Elephant herding optimization using dynamic topology and biogeography-based optimization based on learning for numerical optimization
With the increasing complexity of optimization problems in the real world, more and more intelligent algorithms are used to solve these problems. Elephant herding optimization (EHO), a recently proposed metaheuristic algorithm, is based on the nomadic habits of elephants on the grassland. The herd i...
        Saved in:
      
    
          | Published in | Engineering with computers Vol. 38; no. Suppl 2; pp. 1585 - 1613 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.06.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0177-0667 1435-5663  | 
| DOI | 10.1007/s00366-021-01293-y | 
Cover
| Abstract | With the increasing complexity of optimization problems in the real world, more and more intelligent algorithms are used to solve these problems. Elephant herding optimization (EHO), a recently proposed metaheuristic algorithm, is based on the nomadic habits of elephants on the grassland. The herd is divided into multiple clans, each individual drawing closer to the patriarchs (clan updating operator), and the adult males are separated during puberty (separating operator). Biogeography-based optimization (BBO) is inspired by the principles of biogeography, and finally achieves an equilibrium state by species migration and drifting between geographical regions. To solve the numerical optimization problems, this paper proposes an improved elephant herding optimization using dynamic topology and biogeography-based optimization based on learning, named biogeography-based learning elephant herding optimization (BLEHO). In BLEHO, we change the topological structure of the population by dynamically changing the number of clans of the elephants. For the updating of each individual, we use the update of the operator based on biogeography-based learning or the operator based on EHO. In the separating phase, we set the separation probability according to the number of clans, and adopt a new separation operator to carry out the separation operation. Finally, through elitism strategy, a certain number of individuals are preserved directly to the next generation without being processed, thus ensuring a better evolutionary process for the population. To verify the performance of BLEHO, we used the benchmarks provided by IEEE CEC 2014 for the test. The experimental results were compared with some classical algorithms (ABC, ACO, BBO, DE, EHO, GA, and PSO) and the most advanced algorithms (BBKH, BHCS, CCS, HHO, PPSO, SCA, and VNBA) and analyzed by Friedman rank test. Finally, we also applied BLEHO to the simple traveling salesman problem (TSP). The results show that BLEHO has better performance than other methods. | 
    
|---|---|
| AbstractList | With the increasing complexity of optimization problems in the real world, more and more intelligent algorithms are used to solve these problems. Elephant herding optimization (EHO), a recently proposed metaheuristic algorithm, is based on the nomadic habits of elephants on the grassland. The herd is divided into multiple clans, each individual drawing closer to the patriarchs (clan updating operator), and the adult males are separated during puberty (separating operator). Biogeography-based optimization (BBO) is inspired by the principles of biogeography, and finally achieves an equilibrium state by species migration and drifting between geographical regions. To solve the numerical optimization problems, this paper proposes an improved elephant herding optimization using dynamic topology and biogeography-based optimization based on learning, named biogeography-based learning elephant herding optimization (BLEHO). In BLEHO, we change the topological structure of the population by dynamically changing the number of clans of the elephants. For the updating of each individual, we use the update of the operator based on biogeography-based learning or the operator based on EHO. In the separating phase, we set the separation probability according to the number of clans, and adopt a new separation operator to carry out the separation operation. Finally, through elitism strategy, a certain number of individuals are preserved directly to the next generation without being processed, thus ensuring a better evolutionary process for the population. To verify the performance of BLEHO, we used the benchmarks provided by IEEE CEC 2014 for the test. The experimental results were compared with some classical algorithms (ABC, ACO, BBO, DE, EHO, GA, and PSO) and the most advanced algorithms (BBKH, BHCS, CCS, HHO, PPSO, SCA, and VNBA) and analyzed by Friedman rank test. Finally, we also applied BLEHO to the simple traveling salesman problem (TSP). The results show that BLEHO has better performance than other methods. | 
    
| Author | Li, Wei Wang, Gai-Ge  | 
    
| Author_xml | – sequence: 1 givenname: Wei surname: Li fullname: Li, Wei organization: Department of Computer Science and Technology, Ocean University of China – sequence: 2 givenname: Gai-Ge orcidid: 0000-0002-3295-8972 surname: Wang fullname: Wang, Gai-Ge email: gaigewang@gmail.com, gaigewang@163.com organization: Department of Computer Science and Technology, Ocean University of China  | 
    
| BookMark | eNp9kEtPwzAQhC0EEm3hD3CKxNmwtpM4PqKqPKRKXOBsObGTukrtYKeHcOd_kz4kVA49rTSab3Z3pujSeWcQuiPwQAD4YwRgeY6BEgyECoaHCzQhKctwlufsEk2AcI4hz_k1msa4BiAMQEzQz6I13Uq5PlmZoK1rEt_1dmO_VW-9S7ZxJ-nBqY2tkt53vvXNkCink9L6xvgmqG414FJFo0_Ro-SS1qjgdjG1D4nbbkywlWpPzDfoqlZtNLfHOUOfz4uP-Stevr-8zZ-WuGJE9LhIGSUlE8qUwKmuq4xroBnPi6IY_xcZIUBrkfGUVCKttBa6ZBxSrU2mmaJshu4PuV3wX1sTe7n22-DGlZLmPCsoL0QxuoqDqwo-xmBqWdl-f2cflG0lAbkrXR5Kl2Ppcl-6HEaU_kO7YDcqDOchdoDiaHaNCX9XnaF-AUYDmno | 
    
| CitedBy_id | crossref_primary_10_1007_s10462_024_10786_3 crossref_primary_10_3390_s21124060 crossref_primary_10_1007_s00521_021_06262_6 crossref_primary_10_3390_app131910850 crossref_primary_10_1016_j_engappai_2023_105819 crossref_primary_10_1038_s41598_022_06718_2 crossref_primary_10_1016_j_ijcce_2022_09_001 crossref_primary_10_1080_0305215X_2021_2024815 crossref_primary_10_1007_s11047_022_09920_3 crossref_primary_10_1007_s10489_021_03020_y crossref_primary_10_1109_ACCESS_2023_3298559 crossref_primary_10_1155_2021_9952606 crossref_primary_10_3390_math10152785 crossref_primary_10_1016_j_asoc_2023_110514 crossref_primary_10_1038_s41598_022_05112_2 crossref_primary_10_1038_s41598_024_78589_8 crossref_primary_10_1007_s10586_022_03644_w crossref_primary_10_1016_j_suscom_2025_101082 crossref_primary_10_3390_math12030435 crossref_primary_10_1007_s00366_023_01939_z crossref_primary_10_1142_S0218001423550029 crossref_primary_10_1080_10255842_2022_2149263 crossref_primary_10_1007_s00366_023_01829_4 crossref_primary_10_3390_pr10040671 crossref_primary_10_1007_s13042_022_01642_3 crossref_primary_10_32604_cmc_2023_038640 crossref_primary_10_1016_j_eswa_2023_120732 crossref_primary_10_1109_TIA_2023_3249147 crossref_primary_10_1002_int_22658 crossref_primary_10_1007_s11831_021_09562_1 crossref_primary_10_1007_s00500_022_07470_5 crossref_primary_10_1016_j_ress_2023_109297 crossref_primary_10_1007_s10586_023_04036_4 crossref_primary_10_1155_2021_3946958  | 
    
| Cites_doi | 10.1016/j.jpdc.2016.10.011 10.1016/j.ins.2010.05.035 10.1016/j.future.2018.06.056 10.1016/j.solener.2019.01.025 10.1016/j.image.2015.10.001 10.1016/j.ins.2018.10.005 10.1007/s00707-009-0270-4 10.1109/TFUZZ.2020.3003506 10.1007/s00500-016-2307-7 10.1038/scientificamerican0792-66 10.1016/j.cnsns.2012.05.010 10.1007/s12293-016-0212-3 10.1016/j.ins.2020.02.066 10.3390/math8091415 10.1016/j.sigpro.2018.02.032 10.1007/s00521-015-1874-3 10.1007/s00366-017-0562-6 10.1016/j.compeleceng.2018.02.049 10.1016/j.advengsoft.2015.01.010 10.1007/s00500-018-3536-8 10.1016/j.future.2018.07.047 10.1007/s10845-015-1182-x 10.1016/j.asoc.2016.04.022 10.1016/j.eswa.2017.12.039 10.1007/s11227-016-1806-8 10.1016/j.ymssp.2018.07.034 10.1016/j.neucom.2012.09.049 10.1016/j.ins.2017.02.021 10.1109/TCYB.2019.2908485 10.1007/s00366-018-0631-5 10.1007/s10898-007-9149-x 10.1016/j.future.2018.03.020 10.1016/j.apm.2013.10.052 10.1109/3477.484436 10.1109/ICEC.1996.542711 10.1504/IJBIC.2016.081335 10.1109/TCYB.2014.2356200 10.1177/1687814018817184 10.1049/iet-ipr.2017.0939 10.1016/j.future.2019.07.026 10.1016/j.image.2018.01.002 10.1109/ACCESS.2018.2838568 10.1109/ACCESS.2019.2904679 10.1109/ACCESS.2018.2809445 10.1016/j.eswa.2018.08.012 10.1007/s00500-015-1726-1 10.1504/IJBIC.2018.090080 10.1016/j.ins.2013.12.001 10.1109/SAMI.2018.8324842 10.1109/TELFOR.2017.8249469 10.3390/s18092849 10.1016/j.future.2019.02.028 10.1016/j.apm.2016.09.020 10.1016/j.advengsoft.2013.12.007 10.1016/j.sigpro.2017.08.018 10.1016/j.asoc.2018.02.049 10.1126/science.220.4598.671 10.3390/math7050395 10.1016/j.compeleceng.2017.07.023 10.1016/j.ins.2017.08.047 10.1109/CEC.2016.7744003 10.1016/j.ast.2015.11.040 10.1016/j.ins.2014.01.019 10.1016/j.knosys.2014.02.021 10.1177/0954406216675896 10.1109/ACCESS.2019.2901849 10.1016/j.neucom.2018.05.014 10.1109/TEVC.2008.919004 10.1166/asem.2012.1223 10.1177/1687814015624832 10.1109/TII.2017.2748220 10.1109/4235.585893 10.1007/s00521-015-1923-y 10.1016/j.future.2018.06.008 10.1016/j.swevo.2018.12.001 10.1007/s00500-010-0591-1 10.1109/NABIC.2009.5393690 10.1504/IJBIC.2018.093328 10.1007/978-1-4613-0303-9_33 10.1016/j.asoc.2017.12.002 10.1016/j.knosys.2015.12.022  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| DOI | 10.1007/s00366-021-01293-y | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering Computer Science  | 
    
| EISSN | 1435-5663 | 
    
| EndPage | 1613 | 
    
| ExternalDocumentID | 10_1007_s00366_021_01293_y | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-84321b39aeb072dfc57d02576888036951102f95741c94cdd9db3704dde5d3a23 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0177-0667 | 
    
| IngestDate | Wed Aug 13 06:13:11 EDT 2025 Wed Oct 01 04:55:36 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Fri Feb 21 02:49:09 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | Suppl 2 | 
    
| Keywords | Learning Benchmark functions Swarm intelligence Biogeography-based optimization Dynamic topology Elephant herding optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-84321b39aeb072dfc57d02576888036951102f95741c94cdd9db3704dde5d3a23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3295-8972 | 
    
| PQID | 2675827898 | 
    
| PQPubID | 326339 | 
    
| PageCount | 29 | 
    
| ParticipantIDs | proquest_journals_2675827898 crossref_citationtrail_10_1007_s00366_021_01293_y crossref_primary_10_1007_s00366_021_01293_y springer_journals_10_1007_s00366_021_01293_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-06-01 | 
    
| PublicationDateYYYYMMDD | 2022-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationSubtitle | An International Journal for Simulation-Based Engineering | 
    
| PublicationTitle | Engineering with computers | 
    
| PublicationTitleAbbrev | Engineering with Computers | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | Li, Yang, Wang, Lin (CR79) 2018; 97 Zhao, Qin, Zhang, Ma, Zhang, Song (CR81) 2019; 115 Tarkhaneh, Moser (CR18) 2019; 101 Kirkpatrick, Gelatt, Vecchi (CR3) 1983; 220 Yi, Wang, Wang (CR54) 2016; 8 Rizk-Allah, El-Sehiemy, Wang (CR33) 2018; 63 Ghasemi, Akbari, Rahimnejad, Razavi, Ghavidel, Li (CR64) 2019; 23 Ma (CR85) 2010; 180 Yi, Deb, Dong, Alavi, Wang (CR52) 2018; 88 Gong, Cai, Ling (CR76) 2010; 15 Fan, Li, Liu, Zhang (CR27) 2018; 143 Li, Lei, Alavi, Wang (CR74) 2020; 8 CR32 Mirjalili, Mirjalili, Lewis (CR9) 2014; 69 Dorigo, Maniezzo, Colorni (CR4) 1996; 26 Correia, Beko, da Silva Cruz, Tomic (CR87) 2018; 18 Wang, Chu, Mirjalili (CR23) 2016; 49 Chen, Tianfield, Du, Liu (CR77) 2016; 45 Simon (CR58) 2008; 12 Abdel-Basset, Zhou (CR49) 2018; 11 Tuba, Dolicanin-Djekic, Jovanovic, Simian, Tuba (CR72) 2019 Ismaeel, Elshaarawy, Houssein, Ismail, Hassanien (CR71) 2019; 7 Holland (CR1) 1992; 267 Cui, Sun, Wang, Xue, Chen (CR38) 2017; 103 Zhang, Wang, Chen (CR82) 2019; 7 Cheng, Wang, Jiang, Cao, Xiong (CR15) 2018; 89 CR5 CR8 CR7 Wang, Guo, Duan, Liu, Wang, Shao (CR24) 2012; 4 Sun, Miao, Gong, Zeng, Li, Wang (CR28) 2020; 50 Chen, Tianfield, Mei, Du, Liu (CR84) 2017; 21 Li, Guo, Huang, Li (CR26) 2018; 62 Wang, Lu, Dong, Zhao (CR42) 2016; 27 Glover, Laguna (CR2) 1998 Wang, Gandomi, Alavi (CR60) 2014; 38 CR86 Jafari, Salajegheh, Salajegheh (CR69) 2019; 35 Wolpert, Macready (CR88) 1997; 1 Li, Xiao, Zhang, Nan (CR25) 2015; 39 Wang, Deb, Gao, Coelho (CR57) 2016; 8 Liu, Gong, Meng, Chen, Wang (CR46) 2017; 394–395 Mirjalili (CR12) 2015; 83 Wang, Guo, Duan, Liu, Wang (CR40) 2012; 40 Sang, Pan, Duan, Li (CR19) 2015; 29 Mao, Feng, Liang (CR56) 2019; 117 Meena, Parashar, Swarnkar, Gupta, Niazi (CR70) 2017; 14 Zhang, Gao, Dong, Mao (CR83) 2018; 312 Zhang, Gong, Hu, Zhang (CR30) 2015; 148 Jian, Lam, Dong, Shen (CR41) 2015; 45 Abdel-Basset, Manogaran, El-Shahat, Mirjalili (CR17) 2018; 85 Wang, Deb, Cui (CR14) 2019; 31 Lv, Zhao, Wang, Fan (CR16) 2019; 91 Kaveh, Talatahari (CR13) 2010; 213 CR59 Mirjalili (CR65) 2016; 96 Srikanth, Panwar, Panigrahi, Herrera-Viedma, Sangaiah, Wang (CR44) 2018; 70 CR53 Wang, Deb, Gandomi, Zhang, Alavi (CR62) 2016; 20 Feng, Wang (CR47) 2018; 6 Pan, Sang, Duan, Gao (CR21) 2014; 62 Jian, Lam, Dong (CR39) 2014; 269 Liu, Zou (CR45) 2018; 12 Feng, Liu, Zhang, Yang, Yong (CR78) 2017; 41 Rizk-Allah, El-Sehiemy, Deb, Wang (CR50) 2017; 73 Zhang, Song, Gong (CR31) 2017; 418–419 Liu, Deng (CR36) 2018; 148 Wang, Cai, Cui, Min, Chen (CR37) 2020; 8 Fan, Xu, Liu, Ru (CR35) 2018; 6 Mao, He, Li, Yan (CR55) 2016; 231 Mao, Zheng, Mu, Zhao (CR43) 2013; 24 CR68 CR67 Wang (CR11) 2018; 10 CR22 CR66 Chen, Yu (CR61) 2019; 180 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR63) 2019; 97 Feng, Wang, Wang (CR48) 2018; 34 Gandomi, Alavi (CR10) 2012; 17 Jian, Lam, Dong (CR34) 2014; 262 Zhang, Wang, Li, Yeh, Jian, Dong (CR29) 2020; 522 Yi, Xing, Wang, Dong, Vasilakos, Alavi, Wang (CR51) 2020; 509 Ammu, Sivakumar, Rejimoan (CR75) 2013; 2 Sang, Pan, Li, Wang, Han, Gao, Duan (CR20) 2019; 44 Li, Guo, Li, Liu (CR73) 2019; 7 Karaboga, Basturk (CR6) 2007; 39 Zhang, Kang, Cheng, Wang (CR80) 2018; 67 G-G Wang (1293_CR60) 2014; 38 M Li (1293_CR25) 2015; 39 G-G Wang (1293_CR11) 2018; 10 AA Heidari (1293_CR63) 2019; 97 J Li (1293_CR73) 2019; 7 Q-K Pan (1293_CR21) 2014; 62 M Li (1293_CR26) 2018; 62 Z Cui (1293_CR38) 2017; 103 X Zhang (1293_CR82) 2019; 7 G Wang (1293_CR24) 2012; 4 L-L Li (1293_CR79) 2018; 97 1293_CR22 G Liu (1293_CR45) 2018; 12 W Mao (1293_CR55) 2016; 231 1293_CR66 H-Y Sang (1293_CR19) 2015; 29 1293_CR67 1293_CR68 RM Rizk-Allah (1293_CR50) 2017; 73 G-G Wang (1293_CR62) 2016; 20 Y Zhang (1293_CR29) 2020; 522 J Li (1293_CR74) 2020; 8 M Jafari (1293_CR69) 2019; 35 D Simon (1293_CR58) 2008; 12 X Chen (1293_CR61) 2019; 180 G Liu (1293_CR36) 2018; 148 Y Feng (1293_CR47) 2018; 6 J Sun (1293_CR28) 2020; 50 Q Feng (1293_CR78) 2017; 41 JH Holland (1293_CR1) 1992; 267 F Glover (1293_CR2) 1998 M Abdel-Basset (1293_CR17) 2018; 85 L Lv (1293_CR16) 2019; 91 G-G Wang (1293_CR23) 2016; 49 L Fan (1293_CR35) 2018; 6 1293_CR53 AH Gandomi (1293_CR10) 2012; 17 K Srikanth (1293_CR44) 2018; 70 RM Rizk-Allah (1293_CR33) 2018; 63 1293_CR59 S Mirjalili (1293_CR9) 2014; 69 H-Y Sang (1293_CR20) 2019; 44 K Liu (1293_CR46) 2017; 394–395 1293_CR5 Y Feng (1293_CR48) 2018; 34 J-H Yi (1293_CR52) 2018; 88 1293_CR7 S Kirkpatrick (1293_CR3) 1983; 220 1293_CR8 X Chen (1293_CR77) 2016; 45 M Jian (1293_CR41) 2015; 45 S Correia (1293_CR87) 2018; 18 M Jian (1293_CR34) 2014; 262 Q Zhang (1293_CR83) 2018; 312 P Ammu (1293_CR75) 2013; 2 X Chen (1293_CR84) 2017; 21 G-G Wang (1293_CR14) 2019; 31 W Gong (1293_CR76) 2010; 15 H Fan (1293_CR27) 2018; 143 1293_CR86 O Tarkhaneh (1293_CR18) 2019; 101 G-G Wang (1293_CR40) 2012; 40 E Tuba (1293_CR72) 2019 NK Meena (1293_CR70) 2017; 14 M Jian (1293_CR39) 2014; 269 J-H Yi (1293_CR51) 2020; 509 AA Ismaeel (1293_CR71) 2019; 7 H Ma (1293_CR85) 2010; 180 G-G Wang (1293_CR42) 2016; 27 F Zhao (1293_CR81) 2019; 115 J-H Yi (1293_CR54) 2016; 8 S Mirjalili (1293_CR65) 2016; 96 G-G Wang (1293_CR57) 2016; 8 1293_CR32 W Mao (1293_CR43) 2013; 24 A Kaveh (1293_CR13) 2010; 213 X Zhang (1293_CR80) 2018; 67 J Cheng (1293_CR15) 2018; 89 Y Zhang (1293_CR30) 2015; 148 Y Zhang (1293_CR31) 2017; 418–419 DH Wolpert (1293_CR88) 1997; 1 W Mao (1293_CR56) 2019; 117 M Ghasemi (1293_CR64) 2019; 23 D Karaboga (1293_CR6) 2007; 39 G-G Wang (1293_CR37) 2020; 8 S Mirjalili (1293_CR12) 2015; 83 M Dorigo (1293_CR4) 1996; 26 M Abdel-Basset (1293_CR49) 2018; 11  | 
    
| References_xml | – ident: CR22 – volume: 8 start-page: 20 issue: 1 year: 2020 end-page: 30 ident: CR37 article-title: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm publication-title: IEEE Trans Emerg Topics Comput – volume: 50 start-page: 3444 issue: 8 year: 2020 end-page: 3457 ident: CR28 article-title: Interval multi-objective optimization with memetic algorithms publication-title: IEEE Trans Cybern – volume: 27 start-page: 291 issue: 2 year: 2016 end-page: 303 ident: CR42 article-title: Self-adaptive extreme learning machine publication-title: Neural Comput Appl – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR9 article-title: Grey wolf optimizer publication-title: Adv Eng Softw – volume: 41 start-page: 630 year: 2017 end-page: 649 ident: CR78 article-title: Improved biogeography-based optimization with random ring topology and Powell's method publication-title: Appl Math Model – volume: 8 start-page: 1415 issue: 9 year: 2020 ident: CR74 article-title: Elephant herding optimization: variants, hybrids, and applications publication-title: Mathematics – ident: CR68 – volume: 39 start-page: 234 year: 2015 end-page: 248 ident: CR25 article-title: Reversible data hiding in encrypted images using cross division and additive homomorphism publication-title: Signal Process Image Commun – volume: 115 start-page: 329 year: 2019 end-page: 345 ident: CR81 article-title: A two-stage differential biogeography-based optimization algorithm and its performance analysis publication-title: Expert Syst Appl – volume: 20 start-page: 3349 issue: 9 year: 2016 end-page: 3362 ident: CR62 article-title: Chaotic cuckoo search publication-title: Soft Comput – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 ident: CR88 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput – volume: 23 start-page: 9701 issue: 19 year: 2019 end-page: 9718 ident: CR64 article-title: Phasor particle swarm optimization: a simple and efficient variant of PSO publication-title: Soft Comput – volume: 35 start-page: 781 issue: 3 year: 2019 end-page: 801 ident: CR69 article-title: An efficient hybrid of elephant herding optimization and cultural algorithm for optimal design of trusses publication-title: Eng Comput – volume: 31 start-page: 1995 issue: 7 year: 2019 end-page: 2014 ident: CR14 article-title: Monarch butterfly optimization publication-title: Neural Comput Appl – volume: 4 start-page: 550 issue: 6 year: 2012 end-page: 564 ident: CR24 article-title: Path planning for uninhabited combat aerial vehicle using hybrid meta-heuristic DE/BBO algorithm publication-title: Adv Sci Eng Med – volume: 101 start-page: 921 year: 2019 end-page: 939 ident: CR18 article-title: An improved differential evolution algorithm using Archimedean spiral and neighborhood search based mutation approach for cluster analysis publication-title: Fut Gen Comput Syst – start-page: 665 year: 2019 end-page: 673 ident: CR72 publication-title: Combined elephant herding optimization algorithm with k-means for data clustering, Information and Communication Technology for Intelligent Systems – ident: CR8 – volume: 63 start-page: 206 year: 2018 end-page: 222 ident: CR33 article-title: A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution publication-title: Appl Soft Comput – volume: 34 start-page: 621 issue: 3 year: 2018 end-page: 635 ident: CR48 article-title: Solving randomized time-varying knapsack problems by a novel global firefly algorithm publication-title: Eng Comput – volume: 67 start-page: 197 year: 2018 end-page: 214 ident: CR80 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Appl Soft Comput – volume: 262 start-page: 1 year: 2014 end-page: 14 ident: CR34 article-title: Facial-feature detection and localization based on a hierarchical scheme publication-title: Inf Sci – volume: 269 start-page: 60 year: 2014 end-page: 72 ident: CR39 article-title: Illumination-insensitive texture discrimination based on illumination compensation and enhancement publication-title: Inf Sci – volume: 231 start-page: 1560 issue: 8 year: 2016 end-page: 1578 ident: CR55 article-title: Bearing fault diagnosis with auto-encoder extreme learning machine: a comparative study publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci – volume: 11 start-page: 46 issue: 1 year: 2018 end-page: 53 ident: CR49 article-title: An elite opposition-flower pollination algorithm for a 0–1 knapsack problem publication-title: Int J Bio-Inspired Comput – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR63 article-title: Harris hawks optimization: algorithm and applications publication-title: Fut Gen Comput Syst – ident: CR67 – volume: 70 start-page: 243 year: 2018 end-page: 260 ident: CR44 article-title: Meta-heuristic framework: quantum inspired binary grey wolf optimizer for unit commitment problem publication-title: Comput Electr Eng – volume: 45 start-page: 71 year: 2016 end-page: 85 ident: CR77 article-title: Biogeography-based optimization with covariance matrix based migration publication-title: Appl Soft Comput – volume: 40 start-page: 901 issue: 5 year: 2012 end-page: 906 ident: CR40 article-title: The model and algorithm for the target threat assessment based on Elman_AdaBoost strong predictor publication-title: Acta Electron Sin – volume: 85 start-page: 129 year: 2018 end-page: 145 ident: CR17 article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem publication-title: Fut Gen Comput Syst – volume: 44 start-page: 64 year: 2019 end-page: 73 ident: CR20 article-title: Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion publication-title: Swarm Evol Comput – volume: 8 start-page: 1 issue: 1 year: 2016 end-page: 13 ident: CR54 article-title: Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem publication-title: Adv Mech Eng – ident: CR32 – volume: 267 start-page: 66 issue: 1 year: 1992 end-page: 72 ident: CR1 article-title: Genetic algorithms publication-title: Sci Am – volume: 103 start-page: 42 year: 2017 end-page: 52 ident: CR38 article-title: A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems publication-title: J Parallel Distrib Comput – volume: 91 start-page: 37 year: 2019 end-page: 47 ident: CR16 article-title: Multi-objective firefly algorithm based on compensation factor and elite learning publication-title: Fut Gen Comput Syst – ident: CR5 – volume: 213 start-page: 267 issue: 3–4 year: 2010 end-page: 289 ident: CR13 article-title: A novel heuristic optimization method: charged system search publication-title: Acta Mech – volume: 6 start-page: 10708 year: 2018 end-page: 10719 ident: CR47 article-title: Binary moth search algorithm for discounted 0–1 knapsack problem publication-title: IEEE Access – volume: 180 start-page: 192 year: 2019 end-page: 206 ident: CR61 article-title: Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters publication-title: Sol Energy – volume: 88 start-page: 571 year: 2018 end-page: 585 ident: CR52 article-title: An improved NSGA-III Algorithm with adaptive mutation operator for big data optimization problems publication-title: Fut Gen Comput Syst – volume: 89 start-page: 317 year: 2018 end-page: 334 ident: CR15 article-title: Cuckoo search algorithm with dynamic feedback information publication-title: Fut Gen Comput Syst – volume: 220 start-page: 671 issue: 4598 year: 1983 end-page: 680 ident: CR3 article-title: Optimization by simulated annealing publication-title: Science – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR65 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl-Based Syst – volume: 29 start-page: 1337 issue: 6 year: 2015 end-page: 1349 ident: CR19 article-title: An effective discrete invasive weed optimization algorithm for lot-streaming flowshop scheduling problems publication-title: J Intell Manuf – volume: 49 start-page: 231 year: 2016 end-page: 238 ident: CR23 article-title: Three-dimensional path planning for UCAV using an improved bat algorithm publication-title: Aerosp Sci Technol – volume: 6 start-page: 37261 year: 2018 end-page: 37271 ident: CR35 article-title: Semi-supervised community detection based on distance dynamics publication-title: IEEE Access – volume: 143 start-page: 28 year: 2018 end-page: 41 ident: CR27 article-title: Cryptanalysis of a colour image encryption using chaotic APFM nonlinear adaptive filter publication-title: Signal Process – volume: 7 start-page: 28810 year: 2019 end-page: 28825 ident: CR82 article-title: Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation publication-title: IEEE Access – volume: 509 start-page: 470 year: 2020 end-page: 487 ident: CR51 article-title: Behavior of crossover operators in NSGA-III for large-scale optimization problems publication-title: Inf Sci – volume: 45 start-page: 1575 issue: 8 year: 2015 end-page: 1586 ident: CR41 article-title: Visual-patch-attention-aware saliency detection publication-title: IEEE Trans Cybern – volume: 12 start-page: 702 issue: 6 year: 2008 end-page: 713 ident: CR58 article-title: Biogeography-based optimization publication-title: IEEE Trans Evol Comput – ident: CR66 – volume: 17 start-page: 4831 issue: 12 year: 2012 end-page: 4845 ident: CR10 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Commun Nonlinear Sci Numer Simul – volume: 7 start-page: 395 issue: 5 year: 2019 ident: CR73 article-title: Enhancing elephant herding optimization with novel individual updating strategies for large-scale optimization Problems publication-title: Mathematics – ident: CR53 – volume: 62 start-page: 164 year: 2018 end-page: 172 ident: CR26 article-title: Cryptanalysis of a chaotic image encryption scheme based on permutation-diffusion structure publication-title: Signal Process Image Commun – volume: 522 start-page: 1 year: 2020 end-page: 16 ident: CR29 article-title: Enhancing MOEA/D with information feedback models for large-scale many-objective optimization publication-title: Inf Sci – volume: 21 start-page: 7519 issue: 24 year: 2017 end-page: 7541 ident: CR84 article-title: Biogeography-based learning particle swarm optimization publication-title: Soft Comput – volume: 180 start-page: 3444 issue: 18 year: 2010 end-page: 3464 ident: CR85 article-title: An analysis of the equilibrium of migration models for biogeography-based optimization publication-title: Inf Sci – volume: 7 start-page: 34738 year: 2019 end-page: 34752 ident: CR71 article-title: Enhanced elephant herding optimization for global optimization publication-title: IEEE Access – volume: 24 start-page: 1613 issue: 7–8 year: 2013 end-page: 1625 ident: CR43 article-title: Uncertainty evaluation and model selection of extreme learning machine based on Riemannian metric publication-title: Neural Comput Appl – volume: 394–395 start-page: 88 year: 2017 end-page: 105 ident: CR46 article-title: Gesture segmentation based on a two-phase estimation of distribution algorithm publication-title: Inf Sci – volume: 8 start-page: 394 issue: 6 year: 2016 end-page: 409 ident: CR57 article-title: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour publication-title: Int J Bio-Inspired Comput – ident: CR86 – volume: 39 start-page: 459 issue: 3 year: 2007 end-page: 471 ident: CR6 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J Global Optim – volume: 418–419 start-page: 561 year: 2017 end-page: 574 ident: CR31 article-title: A return-cost-based binary firefly algorithm for feature selection publication-title: Inf Sci – volume: 14 start-page: 1029 issue: 3 year: 2017 end-page: 1039 ident: CR70 article-title: Improved elephant herding optimization for multiobjective DER accommodation in distribution systems publication-title: IEEE Trans Ind Inf – volume: 38 start-page: 2454 issue: 9–10 year: 2014 end-page: 2462 ident: CR60 article-title: An effective krill herd algorithm with migration operator in biogeography-based optimization publication-title: Appl Math Model – volume: 117 start-page: 293 year: 2019 end-page: 318 ident: CR56 article-title: A novel deep output kernel learning method for bearing fault structural diagnosis publication-title: Mech Syst Signal Process – volume: 148 start-page: 150 year: 2015 end-page: 157 ident: CR30 article-title: Feature selection algorithm based on bare bones particle swarm optimization publication-title: Neurocomputing – volume: 62 start-page: 69 year: 2014 end-page: 83 ident: CR21 article-title: An improved fruit fly optimization algorithm for continuous function optimization problems publication-title: Knowl-Based Syst – start-page: 2093 year: 1998 end-page: 2229 ident: CR2 publication-title: Tabu search, Handbook of Combinatorial Optimization – volume: 73 start-page: 1235 issue: 3 year: 2017 end-page: 1256 ident: CR50 article-title: A novel fruit fly framework for multi-objective shape design of tubular linear synchronous motor publication-title: J Supercomput – volume: 312 start-page: 27 year: 2018 end-page: 33 ident: CR83 article-title: WPD and DE/BBO-RBFNN for solution of rolling bearing fault diagnosis publication-title: Neurocomputing – volume: 15 start-page: 645 issue: 4 year: 2010 end-page: 665 ident: CR76 article-title: DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization publication-title: Soft Comput – volume: 26 start-page: 29 issue: 1 year: 1996 end-page: 41 ident: CR4 article-title: Ant system: optimization by a colony of cooperating agents publication-title: IEEE Trans Syst Man Cybern B Cybern – volume: 97 start-page: 290 year: 2018 end-page: 302 ident: CR79 article-title: Biogeography-based optimization based on population competition strategy for solving the substation location problem publication-title: Expert Syst Appl – ident: CR7 – ident: CR59 – volume: 18 start-page: 2849 issue: 9 year: 2018 ident: CR87 article-title: Elephant herding optimization for energy-based localization publication-title: Sensors – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: CR12 article-title: The ant lion optimizer publication-title: Adv Eng Softw – volume: 148 start-page: 314 year: 2018 end-page: 321 ident: CR36 article-title: Parametric active contour based on sparse decomposition for multi-objects extraction publication-title: Signal Process – volume: 12 start-page: 1413 issue: 8 year: 2018 end-page: 1422 ident: CR45 article-title: Level set evolution with sparsity constraint for object extraction publication-title: IET Image Proc – volume: 10 start-page: 151 issue: 2 year: 2018 end-page: 164 ident: CR11 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Comput – volume: 2 start-page: 154 issue: 1 year: 2013 end-page: 160 ident: CR75 article-title: Biogeography-based optimization-a survey publication-title: Int J Electron Comput Sci Eng – volume: 103 start-page: 42 year: 2017 ident: 1293_CR38 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2016.10.011 – volume: 180 start-page: 3444 issue: 18 year: 2010 ident: 1293_CR85 publication-title: Inf Sci doi: 10.1016/j.ins.2010.05.035 – volume: 89 start-page: 317 year: 2018 ident: 1293_CR15 publication-title: Fut Gen Comput Syst doi: 10.1016/j.future.2018.06.056 – volume: 180 start-page: 192 year: 2019 ident: 1293_CR61 publication-title: Sol Energy doi: 10.1016/j.solener.2019.01.025 – volume: 39 start-page: 234 year: 2015 ident: 1293_CR25 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2015.10.001 – volume: 509 start-page: 470 year: 2020 ident: 1293_CR51 publication-title: Inf Sci doi: 10.1016/j.ins.2018.10.005 – volume: 213 start-page: 267 issue: 3–4 year: 2010 ident: 1293_CR13 publication-title: Acta Mech doi: 10.1007/s00707-009-0270-4 – ident: 1293_CR22 doi: 10.1109/TFUZZ.2020.3003506 – volume: 21 start-page: 7519 issue: 24 year: 2017 ident: 1293_CR84 publication-title: Soft Comput doi: 10.1007/s00500-016-2307-7 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 1293_CR1 publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 1293_CR10 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.05.010 – volume: 10 start-page: 151 issue: 2 year: 2018 ident: 1293_CR11 publication-title: Memetic Comput doi: 10.1007/s12293-016-0212-3 – volume: 522 start-page: 1 year: 2020 ident: 1293_CR29 publication-title: Inf Sci doi: 10.1016/j.ins.2020.02.066 – volume: 8 start-page: 1415 issue: 9 year: 2020 ident: 1293_CR74 publication-title: Mathematics doi: 10.3390/math8091415 – volume: 148 start-page: 314 year: 2018 ident: 1293_CR36 publication-title: Signal Process doi: 10.1016/j.sigpro.2018.02.032 – volume: 27 start-page: 291 issue: 2 year: 2016 ident: 1293_CR42 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1874-3 – volume: 34 start-page: 621 issue: 3 year: 2018 ident: 1293_CR48 publication-title: Eng Comput doi: 10.1007/s00366-017-0562-6 – ident: 1293_CR53 doi: 10.1016/j.compeleceng.2018.02.049 – volume: 83 start-page: 80 year: 2015 ident: 1293_CR12 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – volume: 23 start-page: 9701 issue: 19 year: 2019 ident: 1293_CR64 publication-title: Soft Comput doi: 10.1007/s00500-018-3536-8 – volume: 91 start-page: 37 year: 2019 ident: 1293_CR16 publication-title: Fut Gen Comput Syst doi: 10.1016/j.future.2018.07.047 – volume: 29 start-page: 1337 issue: 6 year: 2015 ident: 1293_CR19 publication-title: J Intell Manuf doi: 10.1007/s10845-015-1182-x – volume: 2 start-page: 154 issue: 1 year: 2013 ident: 1293_CR75 publication-title: Int J Electron Comput Sci Eng – volume: 45 start-page: 71 year: 2016 ident: 1293_CR77 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.04.022 – volume: 97 start-page: 290 year: 2018 ident: 1293_CR79 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.12.039 – volume: 73 start-page: 1235 issue: 3 year: 2017 ident: 1293_CR50 publication-title: J Supercomput doi: 10.1007/s11227-016-1806-8 – volume: 117 start-page: 293 year: 2019 ident: 1293_CR56 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.07.034 – volume: 24 start-page: 1613 issue: 7–8 year: 2013 ident: 1293_CR43 publication-title: Neural Comput Appl – volume: 148 start-page: 150 year: 2015 ident: 1293_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.049 – start-page: 665 volume-title: Combined elephant herding optimization algorithm with k-means for data clustering, Information and Communication Technology for Intelligent Systems year: 2019 ident: 1293_CR72 – volume: 394–395 start-page: 88 year: 2017 ident: 1293_CR46 publication-title: Inf Sci doi: 10.1016/j.ins.2017.02.021 – volume: 50 start-page: 3444 issue: 8 year: 2020 ident: 1293_CR28 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2908485 – volume: 35 start-page: 781 issue: 3 year: 2019 ident: 1293_CR69 publication-title: Eng Comput doi: 10.1007/s00366-018-0631-5 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 1293_CR6 publication-title: J Global Optim doi: 10.1007/s10898-007-9149-x – volume: 85 start-page: 129 year: 2018 ident: 1293_CR17 publication-title: Fut Gen Comput Syst doi: 10.1016/j.future.2018.03.020 – volume: 38 start-page: 2454 issue: 9–10 year: 2014 ident: 1293_CR60 publication-title: Appl Math Model doi: 10.1016/j.apm.2013.10.052 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 1293_CR4 publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/3477.484436 – ident: 1293_CR59 doi: 10.1109/ICEC.1996.542711 – volume: 8 start-page: 394 issue: 6 year: 2016 ident: 1293_CR57 publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2016.081335 – volume: 45 start-page: 1575 issue: 8 year: 2015 ident: 1293_CR41 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2356200 – ident: 1293_CR32 doi: 10.1177/1687814018817184 – volume: 12 start-page: 1413 issue: 8 year: 2018 ident: 1293_CR45 publication-title: IET Image Proc doi: 10.1049/iet-ipr.2017.0939 – volume: 101 start-page: 921 year: 2019 ident: 1293_CR18 publication-title: Fut Gen Comput Syst doi: 10.1016/j.future.2019.07.026 – volume: 62 start-page: 164 year: 2018 ident: 1293_CR26 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2018.01.002 – volume: 6 start-page: 37261 year: 2018 ident: 1293_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2838568 – volume: 7 start-page: 34738 year: 2019 ident: 1293_CR71 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904679 – volume: 6 start-page: 10708 year: 2018 ident: 1293_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2809445 – volume: 115 start-page: 329 year: 2019 ident: 1293_CR81 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.012 – volume: 20 start-page: 3349 issue: 9 year: 2016 ident: 1293_CR62 publication-title: Soft Comput doi: 10.1007/s00500-015-1726-1 – volume: 11 start-page: 46 issue: 1 year: 2018 ident: 1293_CR49 publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2018.090080 – volume: 262 start-page: 1 year: 2014 ident: 1293_CR34 publication-title: Inf Sci doi: 10.1016/j.ins.2013.12.001 – ident: 1293_CR68 doi: 10.1109/SAMI.2018.8324842 – ident: 1293_CR67 doi: 10.1109/TELFOR.2017.8249469 – volume: 18 start-page: 2849 issue: 9 year: 2018 ident: 1293_CR87 publication-title: Sensors doi: 10.3390/s18092849 – volume: 97 start-page: 849 year: 2019 ident: 1293_CR63 publication-title: Fut Gen Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 41 start-page: 630 year: 2017 ident: 1293_CR78 publication-title: Appl Math Model doi: 10.1016/j.apm.2016.09.020 – volume: 69 start-page: 46 year: 2014 ident: 1293_CR9 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 143 start-page: 28 year: 2018 ident: 1293_CR27 publication-title: Signal Process doi: 10.1016/j.sigpro.2017.08.018 – volume: 67 start-page: 197 year: 2018 ident: 1293_CR80 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.02.049 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 1293_CR3 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 7 start-page: 395 issue: 5 year: 2019 ident: 1293_CR73 publication-title: Mathematics doi: 10.3390/math7050395 – volume: 70 start-page: 243 year: 2018 ident: 1293_CR44 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2017.07.023 – volume: 418–419 start-page: 561 year: 2017 ident: 1293_CR31 publication-title: Inf Sci doi: 10.1016/j.ins.2017.08.047 – ident: 1293_CR66 doi: 10.1109/CEC.2016.7744003 – volume: 49 start-page: 231 year: 2016 ident: 1293_CR23 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2015.11.040 – volume: 269 start-page: 60 year: 2014 ident: 1293_CR39 publication-title: Inf Sci doi: 10.1016/j.ins.2014.01.019 – volume: 62 start-page: 69 year: 2014 ident: 1293_CR21 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.02.021 – volume: 8 start-page: 20 issue: 1 year: 2020 ident: 1293_CR37 publication-title: IEEE Trans Emerg Topics Comput – volume: 231 start-page: 1560 issue: 8 year: 2016 ident: 1293_CR55 publication-title: Proc Inst Mech Eng Part C J Mech Eng Sci doi: 10.1177/0954406216675896 – volume: 7 start-page: 28810 year: 2019 ident: 1293_CR82 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901849 – volume: 312 start-page: 27 year: 2018 ident: 1293_CR83 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.014 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 1293_CR58 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.919004 – ident: 1293_CR5 – volume: 4 start-page: 550 issue: 6 year: 2012 ident: 1293_CR24 publication-title: Adv Sci Eng Med doi: 10.1166/asem.2012.1223 – volume: 8 start-page: 1 issue: 1 year: 2016 ident: 1293_CR54 publication-title: Adv Mech Eng doi: 10.1177/1687814015624832 – volume: 14 start-page: 1029 issue: 3 year: 2017 ident: 1293_CR70 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2748220 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 1293_CR88 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 31 start-page: 1995 issue: 7 year: 2019 ident: 1293_CR14 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1923-y – volume: 88 start-page: 571 year: 2018 ident: 1293_CR52 publication-title: Fut Gen Comput Syst doi: 10.1016/j.future.2018.06.008 – volume: 44 start-page: 64 year: 2019 ident: 1293_CR20 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.12.001 – volume: 40 start-page: 901 issue: 5 year: 2012 ident: 1293_CR40 publication-title: Acta Electron Sin – volume: 15 start-page: 645 issue: 4 year: 2010 ident: 1293_CR76 publication-title: Soft Comput doi: 10.1007/s00500-010-0591-1 – ident: 1293_CR7 doi: 10.1109/NABIC.2009.5393690 – ident: 1293_CR8 doi: 10.1504/IJBIC.2018.093328 – ident: 1293_CR86 – start-page: 2093 volume-title: Tabu search, Handbook of Combinatorial Optimization year: 1998 ident: 1293_CR2 doi: 10.1007/978-1-4613-0303-9_33 – volume: 63 start-page: 206 year: 2018 ident: 1293_CR33 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.12.002 – volume: 96 start-page: 120 year: 2016 ident: 1293_CR65 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022  | 
    
| SSID | ssj0013009 | 
    
| Score | 2.473149 | 
    
| Snippet | With the increasing complexity of optimization problems in the real world, more and more intelligent algorithms are used to solve these problems. Elephant... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1585 | 
    
| SubjectTerms | Algorithms Ant colony optimization Biogeography CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Grasslands Heuristic methods Learning Math. Applications in Chemistry Mathematical and Computational Engineering Optimization Original Article Rank tests Separation Systems Theory Topology optimization Traveling salesman problem  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH9BuOjBD9SIounBmzZu67aygzFqIMREYowk3JZ27dAEBwoc-AP8v-3bOhATvW5tD3197_3a9_EDOPfdSLek4jRJ0oAaj-dQIdOQ6lBKpvxU8hBrhx97YbfvPwyCQQV6ZS0MplWWNjE31Gqc4Bv5lYfIFss2WzeTD4qsURhdLSk0hKVWUNd5i7ENqHnYGasKtbt27-l5FVdwiqQPl2PSV8htGU1eTIetWTAhF6_XxgnSxbqrWuHPXyHT3BN1dmHbQkhyW8h8Dyo6q8OOhZPEKuu0Dls_eg3uw1d7pCevZh-JkRI6LDI21uLdlmESzH8fElXw05NZQZ2wICJTRL6Nh9p2tqbo9dT6VPspI5aBYkgMECbZvIgFjdYGH0C_036571LLwUATo5wz2vKZ50oWCS0d7qk0Cbhy8kuKUXwWGnxmEEoaBQaYJJGfKBUpybjjG6sZKCY8dgjVbJzpIyAG-0ipAm3uMMwXbiRakglHKJdxN-AOb4Bbbnec2AblyJMxipetlXMRxUZEcS6ieNGAi-WcSdGe49_RzVKKsVXVabw6WA24LCW7-v33asf_r3YCmx6WSuQvNk2ozj7n-tQAmJk8s6fyG2mj71o priority: 102 providerName: ProQuest  | 
    
| Title | Elephant herding optimization using dynamic topology and biogeography-based optimization based on learning for numerical optimization | 
    
| URI | https://link.springer.com/article/10.1007/s00366-021-01293-y https://www.proquest.com/docview/2675827898  | 
    
| Volume | 38 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1435-5663 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1435-5663 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: 8FG dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-ou-jBj6k4nSMHbxpom6Zpj1M2RXGIONBTaZp0CrMbbh72B_h_-9KmmxMVPBXSJIf-8vJ-r-8L4MR3Ix1KJWiaZpyixnNoIrOA6kBKpvxMisDkDt_2gqu-f_3IH21S2KSKdq9cksVNPU92M6VTTMCsMX9RSdHZKtS4KeeFp7jvtRe-A6cM7HCFCewKhE2V-XmPZXW04Jjf3KKFtuluw6aliaRd4roDKzqvw5aljMQK5ASHqq4M1VgdNr6UGNyFj85Qj5_x8xEEx-gpMsJL4tVmXxIT9j4gqmxLT6Zlx4QZSXJF5MtooG1Ba2qUnVpeaodyYhtPDAjyX5K_ly6g4dLkPeh3Ow8XV9S2XqApyuSUhj7zXMmiREtHeCpLuVBOYZugvLMAaRkSkyziyEfSyE-VipRkwvHxsuSKJR7bh7V8lOsDIEh5pFRco-nC_MSNklCyxEmUy4TLhSMa4FYIxKmtS27aYwzjeUXlArUYUYsL1OJZA07na8ZlVY4_ZzcrYGMroZPYM5aSSQMOG3BWgb14_ftuh_-bfgTrnsmYKH7cNGFt-vauj5HHTGULVsPuZQtq7cunmw4-zzu9u_tWcZg_AU1r8HA | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5V7QE4UCggQgvsAU6wwvauvfGhQgVSpbSNEGql3sz-OVRKnUBSIT8Ar8WzdcZeNwSJ3nq1d_fgGc_3zc4fwCsZ575vnOLWlilHxIu4NmXGfWaMcLI0KqPa4eNRNjyVn8_SszX409XCUFplZxMbQ-2mlu7I3yXEbKlss_9-9oPT1CiKrnYjNHQYreB2mxZjobDj0Ne_0IWb7x58Qnm_TpL9wcnHIQ9TBrhF9VvwvhRJbESuvYlU4kqbKhc1NBxVW2TIQBCDyzxF6LW5tM7lzggVSbQLqROaGh8gBGxIIXN0_jY-DEZfvi7jGFGbZBIrSjLLVCjbaYr3qBUMJQCTO4-gy-tVaFzy3X9CtA3y7T-A-4Gysr1Wxx7Cmq-2YDPQVxaMw3wL7v3V2_AR_B5M_Ow7yo2hVhBAsilap4tQ9sko337MXF3pi3PLFu2ohprpyjFzPh370EmbE8q61a3hUcXCxIsxQ-LNqss29jRZWfwYTm9FGk9gvZpW_ikw5FrGuNSjzySkjnPdN0JH2sVCxamKVA_i7nMXNjREp7kck-K6lXMjogJFVDQiKuoevLneM2vbgdy4eqeTYhFMw7xYKnIP3naSXb7-_2nPbj7tJdwZnhwfFUcHo8NtuJtQmUZzW7QD64ufl_45kqeFeRE0lMG32_4prgAYuSqx | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hkFB7oEBbdSkUH8oJLJI4iTeHqqoKC5QPcQCJW-qvbJGW7La7COUH9E_113UmcVgWCW5cE9uHzHjmOZ73BuBzHGauq63kxhQJx4wXcKWLlLtUa2HjQsuUuMOnZ-nhZfzjKrmag38tF4bKKtuYWAdqOzT0j3w3ImRLtM3ubuHLIs73el9Hvzl1kKKb1radRuMix666w-Pb-MvRHtp6K4p6-xffD7nvMMANut6Ed2MRhVpkyulARrYwibRBDcHRrUWK6APzb5ElmHZNFhtrM6uFDGKMCYkVikQPMPwvSFJxJ5Z672B6gxE05SWhpPKyVHrCTk3bIxEYKv2lgzymW17NJsUp0n10OVvnvN4yLHmwyr413rUCc65chTceuDIfFsar8PqBquFb-Ls_cKNfaDGG_kCpkQ0xLt14wiejSvs-s1Wpbq4NmzRNGiqmSsv09bDvvIY2p_xqZ6f6RyXzvS76DCE3K2-bW6fBzOB3cPkitngP8-WwdB-AIcrS2iYOT0siVmGmulqoQNlQyDCRgexA2H7u3HgpdOrIMcjvRZxrE-Voorw2UV51YPt-zqgRAnl29HprxdwHhXE-deEO7LSWnb5-erW151fbhEXcCvnJ0dnxR3gVET-j_k20DvOTP7duA1HTRH-q3ZPBz5feD_8B4bsoSw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elephant+herding+optimization+using+dynamic+topology+and+biogeography-based+optimization+based+on+learning+for+numerical+optimization&rft.jtitle=Engineering+with+computers&rft.au=Li%2C+Wei&rft.au=Wang%2C+Gai-Ge&rft.date=2022-06-01&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=38&rft.issue=S2&rft.spage=1585&rft.epage=1613&rft_id=info:doi/10.1007%2Fs00366-021-01293-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00366_021_01293_y | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |