanDAWeberGMarşavinaLSilberschmidtVVHufenbachWTensile properties of semi-crystalline thermoplastic polymers: effects of temperature and strain ratesPolym Test201332241342510.1016/j.polymertesting.2012.12.002
GearingBPAnandLNotch-sensitive fracture of polycarbonateInt J Solids Struct2004413–482784510.1016/j.ijsolstr.2003.09.058
KongLZShuaiJZhouXYHuangKYuGJTrue stress-logarithmic strain curves test of pipeline steels using 3d digital image correlationOptoelectron Adv Mater Rapid Commun2015911–1213801388
Version Abaqus. 6.14 documentation. Dassault Systemes Simulia Corporation, 651, (2014)
Abaqus Analysis Users Manual. Dassault Systèmes, 2010a. 4.3.2 Isotropic elasto-plasticity
ZouJJiCYangSZhangYZhengJLiKA knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimizationSwarm Evol Comput201947334310.1016/j.swevo.2019.02.001
TorresJPFrontiniPMMechanics of polycarbonate in biaxial impact loadingInt J Solids Struct20168512513310.1016/j.ijsolstr.2016.02.010
OthmanRThe Kolsky-Hopkinson bar machine: selected topics2018BerlinSpringer10.1007/978-3-319-71919-1
ParkerGEncyclopedia of materials: science and technology2001New YorkElsevier
BrownHRA model for brittle-ductile transitions in polymersJ Mater Sci19821724694761:CAS:528:DyaL38Xhs1ent78%3D10.1007/BF00591482
KINLOCHAJYOUNGRJFracture behavior of polymers1983LondonApplied Sciences Publishers231237
Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from nature. Springer, pp 849–858
DavisJRTensile testing2004Materials Park, OHASM International
PercecVPughCComprehensive polymer science and supplements1989OxfordPergamon Press
ChoungJMChoSRStudy on true stress correction from tensile testsJ Mech Sci Technol20082261039105110.1007/s12206-008-0302-3
ShenBPaulinoGHDirect extraction of cohesive fracture properties from digital image correlation: a hybrid inverse techniqueExp Mech20115121431631:CAS:528:DC%2BC3MXltFalt7s%3D10.1007/s11340-010-9342-6
WangTJTeohSHLeeKHA general ductile damage model for engineering materialsFracture of engineering materials and structures1991BerlinSpringer79880310.1007/978-94-011-3650-1_119
PettarinVFrontiniPMEliçabeGEOptimal ligament lengths in impact fracture toughness estimation by the essential work of fracture method.Polym Test20052421891961:CAS:528:DC%2BD2MXjtFCj10.1016/j.polymertesting.2004.09.003
KästnerMObstMBrummundJThielschKUlbrichtVInelastic material behavior of polymers-experimental characterization, formulation and implementation of a material modelMech Mater201252405710.1016/j.mechmat.2012.04.011
LingYUniaxial true stress-strain after neckingAMP J Technol1996513748
SchrauwenBAGBreemenLCA vSpoelstraABGovaertLEPetersGWMMeijerHEHStructure, deformation, and failure of flow-oriented semicrystalline polymersMacromolecules20043723861886331:CAS:528:DC%2BD2cXos1Wgu7o%3D10.1021/ma048884k
ScheiderIBrocksWCornecAProcedure for the determination of true stress-strain curves from tensile tests with rectangular cross-section specimensJ Eng Mater Technol20041261707610.1115/1.1633573
FasceLBernalCFrontiniPMaiY-WOn the impact essential work of fracture of ductile polymersPolym Eng Sci20014111141:CAS:528:DC%2BD3MXjtVOmu7w%3D10.1002/pen.10703
AguirHBelHadjSalahHHambliRParameter identification of an elasto-plastic behaviour using artificial neural networks-genetic algorithm methodMater Des201132148531:CAS:528:DC%2BC3cXhtV2gsr%2FI10.1016/j.matdes.2010.06.039
CarpinteriAMaregaCSavadoriADuctile-brittle transition by varying structural sizeEng Fract Mech19852122632711:CAS:528:DyaL2MXhvVGrsr4%3D10.1016/0013-7944(85)90015-3
HollandJohn HenryAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992Cambridge, MAMIT Press10.7551/mitpress/1090.001.0001
Martínez SZ, Coello Carlos AC (2008) A proposal to hybridize multi-objective evolutionary algorithms with non-gradient mathematical programming techniques. In: International conference on parallel problem solving from nature. Springer, pp. 837–846
TorresJPFrontiniPMMachadoMMajorZDeformation and failure of semicrystalline polymers under dynamic tensile and biaxial impact loading.Int J Impact Eng201698526110.1016/j.ijimpeng.2016.08.004
JaimesALMartinezSZCoelloCACAn introduction to multi-objective optimization techniquesOptim Polym Process20113722957
A free and open source python library for multiobjective optimization. https://platypus.readthedocs.io/en/latest/index.html. Accessed 15 June 2020.
SunGLiGGongZCuiXYangXLiQingMultiobjective robust optimization method for drawbead design in sheet metal formingMater Des2010314191719291:CAS:528:DC%2BC3cXhtlSnug%3D%3D10.1016/j.matdes.2009.10.050
DebKMulti-objective optimization using evolutionary algorithms2001New YorkWiley
SuchockiCyprianMolakRafałRheological properties of polyamide: experimental studies and constitutive modelingChin J Polym Sci20193721781881:CAS:528:DC%2BC1cXhvVSrurfL10.1007/s10118-019-2180-9
HernandezCMaranonADetermination of constitutive parameters from a taylor test using inverse analysisStrain2017536e1224910.1111/str.12249
Abaqus Analysis Users Manual. Dassault Systèmes, 2010b. 19.2.2 Damage initiation for ductile metals
CaoKYueZQiJGaoJHybrid inverse parameter identification of fully coupled ductile damage model for steel sheet dp600 with two different algorithms: Trust region and genetic algorithmsJ Mater Eng Performance2019285314931561:CAS:528:DC%2BC1MXptlyjt7o%3D10.1007/s11665-019-04087-y
LeeversPSHorsfallIRagerAMajorZMooreDRPavanAWilliamsJGHigh rate fracture toughness testing of thermoplasticsPolymTest20143379871:CAS:528:DC%2BC2cXhs1Cnur0%3D
KhanABaigARMulti-objective feature subset selection using non-dominated sorting genetic algorithmJ Appl Res Technol201513114515910.1016/S1665-6423(15)30013-4
L Fasce (297_CR24) 2001; 41
JP Torres (297_CR21) 2016; 85
H Aguir (297_CR14) 2011; 32
AL Jaimes (297_CR12) 2011; 37
297_CR13
MTM Emmerich (297_CR34) 2018; 17
V Percec (297_CR2) 1989
B Shen (297_CR23) 2011; 51
K Deb (297_CR33) 2001
M Kästner (297_CR6) 2012; 52
297_CR9
V Pettarin (297_CR25) 2005; 24
297_CR5
BAG Schrauwen (297_CR3) 2004; 37
LZ Kong (297_CR32) 2015; 9
G Sun (297_CR37) 2010; 31
DA Şerban (297_CR8) 2013; 32
R Othman (297_CR29) 2018
I Scheider (297_CR38) 2004; 126
PS Leevers (297_CR22) 2014; 33
K Cao (297_CR15) 2019; 28
G Parker (297_CR1) 2001
Y Ling (297_CR31) 1996; 5
JP Torres (297_CR4) 2016; 98
BP Gearing (297_CR20) 2004; 41
C Hernandez (297_CR16) 2017; 53
JM Choung (297_CR39) 2008; 22
TJ Wang (297_CR10) 1991
297_CR26
A Khan (297_CR35) 2015; 13
297_CR27
JR Davis (297_CR30) 2004
John Henry Holland (297_CR11) 1992
297_CR28
Cyprian Suchocki (297_CR7) 2019; 37
AJ KINLOCH (297_CR17) 1983
A Carpinteri (297_CR18) 1985; 21
J Zou (297_CR36) 2019; 47
HR Brown (297_CR19) 1982; 17
References_xml – reference: Abaqus Analysis Users Manual. Dassault Systèmes, 2010a. 4.3.2 Isotropic elasto-plasticity
– reference: Abaqus Analysis Users Manual. Dassault Systèmes, 2010b. 19.2.2 Damage initiation for ductile metals
– reference: OthmanRThe Kolsky-Hopkinson bar machine: selected topics2018BerlinSpringer10.1007/978-3-319-71919-1
– reference: KästnerMObstMBrummundJThielschKUlbrichtVInelastic material behavior of polymers-experimental characterization, formulation and implementation of a material modelMech Mater201252405710.1016/j.mechmat.2012.04.011
– reference: SuchockiCyprianMolakRafałRheological properties of polyamide: experimental studies and constitutive modelingChin J Polym Sci20193721781881:CAS:528:DC%2BC1cXhvVSrurfL10.1007/s10118-019-2180-9
– reference: ZouJJiCYangSZhangYZhengJLiKA knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimizationSwarm Evol Comput201947334310.1016/j.swevo.2019.02.001
– reference: CarpinteriAMaregaCSavadoriADuctile-brittle transition by varying structural sizeEng Fract Mech19852122632711:CAS:528:DyaL2MXhvVGrsr4%3D10.1016/0013-7944(85)90015-3
– reference: A free and open source python library for multiobjective optimization. https://platypus.readthedocs.io/en/latest/index.html. Accessed 15 June 2020.
– reference: JaimesALMartinezSZCoelloCACAn introduction to multi-objective optimization techniquesOptim Polym Process20113722957
– reference: HernandezCMaranonADetermination of constitutive parameters from a taylor test using inverse analysisStrain2017536e1224910.1111/str.12249
– reference: PettarinVFrontiniPMEliçabeGEOptimal ligament lengths in impact fracture toughness estimation by the essential work of fracture method.Polym Test20052421891961:CAS:528:DC%2BD2MXjtFCj10.1016/j.polymertesting.2004.09.003
– reference: BrownHRA model for brittle-ductile transitions in polymersJ Mater Sci19821724694761:CAS:528:DyaL38Xhs1ent78%3D10.1007/BF00591482
– reference: Martínez SZ, Coello Carlos AC (2008) A proposal to hybridize multi-objective evolutionary algorithms with non-gradient mathematical programming techniques. In: International conference on parallel problem solving from nature. Springer, pp. 837–846
– reference: Version Abaqus. 6.14 documentation. Dassault Systemes Simulia Corporation, 651, (2014)
– reference: KINLOCHAJYOUNGRJFracture behavior of polymers1983LondonApplied Sciences Publishers231237
– reference: CaoKYueZQiJGaoJHybrid inverse parameter identification of fully coupled ductile damage model for steel sheet dp600 with two different algorithms: Trust region and genetic algorithmsJ Mater Eng Performance2019285314931561:CAS:528:DC%2BC1MXptlyjt7o%3D10.1007/s11665-019-04087-y
– reference: Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from nature. Springer, pp 849–858
– reference: TorresJPFrontiniPMMechanics of polycarbonate in biaxial impact loadingInt J Solids Struct20168512513310.1016/j.ijsolstr.2016.02.010
– reference: LingYUniaxial true stress-strain after neckingAMP J Technol1996513748
– reference: AguirHBelHadjSalahHHambliRParameter identification of an elasto-plastic behaviour using artificial neural networks-genetic algorithm methodMater Des201132148531:CAS:528:DC%2BC3cXhtV2gsr%2FI10.1016/j.matdes.2010.06.039
– reference: KongLZShuaiJZhouXYHuangKYuGJTrue stress-logarithmic strain curves test of pipeline steels using 3d digital image correlationOptoelectron Adv Mater Rapid Commun2015911–1213801388
– reference: DebKMulti-objective optimization using evolutionary algorithms2001New YorkWiley
– reference: ScheiderIBrocksWCornecAProcedure for the determination of true stress-strain curves from tensile tests with rectangular cross-section specimensJ Eng Mater Technol20041261707610.1115/1.1633573
– reference: HollandJohn HenryAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992Cambridge, MAMIT Press10.7551/mitpress/1090.001.0001
– reference: SunGLiGGongZCuiXYangXLiQingMultiobjective robust optimization method for drawbead design in sheet metal formingMater Des2010314191719291:CAS:528:DC%2BC3cXhtlSnug%3D%3D10.1016/j.matdes.2009.10.050
– reference: GearingBPAnandLNotch-sensitive fracture of polycarbonateInt J Solids Struct2004413–482784510.1016/j.ijsolstr.2003.09.058
– reference: LeeversPSHorsfallIRagerAMajorZMooreDRPavanAWilliamsJGHigh rate fracture toughness testing of thermoplasticsPolymTest20143379871:CAS:528:DC%2BC2cXhs1Cnur0%3D
– reference: PercecVPughCComprehensive polymer science and supplements1989OxfordPergamon Press
– reference: EmmerichMTMDeutzAHA tutorial on multiobjective optimization: fundamentals and evolutionary methodsNatl Comput20181735856091:CAS:528:DC%2BC1cXhtVKjur3P10.1007/s11047-018-9685-y
– reference: ShenBPaulinoGHDirect extraction of cohesive fracture properties from digital image correlation: a hybrid inverse techniqueExp Mech20115121431631:CAS:528:DC%2BC3MXltFalt7s%3D10.1007/s11340-010-9342-6
– reference: ŞerbanDAWeberGMarşavinaLSilberschmidtVVHufenbachWTensile properties of semi-crystalline thermoplastic polymers: effects of temperature and strain ratesPolym Test201332241342510.1016/j.polymertesting.2012.12.002
– reference: TorresJPFrontiniPMMachadoMMajorZDeformation and failure of semicrystalline polymers under dynamic tensile and biaxial impact loading.Int J Impact Eng201698526110.1016/j.ijimpeng.2016.08.004
– reference: WangTJTeohSHLeeKHA general ductile damage model for engineering materialsFracture of engineering materials and structures1991BerlinSpringer79880310.1007/978-94-011-3650-1_119
– reference: ChoungJMChoSRStudy on true stress correction from tensile testsJ Mech Sci Technol20082261039105110.1007/s12206-008-0302-3
– reference: SchrauwenBAGBreemenLCA vSpoelstraABGovaertLEPetersGWMMeijerHEHStructure, deformation, and failure of flow-oriented semicrystalline polymersMacromolecules20043723861886331:CAS:528:DC%2BD2cXos1Wgu7o%3D10.1021/ma048884k
– reference: FasceLBernalCFrontiniPMaiY-WOn the impact essential work of fracture of ductile polymersPolym Eng Sci20014111141:CAS:528:DC%2BD3MXjtVOmu7w%3D10.1002/pen.10703
– reference: DavisJRTensile testing2004Materials Park, OHASM International
– reference: ParkerGEncyclopedia of materials: science and technology2001New YorkElsevier
– reference: KhanABaigARMulti-objective feature subset selection using non-dominated sorting genetic algorithmJ Appl Res Technol201513114515910.1016/S1665-6423(15)30013-4
– volume: 24
  start-page: 189
  issue: 2
  year: 2005
  ident: 297_CR25
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2004.09.003
– volume: 17
  start-page: 469
  issue: 2
  year: 1982
  ident: 297_CR19
  publication-title: J Mater Sci
  doi: 10.1007/BF00591482
– volume-title: Encyclopedia of materials: science and technology
  year: 2001
  ident: 297_CR1
– volume-title: Multi-objective optimization using evolutionary algorithms
  year: 2001
  ident: 297_CR33
– volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence
  year: 1992
  ident: 297_CR11
  doi: 10.7551/mitpress/1090.001.0001
– start-page: 231
  volume-title: Fracture behavior of polymers
  year: 1983
  ident: 297_CR17
– volume: 21
  start-page: 263
  issue: 2
  year: 1985
  ident: 297_CR18
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(85)90015-3
– volume-title: Tensile testing
  year: 2004
  ident: 297_CR30
  doi: 10.31399/asm.tb.tt2.9781627083553
– ident: 297_CR13
  doi: 10.1007/978-3-540-87700-4_83
– ident: 297_CR27
  doi: 10.1007/3-540-45356-3_83
– volume: 51
  start-page: 143
  issue: 2
  year: 2011
  ident: 297_CR23
  publication-title: Exp Mech
  doi: 10.1007/s11340-010-9342-6
– volume: 9
  start-page: 1380
  issue: 11–12
  year: 2015
  ident: 297_CR32
  publication-title: Optoelectron Adv Mater Rapid Commun
– volume: 37
  start-page: 8618
  issue: 23
  year: 2004
  ident: 297_CR3
  publication-title: Macromolecules
  doi: 10.1021/ma048884k
– volume: 5
  start-page: 37
  issue: 1
  year: 1996
  ident: 297_CR31
  publication-title: AMP J Technol
– volume: 37
  start-page: 178
  issue: 2
  year: 2019
  ident: 297_CR7
  publication-title: Chin J Polym Sci
  doi: 10.1007/s10118-019-2180-9
– volume: 32
  start-page: 413
  issue: 2
  year: 2013
  ident: 297_CR8
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2012.12.002
– volume: 33
  start-page: 79
  year: 2014
  ident: 297_CR22
  publication-title: PolymTest
– volume-title: Comprehensive polymer science and supplements
  year: 1989
  ident: 297_CR2
– volume: 41
  start-page: 827
  issue: 3–4
  year: 2004
  ident: 297_CR20
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2003.09.058
– volume: 37
  start-page: 29
  issue: 2
  year: 2011
  ident: 297_CR12
  publication-title: Optim Polym Process
– volume: 31
  start-page: 1917
  issue: 4
  year: 2010
  ident: 297_CR37
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2009.10.050
– ident: 297_CR5
– volume: 28
  start-page: 3149
  issue: 5
  year: 2019
  ident: 297_CR15
  publication-title: J Mater Eng Performance
  doi: 10.1007/s11665-019-04087-y
– volume: 126
  start-page: 70
  issue: 1
  year: 2004
  ident: 297_CR38
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.1633573
– ident: 297_CR9
– volume: 41
  start-page: 1
  issue: 1
  year: 2001
  ident: 297_CR24
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.10703
– volume-title: The Kolsky-Hopkinson bar machine: selected topics
  year: 2018
  ident: 297_CR29
  doi: 10.1007/978-3-319-71919-1
– volume: 17
  start-page: 585
  issue: 3
  year: 2018
  ident: 297_CR34
  publication-title: Natl Comput
  doi: 10.1007/s11047-018-9685-y
– volume: 52
  start-page: 40
  year: 2012
  ident: 297_CR6
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2012.04.011
– ident: 297_CR26
– start-page: 798
  volume-title: Fracture of engineering materials and structures
  year: 1991
  ident: 297_CR10
  doi: 10.1007/978-94-011-3650-1_119
– ident: 297_CR28
– volume: 13
  start-page: 145
  issue: 1
  year: 2015
  ident: 297_CR35
  publication-title: J Appl Res Technol
  doi: 10.1016/S1665-6423(15)30013-4
– volume: 98
  start-page: 52
  year: 2016
  ident: 297_CR4
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2016.08.004
– volume: 53
  start-page: e12249
  issue: 6
  year: 2017
  ident: 297_CR16
  publication-title: Strain
  doi: 10.1111/str.12249
– volume: 47
  start-page: 33
  year: 2019
  ident: 297_CR36
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.02.001
– volume: 32
  start-page: 48
  issue: 1
  year: 2011
  ident: 297_CR14
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.06.039
– volume: 85
  start-page: 125
  year: 2016
  ident: 297_CR21
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2016.02.010
– volume: 22
  start-page: 1039
  issue: 6
  year: 2008
  ident: 297_CR39
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-008-0302-3
SSID ssj0002118417
ssib044744033
ssib031263739
Score 2.1967328
Snippet Modelling the failure of engineering polymers used in critical structural applications is still a challenging task that is increasingly demanded by the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 538
SubjectTerms Axial stress
Chemistry and Materials Science
Computer simulation
Constitutive models
Damage assessment
Design optimization
Ductile fracture
Ductile-brittle transition
Failure analysis
Finite element method
Genetic algorithms
Impact response
Impact tests
Inverse method
Materials Science
Mathematical models
Mechanical analysis
Metallic Materials
Optimization
Parameters
Performance prediction
Polyamide resins
Polymers
Research Paper
Service life
Solid Mechanics
Tensile tests
Title Modelling Failure Of Polymers: An Optimization Strategy Based on Genetic Algorithms and Instrumented Impact Tests
URI https://link.springer.com/article/10.1007/s40870-021-00297-5
https://www.proquest.com/docview/2592340009
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2199-7454
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044744033
  issn: 2199-7446
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2199-7454
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118417
  issn: 2199-7446
  databaseCode: AFBBN
  dateStart: 20150301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFMECtoD4hKM_NiNbW4JalShkkjIlXKzdte7EKl1W-Ic2v_U_8jMev1ISyvgEkXrxHJmvszMzs58Q8j7EAxeygT3NBOpx4SKPZEy5RmdFNIXQvk-9g5_W0wOj9nXFV8NBte9qqVtJT-pqz_2lfyPVmEN9Ipdsv-g2famsADvQb_wChqG17_SMQ4yqzm152KN9eXjpa1ou8RktEv5LcEmnLpmy7Hjor0cz8B5FXhQgLTTyNk6Pflx9mtd_TzduAphJJa1hJ0FMghjJ2UGDmRzRzBb1IPt265_e2wvqloI7aHOVhdip5r4-9aVZHf513UJ4arYyd9mdoKIxZtrR3NpijC4UfLRpCmxBhvF0bbRoKUDq5l6MXO5SN1fqxmmG1Md9xDJemaX1wwxzoPzmhP3lnOo60E2zE9w2A48op3c5fHOFTbH_4tlPj8-Osqzg1X24fzCwyFleJjvJrY8IHshOBF_SPam89ls0RiwKAgnUdzRrDKG9IsunsbQAHbbCbNToNuf7Bq5bDvnrSfbDZa6HdCNQ3sbC2VPyGOndzqtEfmUDHT5jDzqUVs-JxctNqnDJl0a2mDzM52WtI9M2iCTWmRSWHHIpB0yKSCT9pFJa2RSi8wXJJsfZF8OPTfew1Ng9ysvESHXEfJVmjg0IZNCRlL6SicQNpoiVJNEGBWLggcilUlacB34sZlwWSQROOqXZFielfoVoYHCAi4FlwRn0vAkTrXyRegbE09UokYkaMSYK0d9jxNYTvKWtNuKPgfR51b0OR-Rcfud85r45d5P7zfayZ2B2OQhh90Tw13MiHxsNNZdvvtur--_2xvysPuH7ZMhSF2_hdC4ku8cIH8D57W15w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+Failure+Of+Polymers%3A+An+Optimization+Strategy+Based+on+Genetic+Algorithms+and+Instrumented+Impact+Tests&rft.jtitle=Journal+of+dynamic+behavior+of+materials&rft.au=Rueda%2C+F&rft.au=Rull%2C+N&rft.au=Quintana%2C+C&rft.au=Torres%2C+J+P&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-7446&rft.eissn=2199-7454&rft.volume=7&rft.issue=4&rft.spage=538&rft.epage=552&rft_id=info:doi/10.1007%2Fs40870-021-00297-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-7446&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-7446&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-7446&client=summon