Fault diagnosis model of rolling bearing based on parameter adaptive AVMD algorithm

Aiming at the intrinsic aspect that the weak features of the early fault information of rolling bearings are not easy to extract, a parameter Adaptive Variational Modal Decomposition (AVMD) based algorithm is proposed for bearing fault signal feature extraction. Since the number of Variational Modal...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 53; no. 3; pp. 3150 - 3165
Main Authors Li, Meixuan, Yan, Chun, Liu, Wei, Liu, Xinhong, Zhang, Mengchao, Xue, Jiankai
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-022-03562-9

Cover

Abstract Aiming at the intrinsic aspect that the weak features of the early fault information of rolling bearings are not easy to extract, a parameter Adaptive Variational Modal Decomposition (AVMD) based algorithm is proposed for bearing fault signal feature extraction. Since the number of Variational Modal Decomposition (VMD) decomposition and penalty factor play an important role in VMD decomposition effect, the irregularities in the selection of these two influencing parameters are analyzed. We exploit the stronger global search capability of the improved sparrow search algorithm (LSSA) for adaptive parameter selection of the VMD algorithm. In this paper, the Levy flight algorithm is introduced and chaos is added to initialize sparrow population position to prevent sparrow from falling into the disadvantage of local optimum in the search process. In addition, this paper also combines the maximum kurtosis index, the minimum envelope entropy index and the number of iterations of VMD to form the objective function of the LSSA. The VMD algorithm with optimized parameters decomposes the signal to be measured, the decomposed IMFs was reconstructed, finally the validity of the model was verified by calculating 20 features (time domain and frequency domain) of the reconstructed signal as the input vector of the SVM classifier. Finally, the feasibility of this model in fault diagnosis of rolling bearing is verified using simulation and example experiments.
AbstractList Aiming at the intrinsic aspect that the weak features of the early fault information of rolling bearings are not easy to extract, a parameter Adaptive Variational Modal Decomposition (AVMD) based algorithm is proposed for bearing fault signal feature extraction. Since the number of Variational Modal Decomposition (VMD) decomposition and penalty factor play an important role in VMD decomposition effect, the irregularities in the selection of these two influencing parameters are analyzed. We exploit the stronger global search capability of the improved sparrow search algorithm (LSSA) for adaptive parameter selection of the VMD algorithm. In this paper, the Levy flight algorithm is introduced and chaos is added to initialize sparrow population position to prevent sparrow from falling into the disadvantage of local optimum in the search process. In addition, this paper also combines the maximum kurtosis index, the minimum envelope entropy index and the number of iterations of VMD to form the objective function of the LSSA. The VMD algorithm with optimized parameters decomposes the signal to be measured, the decomposed IMFs was reconstructed, finally the validity of the model was verified by calculating 20 features (time domain and frequency domain) of the reconstructed signal as the input vector of the SVM classifier. Finally, the feasibility of this model in fault diagnosis of rolling bearing is verified using simulation and example experiments.
Author Yan, Chun
Li, Meixuan
Zhang, Mengchao
Liu, Wei
Liu, Xinhong
Xue, Jiankai
Author_xml – sequence: 1
  givenname: Meixuan
  surname: Li
  fullname: Li, Meixuan
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology
– sequence: 2
  givenname: Chun
  surname: Yan
  fullname: Yan, Chun
  email: yanchunchun9896@163.com
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology
– sequence: 3
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: liuwei_doctor@yeah.net
  organization: College of Computer Science and Engineering, Shandong University of Science and Technology
– sequence: 4
  givenname: Xinhong
  surname: Liu
  fullname: Liu, Xinhong
  organization: Department of Mathematics and Physics, Beijing Institute of Petro-chemical Technolog
– sequence: 5
  givenname: Mengchao
  surname: Zhang
  fullname: Zhang, Mengchao
  organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology
– sequence: 6
  givenname: Jiankai
  surname: Xue
  fullname: Xue, Jiankai
  organization: College of Information Science and Technology, Donghua University
BookMark eNp9kD1PwzAURS0EEm3hDzBZYg4822kcj1WhgFTEwIfYrJfEKa7SONguEv-etEFCYuh0l3vuezpjcty61hByweCKAcjrwCDNVQKcJyCmGU_UERmxqRSJTJU8JiNQPE2yTL2fknEIawAQAtiIPC9w20RaWVy1LthAN64yDXU19a5pbLuihUG_Twymoq6lHXrcmGg8xQq7aL8Mnb093lBsVs7b-LE5Iyc1NsGc_-aEvC5uX-b3yfLp7mE-WyalYComOa8FM5DlOC05ciUFL_IUSmB5JYpKiSIDWTAoWVqnIuNMFirFtJaF5BJFISbkctjtvPvcmhD12m1925_UXGZC5ZwJ3rfyoVV6F4I3tS5txGhdGz3aRjPQO4V6UKh7hXqvUKse5f_QztsN-u_DkBig0O28Gf_31QHqB45shLY
CitedBy_id crossref_primary_10_1007_s10489_023_04843_7
crossref_primary_10_3390_s24123833
crossref_primary_10_12677_csa_2024_148171
crossref_primary_10_3390_s24227129
crossref_primary_10_1088_2631_8695_ad8b97
crossref_primary_10_1016_j_bspc_2023_105700
crossref_primary_10_1088_2631_8695_ad4847
crossref_primary_10_1177_10775463241302544
crossref_primary_10_1088_1361_6501_ace927
crossref_primary_10_1088_1361_6501_ad52b5
crossref_primary_10_1109_TIM_2024_3370808
crossref_primary_10_1007_s13042_024_02233_0
crossref_primary_10_1088_1361_6501_ad4eff
crossref_primary_10_1007_s11227_022_04959_6
crossref_primary_10_1007_s10586_024_04883_9
crossref_primary_10_3233_JIFS_233190
Cites_doi 10.1109/CAC51589.2020.9327429
10.16452/j.cnki.sdkjzk.2020.05.007
10.1007/s00521-019-04612-z
10.1016/j.ymssp.2017.11.029
10.1016/j.bspc.2020.102255
10.1016/j.isatra.2018.10.008
10.32604/cmes.2022.018123
10.16452/j.cnki.sdkjzk.2019.01.013
10.1016/j.isatra.2019.11.021
10.1016/j.asoc.2020.106515
10.1016/j.isatra.2020.10.060
10.1016/j.asoc.2020.106259
10.1109/URAI.2016.7625792
10.1109/TSP.2013.2288675
10.16383/j.aas.190345
10.1080/21642583.2019.1708830
10.1016/j.ijhydene.2020.12.107
10.1016/j.knosys.2021.106924
10.1088/1361-6501/abcdc1
10.1016/j.measurement.2016.05.068
10.1088/0957-0233/27/7/075002
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-022-03562-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 3165
ExternalDocumentID 10_1007_s10489_022_03562_9
GrantInformation_xml – fundername: the Project of National Natural Science Foundation of China
  grantid: 61502280; 61472228
– fundername: the project of National Bureau of Statistics of China
  grantid: 2019LZ10
– fundername: The General project of science and Technology Plan of Beijing Municipal Commission of Education
  grantid: KM202010017001
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-82f31e068a5c2a29732b840c018d3bd93b607b10c14f436217b94a4f7b727a3b3
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Fri Jul 25 12:28:15 EDT 2025
Wed Oct 01 04:09:55 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
Fri Feb 21 02:45:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fault diagnosis
Sample entropy
Variational modal decomposition
Intelligent optimization
Sparrow search algorithm
Rolling bearing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-82f31e068a5c2a29732b840c018d3bd93b607b10c14f436217b94a4f7b727a3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2763982132
PQPubID 326365
PageCount 16
ParticipantIDs proquest_journals_2763982132
crossref_citationtrail_10_1007_s10489_022_03562_9
crossref_primary_10_1007_s10489_022_03562_9
springer_journals_10_1007_s10489_022_03562_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ZhengYHuJZJiaMPXuFYTongQJA characteristic extraction method of rolling bearing based on parameter optimization Variational mode decompositionVibration and Impact20203921195202
DingCJFengYBWangMNFault diagnosis of rolling bearing based on Variational mode decomposition and deep convolutional neural networkVibration and Impact20214002287296
GaoZZhangHLChenYBLiuJFNieZCMutant Movement Tracking Based on Dynamic Weights Grasshoppers Optimization AlgorithmJournal of Zhengzhou University (Science Edition)202052023644
YanCLiMXLiuWPrediction of bank telephone marketing results based on improved whale algorithms optimizing S_Kohonen networkAppl Soft Comput20209210625910.1016/j.asoc.2020.106259
MengDWangHYangSLvZHuZWangZFault analysis of wind power rolling bearing based on EMD feature extractionCMES-Computer Modeling in Engineering & Sciences2022130154355810.32604/cmes.2022.018123
Tang AD, Han T, Xu DW, Xie L. UAV Track Planning Method Based on Chaos Sparrow Search algorithm. Computer application: 1–11 [2021-03-06]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html
Song BY, Xu JW, Xu L (2019) Multi-level inverter fault diagnosis based on WPT-PCA-NN Algorithm. Journal of shandong university of science and technology. Nat Sci 38(01):111–120. https://doi.org/10.16452/j.cnki.sdkjzk.2019.01.013
ZhuJHuTJiangBYangXIntelligent bearing fault diagnosis using PCA–DBN frameworkNeural Comput & Applic202032107731078110.1007/s00521-019-04612-z
Wang ZW (2015) Fault diagnosis method based on Variational mode decomposition. Yanshan University
ZhangJWDingKQWangHGIntelligent diagnosis of rolling bearing based on VMD-CNNCombined machine tool and automatic machining technology2020111519
ZhengJXYangCLangYCLiJYBearing failure diagnosis for SVM based on VMD and GWOCoal Mine Machinery20214201147150
DragomiretskiyKZossoDVariational mode decompositionIEEE Trans Signal Process2014623531544316029310.1109/TSP.2013.22886751394.94163
MiaoYZhaoMLinJIdentification of mechanical compound-fault based on the improved parameter-adaptive variational mode decompositionISA Trans201984829510.1016/j.isatra.2018.10.008
Wang CJ, Wang HR, Guan XY, Chang MR. Rolling Bearing Fault Diagnosis Based on VMD Sample Entropy and CS-ELM. Chemical Automation and Instrumentation, 201,48(05):469–475+485
Yuan T, Yongquan L (2020) Cuckoo search algorithm based on mini-batch gradient descent. Journal of shandong university of science and technology. Nat Sci 39(05):56–67. https://doi.org/10.16452/j.cnki.sdkjzk.2020.05.007
XuZLiCYangYFault diagnosis of rolling bearing of wind turbines based on the Variational mode decomposition and deep convolutional neural networksAppl Soft Comput20209510651510.1016/j.asoc.2020.106515
Lei Y, De G, Fei L (2020) Improved Sparrow Search Algorithm based DV-Hop Localization in WSN[C]. 2020 Chinese Automation Congress (CAC)
Liang T, Cao D X. Improved Simplified Particle Group Algorithm Based on Levy Flight [J/OL]. Computer Engineering and Application: 1–14 [2021-01-27]. http://kns.cnki.net/kcms/detail/11.2127.TP.20201030.0959.006.html
ZhuYYousefiNOptimal parameter identification of PEMFC stacks using adaptive sparrow search algorithmInt J Hydrog Energy202146149541955210.1016/j.ijhydene.2020.12.107
YanXAJiaMPXiangLCompound fault diagnosis of rotating machinery based on OVMD and a 1.5-dimension envelope spectrumMeas Sci Technol201627707500210.1088/0957-0233/27/7/075002
YuKMaHZengJHanHLiHWenBFrobenius and nuclear hybrid norm penalized robust principal component analysis for transient impulsive feature detection of rolling bearingsISA Trans201910037338610.1016/j.isatra.2019.11.021
ZhangXMiaoQZhangHWangLA parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machineryMech Syst Signal Process2018108587210.1016/j.ymssp.2017.11.029
ChangMRWangHRXiaoYWangCJJiangCYFault diagnosis method of rolling bearing optimized by SVM based on improved firefly algorithmChemical Automation & Instrumentation20214804372377
ZhengYYueJHJiaoJGuoXYExtraction of rolling bearing based on parameter optimization Variational mode decompositionVibration and Impact202140018694
Diao N K, Ma H X, Wang J S, Liu S. Fault Diagnosis of rolling bearing based on MPE and PSO-SVM.Electronic Measurement Technology:1–5[2021-12-20] http://kns.cnki.net/kcms/detail/11.2175.TN.20211207.2118.016.html
He XZ, Zhou XQ, Yu WN, Hou YX, Mechefske CK (2020) Adaptive variational mode decomposition and its application to multi-fault detection using mechanical vibration signals - ScienceDirect. ISA Transactions, 10.1016/j.isatra.2020.10.060
Jiang ZW (2017) Variational mode decomposition method and its application in mechanical fault diagnosis. Anhui University of Technology
WangJGuoSWApplication of adaptive VMD algorithm in rolling bearing failure diagnosisElectromechanical Engineering Technology20204911161164
Liu J C, Quan H, Yu X, He K, Li Z H. Fault Diagnosis of Rolling Bearing Based on Parameter Optimization of VMD and Sample Enropy [J/OL]. Automation: 1–12 [2021-03-26]. https://doi.org/10.16383/j.aas.190345
ZhaoMLinJMiaoYHXuXQDetection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearingsMeasurement20169142143910.1016/j.measurement.2016.05.068
WangHXianyuJOptimal configuration of distributed generation based on sparrow search algorithmIOP Conference Series: Earth and Environmental Science20216471(6pp)
SukritiCMMitraDEpilepsy seizure detection using kurtosis based VMD's parameters selection and bandwidth featuresBiomedical Signal Processing and Control20216410225510.1016/j.bspc.2020.102255
XueJShenBA novel swarm intelligence optimization approach: sparrow search algorithmSystems Science & Control Engineering An Open Access Journal202081223410.1080/21642583.2019.1708830
SongXWangHChenPWeighted kurtosis-based VMD and improved frequency-weighted energy operator low-speed bearing-fault diagnosis[J]Meas Sci Technol202132310.1088/1361-6501/abcdc1(11pp)
LvXMuXDZhangJMulti-threshold image segmentation based on an improved sparrow search algorithmSystems Engineering and Electronics20214302318327
ZhangCHouNLuJYWangCImproved PSO-VMD Algorithm and Its Application in Pipeline Leak DetectionJournal of Jilin University (Information Science Edition)202139012836
ZhangCDingSA stochastic configuration network based on chaotic sparrow search algorithm[J]Knowl-Based Syst20212201010692410.1016/j.knosys.2021.106924
JW Zhang (3562_CR26) 2020; 11
H Wang (3562_CR20) 2021; 647
M Zhao (3562_CR12) 2016; 91
Z Gao (3562_CR14) 2020; 52
X Lv (3562_CR17) 2021; 43
3562_CR27
X Song (3562_CR6) 2021; 32
Y Zheng (3562_CR24) 2021; 40
3562_CR29
J Xue (3562_CR15) 2020; 8
D Meng (3562_CR37) 2022; 130
C Zhang (3562_CR28) 2021; 220
C Yan (3562_CR31) 2020; 92
3562_CR1
3562_CR5
JX Zheng (3562_CR3) 2021; 42
Y Miao (3562_CR11) 2019; 84
C Zhang (3562_CR23) 2021; 39
Z Xu (3562_CR2) 2020; 95
3562_CR16
3562_CR18
K Yu (3562_CR25) 2019; 100
3562_CR33
3562_CR13
3562_CR35
Y Zhu (3562_CR19) 2021; 46
3562_CR30
XA Yan (3562_CR9) 2016; 27
X Zhang (3562_CR21) 2018; 108
3562_CR32
CM Sukriti (3562_CR7) 2021; 64
CJ Ding (3562_CR8) 2021; 40
J Zhu (3562_CR36) 2020; 32
J Wang (3562_CR10) 2020; 49
Y Zheng (3562_CR22) 2020; 39
K Dragomiretskiy (3562_CR4) 2014; 62
MR Chang (3562_CR34) 2021; 48
References_xml – reference: Liu J C, Quan H, Yu X, He K, Li Z H. Fault Diagnosis of Rolling Bearing Based on Parameter Optimization of VMD and Sample Enropy [J/OL]. Automation: 1–12 [2021-03-26]. https://doi.org/10.16383/j.aas.190345
– reference: SukritiCMMitraDEpilepsy seizure detection using kurtosis based VMD's parameters selection and bandwidth featuresBiomedical Signal Processing and Control20216410225510.1016/j.bspc.2020.102255
– reference: XuZLiCYangYFault diagnosis of rolling bearing of wind turbines based on the Variational mode decomposition and deep convolutional neural networksAppl Soft Comput20209510651510.1016/j.asoc.2020.106515
– reference: Tang AD, Han T, Xu DW, Xie L. UAV Track Planning Method Based on Chaos Sparrow Search algorithm. Computer application: 1–11 [2021-03-06]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html
– reference: YanXAJiaMPXiangLCompound fault diagnosis of rotating machinery based on OVMD and a 1.5-dimension envelope spectrumMeas Sci Technol201627707500210.1088/0957-0233/27/7/075002
– reference: GaoZZhangHLChenYBLiuJFNieZCMutant Movement Tracking Based on Dynamic Weights Grasshoppers Optimization AlgorithmJournal of Zhengzhou University (Science Edition)202052023644
– reference: ZhangCHouNLuJYWangCImproved PSO-VMD Algorithm and Its Application in Pipeline Leak DetectionJournal of Jilin University (Information Science Edition)202139012836
– reference: Jiang ZW (2017) Variational mode decomposition method and its application in mechanical fault diagnosis. Anhui University of Technology
– reference: Wang ZW (2015) Fault diagnosis method based on Variational mode decomposition. Yanshan University
– reference: ZhuJHuTJiangBYangXIntelligent bearing fault diagnosis using PCA–DBN frameworkNeural Comput & Applic202032107731078110.1007/s00521-019-04612-z
– reference: ZhengYHuJZJiaMPXuFYTongQJA characteristic extraction method of rolling bearing based on parameter optimization Variational mode decompositionVibration and Impact20203921195202
– reference: He XZ, Zhou XQ, Yu WN, Hou YX, Mechefske CK (2020) Adaptive variational mode decomposition and its application to multi-fault detection using mechanical vibration signals - ScienceDirect. ISA Transactions, 10.1016/j.isatra.2020.10.060
– reference: ZhangXMiaoQZhangHWangLA parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machineryMech Syst Signal Process2018108587210.1016/j.ymssp.2017.11.029
– reference: XueJShenBA novel swarm intelligence optimization approach: sparrow search algorithmSystems Science & Control Engineering An Open Access Journal202081223410.1080/21642583.2019.1708830
– reference: YanCLiMXLiuWPrediction of bank telephone marketing results based on improved whale algorithms optimizing S_Kohonen networkAppl Soft Comput20209210625910.1016/j.asoc.2020.106259
– reference: Lei Y, De G, Fei L (2020) Improved Sparrow Search Algorithm based DV-Hop Localization in WSN[C]. 2020 Chinese Automation Congress (CAC)
– reference: Liang T, Cao D X. Improved Simplified Particle Group Algorithm Based on Levy Flight [J/OL]. Computer Engineering and Application: 1–14 [2021-01-27]. http://kns.cnki.net/kcms/detail/11.2127.TP.20201030.0959.006.html
– reference: ZhuYYousefiNOptimal parameter identification of PEMFC stacks using adaptive sparrow search algorithmInt J Hydrog Energy202146149541955210.1016/j.ijhydene.2020.12.107
– reference: ZhangCDingSA stochastic configuration network based on chaotic sparrow search algorithm[J]Knowl-Based Syst20212201010692410.1016/j.knosys.2021.106924
– reference: ChangMRWangHRXiaoYWangCJJiangCYFault diagnosis method of rolling bearing optimized by SVM based on improved firefly algorithmChemical Automation & Instrumentation20214804372377
– reference: Yuan T, Yongquan L (2020) Cuckoo search algorithm based on mini-batch gradient descent. Journal of shandong university of science and technology. Nat Sci 39(05):56–67. https://doi.org/10.16452/j.cnki.sdkjzk.2020.05.007
– reference: ZhangJWDingKQWangHGIntelligent diagnosis of rolling bearing based on VMD-CNNCombined machine tool and automatic machining technology2020111519
– reference: Song BY, Xu JW, Xu L (2019) Multi-level inverter fault diagnosis based on WPT-PCA-NN Algorithm. Journal of shandong university of science and technology. Nat Sci 38(01):111–120. https://doi.org/10.16452/j.cnki.sdkjzk.2019.01.013
– reference: ZhaoMLinJMiaoYHXuXQDetection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearingsMeasurement20169142143910.1016/j.measurement.2016.05.068
– reference: LvXMuXDZhangJMulti-threshold image segmentation based on an improved sparrow search algorithmSystems Engineering and Electronics20214302318327
– reference: SongXWangHChenPWeighted kurtosis-based VMD and improved frequency-weighted energy operator low-speed bearing-fault diagnosis[J]Meas Sci Technol202132310.1088/1361-6501/abcdc1(11pp)
– reference: DingCJFengYBWangMNFault diagnosis of rolling bearing based on Variational mode decomposition and deep convolutional neural networkVibration and Impact20214002287296
– reference: WangJGuoSWApplication of adaptive VMD algorithm in rolling bearing failure diagnosisElectromechanical Engineering Technology20204911161164
– reference: ZhengYYueJHJiaoJGuoXYExtraction of rolling bearing based on parameter optimization Variational mode decompositionVibration and Impact202140018694
– reference: ZhengJXYangCLangYCLiJYBearing failure diagnosis for SVM based on VMD and GWOCoal Mine Machinery20214201147150
– reference: WangHXianyuJOptimal configuration of distributed generation based on sparrow search algorithmIOP Conference Series: Earth and Environmental Science20216471(6pp)
– reference: DragomiretskiyKZossoDVariational mode decompositionIEEE Trans Signal Process2014623531544316029310.1109/TSP.2013.22886751394.94163
– reference: Diao N K, Ma H X, Wang J S, Liu S. Fault Diagnosis of rolling bearing based on MPE and PSO-SVM.Electronic Measurement Technology:1–5[2021-12-20] http://kns.cnki.net/kcms/detail/11.2175.TN.20211207.2118.016.html
– reference: YuKMaHZengJHanHLiHWenBFrobenius and nuclear hybrid norm penalized robust principal component analysis for transient impulsive feature detection of rolling bearingsISA Trans201910037338610.1016/j.isatra.2019.11.021
– reference: MengDWangHYangSLvZHuZWangZFault analysis of wind power rolling bearing based on EMD feature extractionCMES-Computer Modeling in Engineering & Sciences2022130154355810.32604/cmes.2022.018123
– reference: Wang CJ, Wang HR, Guan XY, Chang MR. Rolling Bearing Fault Diagnosis Based on VMD Sample Entropy and CS-ELM. Chemical Automation and Instrumentation, 201,48(05):469–475+485
– reference: MiaoYZhaoMLinJIdentification of mechanical compound-fault based on the improved parameter-adaptive variational mode decompositionISA Trans201984829510.1016/j.isatra.2018.10.008
– volume: 43
  start-page: 318
  issue: 02
  year: 2021
  ident: 3562_CR17
  publication-title: Systems Engineering and Electronics
– volume: 11
  start-page: 15
  year: 2020
  ident: 3562_CR26
  publication-title: Combined machine tool and automatic machining technology
– ident: 3562_CR18
  doi: 10.1109/CAC51589.2020.9327429
– volume: 39
  start-page: 28
  issue: 01
  year: 2021
  ident: 3562_CR23
  publication-title: Journal of Jilin University (Information Science Edition)
– ident: 3562_CR30
– ident: 3562_CR29
  doi: 10.16452/j.cnki.sdkjzk.2020.05.007
– volume: 32
  start-page: 10773
  year: 2020
  ident: 3562_CR36
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-019-04612-z
– volume: 40
  start-page: 86
  issue: 01
  year: 2021
  ident: 3562_CR24
  publication-title: Vibration and Impact
– volume: 108
  start-page: 58
  year: 2018
  ident: 3562_CR21
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.029
– volume: 64
  start-page: 102255
  year: 2021
  ident: 3562_CR7
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.102255
– volume: 84
  start-page: 82
  year: 2019
  ident: 3562_CR11
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.10.008
– volume: 130
  start-page: 543
  issue: 1
  year: 2022
  ident: 3562_CR37
  publication-title: CMES-Computer Modeling in Engineering & Sciences
  doi: 10.32604/cmes.2022.018123
– ident: 3562_CR5
– volume: 39
  start-page: 195
  issue: 21
  year: 2020
  ident: 3562_CR22
  publication-title: Vibration and Impact
– ident: 3562_CR1
  doi: 10.16452/j.cnki.sdkjzk.2019.01.013
– volume: 40
  start-page: 287
  issue: 02
  year: 2021
  ident: 3562_CR8
  publication-title: Vibration and Impact
– ident: 3562_CR35
– volume: 48
  start-page: 372
  issue: 04
  year: 2021
  ident: 3562_CR34
  publication-title: Chemical Automation & Instrumentation
– volume: 100
  start-page: 373
  year: 2019
  ident: 3562_CR25
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.11.021
– volume: 95
  start-page: 106515
  year: 2020
  ident: 3562_CR2
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106515
– ident: 3562_CR13
  doi: 10.1016/j.isatra.2020.10.060
– ident: 3562_CR16
– ident: 3562_CR33
– volume: 92
  start-page: 106259
  year: 2020
  ident: 3562_CR31
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106259
– ident: 3562_CR32
  doi: 10.1109/URAI.2016.7625792
– volume: 52
  start-page: 36
  issue: 02
  year: 2020
  ident: 3562_CR14
  publication-title: Journal of Zhengzhou University (Science Edition)
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 3562_CR4
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2013.2288675
– volume: 647
  issue: 1
  year: 2021
  ident: 3562_CR20
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 49
  start-page: 161
  issue: 11
  year: 2020
  ident: 3562_CR10
  publication-title: Electromechanical Engineering Technology
– ident: 3562_CR27
  doi: 10.16383/j.aas.190345
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 3562_CR15
  publication-title: Systems Science & Control Engineering An Open Access Journal
  doi: 10.1080/21642583.2019.1708830
– volume: 46
  start-page: 9541
  issue: 14
  year: 2021
  ident: 3562_CR19
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2020.12.107
– volume: 220
  start-page: 106924
  issue: 10
  year: 2021
  ident: 3562_CR28
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106924
– volume: 32
  issue: 3
  year: 2021
  ident: 3562_CR6
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/abcdc1
– volume: 91
  start-page: 421
  year: 2016
  ident: 3562_CR12
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.068
– volume: 42
  start-page: 147
  issue: 01
  year: 2021
  ident: 3562_CR3
  publication-title: Coal Mine Machinery
– volume: 27
  start-page: 075002
  issue: 7
  year: 2016
  ident: 3562_CR9
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/27/7/075002
SSID ssj0003301
Score 2.3930445
Snippet Aiming at the intrinsic aspect that the weak features of the early fault information of rolling bearings are not easy to extract, a parameter Adaptive...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3150
SubjectTerms Adaptive algorithms
Algorithms
Artificial Intelligence
Bearing strength
Computer Science
Decomposition
Fault diagnosis
Feature extraction
Kurtosis
Machines
Manufacturing
Mathematical models
Mechanical Engineering
Parameters
Processes
Roller bearings
Search algorithms
Search process
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWVh4IwIFeWCDSInjPDxWQFUhlQWKukW240ClNqna9P9zdpIWECAxZYjt4XyvT767D-CaaeWh1SA6EVHiGg5rVxpKQK2E5ioPJLNAcfgUDUbscRyOm6awZVvt3j5JWk_9qdmNmfIeBE9egFHb5duwE5pxXqjFI9pb-19E6JYnD5GFG0V83LTK_HzG13C0yTG_PYvaaNM_gL0mTSS9-l4PYUsXR7DfUjCQxiKP4bkvVtOKZHXB3GRJLLMNKXOyqKdtE4mqbL8YrjJSFsQM-56ZIhgiMjE33o70Xof3REzfysWkep-dwKj_8HI3cBueBFehAVVuQvPA116UiFBRYcioqETcpjw_yQKZ8UBGXix9T_ksZxiw_FhyJlgeS0xeRCCDU-gUZaHPgGifasp0xhCoMKZDhFNcMMx6ZBSLRDMH_FZcqWqGiBsui2m6GX9sRJyiiFMr4pQ7cLPeM69HaPy5utveQtqY0zKl6AV5QhE5O3Db3szm9--nnf9v-QXsGjr5uiq7C51qsdKXmHRU8srq2AfA1Mrf
  priority: 102
  providerName: Springer Nature
Title Fault diagnosis model of rolling bearing based on parameter adaptive AVMD algorithm
URI https://link.springer.com/article/10.1007/s10489-022-03562-9
https://www.proquest.com/docview/2763982132
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5BuHjxtxFF0oM3Xdy6MraDMaAMooEYFYOnpe06NUFAHP-_r1sH0UROO3Tr4bXvx7e-fh_AGVPSRq9BdMI939Ia1pbQkoBKchXIxBUsA4r9gdcbsrtRY1SCQXEXRrdVFjExC9TxVOp_5JcUHSHwKYKn69mXpVWj9OlqIaHBjbRCfJVRjG1AhWpmrDJU2p3Bw-MyNiN6zzT0EHVYnheMzDUac5mO6fYhBGe2i1WBFfxOVav688-RaZaJwh3YMiUkaeVrvgslNdmD7UKegRhv3YenkC_GKYnzZrqPb5Kp3pBpQuY5EzcRuM2zJ6aymEwnRBOBf-oGGcJjPtORkLRe-reEj9_QFun75wEMw87zTc8yGgqWROdKLZ8mrqNsz-cNSbkWqqICMZ20HT92RRy4wrObwrGlwxKGycxpioBxljQFFjbcFe4hlCfTiToCohyqKFMxQxDDmGog1Ao4w4pIeE3uK1YFpzBXJA3BuNa5GEcramRt4ghNHGUmjoIqnC-_meX0GmvfrhWrEBlX-45WG6MKF8XKrIb_n-14_WwnsKml5fMO7RqU0_lCnWIBkoo6bPhhtw6VVthuD_Sz-3rfqZu9hqND2voBk-LZUA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB7x4MC7sKNXVh_gBBGJ7abxASG2qiytEJt6y7MdB5C6QYMQf47fxjhxqECCG6cckvjweTwzXzIzH8AGN9rHU4PsRIaRZzWsPWUlAY2WRuiUKZ4TxWYrbNzw03a1PQZvZS-MLassfWLuqJO-tt_IdygeBBFRJE97g0fPqkbZv6ulhIZ00grJbj5izDV2nJnXF6Rww92TI9zvTUrrx9eHDc-pDHgazS_zIpqywPhhJKuaSivlRBWyHu0HUcJUIpgK_ZoKfB3wlKO7D2pKcMnTmsLQL5liuO4fmOCMCyR_EwfHrYvLj1jAWC7A7CPL8cJQtF3bjmve47ZcCcmgzzAL8cTn0DjKd7_8os0jX30GplzKSvYLG5uFMdObg-lSDoI47zAPV3X53MlIUhTvPQxJrrJD-il5KiZ_E4V45VcMnQnp94gdPN61BTlEJnJgPS_Zv20eEdm5Q-yz--4C3PwKmosw3uv3zD8gJqCGcpNwJE2cmypSOyE5ZmAqrMnI8AoEJVyxdgPNra5GJx6NYrYQxwhxnEMciwpsfbwzKMZ5_Pj0SrkLsTvaw3hkiBXYLndmdPv71ZZ-Xm0dJhvXzfP4_KR1tgx_rax9UR2-AuPZ07NZxeQnU2vOwgj8_22jfgfO-A-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSIgLO6JQwAc4QdTEdrMcEKooYW2FxKLegu04gFTaQoMQv8bXMc5CBRK9ccohiQ_P45l5ycw8gB2ulY2nBtmJcH3LaFhb0kgCaiV0oBImeUYUW2339Jafd-qdCfgse2FMWWXpEzNHHfeV-UZeo3gQAp8ieaolRVnEVTM8HLxYRkHK_Gkt5TRyE7nQH-9I34YHZ03c611Kw-Obo1OrUBiwFJpeavk0YY62XV_UFRVGxolKZDzKdvyYyThg0rU96djK4QlHV-94MuCCJ57EsC-YZLjuJEx7Zoq76VIPT76jAGOZ9LKN_MZy3aBTNOwUbXvcFCohDbQZ5h9W8DMojjLdXz9ns5gXLsBckaySRm5dizChe0swXwpBkMIvLMN1KN66KYnzsr2nIcn0dUg_Ia_5zG8iEa3sikEzJv0eMSPHn00pDhGxGBifSxp3rSYR3QdEOn18XoHbf8FyFaZ6_Z5eA6IdqinXMUe6xLmuI6kLBMfcS7qe8DWvgFPCFalilLlR1OhGoyHMBuIIIY4yiKOgAnvf7wzyQR5jn66WuxAVh3oYjUywAvvlzoxu_73a-vjVtmEGTTm6PGtfbMCs0bPPy8KrMJW-vulNzHpSuZWZF4H7_7bnL0G-DSo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+diagnosis+model+of+rolling+bearing+based+on+parameter+adaptive+AVMD+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Li%2C+Meixuan&rft.au=Yan%2C+Chun&rft.au=Liu%2C+Wei&rft.au=Liu%2C+Xinhong&rft.date=2023-02-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=3&rft.spage=3150&rft.epage=3165&rft_id=info:doi/10.1007%2Fs10489-022-03562-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_022_03562_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon