Real-time trajectory planning for ship-mounted rotary cranes considering continuous sea wave disturbances
The increasing use of ship-mounted rotary cranes in marine trade has complicated operations, as the varying rope length increases the system’s underactuation. Additionally, these cranes are often subject to wave disturbances during load transportation. This paper proposes a trajectory planning metho...
Saved in:
Published in | Nonlinear dynamics Vol. 111; no. 22; pp. 20959 - 20973 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-090X 1573-269X |
DOI | 10.1007/s11071-023-08953-2 |
Cover
Abstract | The increasing use of ship-mounted rotary cranes in marine trade has complicated operations, as the varying rope length increases the system’s underactuation. Additionally, these cranes are often subject to wave disturbances during load transportation. This paper proposes a trajectory planning method based on disturbance observer to address these challenges. To begin, coordinate transformations are used to couple continuous yaw and roll disturbances with the original state variables, creating new state variables. A disturbance observer is then used to observe heave disturbance while combining the designed sway suppression trajectory with the reference trajectory to achieve precise positioning of the load and suppress the swaying angle. The stability of the proposed method is demonstrated through the use of theoretical techniques such as Lyapunov, LaSalle’s invariance principle, and Barbalat’s lemma. Furthermore, the effectiveness of the proposed approach is confirmed through experiments conducted on a constructed experimental platform. |
---|---|
AbstractList | The increasing use of ship-mounted rotary cranes in marine trade has complicated operations, as the varying rope length increases the system’s underactuation. Additionally, these cranes are often subject to wave disturbances during load transportation. This paper proposes a trajectory planning method based on disturbance observer to address these challenges. To begin, coordinate transformations are used to couple continuous yaw and roll disturbances with the original state variables, creating new state variables. A disturbance observer is then used to observe heave disturbance while combining the designed sway suppression trajectory with the reference trajectory to achieve precise positioning of the load and suppress the swaying angle. The stability of the proposed method is demonstrated through the use of theoretical techniques such as Lyapunov, LaSalle’s invariance principle, and Barbalat’s lemma. Furthermore, the effectiveness of the proposed approach is confirmed through experiments conducted on a constructed experimental platform. |
Author | Wu, Qiangying Ouyang, Huimin Xi, Huan |
Author_xml | – sequence: 1 givenname: Qiangying surname: Wu fullname: Wu, Qiangying organization: College of Electrical Engineering and Control Science, Nanjing Tech University – sequence: 2 givenname: Huimin surname: Ouyang fullname: Ouyang, Huimin organization: College of Electrical Engineering and Control Science, Nanjing Tech University – sequence: 3 givenname: Huan surname: Xi fullname: Xi, Huan email: huanxinjtech@163.com organization: College of Electrical Engineering and Control Science, Nanjing Tech University |
BookMark | eNp9kE1LAzEQhoNUsFX_gKeA5-hks9tNjiJ-gSCIQm8hzc5qSpusSVbx35taQfDgIckc3icz88zIxAePhJxwOOMA7XniHFrOoBIMpGoEq_bIlDdtKeZqMSFTUFXNQMHigMxSWgGAqEBOiXtEs2bZbZDmaFZoc4ifdFgb751_oX2INL26gW3C6DN2NIZsSsBG4zFRG3xyHcZttNTZ-TGMiSY09MO8I-1cymNcGm8xHZH93qwTHv-8h-T5-urp8pbdP9zcXV7cMyu4ykyCUUvslzBXPdqm7hS2UDem5n1neqxr0bVSAUcALtq5REBRblkLrCygFIfkdPfvEMPbiCnrVRijLy11JWXL63JESVW7lI0hpYi9HqLblNU0B71VqndKdVGqv5XqqkDyD2RdNtmVzaNx6_9RsUPTsLWF8Xeqf6gv2XOPfA |
CitedBy_id | crossref_primary_10_3390_act13120491 crossref_primary_10_1007_s11071_024_10806_5 crossref_primary_10_1109_ACCESS_2024_3435698 |
Cites_doi | 10.1109/TAC.2008.2007885 10.1016/j.ymssp.2015.05.020 10.1016/j.ymssp.2018.12.056 10.1016/j.automatica.2017.04.003 10.1109/TCST.2015.2404897 10.1016/j.ymssp.2021.107946 10.1016/j.ymssp.2018.06.056 10.1109/TIE.2021.3055159 10.1016/j.isatra.2021.08.035 10.1016/j.automatica.2021.109633 10.1299/jsdd.5.1402 10.1016/j.autcon.2021.103954 10.1016/j.ymssp.2020.106968 10.1016/j.autcon.2021.103843 10.1109/TAC.2020.3044531 10.1016/j.ins.2020.03.068 10.1016/j.ymssp.2021.107756 10.1109/TCST.2006.880220 10.1016/j.ymssp.2018.04.030 10.1109/TAC.2021.3108507 10.1016/j.automatica.2020.109461 10.1016/j.probengmech.2014.10.003 10.1109/TIE.2021.3112978 10.1016/j.mechmachtheory.2020.103980 10.1016/j.ymssp.2018.05.009 10.1016/j.ymssp.2020.107441 10.1109/TSMC.2021.3131843 10.1109/TII.2018.2878935 10.1177/0020294020944964 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s11071-023-08953-2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 20973 |
ExternalDocumentID | 10_1007_s11071_023_08953_2 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61703202 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c319t-80a9befb069fec54d9e7045a41fdafe443d78901e0013768e0e368e843e2c0e83 |
IEDL.DBID | 8FG |
ISSN | 0924-090X |
IngestDate | Fri Jul 25 11:00:37 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Wed Oct 01 02:34:58 EDT 2025 Fri Feb 21 02:43:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Motion planning Vibration control Underactuated systems Ship-mounted rotary cranes Motion control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-80a9befb069fec54d9e7045a41fdafe443d78901e0013768e0e368e843e2c0e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2887148713 |
PQPubID | 2043746 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2887148713 crossref_primary_10_1007_s11071_023_08953_2 crossref_citationtrail_10_1007_s11071_023_08953_2 springer_journals_10_1007_s11071_023_08953_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2023 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Lu, Fang (CR7) 2021; 125 Huang (CR4) 2015; 23 Guo, Chen (CR20) 2020; 526 Gnucci, Marino (CR8) 2021; 129 Lu (CR21) 2021; 131 Qian, Fang, Lu (CR19) 2019; 114 Martin, Irani (CR24) 2021; 153 Zhang, Jing, Zhu (CR11) 2021; 161 Qian, Fang, Lu (CR22) 2017; 82 Yang, Ouyang (CR15) 2022; 127 Roy (CR1) 2021; 67 CR10 Park (CR3) 2008; 53 Sano (CR30) 2012; 5 Da Silva Lima, Moreira Bessa (CR6) 2022; 20 Maghsoudi (CR18) 2016; 66–67 Wu (CR12) 2021; 158 Ouyang (CR16) 2020; 153 Tian (CR9) 2021; 132 Ghommam (CR2) 2006; 14 CR29 La, Nguyen (CR13) 2019; 116 CR26 Tuan (CR28) 2018; 112 Maghsoudi (CR14) 2019; 123 Yurchenko, Alevras (CR25) 2014; 38 Wu (CR27) 2022; 69 Chen, Sun (CR23) 2022; 69 Jiang, Astolfi (CR5) 2021; 66 Wu (CR17) 2020; 144 J Jiang (8953_CR5) 2021; 66 Y Qian (8953_CR19) 2019; 114 Q Wu (8953_CR12) 2021; 158 B Lu (8953_CR7) 2021; 125 MJ Maghsoudi (8953_CR14) 2019; 123 G Da Silva Lima (8953_CR6) 2022; 20 VD La (8953_CR13) 2019; 116 8953_CR10 LA Tuan (8953_CR28) 2018; 112 M Gnucci (8953_CR8) 2021; 129 H Ouyang (8953_CR16) 2020; 153 Q Wu (8953_CR17) 2020; 144 C Park (8953_CR3) 2008; 53 Y Qian (8953_CR22) 2017; 82 L Yang (8953_CR15) 2022; 127 H Chen (8953_CR23) 2022; 69 IA Martin (8953_CR24) 2021; 153 Y Wu (8953_CR27) 2022; 69 D Yurchenko (8953_CR25) 2014; 38 Z Tian (8953_CR9) 2021; 132 M Zhang (8953_CR11) 2021; 161 8953_CR29 S Roy (8953_CR1) 2021; 67 J Ghommam (8953_CR2) 2006; 14 8953_CR26 MJ Maghsoudi (8953_CR18) 2016; 66–67 B Lu (8953_CR21) 2021; 131 J Huang (8953_CR4) 2015; 23 B Guo (8953_CR20) 2020; 526 S Sano (8953_CR30) 2012; 5 |
References_xml | – volume: 53 start-page: 2638 issue: 11 year: 2008 end-page: 2642 ident: CR3 article-title: Global solution for the optimal feedback control of the underactuated Heisenberg system publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2007885 – volume: 66–67 start-page: 756 year: 2016 end-page: 768 ident: CR18 article-title: An optimal performance control scheme for a 3D crane publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.05.020 – volume: 123 start-page: 466 year: 2019 end-page: 482 ident: CR14 article-title: Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.12.056 – volume: 82 start-page: 21 year: 2017 end-page: 28 ident: CR22 article-title: Adaptive repetitive learning control for an offshore boom crane publication-title: Automatica doi: 10.1016/j.automatica.2017.04.003 – volume: 23 start-page: 2400 issue: 6 year: 2015 end-page: 2407 ident: CR4 article-title: Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2015.2404897 – volume: 161 year: 2021 ident: CR11 article-title: Disturbance employment-based sliding mode control for 4-DOF tower crane systems publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107946 – ident: CR10 – volume: 116 start-page: 310 year: 2019 end-page: 321 ident: CR13 article-title: Combination of input shaping and radial spring-damper to reduce tridirectional vibration of crane payload publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.06.056 – volume: 69 start-page: 1705 issue: 2 year: 2022 end-page: 1716 ident: CR23 article-title: An output feedback approach for regulation of 5-DOF offshore cranes with Ship Yaw and roll perturbations publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3055159 – volume: 127 start-page: 449 year: 2022 end-page: 460 ident: CR15 article-title: Precision-positioning adaptive controller for swing elimination in three-dimensional overhead cranes with distributed mass beams publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.08.035 – ident: CR29 – volume: 129 year: 2021 ident: CR8 article-title: Adaptive tracking control for underactuated mechanical systems with relative degree two publication-title: Automatica doi: 10.1016/j.automatica.2021.109633 – volume: 20 start-page: 963 issue: 6 year: 2022 end-page: 969 ident: CR6 article-title: Sliding mode control with Gaussian process regression for underactuated mechanical systems publication-title: Rev. IEEE Am. Lat. – volume: 5 start-page: 1402 issue: 7 year: 2012 end-page: 1417 ident: CR30 article-title: LMI approach to robust control of rotary cranes under load sway frequency variance publication-title: J. Syst. Design Dyn. doi: 10.1299/jsdd.5.1402 – volume: 132 year: 2021 ident: CR9 article-title: Swing suppression control in tower cranes with time-varying rope length using real-time modified trajectory planning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103954 – volume: 144 year: 2020 ident: CR17 article-title: Dynamic analysis and time optimal anti-swing control of double pendulum bridge crane with distributed mass beams publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106968 – volume: 131 year: 2021 ident: CR21 article-title: Nonlinear antiswing control for offshore boom cranes subject to ship roll and heave disturbances publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103843 – volume: 66 start-page: 5429 issue: 11 year: 2021 end-page: 5435 ident: CR5 article-title: Stabilization of a class of underactuated nonlinear systems via underactuated back-stepping publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2020.3044531 – volume: 526 start-page: 119 year: 2020 end-page: 132 ident: CR20 article-title: Fuzzy robust fault-tolerant control for offshore ship-mounted crane system publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.03.068 – volume: 158 year: 2021 ident: CR12 article-title: Modeling and nonlinear sliding mode controls of double pendulum cranes considering distributed mass beams, varying roped length and external disturbances publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107756 – volume: 14 start-page: 1150 issue: 6 year: 2006 end-page: 1157 ident: CR2 article-title: Asymptotic backstepping stabilization of an underactuated surface vessel publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2006.880220 – volume: 112 start-page: 233 year: 2018 end-page: 250 ident: CR28 article-title: Adaptive neural network sliding mode control of shipboard container cranes considering actuator backlash publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.04.030 – volume: 67 start-page: 4202 issue: 8 year: 2021 end-page: 4209 ident: CR1 article-title: An adaptive control framework for underactuated switched Euler–Lagrange systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2021.3108507 – volume: 125 year: 2021 ident: CR7 article-title: Gain-adapting coupling control for a class of underactuated mechanical systems publication-title: Automatica doi: 10.1016/j.automatica.2020.109461 – volume: 38 start-page: 173 year: 2014 end-page: 179 ident: CR25 article-title: Stability, control and reliability of a ship crane payload motion publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2014.10.003 – volume: 69 start-page: 9196 issue: 9 year: 2022 end-page: 9205 ident: CR27 article-title: New adaptive dynamic output feedback control of double-pendulum ship-mounted cranes with accurate gravitational compensation and constrained inputs publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3112978 – ident: CR26 – volume: 153 year: 2020 ident: CR16 article-title: Adaptive tracking controller design for double-pendulum tower cranes publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103980 – volume: 114 start-page: 556 year: 2019 end-page: 570 ident: CR19 article-title: Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.05.009 – volume: 153 year: 2021 ident: CR24 article-title: Dynamic modeling and self-tuning anti-sway control of a seven degree of freedom shipboard knuckle boom crane publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107441 – volume: 161 year: 2021 ident: 8953_CR11 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107946 – volume: 526 start-page: 119 year: 2020 ident: 8953_CR20 publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.03.068 – volume: 114 start-page: 556 year: 2019 ident: 8953_CR19 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.05.009 – volume: 14 start-page: 1150 issue: 6 year: 2006 ident: 8953_CR2 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2006.880220 – volume: 127 start-page: 449 year: 2022 ident: 8953_CR15 publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.08.035 – volume: 153 year: 2021 ident: 8953_CR24 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107441 – volume: 123 start-page: 466 year: 2019 ident: 8953_CR14 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.12.056 – volume: 153 year: 2020 ident: 8953_CR16 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2020.103980 – volume: 66–67 start-page: 756 year: 2016 ident: 8953_CR18 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.05.020 – volume: 116 start-page: 310 year: 2019 ident: 8953_CR13 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.06.056 – volume: 69 start-page: 1705 issue: 2 year: 2022 ident: 8953_CR23 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3055159 – volume: 132 year: 2021 ident: 8953_CR9 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103954 – volume: 158 year: 2021 ident: 8953_CR12 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107756 – volume: 129 year: 2021 ident: 8953_CR8 publication-title: Automatica doi: 10.1016/j.automatica.2021.109633 – volume: 82 start-page: 21 year: 2017 ident: 8953_CR22 publication-title: Automatica doi: 10.1016/j.automatica.2017.04.003 – ident: 8953_CR29 doi: 10.1109/TSMC.2021.3131843 – ident: 8953_CR26 doi: 10.1109/TII.2018.2878935 – volume: 20 start-page: 963 issue: 6 year: 2022 ident: 8953_CR6 publication-title: Rev. IEEE Am. Lat. – volume: 66 start-page: 5429 issue: 11 year: 2021 ident: 8953_CR5 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2020.3044531 – volume: 5 start-page: 1402 issue: 7 year: 2012 ident: 8953_CR30 publication-title: J. Syst. Design Dyn. doi: 10.1299/jsdd.5.1402 – volume: 144 year: 2020 ident: 8953_CR17 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106968 – volume: 125 year: 2021 ident: 8953_CR7 publication-title: Automatica doi: 10.1016/j.automatica.2020.109461 – volume: 69 start-page: 9196 issue: 9 year: 2022 ident: 8953_CR27 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3112978 – volume: 53 start-page: 2638 issue: 11 year: 2008 ident: 8953_CR3 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2007885 – volume: 23 start-page: 2400 issue: 6 year: 2015 ident: 8953_CR4 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2015.2404897 – volume: 112 start-page: 233 year: 2018 ident: 8953_CR28 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.04.030 – volume: 131 year: 2021 ident: 8953_CR21 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103843 – volume: 38 start-page: 173 year: 2014 ident: 8953_CR25 publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2014.10.003 – volume: 67 start-page: 4202 issue: 8 year: 2021 ident: 8953_CR1 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2021.3108507 – ident: 8953_CR10 doi: 10.1177/0020294020944964 |
SSID | ssj0003208 |
Score | 2.4136636 |
Snippet | The increasing use of ship-mounted rotary cranes in marine trade has complicated operations, as the varying rope length increases the system’s underactuation.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20959 |
SubjectTerms | Automotive Engineering Classical Mechanics Control Control algorithms Control theory Controllers Coordinate transformations Cranes Cranes & hoists Design Disturbance observers Dynamical Systems Engineering Load Mechanical Engineering Neural networks Original Paper Rolling motion State variable Trajectory planning Vibration Yaw |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQucCBsoqyyQdu4CqJne2IEItAcEBUKqfIiSdSWdIqCwi-nnHiUKgAqZdcMrYSe1Z7Zh4hhz53BQcumXJ8xYSb2iyQIQpegj5SmFpKebo4-ebWuxyIq6E7NEVhRZvt3l5J1pp6WuyGkQqGvg5nVhC6nKHiXXR1gNIhiycXD9dnXxqYOzUSnYWxhT6HGJpimd9n-WmQpl7mzMVobW_Ou2TQfmmTZvLUr8q4n3zMNHGc91dWyYpxQOlJwzFrZAGyddI1zig1ol6sk-VvnQo3yOgOHUqmgehpmcvH-qj_nU4M4hFFz5fqtC_2oqEncJ58XEokSNASQkETgwqqSXVu_CirxlVBUcrom3wFqpDXqjzWDFhsksH52f3pJTMoDSxB8S3RxMkwhjS2vDCFxBUqBB_9RCnsVMkUhOBKF9vaULcw9QKwgOMzQBZxEgsCvkU62TiDbUJDiyvwlC9A-kKGSvIgTmM7ADu2HdTaPWK3WxUlpoW5RtJ4jqbNl_XKRriyUb2yEY45-hozaRp4_Eu913JAZIS5iBxUxBg1YjjfI8fthk5f_z3bznzku2RJg9k3lY57pFPmFeyjy1PGB4bDPwF48Pc3 priority: 102 providerName: Springer Nature |
Title | Real-time trajectory planning for ship-mounted rotary cranes considering continuous sea wave disturbances |
URI | https://link.springer.com/article/10.1007/s11071-023-08953-2 https://www.proquest.com/docview/2887148713 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AFBBN dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-269X dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-269X dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYLnBgKSCWgnzgBhaJ7WwnVFALAlEhRKVyipx4IhVBW5oUxN8zTtwGkOCSSInjQ2Z7HnvmEXIcCE8KEIppHmgmvcxloYrQ8FLESFHmaO2b4uS7rn_dkzd9r28Tbrk9VjnziaWj1qPU5MjPOFoDQndcU52P35hhjTK7q5ZCY5Esuxw1yVSKd67mnljwkpHOwTWGyUf0bdFMVTqH6x5cSHPBnDDyBOM_A1ONNn9tkJZxp7NB1ixgpK1KwptkAYYNsm7BI7WmmTfI6rfOgltk8IAAkBnieFpM1HOZmv-kY8tQRBGpUnNMi70aqgicZzIqFA5IMXJBTlPL4mmGmrPsg-F0NM0pWgX9UO9ANerGdJIYhcm3Sa_Tfry8ZpZVgaVobgWGJBUlkCWOH2WQelJHECCuU9LNtMpASqFNcawLZctRPwQHBF5DFClPHQjFDlkajoawS2jkCA2-DiSoQKpIKxEmWeKG4CYuRy-7R9zZL41T23LcMF-8xHWzZCOGGMUQl2KI8ZuT-TfjquHGv6ObM0nF1vjyuFaVPXI6k179-u_Z9v-f7YCsGLL5qhKxSZaKyRQOEZIUyVGpd0dkuXX1dNvG-0W7e_-AT3u89QXaBOGA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2V9gAc2lJAFErxAU5gkdjO16GqEHTZ0o8DaqW9BSeeSEWwu2yyrfqn-I2dSZwuRWpvveQS21I8z-M3sWcewNtER0ajttKpxEkTVaFMbUYLrySOlFWBczEnJx8dx8NT820UjZbgb58Lw9cqe5_YOmo3Kfkf-UdFq4GoO8VUu9M_klWj-HS1l9DoYHGAlxcUstU7-1_Ivu-UGuydfB5KryogS4JbQy7ZZgVWRRBnFZaRcRkmxGusCStnKzRGO04ODbEtuRmnGKCmZ0qfpMoAU03jPoAVo7XmWv3p4Ou159eqVcALKKbh_x8jn6TTpepRnEWBu9IySLNIS3VzI1yw2_8OZNt9brAOq56gik8dop7AEo43YM2TVeFdQb0Bj_-pZPgUzr4T4ZQsVC-amf3ZHgVciqlXRBLEjAVfC5O_WZqCxplNGksNStopsRalVw3lpnx3_mw8n8xrQdMtLuw5CkdYnM8KBmj9DE7vZb6fw_J4MsYXILJAO4xdYtAmxmbO6rSoijDFsAgVefVNCPspzUtf4pyVNn7li-LMbIaczJC3Zsipz_vrPtOuwMedrbd6S-V-sdf5Apqb8KG33uL17aO9vHu0N_BweHJ0mB_uHx-8gkcsdN9lQW7BcjOb42uiQ02x3WJQwI_7Bv0Vg5IaOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAceAwQgwE5cINobZO-jhMwjdeEEJN2q9LGlYagm9YWxL_H6TI2ECBx6aVODnFsf05if4Sc-NwVHLhkyvEVE25qs0CGaHgJYqQwtZTydHHyXc_r9sX1wB0sVPFXr91nV5LTmgbdpSkrWmOVtuaFb5i1YBrscGYFocsZOuFlgbFap199p_3pi7lTcdJZmGXoE4mBKZv5eY6voWmON79dkVaRp7NJ1g1kpO2pjrfIEmR1smHgIzXGmdfJ2kJvwW0yfEAIyDR1PC0m8qk6nH-nY8NRRBGrUv1Qi71osgicZzIqJAokGLsgp4nh8dSiemmGWTkqc4p2Qd_kK1CFu6OcxHrL5Duk37l8PO8yw6vAEjS4AoOSDGNIY8sLU0hcoULwEdlJYadKpiAEV7o81oaq6agXgAUcvwEq1UksCPguqWWjDPYIDS2uwFO-AOkLGSrJgziN7QDs2HbQzzaIPVvSKDFNxzX3xXM0b5es1RChGqJKDRGOOf0cM5623PhTujnTVGTML48cdJ2Y52EC3iBnM-3Nf_8-2_7_xI_Jyv1FJ7q96t0ckFXNRD8tU2ySWjEp4RDxShEfVVvyA61i4XI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+trajectory+planning+for+ship-mounted+rotary+cranes+considering+continuous+sea+wave+disturbances&rft.jtitle=Nonlinear+dynamics&rft.au=Wu%2C+Qiangying&rft.au=Ouyang%2C+Huimin&rft.au=Xi%2C+Huan&rft.date=2023-11-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=111&rft.issue=22&rft.spage=20959&rft.epage=20973&rft_id=info:doi/10.1007%2Fs11071-023-08953-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_023_08953_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |