Modelling Failure Of Polymers: An Optimization Strategy Based on Genetic Algorithms and Instrumented Impact Tests
Modelling the failure of engineering polymers used in critical structural applications is still a challenging task that is increasingly demanded by the industry to optimize part design and estimate component service life. The difficulties include not only developing constitutive models capable of re...
Saved in:
| Published in | Journal of dynamic behavior of materials Vol. 7; no. 4; pp. 538 - 552 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.12.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2199-7446 2199-7454 |
| DOI | 10.1007/s40870-021-00297-5 |
Cover
| Abstract | Modelling the failure of engineering polymers used in critical structural applications is still a challenging task that is increasingly demanded by the industry to optimize part design and estimate component service life. The difficulties include not only developing constitutive models capable of reproducing the complex polymer response at a reasonable computational cost, but also calibrating related parameters. That is to say, a way to find specific parameters which best represent the actual behavior of a material within the scope and limitations of a given constitutive or failure model. The aim of this study is to contribute in developing a robust inverse method calibration strategy. To address this issue, a novel approach based on genetic algorithms optimization (GA) together with finite element analysis (FEA) is proposed to blindly extract key constitutive and failure parameters from instrumented impact tests on single edge notched bending (SENB) specimens. The method was implemented to infer eight constitutive and failure parameters of a polyamide 12 (PA12) with an elasto-plastic ductile damage model. Triaxiality induced stable-unstable transition was successfully achieved by varying the notch depth of SENB specimens. Accordingly, three optimization schemes were conducted: (i) using only unstable experimental data; (ii) using only stable experimental data and (iii) using both simultaneously (multi-objective). The set of parameters obtained from each scheme were used to perform predictive FEA simulations, which were verified with experimental data. It was proven that both propagation regimes provide substantial information to obtain the mechanical response of the material. Simulation results evidenced the capability of the proposed strategy to predict the PA12 impact response and furthermore to fairly reproduce a completely different load case: a dynamic tensile test. |
|---|---|
| AbstractList | Modelling the failure of engineering polymers used in critical structural applications is still a challenging task that is increasingly demanded by the industry to optimize part design and estimate component service life. The difficulties include not only developing constitutive models capable of reproducing the complex polymer response at a reasonable computational cost, but also calibrating related parameters. That is to say, a way to find specific parameters which best represent the actual behavior of a material within the scope and limitations of a given constitutive or failure model. The aim of this study is to contribute in developing a robust inverse method calibration strategy. To address this issue, a novel approach based on genetic algorithms optimization (GA) together with finite element analysis (FEA) is proposed to blindly extract key constitutive and failure parameters from instrumented impact tests on single edge notched bending (SENB) specimens. The method was implemented to infer eight constitutive and failure parameters of a polyamide 12 (PA12) with an elasto-plastic ductile damage model. Triaxiality induced stable-unstable transition was successfully achieved by varying the notch depth of SENB specimens. Accordingly, three optimization schemes were conducted: (i) using only unstable experimental data; (ii) using only stable experimental data and (iii) using both simultaneously (multi-objective). The set of parameters obtained from each scheme were used to perform predictive FEA simulations, which were verified with experimental data. It was proven that both propagation regimes provide substantial information to obtain the mechanical response of the material. Simulation results evidenced the capability of the proposed strategy to predict the PA12 impact response and furthermore to fairly reproduce a completely different load case: a dynamic tensile test. |
| Author | Torres, J. P. Rueda, F. Frontini, P. M. Messiha, M. Frank, A. Arbeiter, F. Pinter, G. Rull, N. Quintana, C. |
| Author_xml | – sequence: 1 givenname: F. orcidid: 0000-0003-2961-8130 surname: Rueda fullname: Rueda, F. email: federico.rueda@fi.mdp.edu.ar organization: Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) – sequence: 2 givenname: N. surname: Rull fullname: Rull, N. organization: Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) – sequence: 3 givenname: C. surname: Quintana fullname: Quintana, C. organization: Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) – sequence: 4 givenname: J. P. surname: Torres fullname: Torres, J. P. organization: Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) – sequence: 5 givenname: M. surname: Messiha fullname: Messiha, M. organization: Polymer Competence Center Leoben GmbH (PCCL) – sequence: 6 givenname: A. surname: Frank fullname: Frank, A. organization: Polymer Competence Center Leoben GmbH (PCCL) – sequence: 7 givenname: F. surname: Arbeiter fullname: Arbeiter, F. organization: Montanuniversität Leoben – sequence: 8 givenname: P. M. surname: Frontini fullname: Frontini, P. M. organization: Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) – sequence: 9 givenname: G. surname: Pinter fullname: Pinter, G. organization: Montanuniversität Leoben |
| BookMark | eNp9kE9PwyAYh4nRxDn3BTyReK4C_Qfe5uLmkpmZuDuhLVSWlm5AD_PTy1ajiYedIOT58Xvf5wZcms5IAO4wesAI5Y8uQTRHESI4QoiwPEovwIhgxqI8SZPL33uSXYOJc1sUKIxpgvMR2L91lWwabWo4F7rprYRrBd-75tBK657g1MD1zutWfwmvOwM_vBVe1gf4LJysYHhZSCO9LuG0qTur_WfroDAVXBrnbd9K4wO2bHei9HAjnXe34EqJxsnJzzkGm_nLZvYardaL5Wy6isoYMx9RQVIZM5IRlRNFkkIUcVGgUlKSEFWRMqNClbmoUixYQVmVSoxylaVFRWOcxmNwP3y7s92-D8V82_XWhEZOUkbiJFhggaIDVdrOOSsVL7U_bRr21A3HiB8V80ExD974STE_FpB_0Z3VrbCH86F4CLkAm1rav6nOpL4BZFqROA |
| CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2022_107864 |
| Cites_doi | 10.1016/j.polymertesting.2004.09.003 10.1007/BF00591482 10.7551/mitpress/1090.001.0001 10.1016/0013-7944(85)90015-3 10.31399/asm.tb.tt2.9781627083553 10.1007/978-3-540-87700-4_83 10.1007/3-540-45356-3_83 10.1007/s11340-010-9342-6 10.1021/ma048884k 10.1007/s10118-019-2180-9 10.1016/j.polymertesting.2012.12.002 10.1016/j.ijsolstr.2003.09.058 10.1016/j.matdes.2009.10.050 10.1007/s11665-019-04087-y 10.1115/1.1633573 10.1002/pen.10703 10.1007/978-3-319-71919-1 10.1007/s11047-018-9685-y 10.1016/j.mechmat.2012.04.011 10.1007/978-94-011-3650-1_119 10.1016/S1665-6423(15)30013-4 10.1016/j.ijimpeng.2016.08.004 10.1111/str.12249 10.1016/j.swevo.2019.02.001 10.1016/j.matdes.2010.06.039 10.1016/j.ijsolstr.2016.02.010 10.1007/s12206-008-0302-3 |
| ContentType | Journal Article |
| Copyright | Society for Experimental Mechanics, Inc 2021. corrected publication 2021 Society for Experimental Mechanics, Inc 2021. corrected publication 2021. |
| Copyright_xml | – notice: Society for Experimental Mechanics, Inc 2021. corrected publication 2021 – notice: Society for Experimental Mechanics, Inc 2021. corrected publication 2021. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40870-021-00297-5 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2199-7454 |
| EndPage | 552 |
| ExternalDocumentID | 10_1007_s40870_021_00297_5 |
| GroupedDBID | -EM 0R~ 203 4.4 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FFXSO FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD GQ6 HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z7R Z7V Z7Y ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c319t-8a25e39262f72f24bab3bb0ce8242fd2c68afc7ad51a9b89d5e107f65bd83153 |
| ISSN | 2199-7446 |
| IngestDate | Wed Sep 17 23:58:13 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 Wed Oct 01 03:52:48 EDT 2025 Fri Feb 21 02:47:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Impact behavior Ductile damage Failure of polymers PA12 Inverse method Genetic algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c319t-8a25e39262f72f24bab3bb0ce8242fd2c68afc7ad51a9b89d5e107f65bd83153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2961-8130 |
| PQID | 2592340009 |
| PQPubID | 2044304 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2592340009 crossref_citationtrail_10_1007_s40870_021_00297_5 crossref_primary_10_1007_s40870_021_00297_5 springer_journals_10_1007_s40870_021_00297_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of dynamic behavior of materials |
| PublicationTitleAbbrev | J. dynamic behavior mater |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | EmmerichMTMDeutzAHA tutorial on multiobjective optimization: fundamentals and evolutionary methodsNatl Comput20181735856091:CAS:528:DC%2BC1cXhtVKjur3P10.1007/s11047-018-9685-y ŞerbanDAWeberGMarşavinaLSilberschmidtVVHufenbachWTensile properties of semi-crystalline thermoplastic polymers: effects of temperature and strain ratesPolym Test201332241342510.1016/j.polymertesting.2012.12.002 GearingBPAnandLNotch-sensitive fracture of polycarbonateInt J Solids Struct2004413–482784510.1016/j.ijsolstr.2003.09.058 KongLZShuaiJZhouXYHuangKYuGJTrue stress-logarithmic strain curves test of pipeline steels using 3d digital image correlationOptoelectron Adv Mater Rapid Commun2015911–1213801388 Version Abaqus. 6.14 documentation. Dassault Systemes Simulia Corporation, 651, (2014) Abaqus Analysis Users Manual. Dassault Systèmes, 2010a. 4.3.2 Isotropic elasto-plasticity ZouJJiCYangSZhangYZhengJLiKA knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimizationSwarm Evol Comput201947334310.1016/j.swevo.2019.02.001 TorresJPFrontiniPMMechanics of polycarbonate in biaxial impact loadingInt J Solids Struct20168512513310.1016/j.ijsolstr.2016.02.010 OthmanRThe Kolsky-Hopkinson bar machine: selected topics2018BerlinSpringer10.1007/978-3-319-71919-1 ParkerGEncyclopedia of materials: science and technology2001New YorkElsevier BrownHRA model for brittle-ductile transitions in polymersJ Mater Sci19821724694761:CAS:528:DyaL38Xhs1ent78%3D10.1007/BF00591482 KINLOCHAJYOUNGRJFracture behavior of polymers1983LondonApplied Sciences Publishers231237 Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from nature. Springer, pp 849–858 DavisJRTensile testing2004Materials Park, OHASM International PercecVPughCComprehensive polymer science and supplements1989OxfordPergamon Press ChoungJMChoSRStudy on true stress correction from tensile testsJ Mech Sci Technol20082261039105110.1007/s12206-008-0302-3 ShenBPaulinoGHDirect extraction of cohesive fracture properties from digital image correlation: a hybrid inverse techniqueExp Mech20115121431631:CAS:528:DC%2BC3MXltFalt7s%3D10.1007/s11340-010-9342-6 WangTJTeohSHLeeKHA general ductile damage model for engineering materialsFracture of engineering materials and structures1991BerlinSpringer79880310.1007/978-94-011-3650-1_119 PettarinVFrontiniPMEliçabeGEOptimal ligament lengths in impact fracture toughness estimation by the essential work of fracture method.Polym Test20052421891961:CAS:528:DC%2BD2MXjtFCj10.1016/j.polymertesting.2004.09.003 KästnerMObstMBrummundJThielschKUlbrichtVInelastic material behavior of polymers-experimental characterization, formulation and implementation of a material modelMech Mater201252405710.1016/j.mechmat.2012.04.011 LingYUniaxial true stress-strain after neckingAMP J Technol1996513748 SchrauwenBAGBreemenLCA vSpoelstraABGovaertLEPetersGWMMeijerHEHStructure, deformation, and failure of flow-oriented semicrystalline polymersMacromolecules20043723861886331:CAS:528:DC%2BD2cXos1Wgu7o%3D10.1021/ma048884k ScheiderIBrocksWCornecAProcedure for the determination of true stress-strain curves from tensile tests with rectangular cross-section specimensJ Eng Mater Technol20041261707610.1115/1.1633573 FasceLBernalCFrontiniPMaiY-WOn the impact essential work of fracture of ductile polymersPolym Eng Sci20014111141:CAS:528:DC%2BD3MXjtVOmu7w%3D10.1002/pen.10703 AguirHBelHadjSalahHHambliRParameter identification of an elasto-plastic behaviour using artificial neural networks-genetic algorithm methodMater Des201132148531:CAS:528:DC%2BC3cXhtV2gsr%2FI10.1016/j.matdes.2010.06.039 CarpinteriAMaregaCSavadoriADuctile-brittle transition by varying structural sizeEng Fract Mech19852122632711:CAS:528:DyaL2MXhvVGrsr4%3D10.1016/0013-7944(85)90015-3 HollandJohn HenryAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992Cambridge, MAMIT Press10.7551/mitpress/1090.001.0001 Martínez SZ, Coello Carlos AC (2008) A proposal to hybridize multi-objective evolutionary algorithms with non-gradient mathematical programming techniques. In: International conference on parallel problem solving from nature. Springer, pp. 837–846 TorresJPFrontiniPMMachadoMMajorZDeformation and failure of semicrystalline polymers under dynamic tensile and biaxial impact loading.Int J Impact Eng201698526110.1016/j.ijimpeng.2016.08.004 JaimesALMartinezSZCoelloCACAn introduction to multi-objective optimization techniquesOptim Polym Process20113722957 A free and open source python library for multiobjective optimization. https://platypus.readthedocs.io/en/latest/index.html. Accessed 15 June 2020. SunGLiGGongZCuiXYangXLiQingMultiobjective robust optimization method for drawbead design in sheet metal formingMater Des2010314191719291:CAS:528:DC%2BC3cXhtlSnug%3D%3D10.1016/j.matdes.2009.10.050 DebKMulti-objective optimization using evolutionary algorithms2001New YorkWiley SuchockiCyprianMolakRafałRheological properties of polyamide: experimental studies and constitutive modelingChin J Polym Sci20193721781881:CAS:528:DC%2BC1cXhvVSrurfL10.1007/s10118-019-2180-9 HernandezCMaranonADetermination of constitutive parameters from a taylor test using inverse analysisStrain2017536e1224910.1111/str.12249 Abaqus Analysis Users Manual. Dassault Systèmes, 2010b. 19.2.2 Damage initiation for ductile metals CaoKYueZQiJGaoJHybrid inverse parameter identification of fully coupled ductile damage model for steel sheet dp600 with two different algorithms: Trust region and genetic algorithmsJ Mater Eng Performance2019285314931561:CAS:528:DC%2BC1MXptlyjt7o%3D10.1007/s11665-019-04087-y LeeversPSHorsfallIRagerAMajorZMooreDRPavanAWilliamsJGHigh rate fracture toughness testing of thermoplasticsPolymTest20143379871:CAS:528:DC%2BC2cXhs1Cnur0%3D KhanABaigARMulti-objective feature subset selection using non-dominated sorting genetic algorithmJ Appl Res Technol201513114515910.1016/S1665-6423(15)30013-4 L Fasce (297_CR24) 2001; 41 JP Torres (297_CR21) 2016; 85 H Aguir (297_CR14) 2011; 32 AL Jaimes (297_CR12) 2011; 37 297_CR13 MTM Emmerich (297_CR34) 2018; 17 V Percec (297_CR2) 1989 B Shen (297_CR23) 2011; 51 K Deb (297_CR33) 2001 M Kästner (297_CR6) 2012; 52 297_CR9 V Pettarin (297_CR25) 2005; 24 297_CR5 BAG Schrauwen (297_CR3) 2004; 37 LZ Kong (297_CR32) 2015; 9 G Sun (297_CR37) 2010; 31 DA Şerban (297_CR8) 2013; 32 R Othman (297_CR29) 2018 I Scheider (297_CR38) 2004; 126 PS Leevers (297_CR22) 2014; 33 K Cao (297_CR15) 2019; 28 G Parker (297_CR1) 2001 Y Ling (297_CR31) 1996; 5 JP Torres (297_CR4) 2016; 98 BP Gearing (297_CR20) 2004; 41 C Hernandez (297_CR16) 2017; 53 JM Choung (297_CR39) 2008; 22 TJ Wang (297_CR10) 1991 297_CR26 A Khan (297_CR35) 2015; 13 297_CR27 JR Davis (297_CR30) 2004 John Henry Holland (297_CR11) 1992 297_CR28 Cyprian Suchocki (297_CR7) 2019; 37 AJ KINLOCH (297_CR17) 1983 A Carpinteri (297_CR18) 1985; 21 J Zou (297_CR36) 2019; 47 HR Brown (297_CR19) 1982; 17 |
| References_xml | – reference: Abaqus Analysis Users Manual. Dassault Systèmes, 2010a. 4.3.2 Isotropic elasto-plasticity – reference: Abaqus Analysis Users Manual. Dassault Systèmes, 2010b. 19.2.2 Damage initiation for ductile metals – reference: OthmanRThe Kolsky-Hopkinson bar machine: selected topics2018BerlinSpringer10.1007/978-3-319-71919-1 – reference: KästnerMObstMBrummundJThielschKUlbrichtVInelastic material behavior of polymers-experimental characterization, formulation and implementation of a material modelMech Mater201252405710.1016/j.mechmat.2012.04.011 – reference: SuchockiCyprianMolakRafałRheological properties of polyamide: experimental studies and constitutive modelingChin J Polym Sci20193721781881:CAS:528:DC%2BC1cXhvVSrurfL10.1007/s10118-019-2180-9 – reference: ZouJJiCYangSZhangYZhengJLiKA knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimizationSwarm Evol Comput201947334310.1016/j.swevo.2019.02.001 – reference: CarpinteriAMaregaCSavadoriADuctile-brittle transition by varying structural sizeEng Fract Mech19852122632711:CAS:528:DyaL2MXhvVGrsr4%3D10.1016/0013-7944(85)90015-3 – reference: A free and open source python library for multiobjective optimization. https://platypus.readthedocs.io/en/latest/index.html. Accessed 15 June 2020. – reference: JaimesALMartinezSZCoelloCACAn introduction to multi-objective optimization techniquesOptim Polym Process20113722957 – reference: HernandezCMaranonADetermination of constitutive parameters from a taylor test using inverse analysisStrain2017536e1224910.1111/str.12249 – reference: PettarinVFrontiniPMEliçabeGEOptimal ligament lengths in impact fracture toughness estimation by the essential work of fracture method.Polym Test20052421891961:CAS:528:DC%2BD2MXjtFCj10.1016/j.polymertesting.2004.09.003 – reference: BrownHRA model for brittle-ductile transitions in polymersJ Mater Sci19821724694761:CAS:528:DyaL38Xhs1ent78%3D10.1007/BF00591482 – reference: Martínez SZ, Coello Carlos AC (2008) A proposal to hybridize multi-objective evolutionary algorithms with non-gradient mathematical programming techniques. In: International conference on parallel problem solving from nature. Springer, pp. 837–846 – reference: Version Abaqus. 6.14 documentation. Dassault Systemes Simulia Corporation, 651, (2014) – reference: KINLOCHAJYOUNGRJFracture behavior of polymers1983LondonApplied Sciences Publishers231237 – reference: CaoKYueZQiJGaoJHybrid inverse parameter identification of fully coupled ductile damage model for steel sheet dp600 with two different algorithms: Trust region and genetic algorithmsJ Mater Eng Performance2019285314931561:CAS:528:DC%2BC1MXptlyjt7o%3D10.1007/s11665-019-04087-y – reference: Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from nature. Springer, pp 849–858 – reference: TorresJPFrontiniPMMechanics of polycarbonate in biaxial impact loadingInt J Solids Struct20168512513310.1016/j.ijsolstr.2016.02.010 – reference: LingYUniaxial true stress-strain after neckingAMP J Technol1996513748 – reference: AguirHBelHadjSalahHHambliRParameter identification of an elasto-plastic behaviour using artificial neural networks-genetic algorithm methodMater Des201132148531:CAS:528:DC%2BC3cXhtV2gsr%2FI10.1016/j.matdes.2010.06.039 – reference: KongLZShuaiJZhouXYHuangKYuGJTrue stress-logarithmic strain curves test of pipeline steels using 3d digital image correlationOptoelectron Adv Mater Rapid Commun2015911–1213801388 – reference: DebKMulti-objective optimization using evolutionary algorithms2001New YorkWiley – reference: ScheiderIBrocksWCornecAProcedure for the determination of true stress-strain curves from tensile tests with rectangular cross-section specimensJ Eng Mater Technol20041261707610.1115/1.1633573 – reference: HollandJohn HenryAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992Cambridge, MAMIT Press10.7551/mitpress/1090.001.0001 – reference: SunGLiGGongZCuiXYangXLiQingMultiobjective robust optimization method for drawbead design in sheet metal formingMater Des2010314191719291:CAS:528:DC%2BC3cXhtlSnug%3D%3D10.1016/j.matdes.2009.10.050 – reference: GearingBPAnandLNotch-sensitive fracture of polycarbonateInt J Solids Struct2004413–482784510.1016/j.ijsolstr.2003.09.058 – reference: LeeversPSHorsfallIRagerAMajorZMooreDRPavanAWilliamsJGHigh rate fracture toughness testing of thermoplasticsPolymTest20143379871:CAS:528:DC%2BC2cXhs1Cnur0%3D – reference: PercecVPughCComprehensive polymer science and supplements1989OxfordPergamon Press – reference: EmmerichMTMDeutzAHA tutorial on multiobjective optimization: fundamentals and evolutionary methodsNatl Comput20181735856091:CAS:528:DC%2BC1cXhtVKjur3P10.1007/s11047-018-9685-y – reference: ShenBPaulinoGHDirect extraction of cohesive fracture properties from digital image correlation: a hybrid inverse techniqueExp Mech20115121431631:CAS:528:DC%2BC3MXltFalt7s%3D10.1007/s11340-010-9342-6 – reference: ŞerbanDAWeberGMarşavinaLSilberschmidtVVHufenbachWTensile properties of semi-crystalline thermoplastic polymers: effects of temperature and strain ratesPolym Test201332241342510.1016/j.polymertesting.2012.12.002 – reference: TorresJPFrontiniPMMachadoMMajorZDeformation and failure of semicrystalline polymers under dynamic tensile and biaxial impact loading.Int J Impact Eng201698526110.1016/j.ijimpeng.2016.08.004 – reference: WangTJTeohSHLeeKHA general ductile damage model for engineering materialsFracture of engineering materials and structures1991BerlinSpringer79880310.1007/978-94-011-3650-1_119 – reference: ChoungJMChoSRStudy on true stress correction from tensile testsJ Mech Sci Technol20082261039105110.1007/s12206-008-0302-3 – reference: SchrauwenBAGBreemenLCA vSpoelstraABGovaertLEPetersGWMMeijerHEHStructure, deformation, and failure of flow-oriented semicrystalline polymersMacromolecules20043723861886331:CAS:528:DC%2BD2cXos1Wgu7o%3D10.1021/ma048884k – reference: FasceLBernalCFrontiniPMaiY-WOn the impact essential work of fracture of ductile polymersPolym Eng Sci20014111141:CAS:528:DC%2BD3MXjtVOmu7w%3D10.1002/pen.10703 – reference: DavisJRTensile testing2004Materials Park, OHASM International – reference: ParkerGEncyclopedia of materials: science and technology2001New YorkElsevier – reference: KhanABaigARMulti-objective feature subset selection using non-dominated sorting genetic algorithmJ Appl Res Technol201513114515910.1016/S1665-6423(15)30013-4 – volume: 24 start-page: 189 issue: 2 year: 2005 ident: 297_CR25 publication-title: Polym Test doi: 10.1016/j.polymertesting.2004.09.003 – volume: 17 start-page: 469 issue: 2 year: 1982 ident: 297_CR19 publication-title: J Mater Sci doi: 10.1007/BF00591482 – volume-title: Encyclopedia of materials: science and technology year: 2001 ident: 297_CR1 – volume-title: Multi-objective optimization using evolutionary algorithms year: 2001 ident: 297_CR33 – volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence year: 1992 ident: 297_CR11 doi: 10.7551/mitpress/1090.001.0001 – start-page: 231 volume-title: Fracture behavior of polymers year: 1983 ident: 297_CR17 – volume: 21 start-page: 263 issue: 2 year: 1985 ident: 297_CR18 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(85)90015-3 – volume-title: Tensile testing year: 2004 ident: 297_CR30 doi: 10.31399/asm.tb.tt2.9781627083553 – ident: 297_CR13 doi: 10.1007/978-3-540-87700-4_83 – ident: 297_CR27 doi: 10.1007/3-540-45356-3_83 – volume: 51 start-page: 143 issue: 2 year: 2011 ident: 297_CR23 publication-title: Exp Mech doi: 10.1007/s11340-010-9342-6 – volume: 9 start-page: 1380 issue: 11–12 year: 2015 ident: 297_CR32 publication-title: Optoelectron Adv Mater Rapid Commun – volume: 37 start-page: 8618 issue: 23 year: 2004 ident: 297_CR3 publication-title: Macromolecules doi: 10.1021/ma048884k – volume: 5 start-page: 37 issue: 1 year: 1996 ident: 297_CR31 publication-title: AMP J Technol – volume: 37 start-page: 178 issue: 2 year: 2019 ident: 297_CR7 publication-title: Chin J Polym Sci doi: 10.1007/s10118-019-2180-9 – volume: 32 start-page: 413 issue: 2 year: 2013 ident: 297_CR8 publication-title: Polym Test doi: 10.1016/j.polymertesting.2012.12.002 – volume: 33 start-page: 79 year: 2014 ident: 297_CR22 publication-title: PolymTest – volume-title: Comprehensive polymer science and supplements year: 1989 ident: 297_CR2 – volume: 41 start-page: 827 issue: 3–4 year: 2004 ident: 297_CR20 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2003.09.058 – volume: 37 start-page: 29 issue: 2 year: 2011 ident: 297_CR12 publication-title: Optim Polym Process – volume: 31 start-page: 1917 issue: 4 year: 2010 ident: 297_CR37 publication-title: Mater Des doi: 10.1016/j.matdes.2009.10.050 – ident: 297_CR5 – volume: 28 start-page: 3149 issue: 5 year: 2019 ident: 297_CR15 publication-title: J Mater Eng Performance doi: 10.1007/s11665-019-04087-y – volume: 126 start-page: 70 issue: 1 year: 2004 ident: 297_CR38 publication-title: J Eng Mater Technol doi: 10.1115/1.1633573 – ident: 297_CR9 – volume: 41 start-page: 1 issue: 1 year: 2001 ident: 297_CR24 publication-title: Polym Eng Sci doi: 10.1002/pen.10703 – volume-title: The Kolsky-Hopkinson bar machine: selected topics year: 2018 ident: 297_CR29 doi: 10.1007/978-3-319-71919-1 – volume: 17 start-page: 585 issue: 3 year: 2018 ident: 297_CR34 publication-title: Natl Comput doi: 10.1007/s11047-018-9685-y – volume: 52 start-page: 40 year: 2012 ident: 297_CR6 publication-title: Mech Mater doi: 10.1016/j.mechmat.2012.04.011 – ident: 297_CR26 – start-page: 798 volume-title: Fracture of engineering materials and structures year: 1991 ident: 297_CR10 doi: 10.1007/978-94-011-3650-1_119 – ident: 297_CR28 – volume: 13 start-page: 145 issue: 1 year: 2015 ident: 297_CR35 publication-title: J Appl Res Technol doi: 10.1016/S1665-6423(15)30013-4 – volume: 98 start-page: 52 year: 2016 ident: 297_CR4 publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.08.004 – volume: 53 start-page: e12249 issue: 6 year: 2017 ident: 297_CR16 publication-title: Strain doi: 10.1111/str.12249 – volume: 47 start-page: 33 year: 2019 ident: 297_CR36 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.02.001 – volume: 32 start-page: 48 issue: 1 year: 2011 ident: 297_CR14 publication-title: Mater Des doi: 10.1016/j.matdes.2010.06.039 – volume: 85 start-page: 125 year: 2016 ident: 297_CR21 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2016.02.010 – volume: 22 start-page: 1039 issue: 6 year: 2008 ident: 297_CR39 publication-title: J Mech Sci Technol doi: 10.1007/s12206-008-0302-3 |
| SSID | ssj0002118417 ssib044744033 ssib031263739 |
| Score | 2.1967328 |
| Snippet | Modelling the failure of engineering polymers used in critical structural applications is still a challenging task that is increasingly demanded by the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 538 |
| SubjectTerms | Axial stress Chemistry and Materials Science Computer simulation Constitutive models Damage assessment Design optimization Ductile fracture Ductile-brittle transition Failure analysis Finite element method Genetic algorithms Impact response Impact tests Inverse method Materials Science Mathematical models Mechanical analysis Metallic Materials Optimization Parameters Performance prediction Polyamide resins Polymers Research Paper Service life Solid Mechanics Tensile tests |
| Title | Modelling Failure Of Polymers: An Optimization Strategy Based on Genetic Algorithms and Instrumented Impact Tests |
| URI | https://link.springer.com/article/10.1007/s40870-021-00297-5 https://www.proquest.com/docview/2592340009 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2199-7454 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044744033 issn: 2199-7446 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2199-7454 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118417 issn: 2199-7446 databaseCode: AFBBN dateStart: 20150301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFMECtoD4hKM_NiNbW4JalShkkjIlXKzdte7EKl1W-Ic2v_U_8jMev1ISyvgEkXrxHJmvszMzs58Q8j7EAxeygT3NBOpx4SKPZEy5RmdFNIXQvk-9g5_W0wOj9nXFV8NBte9qqVtJT-pqz_2lfyPVmEN9Ipdsv-g2famsADvQb_wChqG17_SMQ4yqzm152KN9eXjpa1ou8RktEv5LcEmnLpmy7Hjor0cz8B5FXhQgLTTyNk6Pflx9mtd_TzduAphJJa1hJ0FMghjJ2UGDmRzRzBb1IPt265_e2wvqloI7aHOVhdip5r4-9aVZHf513UJ4arYyd9mdoKIxZtrR3NpijC4UfLRpCmxBhvF0bbRoKUDq5l6MXO5SN1fqxmmG1Md9xDJemaX1wwxzoPzmhP3lnOo60E2zE9w2A48op3c5fHOFTbH_4tlPj8-Osqzg1X24fzCwyFleJjvJrY8IHshOBF_SPam89ls0RiwKAgnUdzRrDKG9IsunsbQAHbbCbNToNuf7Bq5bDvnrSfbDZa6HdCNQ3sbC2VPyGOndzqtEfmUDHT5jDzqUVs-JxctNqnDJl0a2mDzM52WtI9M2iCTWmRSWHHIpB0yKSCT9pFJa2RSi8wXJJsfZF8OPTfew1Ng9ysvESHXEfJVmjg0IZNCRlL6SicQNpoiVJNEGBWLggcilUlacB34sZlwWSQROOqXZFielfoVoYHCAi4FlwRn0vAkTrXyRegbE09UokYkaMSYK0d9jxNYTvKWtNuKPgfR51b0OR-Rcfud85r45d5P7zfayZ2B2OQhh90Tw13MiHxsNNZdvvtur--_2xvysPuH7ZMhSF2_hdC4ku8cIH8D57W15w |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+Failure+Of+Polymers%3A+An+Optimization+Strategy+Based+on+Genetic+Algorithms+and+Instrumented+Impact+Tests&rft.jtitle=Journal+of+dynamic+behavior+of+materials&rft.au=Rueda%2C+F&rft.au=Rull%2C+N&rft.au=Quintana%2C+C&rft.au=Torres%2C+J+P&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-7446&rft.eissn=2199-7454&rft.volume=7&rft.issue=4&rft.spage=538&rft.epage=552&rft_id=info:doi/10.1007%2Fs40870-021-00297-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-7446&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-7446&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-7446&client=summon |