Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm
In order to improve the accuracy of rolling bearing fault diagnosis in mechanical equipment, a new fault diagnosis method based on back propagation neural network optimized by cuckoo search algorithm is proposed. This method use the global search ability of the cuckoo search algorithm to constantly...
Saved in:
| Published in | Multimedia tools and applications Vol. 81; no. 2; pp. 1567 - 1587 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.01.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-021-11556-x |
Cover
| Abstract | In order to improve the accuracy of rolling bearing fault diagnosis in mechanical equipment, a new fault diagnosis method based on back propagation neural network optimized by cuckoo search algorithm is proposed. This method use the global search ability of the cuckoo search algorithm to constantly search for the best weights and thresholds, and then give it to the back propagation neural network. In this paper, wavelet packet decomposition is used for feature extraction of vibration signals. The energy values of different frequency bands are obtained through wavelet packet decomposition, and they are input as feature vectors into optimized back propagation neural network to identify different fault types of rolling bearings. Through the three sets of simulation comparison experiments of Matlab, the experimental results show that, Under the same conditions, compared with the other five models, the proposed back propagation neural network optimized by cuckoo search algorithm has the least number of training iterations and the highest diagnostic accuracy rate. And in the complex classification experiment with the same fault location but different bearing diameters, the fault recognition correct rate of the back propagation neural network optimized by cuckoo search algorithm is 96.25%. |
|---|---|
| AbstractList | In order to improve the accuracy of rolling bearing fault diagnosis in mechanical equipment, a new fault diagnosis method based on back propagation neural network optimized by cuckoo search algorithm is proposed. This method use the global search ability of the cuckoo search algorithm to constantly search for the best weights and thresholds, and then give it to the back propagation neural network. In this paper, wavelet packet decomposition is used for feature extraction of vibration signals. The energy values of different frequency bands are obtained through wavelet packet decomposition, and they are input as feature vectors into optimized back propagation neural network to identify different fault types of rolling bearings. Through the three sets of simulation comparison experiments of Matlab, the experimental results show that, Under the same conditions, compared with the other five models, the proposed back propagation neural network optimized by cuckoo search algorithm has the least number of training iterations and the highest diagnostic accuracy rate. And in the complex classification experiment with the same fault location but different bearing diameters, the fault recognition correct rate of the back propagation neural network optimized by cuckoo search algorithm is 96.25%. |
| Author | Jiang, Ziwei Bartos, Petr Xiao, Maohua Geng, Guosheng Liao, Yabing Filip, Martin |
| Author_xml | – sequence: 1 givenname: Maohua orcidid: 0000-0001-5213-1035 surname: Xiao fullname: Xiao, Maohua email: xiaomaohua@njau.edu.cn organization: College of Engineering, Nanjing Agricultural University – sequence: 2 givenname: Yabing surname: Liao fullname: Liao, Yabing organization: College of Engineering, Nanjing Agricultural University – sequence: 3 givenname: Petr surname: Bartos fullname: Bartos, Petr organization: Faculty of Agriculture, University of South Bohemia – sequence: 4 givenname: Martin surname: Filip fullname: Filip, Martin organization: Faculty of Agriculture, University of South Bohemia – sequence: 5 givenname: Guosheng surname: Geng fullname: Geng, Guosheng organization: College of Engineering, Nanjing Agricultural University – sequence: 6 givenname: Ziwei surname: Jiang fullname: Jiang, Ziwei organization: College of Engineering, Nanjing Agricultural University |
| BookMark | eNp9kEtLAzEUhYMoqNU_4CrgejQ3mcxjKcUXCG50HfKaNnY6GZMMWn-9aSsILlydy-V893FO0eHgB4vQBZArIKS-jgCkpAWhUABwXhWfB-gEeM2KuqZwmGvWkKLmBI7RaYxvhEDFaXmCxjs59QkbJxeDjy5i3-Hg-94NC6ysDDuV0Rrsh1zoFR6DH-VCJpcbg52C7LOkDx9W2I_Jrd1XNqsN1pNeeY9jHqKXWPYLH1xars_QUSf7aM9_dIZe725f5g_F0_P94_zmqdAM2lQ0pZWM0Kpty8bYlpZcK1UZZVqqOCuB1i01BjTRVipgLTM1Vw3rJONdaaRiM3S5n5vvfZ9sTOLNT2HIKwWtKKsYsKrMrmbv0sHHGGwntEu731KQrhdAxDZfsc9X5HzFLl_xmVH6Bx2DW8uw-R9ieyiO22ht-L3qH-obw1qSPg |
| CitedBy_id | crossref_primary_10_3390_pr11051454 crossref_primary_10_1007_s12206_024_0602_2 crossref_primary_10_1111_exsy_13407 crossref_primary_10_3390_app13137593 crossref_primary_10_1007_s11042_022_13437_3 crossref_primary_10_1007_s13042_024_02369_z crossref_primary_10_3390_s22166281 crossref_primary_10_1088_1361_665X_aca7a5 crossref_primary_10_3390_pr11071947 crossref_primary_10_32604_sdhm_2023_029428 crossref_primary_10_1088_1361_6501_ad4eff crossref_primary_10_3390_electronics13142789 crossref_primary_10_3390_mi15080964 crossref_primary_10_3934_era_2024183 crossref_primary_10_2298_TSCI240318168W crossref_primary_10_1016_j_jclepro_2023_136701 crossref_primary_10_1016_j_ijpvp_2022_104807 |
| Cites_doi | 10.1007/s00521-013-1402-2 10.1016/j.ymssp.2019.106272 10.1016/j.engappai.2018.09.010 10.1016/j.asoc.2007.06.002 10.1016/j.engappai.2019.06.017 10.1016/j.compeleceng.2018.04.006 10.1109/TIM.2012.2184015 10.1016/j.engappai.2013.04.007 10.1016/j.apacoust.2014.08.016 10.1007/s13369-018-3527-1 10.1016/j.jsv.2018.07.039 10.1007/s10845-012-0657-2 10.1016/j.compeleceng.2019.08.009 10.1016/j.neunet.2019.03.015 10.1016/j.aej.2019.05.002 10.1016/j.renene.2016.03.103 10.1016/j.procs.2020.02.059 10.1016/j.neucom.2018.05.002 10.1016/j.ymssp.2015.05.003 10.1016/j.asoc.2018.09.013 10.1007/s11042-020-10486-4 10.1109/ICPADS47876.2019.00025 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-021-11556-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library (Proquest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 1587 |
| ExternalDocumentID | 10_1007_s11042_021_11556_x |
| GrantInformation_xml | – fundername: Program for Student Innovation through Research and Training of Nanjing Agricultural University grantid: 201910307200P – fundername: the Key Research and Development Program of Jiangsu Province grantid: BE2021362 – fundername: the Jiangsu International Science and Technology Cooperation Project grantid: BZ2021022 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-84ea30269948de9245cbb6dbd92b53412792dd1c0ceab1393d75b83fa35f4dab3 |
| IEDL.DBID | BENPR |
| ISSN | 1380-7501 |
| IngestDate | Fri Jul 25 06:38:04 EDT 2025 Wed Oct 01 04:51:16 EDT 2025 Thu Apr 24 23:09:28 EDT 2025 Fri Feb 21 02:46:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Fault diagnosis BP neural network Cuckoo search algorithm Wavelet packet decomposition Rolling bearing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-84ea30269948de9245cbb6dbd92b53412792dd1c0ceab1393d75b83fa35f4dab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5213-1035 |
| PQID | 2623631364 |
| PQPubID | 54626 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2623631364 crossref_citationtrail_10_1007_s11042_021_11556_x crossref_primary_10_1007_s11042_021_11556_x springer_journals_10_1007_s11042_021_11556_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220100 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Yan, Jia (CR27) 2018; 313 Ali, Fnaiech, Saidi (CR1) 2015; 89 Tyagi, Panigrahi (CR22) 2017; 4 Ouaarab, Ahiod, Yang (CR16) 2014; 24 Hemanth, Anitha, Son (CR11) 2018; 68 Chen, Gryllias, Li (CR8) 2019; 33 Xiaomei, Lei, Yiping (CR24) 2019; 44 Yi, Xu, Chen (CR30) 2014; 1 Xingxing, Changqing, Juanjuan (CR26) 2018; 435 Zhenyou, Yi, Kesheng (CR34) 2013; 24 Shuwei (CR21) 2018; 1 Yang, Deb (CR28) 2010; 1 Yang, Tang, Wang (CR29) 2019; 39 Elfahham (CR9) 2019; 58 Cai, Qian, Fu (CR5) 2020; 166 Lei, Rui, Huili (CR14) 2011; 42 Rajakarunakaran, Venkumar, Devaraj (CR18) 2008; 8 Boying, Peng, Li (CR4) 2019; 40 CR2 Sasikala, Juliet (CR19) 2019; 78 Xing, Wang, Shi (CR25) 2016; 66–67 CR3 CR6 Wang, Zhang, Wu (CR23) 2016; 94 Shengxue, Hongjun, Zhigang (CR20) 2015; 46 Zhiqiang, Geng, Su (CR35) 2017; 36 Changqing, Yumei, Jun (CR7) 2018; 76 ElSaid, El Jamiy, Higgins (CR10) 2018; 73 Jarusek, Volna, Kotyrba (CR13) 2019; 116 Zhang, Shifei, Weikuan (CR32) 2019; 85 Lili, Fuqi (CR15) 2015; 44 Ismail, Jeng, Zhang (CR12) 2013; 26 Yu (CR31) 2012; 61 Pengyu, Zeyong, Chunrong (CR17) 2019; 42 Zhang, Ding, Jia (CR33) 2019; 85 J Sasikala (11556_CR19) 2019; 78 J Yang (11556_CR29) 2019; 39 JH Yi (11556_CR30) 2014; 1 W Shuwei (11556_CR21) 2018; 1 A Ouaarab (11556_CR16) 2014; 24 S Tyagi (11556_CR22) 2017; 4 S Rajakarunakaran (11556_CR18) 2008; 8 J Xingxing (11556_CR26) 2018; 435 Z Zhenyou (11556_CR34) 2013; 24 DJ Hemanth (11556_CR11) 2018; 68 JB Ali (11556_CR1) 2015; 89 Z Boying (11556_CR4) 2019; 40 C Pengyu (11556_CR17) 2019; 42 Z Zhang (11556_CR32) 2019; 85 T Lili (11556_CR15) 2015; 44 11556_CR3 Xu Xiaomei (11556_CR24) 2019; 44 XS Yang (11556_CR28) 2010; 1 11556_CR2 S Wang (11556_CR23) 2016; 94 C Cai (11556_CR5) 2020; 166 X Yan (11556_CR27) 2018; 313 11556_CR6 YF Xing (11556_CR25) 2016; 66–67 S Zhiqiang (11556_CR35) 2017; 36 Z Chen (11556_CR8) 2019; 33 S Changqing (11556_CR7) 2018; 76 A Ismail (11556_CR12) 2013; 26 H Lei (11556_CR14) 2011; 42 J Yu (11556_CR31) 2012; 61 R Jarusek (11556_CR13) 2019; 116 T Shengxue (11556_CR20) 2015; 46 Z Zhang (11556_CR33) 2019; 85 Y Elfahham (11556_CR9) 2019; 58 A ElSaid (11556_CR10) 2018; 73 |
| References_xml | – volume: 24 start-page: 1659 issue: 7/8 year: 2014 end-page: 1669 ident: CR16 article-title: Discrete cuckoo search algorithm for the travelling salesman problem publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1402-2 – volume: 40 start-page: 719 issue: 03 year: 2019 end-page: 724 ident: CR4 article-title: Job scheduling algorithm based on hybrid parallel cuckoo search publication-title: Comput Eng Des – volume: 33 start-page: 106272 year: 2019 ident: CR8 article-title: Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.106272 – volume: 44 start-page: 65 issue: 03 year: 2015 end-page: 68 ident: CR15 article-title: Fault diagnosis for rolling bearing based on BP neural network of genetic algorithm publication-title: Mach Des Manuf Eng – volume: 76 start-page: 170 year: 2018 end-page: 184 ident: CR7 article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.09.010 – ident: CR2 – volume: 8 start-page: 740 issue: 1 year: 2008 end-page: 748 ident: CR18 article-title: Artificial neural network approach for fault detection in rotary system publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.06.002 – volume: 1 start-page: 69 year: 2018 ident: CR21 article-title: Application of wavelet transform in fault signal analysis of rolling bearings publication-title: J Shanxi Datong Univ – volume: 1 start-page: 878262 year: 2014 ident: CR30 article-title: Novel back propagation optimization by cuckoo search algorithm publication-title: Sci World J – volume: 85 start-page: 254 year: 2019 end-page: 268 ident: CR32 article-title: A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.06.017 – volume: 68 start-page: 170 year: 2018 end-page: 180 ident: CR11 article-title: Brain signal based human emotion analysis by circular back propagation and Deep Kohonen Neural Networks publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2018.04.006 – volume: 42 start-page: 33 issue: 12 year: 2019 end-page: 36 ident: CR17 article-title: Fault diagnosis of rolling bearings based on IBA optimized BP neural network publication-title: Electron Meas Technol – volume: 61 start-page: 2200 issue: 8 year: 2012 ident: CR31 article-title: Health condition monitoring of machines based on Hidden Markov Model and contribution analysis publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2184015 – ident: CR6 – volume: 4 start-page: 305 issue: 4 year: 2017 end-page: 317 ident: CR22 article-title: An improved envelope detection method using particle swarm optimisation for rolling element bearing fault diagnosis publication-title: J Comput Des Eng – volume: 26 start-page: 2305 issue: 10 year: 2013 end-page: 2314 ident: CR12 article-title: An optimised product-unit neural network with a novel PSO-BP hybrid training algorithm: applications to load–deformation analysis of axially loaded piles publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.04.007 – volume: 89 start-page: 16 year: 2015 end-page: 27 ident: CR1 article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals publication-title: Appl Acoust doi: 10.1016/j.apacoust.2014.08.016 – volume: 44 start-page: 1365 issue: 2 year: 2019 end-page: 1377 ident: CR24 article-title: Active control on path following and lateral stability for truck–trailer combinations publication-title: Arab J Sci Eng doi: 10.1007/s13369-018-3527-1 – volume: 435 start-page: 36 year: 2018 end-page: 55 ident: CR26 article-title: Initial center frequency-guided VMD for fault diagnosis of rotating machines publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.07.039 – volume: 24 start-page: 1213 issue: 6 year: 2013 end-page: 1227 ident: CR34 article-title: Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network publication-title: J Intell Manuf doi: 10.1007/s10845-012-0657-2 – volume: 78 start-page: 482 year: 2019 end-page: 492 ident: CR19 article-title: Optimized vessel detection in marine environment using hybrid adaptive cuckoo search algorithm publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.08.009 – volume: 85 start-page: 254 year: 2019 end-page: 268 ident: CR33 article-title: A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.06.017 – volume: 116 start-page: 150 year: 2019 end-page: 165 ident: CR13 article-title: Photomontage detection using steganography technique based on a neural network publication-title: Neural Netw doi: 10.1016/j.neunet.2019.03.015 – volume: 46 start-page: 127 issue: 01 year: 2015 end-page: 134 ident: CR20 article-title: Fault diagnosis fusion method for analog circuits based on wavelet and neural network publication-title: J Central S Univ (Sci Technol) – ident: CR3 – volume: 58 start-page: 499 issue: 2 year: 2019 end-page: 506 ident: CR9 article-title: Estimation and prediction of construction cost index using neural networks, time series, and regression publication-title: Alex Eng J doi: 10.1016/j.aej.2019.05.002 – volume: 94 start-page: 629 year: 2016 end-page: 636 ident: CR23 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.103 – volume: 166 start-page: 491 year: 2020 end-page: 495 ident: CR5 article-title: Application of BAS-Elman neural network in prediction of blasting vibration velocity publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.02.059 – volume: 313 start-page: 47 year: 2018 end-page: 64 ident: CR27 article-title: A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.002 – volume: 39 start-page: 130 issue: 01 year: 2019 end-page: 135 ident: CR29 article-title: Roadheader anomaly detection method based on VSAPSO-BP under the single category learning publication-title: J Vib Meas Diagn – volume: 66–67 start-page: 875 year: 2016 end-page: 892 ident: CR25 article-title: Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.05.003 – volume: 42 start-page: 109 issue: 07 year: 2011 end-page: 115 ident: CR14 article-title: Comprehensive evaluation model of soil nutrient based on BP neural network publication-title: Trans Chin Soc Agric Mach – volume: 1 start-page: 330 issue: 4 year: 2010 end-page: 343 ident: CR28 article-title: Engineering optimisation by cuckoo search publication-title: J Math Model Numer Optim – volume: 73 start-page: 969 year: 2018 end-page: 991 ident: CR10 article-title: Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.09.013 – volume: 36 start-page: 64 issue: 24 year: 2017 end-page: 69 ident: CR35 article-title: Vibration prediction of a hydro-power house base on IFA-BPNN publication-title: J Vib Shock – volume: 78 start-page: 482 year: 2019 ident: 11556_CR19 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.08.009 – volume: 33 start-page: 106272 year: 2019 ident: 11556_CR8 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.106272 – volume: 26 start-page: 2305 issue: 10 year: 2013 ident: 11556_CR12 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.04.007 – volume: 61 start-page: 2200 issue: 8 year: 2012 ident: 11556_CR31 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2184015 – volume: 42 start-page: 109 issue: 07 year: 2011 ident: 11556_CR14 publication-title: Trans Chin Soc Agric Mach – volume: 94 start-page: 629 year: 2016 ident: 11556_CR23 publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.103 – volume: 313 start-page: 47 year: 2018 ident: 11556_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.002 – volume: 1 start-page: 878262 year: 2014 ident: 11556_CR30 publication-title: Sci World J – volume: 8 start-page: 740 issue: 1 year: 2008 ident: 11556_CR18 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.06.002 – volume: 44 start-page: 65 issue: 03 year: 2015 ident: 11556_CR15 publication-title: Mach Des Manuf Eng – volume: 1 start-page: 330 issue: 4 year: 2010 ident: 11556_CR28 publication-title: J Math Model Numer Optim – volume: 40 start-page: 719 issue: 03 year: 2019 ident: 11556_CR4 publication-title: Comput Eng Des – volume: 116 start-page: 150 year: 2019 ident: 11556_CR13 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.03.015 – volume: 435 start-page: 36 year: 2018 ident: 11556_CR26 publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.07.039 – ident: 11556_CR6 – volume: 24 start-page: 1213 issue: 6 year: 2013 ident: 11556_CR34 publication-title: J Intell Manuf doi: 10.1007/s10845-012-0657-2 – volume: 85 start-page: 254 year: 2019 ident: 11556_CR32 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.06.017 – volume: 39 start-page: 130 issue: 01 year: 2019 ident: 11556_CR29 publication-title: J Vib Meas Diagn – ident: 11556_CR3 doi: 10.1007/s11042-020-10486-4 – volume: 85 start-page: 254 year: 2019 ident: 11556_CR33 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.06.017 – volume: 36 start-page: 64 issue: 24 year: 2017 ident: 11556_CR35 publication-title: J Vib Shock – ident: 11556_CR2 doi: 10.1109/ICPADS47876.2019.00025 – volume: 46 start-page: 127 issue: 01 year: 2015 ident: 11556_CR20 publication-title: J Central S Univ (Sci Technol) – volume: 1 start-page: 69 year: 2018 ident: 11556_CR21 publication-title: J Shanxi Datong Univ – volume: 44 start-page: 1365 issue: 2 year: 2019 ident: 11556_CR24 publication-title: Arab J Sci Eng doi: 10.1007/s13369-018-3527-1 – volume: 24 start-page: 1659 issue: 7/8 year: 2014 ident: 11556_CR16 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1402-2 – volume: 4 start-page: 305 issue: 4 year: 2017 ident: 11556_CR22 publication-title: J Comput Des Eng – volume: 76 start-page: 170 year: 2018 ident: 11556_CR7 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.09.010 – volume: 68 start-page: 170 year: 2018 ident: 11556_CR11 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2018.04.006 – volume: 42 start-page: 33 issue: 12 year: 2019 ident: 11556_CR17 publication-title: Electron Meas Technol – volume: 58 start-page: 499 issue: 2 year: 2019 ident: 11556_CR9 publication-title: Alex Eng J doi: 10.1016/j.aej.2019.05.002 – volume: 89 start-page: 16 year: 2015 ident: 11556_CR1 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2014.08.016 – volume: 166 start-page: 491 year: 2020 ident: 11556_CR5 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.02.059 – volume: 66–67 start-page: 875 year: 2016 ident: 11556_CR25 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.05.003 – volume: 73 start-page: 969 year: 2018 ident: 11556_CR10 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.09.013 |
| SSID | ssj0016524 |
| Score | 2.3740842 |
| Snippet | In order to improve the accuracy of rolling bearing fault diagnosis in mechanical equipment, a new fault diagnosis method based on back propagation neural... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1567 |
| SubjectTerms | Algorithms Back propagation Back propagation networks Computer Communication Networks Computer Science Data Structures and Information Theory Decomposition Energy value Fault diagnosis Fault location Feature extraction Frequencies Multimedia Information Systems Neural networks Propagation Roller bearings Search algorithms Special Purpose and Application-Based Systems Wave propagation |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yL3rwYypOp-TgTQNr03TJcYhjCHpysFtpvnRsa8fWgfrX-9Kmm4oKnlpomob-8j6SvPd7CF05RhFhqCXG7b-BlhREGs6IDaliUhgwES7B-eExHgyj-xEb-aSwZR3tXh9Jlpp6k-wWuFQSF1IAXgyLCXiO28zRecEsHoa99dlBzHwpW94hYA8Dnyrzcx9fzdHGx_x2LFpam_4B2vNuIu5VuB6iLZM10X5dggF7iWyi3U98gkdo3k9X0wLrKnxuvMS5xYuKdRtLmNLlFcyWxnkGN2qCYSigUUp0sKO2hG9mVWA4zkGZzMbv0Fi-YbVSkzzHlVzgdPqcL8bFy-wYDft3T7cD4ksqEAWyVhAemZTCskuIiGsDay-mpIy11CKUDAyaoxPUOlAdZVIJwFHdZZJTm1JmI51KeoIaWZ6ZU4SFFVzEqaEq0hG3knPR4VJJ3rWBBi-whYL6zybK8427shfTZMOU7NBIAI2kRCN5baHr9Tvzim3jz9btGrDES94yCcGfi2lA46iFbmoQN49_7-3sf83P0U7oMiHK3Zg2ahSLlbkA_6SQl-V0_AChKd1W priority: 102 providerName: Springer Nature |
| Title | Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm |
| URI | https://link.springer.com/article/10.1007/s11042-021-11556-x https://www.proquest.com/docview/2623631364 |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-C9gIHxtgQHVD5wI1Za-I42AeECmpBm6jQtEpwiuKPAKIkXZtKjL-e58ShbNI4JUqcD_nn92H7vd8DOHCMItKyjFq3_oZaUlJlBadZyDRX0qKJcAnOl6P4Yhx9v-bXKzBqcmFcWGWjEytFbQrt1si_hWinYxawODqZ_qauapTbXW1KaKS-tII5rijGVqEdOmasFrRPB6Orn6_7CjH3ZW5Fj6KtDHwaTZ1MF7hUFReygF4Sj-nT36Zq6X_-s2VaWaLhJmx4F5L0a8w_worNt-BDU56BeGndgvU3XIOfYDpMF5OSmDq07n5OiozMakZuonC4V0c0aYYUOZ7oB4K_gtqmQo442kv8Zl4HjZMCFc3j_TM2Vn-IXuiHoiC1zJB0covdVt49fobxcPDr7IL6cgtUoxyWVEQ2ZTglkzISxuK8jGulYqOMDBVHY-eoBo0JdE_bVCGozBxxJViWMp5FJlVsG1p5kdsdIDKTQsapZToykciUELInlFbiKAsMeogdCJqeTbTnInclMSbJkkXZoZEgGkmFRvLUgcPXZ6Y1E8e7rfcawBIvlfNkOYY68LUBcXn7_2_78v7bdmEtdFkR1crMHrTK2cLuo69Sqi6siuF5F9r985sfg64fjnh1HPZfAJ6s6dk |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcCqWt2PKoD-2ptbqJ7WAfUFUeq6XAqqpA4pbGjxTEkixsVkB_HL-t48Rh20rlximRkjiJZ_TNjD3zDcA7zyiiHMup8-tviJKKaicFzWNmhFYOTYQvcD4cJP1j_vVEnMzAXVsL49MqW0ysgdqWxq-Rf4rRTicsYgn_PLqkvmuU311tW2hkobWC3awpxkJhx767vcYQbry5t4Pyfh_Hvd2j7T4NXQaoQfWrqOQuYxiJKMWldRiOCKN1YrVVsRaI8Z5hz9rIdI3LNP4LsxtCS5ZnTOTcZprhuE9gjjOuMPib29odfPt-v4-RiNBWV3Yp2uYolO00xXuRL43xKRLolYmE3vxtGqf-7j9btLXl6y3C8-Cyki-Njr2AGVcswULbDoIEdFiC-T-4DV_CqJdNhhWxTSrf2ZiUOblqGMCJxnmrj2hCLSkLPDHnBD8F0a3WFOJpNvGdRZOkTkoEtouzX3izviVmYs7LkjSTT7LhTxRTdXrxCo4fZeJfw2xRFm4ZiMqVVEnmmOGWy1xLqbpSGy038siiR9qBqJ3Z1ATuc9-CY5hOWZu9NFKURlpLI73pwIf7Z0YN88eDd6-2AksDCozTqc524GMrxOnl_4_25uHR3sLT_tHhQXqwN9hfgWexr8ioV4VWYba6mrg19JMqvR6UkcCPx9b_3836I_0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xkBAcWkpBLOXhQzlRi00cZ-1DVVVAgFIQhyJxC_GrRSzJwmZV6E_rr-s4DxYqwY1TIsVxEs-XmbE98w3AR88oIi1z1Pr1N9SSkiorOHUh01xJiybCJzgfn8QHZ9G3c34-AX_bXBgfVtnqxEpRm0L7NfLtEO10zAIWR9uuCYs43U2-DG6oryDld1rbcho1RI7s_W-cvg0_H-6irDfDMNn7sXNAmwoDVCP0SioimzGchUgZCWNxKsK1UrFRRoaKo3737HrGBLqrbabwO5jpcSWYyxh3kckUw34nYbrnWdx9lnqy_7CDEfOmoK7oUrTKQZOwU6ftBT4pxgdHoD_GY3r31CiOPd3_Nmcrm5fMw5vGWSVfa3S9gwmbL8DbthAEafTCAsw9YjV8D4MkG_VLYuogvsshKRy5rbm_icJRq45oPA0pcjzRVwRfBfVahRHiCTbxmXkdnk4KVGnXl3-wsboneqSvioLUQ0-y_k8USvnrehHOXmXYl2AqL3K7DEQ6KWScWaYjEwmnhJBdobQSPRcY9EU7ELQjm-qG9dwX3-inY75mL40UpZFW0kjvOrD1cM-g5vx4sfVqK7C0-f-H6RitHfjUCnF8-fneVl7ubQNmEPXp98OTow8wG_pUjGo5aBWmytuRXUMHqVTrFRIJXLw29P8Bz4Ahlw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+of+rolling+bearing+based+on+back+propagation+neural+network+optimized+by+cuckoo+search+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Xiao%2C+Maohua&rft.au=Liao%2C+Yabing&rft.au=Bartos%2C+Petr&rft.au=Filip%2C+Martin&rft.date=2022-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=2&rft.spage=1567&rft.epage=1587&rft_id=info:doi/10.1007%2Fs11042-021-11556-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_021_11556_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |