Features extraction from human eye movements via echo state network

The paper develops a procedure for features extraction from eye movement’s time series aimed at age-related classification of humans. It exploits the properties of the echo state network (ESN) reservoir state achieved after its intrinsic plasticity tuning. A novel, recently proposed approach for ran...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 32; no. 9; pp. 4213 - 4226
Main Authors Koprinkova-Hristova, Petia, Stefanova, Miroslava, Genova, Bilyana, Bocheva, Nadejda, Kraleva, Radoslava, Kralev, Velin
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-019-04329-z

Cover

Abstract The paper develops a procedure for features extraction from eye movement’s time series aimed at age-related classification of humans. It exploits the properties of the echo state network (ESN) reservoir state achieved after its intrinsic plasticity tuning. A novel, recently proposed approach for ranking of dynamic data series using as single feature the length of the reservoir state vector reached after consecutive feeding of each time series into the ESN was investigated in details using eye tracker recordings of human eye movements during visual stimulation and decision-making process. Inclusion of other features like variance of ESN extracted feature for multiple similar stimulations as well as decision correctness allowed for better classification of test subjects. The results support the view that the metrics and dynamics of the eye movements depend little on age, though they are strongly related to the visual stimulation characteristics.
AbstractList The paper develops a procedure for features extraction from eye movement’s time series aimed at age-related classification of humans. It exploits the properties of the echo state network (ESN) reservoir state achieved after its intrinsic plasticity tuning. A novel, recently proposed approach for ranking of dynamic data series using as single feature the length of the reservoir state vector reached after consecutive feeding of each time series into the ESN was investigated in details using eye tracker recordings of human eye movements during visual stimulation and decision-making process. Inclusion of other features like variance of ESN extracted feature for multiple similar stimulations as well as decision correctness allowed for better classification of test subjects. The results support the view that the metrics and dynamics of the eye movements depend little on age, though they are strongly related to the visual stimulation characteristics.
Author Kraleva, Radoslava
Koprinkova-Hristova, Petia
Stefanova, Miroslava
Genova, Bilyana
Bocheva, Nadejda
Kralev, Velin
Author_xml – sequence: 1
  givenname: Petia
  orcidid: 0000-0002-0447-9667
  surname: Koprinkova-Hristova
  fullname: Koprinkova-Hristova, Petia
  email: pkoprinkova@bas.bg
  organization: Institute of Information and Communication Technologies, Bulgarian Academy of Sciences
– sequence: 2
  givenname: Miroslava
  surname: Stefanova
  fullname: Stefanova, Miroslava
  organization: Institute of Neurobiology, Bulgarian Academy of Sciences
– sequence: 3
  givenname: Bilyana
  surname: Genova
  fullname: Genova, Bilyana
  organization: Institute of Neurobiology, Bulgarian Academy of Sciences
– sequence: 4
  givenname: Nadejda
  surname: Bocheva
  fullname: Bocheva, Nadejda
  organization: Institute of Neurobiology, Bulgarian Academy of Sciences
– sequence: 5
  givenname: Radoslava
  surname: Kraleva
  fullname: Kraleva, Radoslava
  organization: South West University
– sequence: 6
  givenname: Velin
  surname: Kralev
  fullname: Kralev, Velin
  organization: South West University
BookMark eNp9kMFKAzEQhoNUsK2-gKeA59Vkk91NjlKsCgUveg7Z7MRu7W5qklbbpze6guChEJhD5puZ_5ugUe96QOiSkmtKSHUTCClymhEqM8JZLrPDCRpTzljGSCFGaEwkT98lZ2doEsKKEMJLUYzRbA46bj0EDJ_RaxNb12PrXYeX2073GPaAO7eDDvoY8K7VGMzS4RB1BNxD_HD-7RydWr0OcPFbp-hlfvc8e8gWT_ePs9tFZhiVMRPCMgm1aHhpKefWNCaveVMTWRSkgqYRpeHapDg517YyQorc2MrKurTpFWyKroa5G-_etxCiWrmt79NKlTNJK0mKFHmK8qHLeBeCB6s2vu203ytK1LcsNchSSZb6kaUOCRL_INOmiElGktKuj6NsQEPa07-C_7vqCPUFfh-CAw
CitedBy_id crossref_primary_10_3390_electronics12030485
crossref_primary_10_1016_j_eswa_2022_118789
crossref_primary_10_1007_s00521_020_04781_2
crossref_primary_10_1016_j_neucom_2022_06_008
Cites_doi 10.1167/iovs.05-1311
10.1016/j.neucom.2007.12.020
10.1007/978-3-319-32192-9_3
10.3991/ijoe.v14i02.7988
10.3389/fnhum.2015.00046
10.1016/j.artmed.2018.02.002
10.1016/j.neurobiolaging.2006.11.007
10.1016/j.ins.2018.09.057
10.1007/978-3-319-92007-8_29
10.1016/j.neunet.2017.04.008
10.1016/j.patrec.2014.10.015
10.1038/s41598-018-31577-1
10.1109/IJCNN.2015.7280703
10.1016/j.neucom.2016.03.108
10.1016/j.cosrev.2009.03.005
10.1016/j.neunet.2007.04.011
10.3200/JMBR.38.5.373-382
10.1007/978-3-642-40728-4_43
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04329-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 4226
ExternalDocumentID 10_1007_s00521_019_04329_z
GrantInformation_xml – fundername: Bulgarian National Science Fund
  grantid: DN02/3/2016
  funderid: http://dx.doi.org/10.13039/501100003336
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-88f39eb8d46f144fcdc2b4db095507edd86c4ac00724af7c8982cf7f9b6fb6f53
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 04:37:47 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Wed Oct 01 02:25:56 EDT 2025
Fri Feb 21 02:35:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Echo state network
Eye tracking
Time series
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-88f39eb8d46f144fcdc2b4db095507edd86c4ac00724af7c8982cf7f9b6fb6f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0447-9667
PQID 2391790514
PQPubID 2043988
PageCount 14
ParticipantIDs proquest_journals_2391790514
crossref_primary_10_1007_s00521_019_04329_z
crossref_citationtrail_10_1007_s00521_019_04329_z
springer_journals_10_1007_s00521_019_04329_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200500
2020-5-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References TrentinESchererSSchwenkerFEmotion recognition from speech signals via a probabilistic echo state networkPattern Recognit Lett20156641210.1016/j.patrec.2014.10.015
LacySESmithSLLonesMAUsing echo state networks for classification: a case study in Parkinson’s disease diagnosisArtif Intell Med201886535910.1016/j.artmed.2018.02.002
PraterASpatiotemporal signal classification via principal components of reservoir statesNeural Netw201791667510.1016/j.neunet.2017.04.008
Koprinkova-HristovaPKountchevRNakamatsuKMultidimensional data clustering and visualization via Echo state networksNew approaches in intelligent image analysis, intelligent systems reference library2016ChamSpringer9312210.1007/978-3-319-32192-9_3
Koprinkova-Hristova P, Tontchev N (2012) Echo state networks for multidimensional data clustering. In: Villa AEP, Duch W, Érdi P, Masulli F, Palm G (eds) International conference on artificial neural networks 2012, LNCS vol 7552. Springer, Heidelberg, pp 571–578
BozhkovLKoprinkova-HristovaPGeorgievaPReservoir computing for emotion valence discrimination from EEG signalsNeurocomputing2017231284010.1016/j.neucom.2016.03.108
Koprinkova-Hristova P, Alexiev K (2013) Echo state networks in dynamic data clustering. In: V. Mladenov et al. (eds.) International conferenece on artificial neural networks 2013, LNCS vol 8131. Springer, Heidelberg, pp 343–350
SteilJJOnline reservoir adaptation by intrinsic plasticity for back-propagation–decorrelation and echo state learningNeural Netw20072035336410.1016/j.neunet.2007.04.011
MarandiRMadeleinePOmlandØVuillermeNSamanAEye movement characteristics reflected fatigue development in both young and elderly individualsSci Rep201881314810.1038/s41598-018-31577-1
DowiaschSMarxSEinhauserWBremmerFEffects of aging on eye movements in the real worldFront Hum Neurosci201594610.3389/fnhum.2015.00046
KralevaRKralevVSinyaginaNKoprinkova-HristovaPBochevaNDesign and analysis of a relational database for behavioral experiments data processingInt J Online Eng201814211713210.3991/ijoe.v14i02.7988
SchrauwenBWandermannMVerstraetenDSteilJJStroobandtDImproving reservoirs using intrinsic plasticityNeurocomputing2008711159117110.1016/j.neucom.2007.12.020
IrvingELSteinbachMJLillakasLBabuRJHutchingsNHorizontal saccade dynamics across the human life spanInvest Ophthalmol Vis Sci2006472478248410.1167/iovs.05-1311
Koprinkova-Hristova P, Stefanova M, Genova B, Bocheva N (2018) Echo state network for classification of human eye movements during decision making. In: Iliadis L, Maglogiannis I, Plagianakos V (eds) Artificial intelligence applications and innovations. AIAI 2018. IFIP advances in information and communication technology, vol 519, pp 337–348
Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the ”echo state network” approach. GMD Report 159, German National Research Center for Information Technology
PrattJWelshTDoddMGrowing older does not always mean moving slower: examining aging and the Saccadic motor systemJ Motor Behav20063837338210.3200/JMBR.38.5.373-382
Koprinkova-Hristova P (2015) On effects of IP improvement of ESN reservoirs for reflecting of data structure. In: Proceedings of the international joint conference on neural networks (IJCNN) 2015. IEEE, Killarney, Ireland. https://doi.org/10.1109/IJCNN.2015.7280703
SunLJinBYangHTongJLiuCXiongHUnsupervised EEG feature extraction based on echo state networkInf. Sci.201947511710.1016/j.ins.2018.09.057
LukoseviciusMJaegerHReservoir computing approaches to recurrent neural network trainingComput. Sci. Rev.2009312714910.1016/j.cosrev.2009.03.005
YangQKapoulaZAging does not affect the accuracy of vertical saccades nor the quality of their binocular coordination: a study of a special elderly groupNeurobiol Aging20082946223810.1016/j.neurobiolaging.2006.11.007
SE Lacy (4329_CR4) 2018; 86
A Prater (4329_CR5) 2017; 91
R Kraleva (4329_CR19) 2018; 14
R Marandi (4329_CR20) 2018; 8
J Pratt (4329_CR17) 2006; 38
4329_CR8
L Sun (4329_CR3) 2019; 475
L Bozhkov (4329_CR13) 2017; 231
JJ Steil (4329_CR9) 2007; 20
4329_CR12
P Koprinkova-Hristova (4329_CR11) 2016
4329_CR7
4329_CR14
M Lukosevicius (4329_CR2) 2009; 3
Q Yang (4329_CR18) 2008; 29
4329_CR1
E Trentin (4329_CR6) 2015; 66
B Schrauwen (4329_CR10) 2008; 71
S Dowiasch (4329_CR16) 2015; 9
EL Irving (4329_CR15) 2006; 47
References_xml – reference: Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the ”echo state network” approach. GMD Report 159, German National Research Center for Information Technology
– reference: SunLJinBYangHTongJLiuCXiongHUnsupervised EEG feature extraction based on echo state networkInf. Sci.201947511710.1016/j.ins.2018.09.057
– reference: PraterASpatiotemporal signal classification via principal components of reservoir statesNeural Netw201791667510.1016/j.neunet.2017.04.008
– reference: Koprinkova-Hristova P (2015) On effects of IP improvement of ESN reservoirs for reflecting of data structure. In: Proceedings of the international joint conference on neural networks (IJCNN) 2015. IEEE, Killarney, Ireland. https://doi.org/10.1109/IJCNN.2015.7280703
– reference: SteilJJOnline reservoir adaptation by intrinsic plasticity for back-propagation–decorrelation and echo state learningNeural Netw20072035336410.1016/j.neunet.2007.04.011
– reference: Koprinkova-Hristova P, Alexiev K (2013) Echo state networks in dynamic data clustering. In: V. Mladenov et al. (eds.) International conferenece on artificial neural networks 2013, LNCS vol 8131. Springer, Heidelberg, pp 343–350
– reference: YangQKapoulaZAging does not affect the accuracy of vertical saccades nor the quality of their binocular coordination: a study of a special elderly groupNeurobiol Aging20082946223810.1016/j.neurobiolaging.2006.11.007
– reference: MarandiRMadeleinePOmlandØVuillermeNSamanAEye movement characteristics reflected fatigue development in both young and elderly individualsSci Rep201881314810.1038/s41598-018-31577-1
– reference: IrvingELSteinbachMJLillakasLBabuRJHutchingsNHorizontal saccade dynamics across the human life spanInvest Ophthalmol Vis Sci2006472478248410.1167/iovs.05-1311
– reference: BozhkovLKoprinkova-HristovaPGeorgievaPReservoir computing for emotion valence discrimination from EEG signalsNeurocomputing2017231284010.1016/j.neucom.2016.03.108
– reference: Koprinkova-HristovaPKountchevRNakamatsuKMultidimensional data clustering and visualization via Echo state networksNew approaches in intelligent image analysis, intelligent systems reference library2016ChamSpringer9312210.1007/978-3-319-32192-9_3
– reference: TrentinESchererSSchwenkerFEmotion recognition from speech signals via a probabilistic echo state networkPattern Recognit Lett20156641210.1016/j.patrec.2014.10.015
– reference: Koprinkova-Hristova P, Tontchev N (2012) Echo state networks for multidimensional data clustering. In: Villa AEP, Duch W, Érdi P, Masulli F, Palm G (eds) International conference on artificial neural networks 2012, LNCS vol 7552. Springer, Heidelberg, pp 571–578
– reference: SchrauwenBWandermannMVerstraetenDSteilJJStroobandtDImproving reservoirs using intrinsic plasticityNeurocomputing2008711159117110.1016/j.neucom.2007.12.020
– reference: LacySESmithSLLonesMAUsing echo state networks for classification: a case study in Parkinson’s disease diagnosisArtif Intell Med201886535910.1016/j.artmed.2018.02.002
– reference: DowiaschSMarxSEinhauserWBremmerFEffects of aging on eye movements in the real worldFront Hum Neurosci201594610.3389/fnhum.2015.00046
– reference: Koprinkova-Hristova P, Stefanova M, Genova B, Bocheva N (2018) Echo state network for classification of human eye movements during decision making. In: Iliadis L, Maglogiannis I, Plagianakos V (eds) Artificial intelligence applications and innovations. AIAI 2018. IFIP advances in information and communication technology, vol 519, pp 337–348
– reference: PrattJWelshTDoddMGrowing older does not always mean moving slower: examining aging and the Saccadic motor systemJ Motor Behav20063837338210.3200/JMBR.38.5.373-382
– reference: LukoseviciusMJaegerHReservoir computing approaches to recurrent neural network trainingComput. Sci. Rev.2009312714910.1016/j.cosrev.2009.03.005
– reference: KralevaRKralevVSinyaginaNKoprinkova-HristovaPBochevaNDesign and analysis of a relational database for behavioral experiments data processingInt J Online Eng201814211713210.3991/ijoe.v14i02.7988
– volume: 47
  start-page: 2478
  year: 2006
  ident: 4329_CR15
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.05-1311
– ident: 4329_CR1
– volume: 71
  start-page: 1159
  year: 2008
  ident: 4329_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.12.020
– start-page: 93
  volume-title: New approaches in intelligent image analysis, intelligent systems reference library
  year: 2016
  ident: 4329_CR11
  doi: 10.1007/978-3-319-32192-9_3
– volume: 14
  start-page: 117
  issue: 2
  year: 2018
  ident: 4329_CR19
  publication-title: Int J Online Eng
  doi: 10.3991/ijoe.v14i02.7988
– volume: 9
  start-page: 46
  year: 2015
  ident: 4329_CR16
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2015.00046
– volume: 86
  start-page: 53
  year: 2018
  ident: 4329_CR4
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.02.002
– volume: 29
  start-page: 622
  issue: 4
  year: 2008
  ident: 4329_CR18
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.11.007
– volume: 475
  start-page: 1
  year: 2019
  ident: 4329_CR3
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.09.057
– ident: 4329_CR14
  doi: 10.1007/978-3-319-92007-8_29
– volume: 91
  start-page: 66
  year: 2017
  ident: 4329_CR5
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.04.008
– volume: 66
  start-page: 4
  year: 2015
  ident: 4329_CR6
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2014.10.015
– volume: 8
  start-page: 13148
  year: 2018
  ident: 4329_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-31577-1
– ident: 4329_CR8
  doi: 10.1109/IJCNN.2015.7280703
– volume: 231
  start-page: 28
  year: 2017
  ident: 4329_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.108
– volume: 3
  start-page: 127
  year: 2009
  ident: 4329_CR2
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 20
  start-page: 353
  year: 2007
  ident: 4329_CR9
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2007.04.011
– volume: 38
  start-page: 373
  year: 2006
  ident: 4329_CR17
  publication-title: J Motor Behav
  doi: 10.3200/JMBR.38.5.373-382
– ident: 4329_CR7
– ident: 4329_CR12
  doi: 10.1007/978-3-642-40728-4_43
SSID ssj0004685
Score 2.2552817
Snippet The paper develops a procedure for features extraction from eye movement’s time series aimed at age-related classification of humans. It exploits the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4213
SubjectTerms Artificial Intelligence
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision making
Emerging Trends of Applied Neural Computation - E_TRAINCO
Eye movements
Feature extraction
Image Processing and Computer Vision
Probability and Statistics in Computer Science
Reservoirs
State vectors
Stimulation
Time series
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20Xrz4LVar7MGbBtpkk90cS7EUQU8Welv2EwRNpU0L9tc7u0laFRWE3JLsYXZndt7uvDcA1xgApVSuG1ncLBGgoCuqWNqIUS8mol3KjOcOPzxmozG9n6STmhQ2b6rdmyvJEKnXZDd_gumhrz_MT-I8Wm3DTurlvHAVj-P-JzZkaMSJuMXX9NCkpsr8PMbX7WiTY367Fg27zfAA9uo0kfSreT2ELVscwX7TgoHUHnkMA5_CLRAyEwyys4qkQDxlhITme8S-W_I6DZrg5ZwsnyWxGO9IoBGRoioBP4Hx8O5pMIrqvgiRRocpI85dklvFDc0c4iGnjY4VNcqryXWZNYZnmkrtRcGpdEzznMfaMZerzOGTJqfQKqaFPQNiOLXcSY7riVLJmdQ9ZhOZMImwLbOmDb3GPELXouG-d8WLWMsdB5MKNKkIJhWrNtys_3mrJDP-_LrTWF3U7jMXcZJXymG0DbfNTGxe_z7a-f8-v4Dd2OPnUMDYgVY5W9hLTDJKdRXW1AfAYslq
  priority: 102
  providerName: Springer Nature
Title Features extraction from human eye movements via echo state network
URI https://link.springer.com/article/10.1007/s00521-019-04329-z
https://www.proquest.com/docview/2391790514
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB76uHjxLVZr2YM3DbbJNtkcRGrpA8UiYqGewmYfIGha-xDsr3dnk7QqWMgpjz3M7szOZOf7PoBzEwA5j3XdUWazNAWKccXY5coJKJKJCN0MJGKHHwZ-f0jvRs1RAQY5FgbbKvOYaAO1HAv8R37lemFKJkVvJh8Oqkbh6WouocEzaQV5bSnGilB2kRmrBOXbzuDx6QdS0op0mpoG-32ol8FoLJgO_5BiaY2HBZ4bOsvfW9U6__xzZGp3ou4ubGcpJGmlc74HBZXsw04uz0Aybz2ANqZ3C1NOExOApymAgSCchFhhPqK-FHkfW77w-Yx8vnKiTCwkFmJEkrQ9_BCG3c5zu-9kmgmOMM40dxjTXqhiJqmvTa2khRRuTGWMTHP1QEnJfEG5QMJwynUgWMhcoQMdxr42V9M7glIyTtQxEMmoYpozs9Yo5SzgohEoj3sBNyWdr2QFGrl5IpERiqOuxVu0okK2Jo2MSSNr0mhZgYvVN5OUTmPj29Xc6lHmWrNovRAqcJnPxPrx_6OdbB7tFLZcrKVtM2MVSvPpQp2ZhGMe16DIur0alFu9l_tOLVtT5u7QbX0DTXfV5Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2hcoALO6KsPsAJImjiJs4BIVaVrUIIJG7B8SIhQQu0gNqP49uYcRwKSHBDyi2JD-Px2M_2ew9gFQuglLndCgxOlghQcCjmoTRBwklMRNl6ook7fN6MG9f85KZ-MwTvJReGrlWWNdEVat1WtEe-GUZpISbFdx6fAnKNotPV0kJDemsFve0kxjyx49T03hDCdbaPD7C_18Lw6PBqvxF4l4FAYfp1AyFslJpcaB5bRBdWaRXmXOekzbaVGK1FrLhUJLHNpU2USEWobGLTPLb4kGsETgHDPOIpgr_hvcPmxeUXZqYzBUUMRfeLeORpO468RzuyBOXpcCIK06D_fWocrHd_HNG6me9oAsb8kpXtFjk2CUOmNQXjpR0E89VhGvZpOfmC8J1hwX8uCBOM6CvMGQEy0zPsoe30ybsd9nonmcHayxylibWK6-gzcP0v0ZuFSqvdMnPAtOBGWCkwtzmXIpGqlphIRolECBkbXYVaGZ5MeQFz8tG4zz6ll11IMwxp5kKa9auw_vnPYyHf8efXi2XUMz-UO9kg8aqwUfbE4PXvrc3_3doKjDSuzs-ys-Pm6QKMhoTj3UXKRah0n1_MEi52uvmyzygGt_-dxB-9kBER
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60gnjxLVar5uBNl7a76W72WKrFZ_FgobeQzQME3ZZ2K9hf7yS721ZRQdjbJjlMMsl8yXzfAJzjBihEYhqexsMSAQq6YuIL7UXUiolI04qU5Q4_9sKbPr0btAZLLH6X7V4-SeacBqvSlGb1kTL1OfHN3mZaGGwv9gM_9marsEatUAKu6L7fXmJGuqKciGFsfg8NCtrMz2N8PZoW8ea3J1J38nS3YbMIGUk7n-MdWNHpLmyV5RhI4Z170LHh3BThM8ENd5wTFoiljxBXiI_oD03ehk4fPJuQ9xdBNO59xFGKSJqng-9Dv3v93LnxihoJnkTnyTzGTBDrhCkaGsRGRirpJ1QlVlmuEWmlWCipkFYgnAoTSRYzX5rIxElo8GsFB1BJh6k-BKIY1cwIhmuLUsEiIZuRDkQQCYRwoVZVaJbm4bIQELd1LF75XPrYmZSjSbkzKZ9V4WLeZ5TLZ_zZulZanReuNOF-EOcqYrQKl-VMLH7_PtrR_5qfwfrTVZc_3Pbuj2HDt7Da5TXWoJKNp_oEY48sOXXL6xNRbtCS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Features+extraction+from+human+eye+movements+via+echo+state+network&rft.jtitle=Neural+computing+%26+applications&rft.au=Koprinkova-Hristova+Petia&rft.au=Stefanova+Miroslava&rft.au=Genova+Bilyana&rft.au=Bocheva+Nadejda&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=9&rft.spage=4213&rft.epage=4226&rft_id=info:doi/10.1007%2Fs00521-019-04329-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon