Fault diagnosis model of rolling bearing based on parameter adaptive AVMD algorithm
Aiming at the intrinsic aspect that the weak features of the early fault information of rolling bearings are not easy to extract, a parameter Adaptive Variational Modal Decomposition (AVMD) based algorithm is proposed for bearing fault signal feature extraction. Since the number of Variational Modal...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 53; no. 3; pp. 3150 - 3165 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.02.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-022-03562-9 |
Cover
| Abstract | Aiming at the intrinsic aspect that the weak features of the early fault information of rolling bearings are not easy to extract, a parameter Adaptive Variational Modal Decomposition (AVMD) based algorithm is proposed for bearing fault signal feature extraction. Since the number of Variational Modal Decomposition (VMD) decomposition and penalty factor play an important role in VMD decomposition effect, the irregularities in the selection of these two influencing parameters are analyzed. We exploit the stronger global search capability of the improved sparrow search algorithm (LSSA) for adaptive parameter selection of the VMD algorithm. In this paper, the Levy flight algorithm is introduced and chaos is added to initialize sparrow population position to prevent sparrow from falling into the disadvantage of local optimum in the search process. In addition, this paper also combines the maximum kurtosis index, the minimum envelope entropy index and the number of iterations of VMD to form the objective function of the LSSA. The VMD algorithm with optimized parameters decomposes the signal to be measured, the decomposed IMFs was reconstructed, finally the validity of the model was verified by calculating 20 features (time domain and frequency domain) of the reconstructed signal as the input vector of the SVM classifier. Finally, the feasibility of this model in fault diagnosis of rolling bearing is verified using simulation and example experiments. |
|---|---|
| AbstractList | Aiming at the intrinsic aspect that the weak features of the early fault information of rolling bearings are not easy to extract, a parameter Adaptive Variational Modal Decomposition (AVMD) based algorithm is proposed for bearing fault signal feature extraction. Since the number of Variational Modal Decomposition (VMD) decomposition and penalty factor play an important role in VMD decomposition effect, the irregularities in the selection of these two influencing parameters are analyzed. We exploit the stronger global search capability of the improved sparrow search algorithm (LSSA) for adaptive parameter selection of the VMD algorithm. In this paper, the Levy flight algorithm is introduced and chaos is added to initialize sparrow population position to prevent sparrow from falling into the disadvantage of local optimum in the search process. In addition, this paper also combines the maximum kurtosis index, the minimum envelope entropy index and the number of iterations of VMD to form the objective function of the LSSA. The VMD algorithm with optimized parameters decomposes the signal to be measured, the decomposed IMFs was reconstructed, finally the validity of the model was verified by calculating 20 features (time domain and frequency domain) of the reconstructed signal as the input vector of the SVM classifier. Finally, the feasibility of this model in fault diagnosis of rolling bearing is verified using simulation and example experiments. |
| Author | Yan, Chun Li, Meixuan Zhang, Mengchao Liu, Wei Liu, Xinhong Xue, Jiankai |
| Author_xml | – sequence: 1 givenname: Meixuan surname: Li fullname: Li, Meixuan organization: College of Mathematics and Systems Science, Shandong University of Science and Technology – sequence: 2 givenname: Chun surname: Yan fullname: Yan, Chun email: yanchunchun9896@163.com organization: College of Mathematics and Systems Science, Shandong University of Science and Technology – sequence: 3 givenname: Wei surname: Liu fullname: Liu, Wei email: liuwei_doctor@yeah.net organization: College of Computer Science and Engineering, Shandong University of Science and Technology – sequence: 4 givenname: Xinhong surname: Liu fullname: Liu, Xinhong organization: Department of Mathematics and Physics, Beijing Institute of Petro-chemical Technolog – sequence: 5 givenname: Mengchao surname: Zhang fullname: Zhang, Mengchao organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology – sequence: 6 givenname: Jiankai surname: Xue fullname: Xue, Jiankai organization: College of Information Science and Technology, Donghua University |
| BookMark | eNp9kD1PwzAURS0EEm3hDzBZYg4822kcj1WhgFTEwIfYrJfEKa7SONguEv-etEFCYuh0l3vuezpjcty61hByweCKAcjrwCDNVQKcJyCmGU_UERmxqRSJTJU8JiNQPE2yTL2fknEIawAQAtiIPC9w20RaWVy1LthAN64yDXU19a5pbLuihUG_Twymoq6lHXrcmGg8xQq7aL8Mnb093lBsVs7b-LE5Iyc1NsGc_-aEvC5uX-b3yfLp7mE-WyalYComOa8FM5DlOC05ciUFL_IUSmB5JYpKiSIDWTAoWVqnIuNMFirFtJaF5BJFISbkctjtvPvcmhD12m1925_UXGZC5ZwJ3rfyoVV6F4I3tS5txGhdGz3aRjPQO4V6UKh7hXqvUKse5f_QztsN-u_DkBig0O28Gf_31QHqB45shLY |
| CitedBy_id | crossref_primary_10_1007_s10489_023_04843_7 crossref_primary_10_3390_s24123833 crossref_primary_10_12677_csa_2024_148171 crossref_primary_10_3390_s24227129 crossref_primary_10_1088_2631_8695_ad8b97 crossref_primary_10_1016_j_bspc_2023_105700 crossref_primary_10_1088_2631_8695_ad4847 crossref_primary_10_1177_10775463241302544 crossref_primary_10_1088_1361_6501_ace927 crossref_primary_10_1088_1361_6501_ad52b5 crossref_primary_10_1109_TIM_2024_3370808 crossref_primary_10_1007_s13042_024_02233_0 crossref_primary_10_1088_1361_6501_ad4eff crossref_primary_10_1007_s11227_022_04959_6 crossref_primary_10_1007_s10586_024_04883_9 crossref_primary_10_3233_JIFS_233190 |
| Cites_doi | 10.1109/CAC51589.2020.9327429 10.16452/j.cnki.sdkjzk.2020.05.007 10.1007/s00521-019-04612-z 10.1016/j.ymssp.2017.11.029 10.1016/j.bspc.2020.102255 10.1016/j.isatra.2018.10.008 10.32604/cmes.2022.018123 10.16452/j.cnki.sdkjzk.2019.01.013 10.1016/j.isatra.2019.11.021 10.1016/j.asoc.2020.106515 10.1016/j.isatra.2020.10.060 10.1016/j.asoc.2020.106259 10.1109/URAI.2016.7625792 10.1109/TSP.2013.2288675 10.16383/j.aas.190345 10.1080/21642583.2019.1708830 10.1016/j.ijhydene.2020.12.107 10.1016/j.knosys.2021.106924 10.1088/1361-6501/abcdc1 10.1016/j.measurement.2016.05.068 10.1088/0957-0233/27/7/075002 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-022-03562-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 3165 |
| ExternalDocumentID | 10_1007_s10489_022_03562_9 |
| GrantInformation_xml | – fundername: the Project of National Natural Science Foundation of China grantid: 61502280; 61472228 – fundername: the project of National Bureau of Statistics of China grantid: 2019LZ10 – fundername: The General project of science and Technology Plan of Beijing Municipal Commission of Education grantid: KM202010017001 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-82f31e068a5c2a29732b840c018d3bd93b607b10c14f436217b94a4f7b727a3b3 |
| IEDL.DBID | BENPR |
| ISSN | 0924-669X |
| IngestDate | Fri Jul 25 12:28:15 EDT 2025 Wed Oct 01 04:09:55 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Fri Feb 21 02:45:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Fault diagnosis Sample entropy Variational modal decomposition Intelligent optimization Sparrow search algorithm Rolling bearing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-82f31e068a5c2a29732b840c018d3bd93b607b10c14f436217b94a4f7b727a3b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2763982132 |
| PQPubID | 326365 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2763982132 crossref_citationtrail_10_1007_s10489_022_03562_9 crossref_primary_10_1007_s10489_022_03562_9 springer_journals_10_1007_s10489_022_03562_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230200 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ZhengYHuJZJiaMPXuFYTongQJA characteristic extraction method of rolling bearing based on parameter optimization Variational mode decompositionVibration and Impact20203921195202 DingCJFengYBWangMNFault diagnosis of rolling bearing based on Variational mode decomposition and deep convolutional neural networkVibration and Impact20214002287296 GaoZZhangHLChenYBLiuJFNieZCMutant Movement Tracking Based on Dynamic Weights Grasshoppers Optimization AlgorithmJournal of Zhengzhou University (Science Edition)202052023644 YanCLiMXLiuWPrediction of bank telephone marketing results based on improved whale algorithms optimizing S_Kohonen networkAppl Soft Comput20209210625910.1016/j.asoc.2020.106259 MengDWangHYangSLvZHuZWangZFault analysis of wind power rolling bearing based on EMD feature extractionCMES-Computer Modeling in Engineering & Sciences2022130154355810.32604/cmes.2022.018123 Tang AD, Han T, Xu DW, Xie L. UAV Track Planning Method Based on Chaos Sparrow Search algorithm. Computer application: 1–11 [2021-03-06]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html Song BY, Xu JW, Xu L (2019) Multi-level inverter fault diagnosis based on WPT-PCA-NN Algorithm. Journal of shandong university of science and technology. Nat Sci 38(01):111–120. https://doi.org/10.16452/j.cnki.sdkjzk.2019.01.013 ZhuJHuTJiangBYangXIntelligent bearing fault diagnosis using PCA–DBN frameworkNeural Comput & Applic202032107731078110.1007/s00521-019-04612-z Wang ZW (2015) Fault diagnosis method based on Variational mode decomposition. Yanshan University ZhangJWDingKQWangHGIntelligent diagnosis of rolling bearing based on VMD-CNNCombined machine tool and automatic machining technology2020111519 ZhengJXYangCLangYCLiJYBearing failure diagnosis for SVM based on VMD and GWOCoal Mine Machinery20214201147150 DragomiretskiyKZossoDVariational mode decompositionIEEE Trans Signal Process2014623531544316029310.1109/TSP.2013.22886751394.94163 MiaoYZhaoMLinJIdentification of mechanical compound-fault based on the improved parameter-adaptive variational mode decompositionISA Trans201984829510.1016/j.isatra.2018.10.008 Wang CJ, Wang HR, Guan XY, Chang MR. Rolling Bearing Fault Diagnosis Based on VMD Sample Entropy and CS-ELM. Chemical Automation and Instrumentation, 201,48(05):469–475+485 Yuan T, Yongquan L (2020) Cuckoo search algorithm based on mini-batch gradient descent. Journal of shandong university of science and technology. Nat Sci 39(05):56–67. https://doi.org/10.16452/j.cnki.sdkjzk.2020.05.007 XuZLiCYangYFault diagnosis of rolling bearing of wind turbines based on the Variational mode decomposition and deep convolutional neural networksAppl Soft Comput20209510651510.1016/j.asoc.2020.106515 Lei Y, De G, Fei L (2020) Improved Sparrow Search Algorithm based DV-Hop Localization in WSN[C]. 2020 Chinese Automation Congress (CAC) Liang T, Cao D X. Improved Simplified Particle Group Algorithm Based on Levy Flight [J/OL]. Computer Engineering and Application: 1–14 [2021-01-27]. http://kns.cnki.net/kcms/detail/11.2127.TP.20201030.0959.006.html ZhuYYousefiNOptimal parameter identification of PEMFC stacks using adaptive sparrow search algorithmInt J Hydrog Energy202146149541955210.1016/j.ijhydene.2020.12.107 YanXAJiaMPXiangLCompound fault diagnosis of rotating machinery based on OVMD and a 1.5-dimension envelope spectrumMeas Sci Technol201627707500210.1088/0957-0233/27/7/075002 YuKMaHZengJHanHLiHWenBFrobenius and nuclear hybrid norm penalized robust principal component analysis for transient impulsive feature detection of rolling bearingsISA Trans201910037338610.1016/j.isatra.2019.11.021 ZhangXMiaoQZhangHWangLA parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machineryMech Syst Signal Process2018108587210.1016/j.ymssp.2017.11.029 ChangMRWangHRXiaoYWangCJJiangCYFault diagnosis method of rolling bearing optimized by SVM based on improved firefly algorithmChemical Automation & Instrumentation20214804372377 ZhengYYueJHJiaoJGuoXYExtraction of rolling bearing based on parameter optimization Variational mode decompositionVibration and Impact202140018694 Diao N K, Ma H X, Wang J S, Liu S. Fault Diagnosis of rolling bearing based on MPE and PSO-SVM.Electronic Measurement Technology:1–5[2021-12-20] http://kns.cnki.net/kcms/detail/11.2175.TN.20211207.2118.016.html He XZ, Zhou XQ, Yu WN, Hou YX, Mechefske CK (2020) Adaptive variational mode decomposition and its application to multi-fault detection using mechanical vibration signals - ScienceDirect. ISA Transactions, 10.1016/j.isatra.2020.10.060 Jiang ZW (2017) Variational mode decomposition method and its application in mechanical fault diagnosis. Anhui University of Technology WangJGuoSWApplication of adaptive VMD algorithm in rolling bearing failure diagnosisElectromechanical Engineering Technology20204911161164 Liu J C, Quan H, Yu X, He K, Li Z H. Fault Diagnosis of Rolling Bearing Based on Parameter Optimization of VMD and Sample Enropy [J/OL]. Automation: 1–12 [2021-03-26]. https://doi.org/10.16383/j.aas.190345 ZhaoMLinJMiaoYHXuXQDetection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearingsMeasurement20169142143910.1016/j.measurement.2016.05.068 WangHXianyuJOptimal configuration of distributed generation based on sparrow search algorithmIOP Conference Series: Earth and Environmental Science20216471(6pp) SukritiCMMitraDEpilepsy seizure detection using kurtosis based VMD's parameters selection and bandwidth featuresBiomedical Signal Processing and Control20216410225510.1016/j.bspc.2020.102255 XueJShenBA novel swarm intelligence optimization approach: sparrow search algorithmSystems Science & Control Engineering An Open Access Journal202081223410.1080/21642583.2019.1708830 SongXWangHChenPWeighted kurtosis-based VMD and improved frequency-weighted energy operator low-speed bearing-fault diagnosis[J]Meas Sci Technol202132310.1088/1361-6501/abcdc1(11pp) LvXMuXDZhangJMulti-threshold image segmentation based on an improved sparrow search algorithmSystems Engineering and Electronics20214302318327 ZhangCHouNLuJYWangCImproved PSO-VMD Algorithm and Its Application in Pipeline Leak DetectionJournal of Jilin University (Information Science Edition)202139012836 ZhangCDingSA stochastic configuration network based on chaotic sparrow search algorithm[J]Knowl-Based Syst20212201010692410.1016/j.knosys.2021.106924 JW Zhang (3562_CR26) 2020; 11 H Wang (3562_CR20) 2021; 647 M Zhao (3562_CR12) 2016; 91 Z Gao (3562_CR14) 2020; 52 X Lv (3562_CR17) 2021; 43 3562_CR27 X Song (3562_CR6) 2021; 32 Y Zheng (3562_CR24) 2021; 40 3562_CR29 J Xue (3562_CR15) 2020; 8 D Meng (3562_CR37) 2022; 130 C Zhang (3562_CR28) 2021; 220 C Yan (3562_CR31) 2020; 92 3562_CR1 3562_CR5 JX Zheng (3562_CR3) 2021; 42 Y Miao (3562_CR11) 2019; 84 C Zhang (3562_CR23) 2021; 39 Z Xu (3562_CR2) 2020; 95 3562_CR16 3562_CR18 K Yu (3562_CR25) 2019; 100 3562_CR33 3562_CR13 3562_CR35 Y Zhu (3562_CR19) 2021; 46 3562_CR30 XA Yan (3562_CR9) 2016; 27 X Zhang (3562_CR21) 2018; 108 3562_CR32 CM Sukriti (3562_CR7) 2021; 64 CJ Ding (3562_CR8) 2021; 40 J Zhu (3562_CR36) 2020; 32 J Wang (3562_CR10) 2020; 49 Y Zheng (3562_CR22) 2020; 39 K Dragomiretskiy (3562_CR4) 2014; 62 MR Chang (3562_CR34) 2021; 48 |
| References_xml | – reference: Liu J C, Quan H, Yu X, He K, Li Z H. Fault Diagnosis of Rolling Bearing Based on Parameter Optimization of VMD and Sample Enropy [J/OL]. Automation: 1–12 [2021-03-26]. https://doi.org/10.16383/j.aas.190345 – reference: SukritiCMMitraDEpilepsy seizure detection using kurtosis based VMD's parameters selection and bandwidth featuresBiomedical Signal Processing and Control20216410225510.1016/j.bspc.2020.102255 – reference: XuZLiCYangYFault diagnosis of rolling bearing of wind turbines based on the Variational mode decomposition and deep convolutional neural networksAppl Soft Comput20209510651510.1016/j.asoc.2020.106515 – reference: Tang AD, Han T, Xu DW, Xie L. UAV Track Planning Method Based on Chaos Sparrow Search algorithm. Computer application: 1–11 [2021-03-06]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html – reference: YanXAJiaMPXiangLCompound fault diagnosis of rotating machinery based on OVMD and a 1.5-dimension envelope spectrumMeas Sci Technol201627707500210.1088/0957-0233/27/7/075002 – reference: GaoZZhangHLChenYBLiuJFNieZCMutant Movement Tracking Based on Dynamic Weights Grasshoppers Optimization AlgorithmJournal of Zhengzhou University (Science Edition)202052023644 – reference: ZhangCHouNLuJYWangCImproved PSO-VMD Algorithm and Its Application in Pipeline Leak DetectionJournal of Jilin University (Information Science Edition)202139012836 – reference: Jiang ZW (2017) Variational mode decomposition method and its application in mechanical fault diagnosis. Anhui University of Technology – reference: Wang ZW (2015) Fault diagnosis method based on Variational mode decomposition. Yanshan University – reference: ZhuJHuTJiangBYangXIntelligent bearing fault diagnosis using PCA–DBN frameworkNeural Comput & Applic202032107731078110.1007/s00521-019-04612-z – reference: ZhengYHuJZJiaMPXuFYTongQJA characteristic extraction method of rolling bearing based on parameter optimization Variational mode decompositionVibration and Impact20203921195202 – reference: He XZ, Zhou XQ, Yu WN, Hou YX, Mechefske CK (2020) Adaptive variational mode decomposition and its application to multi-fault detection using mechanical vibration signals - ScienceDirect. ISA Transactions, 10.1016/j.isatra.2020.10.060 – reference: ZhangXMiaoQZhangHWangLA parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machineryMech Syst Signal Process2018108587210.1016/j.ymssp.2017.11.029 – reference: XueJShenBA novel swarm intelligence optimization approach: sparrow search algorithmSystems Science & Control Engineering An Open Access Journal202081223410.1080/21642583.2019.1708830 – reference: YanCLiMXLiuWPrediction of bank telephone marketing results based on improved whale algorithms optimizing S_Kohonen networkAppl Soft Comput20209210625910.1016/j.asoc.2020.106259 – reference: Lei Y, De G, Fei L (2020) Improved Sparrow Search Algorithm based DV-Hop Localization in WSN[C]. 2020 Chinese Automation Congress (CAC) – reference: Liang T, Cao D X. Improved Simplified Particle Group Algorithm Based on Levy Flight [J/OL]. Computer Engineering and Application: 1–14 [2021-01-27]. http://kns.cnki.net/kcms/detail/11.2127.TP.20201030.0959.006.html – reference: ZhuYYousefiNOptimal parameter identification of PEMFC stacks using adaptive sparrow search algorithmInt J Hydrog Energy202146149541955210.1016/j.ijhydene.2020.12.107 – reference: ZhangCDingSA stochastic configuration network based on chaotic sparrow search algorithm[J]Knowl-Based Syst20212201010692410.1016/j.knosys.2021.106924 – reference: ChangMRWangHRXiaoYWangCJJiangCYFault diagnosis method of rolling bearing optimized by SVM based on improved firefly algorithmChemical Automation & Instrumentation20214804372377 – reference: Yuan T, Yongquan L (2020) Cuckoo search algorithm based on mini-batch gradient descent. Journal of shandong university of science and technology. Nat Sci 39(05):56–67. https://doi.org/10.16452/j.cnki.sdkjzk.2020.05.007 – reference: ZhangJWDingKQWangHGIntelligent diagnosis of rolling bearing based on VMD-CNNCombined machine tool and automatic machining technology2020111519 – reference: Song BY, Xu JW, Xu L (2019) Multi-level inverter fault diagnosis based on WPT-PCA-NN Algorithm. Journal of shandong university of science and technology. Nat Sci 38(01):111–120. https://doi.org/10.16452/j.cnki.sdkjzk.2019.01.013 – reference: ZhaoMLinJMiaoYHXuXQDetection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearingsMeasurement20169142143910.1016/j.measurement.2016.05.068 – reference: LvXMuXDZhangJMulti-threshold image segmentation based on an improved sparrow search algorithmSystems Engineering and Electronics20214302318327 – reference: SongXWangHChenPWeighted kurtosis-based VMD and improved frequency-weighted energy operator low-speed bearing-fault diagnosis[J]Meas Sci Technol202132310.1088/1361-6501/abcdc1(11pp) – reference: DingCJFengYBWangMNFault diagnosis of rolling bearing based on Variational mode decomposition and deep convolutional neural networkVibration and Impact20214002287296 – reference: WangJGuoSWApplication of adaptive VMD algorithm in rolling bearing failure diagnosisElectromechanical Engineering Technology20204911161164 – reference: ZhengYYueJHJiaoJGuoXYExtraction of rolling bearing based on parameter optimization Variational mode decompositionVibration and Impact202140018694 – reference: ZhengJXYangCLangYCLiJYBearing failure diagnosis for SVM based on VMD and GWOCoal Mine Machinery20214201147150 – reference: WangHXianyuJOptimal configuration of distributed generation based on sparrow search algorithmIOP Conference Series: Earth and Environmental Science20216471(6pp) – reference: DragomiretskiyKZossoDVariational mode decompositionIEEE Trans Signal Process2014623531544316029310.1109/TSP.2013.22886751394.94163 – reference: Diao N K, Ma H X, Wang J S, Liu S. Fault Diagnosis of rolling bearing based on MPE and PSO-SVM.Electronic Measurement Technology:1–5[2021-12-20] http://kns.cnki.net/kcms/detail/11.2175.TN.20211207.2118.016.html – reference: YuKMaHZengJHanHLiHWenBFrobenius and nuclear hybrid norm penalized robust principal component analysis for transient impulsive feature detection of rolling bearingsISA Trans201910037338610.1016/j.isatra.2019.11.021 – reference: MengDWangHYangSLvZHuZWangZFault analysis of wind power rolling bearing based on EMD feature extractionCMES-Computer Modeling in Engineering & Sciences2022130154355810.32604/cmes.2022.018123 – reference: Wang CJ, Wang HR, Guan XY, Chang MR. Rolling Bearing Fault Diagnosis Based on VMD Sample Entropy and CS-ELM. Chemical Automation and Instrumentation, 201,48(05):469–475+485 – reference: MiaoYZhaoMLinJIdentification of mechanical compound-fault based on the improved parameter-adaptive variational mode decompositionISA Trans201984829510.1016/j.isatra.2018.10.008 – volume: 43 start-page: 318 issue: 02 year: 2021 ident: 3562_CR17 publication-title: Systems Engineering and Electronics – volume: 11 start-page: 15 year: 2020 ident: 3562_CR26 publication-title: Combined machine tool and automatic machining technology – ident: 3562_CR18 doi: 10.1109/CAC51589.2020.9327429 – volume: 39 start-page: 28 issue: 01 year: 2021 ident: 3562_CR23 publication-title: Journal of Jilin University (Information Science Edition) – ident: 3562_CR30 – ident: 3562_CR29 doi: 10.16452/j.cnki.sdkjzk.2020.05.007 – volume: 32 start-page: 10773 year: 2020 ident: 3562_CR36 publication-title: Neural Comput & Applic doi: 10.1007/s00521-019-04612-z – volume: 40 start-page: 86 issue: 01 year: 2021 ident: 3562_CR24 publication-title: Vibration and Impact – volume: 108 start-page: 58 year: 2018 ident: 3562_CR21 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.11.029 – volume: 64 start-page: 102255 year: 2021 ident: 3562_CR7 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.102255 – volume: 84 start-page: 82 year: 2019 ident: 3562_CR11 publication-title: ISA Trans doi: 10.1016/j.isatra.2018.10.008 – volume: 130 start-page: 543 issue: 1 year: 2022 ident: 3562_CR37 publication-title: CMES-Computer Modeling in Engineering & Sciences doi: 10.32604/cmes.2022.018123 – ident: 3562_CR5 – volume: 39 start-page: 195 issue: 21 year: 2020 ident: 3562_CR22 publication-title: Vibration and Impact – ident: 3562_CR1 doi: 10.16452/j.cnki.sdkjzk.2019.01.013 – volume: 40 start-page: 287 issue: 02 year: 2021 ident: 3562_CR8 publication-title: Vibration and Impact – ident: 3562_CR35 – volume: 48 start-page: 372 issue: 04 year: 2021 ident: 3562_CR34 publication-title: Chemical Automation & Instrumentation – volume: 100 start-page: 373 year: 2019 ident: 3562_CR25 publication-title: ISA Trans doi: 10.1016/j.isatra.2019.11.021 – volume: 95 start-page: 106515 year: 2020 ident: 3562_CR2 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106515 – ident: 3562_CR13 doi: 10.1016/j.isatra.2020.10.060 – ident: 3562_CR16 – ident: 3562_CR33 – volume: 92 start-page: 106259 year: 2020 ident: 3562_CR31 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106259 – ident: 3562_CR32 doi: 10.1109/URAI.2016.7625792 – volume: 52 start-page: 36 issue: 02 year: 2020 ident: 3562_CR14 publication-title: Journal of Zhengzhou University (Science Edition) – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 3562_CR4 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2013.2288675 – volume: 647 issue: 1 year: 2021 ident: 3562_CR20 publication-title: IOP Conference Series: Earth and Environmental Science – volume: 49 start-page: 161 issue: 11 year: 2020 ident: 3562_CR10 publication-title: Electromechanical Engineering Technology – ident: 3562_CR27 doi: 10.16383/j.aas.190345 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 3562_CR15 publication-title: Systems Science & Control Engineering An Open Access Journal doi: 10.1080/21642583.2019.1708830 – volume: 46 start-page: 9541 issue: 14 year: 2021 ident: 3562_CR19 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2020.12.107 – volume: 220 start-page: 106924 issue: 10 year: 2021 ident: 3562_CR28 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.106924 – volume: 32 issue: 3 year: 2021 ident: 3562_CR6 publication-title: Meas Sci Technol doi: 10.1088/1361-6501/abcdc1 – volume: 91 start-page: 421 year: 2016 ident: 3562_CR12 publication-title: Measurement doi: 10.1016/j.measurement.2016.05.068 – volume: 42 start-page: 147 issue: 01 year: 2021 ident: 3562_CR3 publication-title: Coal Mine Machinery – volume: 27 start-page: 075002 issue: 7 year: 2016 ident: 3562_CR9 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/27/7/075002 |
| SSID | ssj0003301 |
| Score | 2.3930445 |
| Snippet | Aiming at the intrinsic aspect that the weak features of the early fault information of rolling bearings are not easy to extract, a parameter Adaptive... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3150 |
| SubjectTerms | Adaptive algorithms Algorithms Artificial Intelligence Bearing strength Computer Science Decomposition Fault diagnosis Feature extraction Kurtosis Machines Manufacturing Mathematical models Mechanical Engineering Parameters Processes Roller bearings Search algorithms Search process Support vector machines |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWVh4IwIFeWCDSInjPDxWQFUhlQWKukW240ClNqna9P9zdpIWECAxZYjt4XyvT767D-CaaeWh1SA6EVHiGg5rVxpKQK2E5ioPJLNAcfgUDUbscRyOm6awZVvt3j5JWk_9qdmNmfIeBE9egFHb5duwE5pxXqjFI9pb-19E6JYnD5GFG0V83LTK_HzG13C0yTG_PYvaaNM_gL0mTSS9-l4PYUsXR7DfUjCQxiKP4bkvVtOKZHXB3GRJLLMNKXOyqKdtE4mqbL8YrjJSFsQM-56ZIhgiMjE33o70Xof3REzfysWkep-dwKj_8HI3cBueBFehAVVuQvPA116UiFBRYcioqETcpjw_yQKZ8UBGXix9T_ksZxiw_FhyJlgeS0xeRCCDU-gUZaHPgGifasp0xhCoMKZDhFNcMMx6ZBSLRDMH_FZcqWqGiBsui2m6GX9sRJyiiFMr4pQ7cLPeM69HaPy5utveQtqY0zKl6AV5QhE5O3Db3szm9--nnf9v-QXsGjr5uiq7C51qsdKXmHRU8srq2AfA1Mrf priority: 102 providerName: Springer Nature |
| Title | Fault diagnosis model of rolling bearing based on parameter adaptive AVMD algorithm |
| URI | https://link.springer.com/article/10.1007/s10489-022-03562-9 https://www.proquest.com/docview/2763982132 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5BuHjxtxFF0oM3Xdy6MraDMaAMooEYFYOnpe06NUFAHP-_r1sH0UROO3Tr4bXvx7e-fh_AGVPSRq9BdMI939Ia1pbQkoBKchXIxBUsA4r9gdcbsrtRY1SCQXEXRrdVFjExC9TxVOp_5JcUHSHwKYKn69mXpVWj9OlqIaHBjbRCfJVRjG1AhWpmrDJU2p3Bw-MyNiN6zzT0EHVYnheMzDUac5mO6fYhBGe2i1WBFfxOVav688-RaZaJwh3YMiUkaeVrvgslNdmD7UKegRhv3YenkC_GKYnzZrqPb5Kp3pBpQuY5EzcRuM2zJ6aymEwnRBOBf-oGGcJjPtORkLRe-reEj9_QFun75wEMw87zTc8yGgqWROdKLZ8mrqNsz-cNSbkWqqICMZ20HT92RRy4wrObwrGlwxKGycxpioBxljQFFjbcFe4hlCfTiToCohyqKFMxQxDDmGog1Ao4w4pIeE3uK1YFpzBXJA3BuNa5GEcramRt4ghNHGUmjoIqnC-_meX0GmvfrhWrEBlX-45WG6MKF8XKrIb_n-14_WwnsKml5fMO7RqU0_lCnWIBkoo6bPhhtw6VVthuD_Sz-3rfqZu9hqND2voBk-LZUA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB7x4MC7sKNXVh_gBBGJ7abxASG2qiytEJt6y7MdB5C6QYMQf47fxjhxqECCG6cckvjweTwzXzIzH8AGN9rHU4PsRIaRZzWsPWUlAY2WRuiUKZ4TxWYrbNzw03a1PQZvZS-MLassfWLuqJO-tt_IdygeBBFRJE97g0fPqkbZv6ulhIZ00grJbj5izDV2nJnXF6Rww92TI9zvTUrrx9eHDc-pDHgazS_zIpqywPhhJKuaSivlRBWyHu0HUcJUIpgK_ZoKfB3wlKO7D2pKcMnTmsLQL5liuO4fmOCMCyR_EwfHrYvLj1jAWC7A7CPL8cJQtF3bjmve47ZcCcmgzzAL8cTn0DjKd7_8os0jX30GplzKSvYLG5uFMdObg-lSDoI47zAPV3X53MlIUhTvPQxJrrJD-il5KiZ_E4V45VcMnQnp94gdPN61BTlEJnJgPS_Zv20eEdm5Q-yz--4C3PwKmosw3uv3zD8gJqCGcpNwJE2cmypSOyE5ZmAqrMnI8AoEJVyxdgPNra5GJx6NYrYQxwhxnEMciwpsfbwzKMZ5_Pj0SrkLsTvaw3hkiBXYLndmdPv71ZZ-Xm0dJhvXzfP4_KR1tgx_rax9UR2-AuPZ07NZxeQnU2vOwgj8_22jfgfO-A-Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSIgLO6JQwAc4QdTEdrMcEKooYW2FxKLegu04gFTaQoMQv8bXMc5CBRK9ccohiQ_P45l5ycw8gB2ulY2nBtmJcH3LaFhb0kgCaiV0oBImeUYUW2339Jafd-qdCfgse2FMWWXpEzNHHfeV-UZeo3gQAp8ieaolRVnEVTM8HLxYRkHK_Gkt5TRyE7nQH-9I34YHZ03c611Kw-Obo1OrUBiwFJpeavk0YY62XV_UFRVGxolKZDzKdvyYyThg0rU96djK4QlHV-94MuCCJ57EsC-YZLjuJEx7Zoq76VIPT76jAGOZ9LKN_MZy3aBTNOwUbXvcFCohDbQZ5h9W8DMojjLdXz9ns5gXLsBckaySRm5dizChe0swXwpBkMIvLMN1KN66KYnzsr2nIcn0dUg_Ia_5zG8iEa3sikEzJv0eMSPHn00pDhGxGBifSxp3rSYR3QdEOn18XoHbf8FyFaZ6_Z5eA6IdqinXMUe6xLmuI6kLBMfcS7qe8DWvgFPCFalilLlR1OhGoyHMBuIIIY4yiKOgAnvf7wzyQR5jn66WuxAVh3oYjUywAvvlzoxu_73a-vjVtmEGTTm6PGtfbMCs0bPPy8KrMJW-vulNzHpSuZWZF4H7_7bnL0G-DSo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+model+of+rolling+bearing+based+on+parameter+adaptive+AVMD+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Li%2C+Meixuan&rft.au=Yan%2C+Chun&rft.au=Liu%2C+Wei&rft.au=Liu%2C+Xinhong&rft.date=2023-02-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=3&rft.spage=3150&rft.epage=3165&rft_id=info:doi/10.1007%2Fs10489-022-03562-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_022_03562_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |