Criminal Search Optimization Algorithm: A Population-Based Meta-Heuristic Optimization Technique to Solve Real-World Optimization Problems

Optimization techniques are widely used to solve variety of problems related to the fields of engineering, statistics, finance, etc. In this article, a new optimization algorithm named criminal search optimization algorithm (CSOA) has been proposed. This proposed algorithm is inspired by policemen a...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 47; no. 3; pp. 3551 - 3571
Main Authors Srivastava, Abhishek, Das, Dushmanta Kumar
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
DOI10.1007/s13369-021-06446-1

Cover

Abstract Optimization techniques are widely used to solve variety of problems related to the fields of engineering, statistics, finance, etc. In this article, a new optimization algorithm named criminal search optimization algorithm (CSOA) has been proposed. This proposed algorithm is inspired by policemen and replicates the strategies and intelligence used by a team of the policemen to catch a criminal for a crime. The performance of CSOA is validated using two suites of benchmark functions (CEC-2005 and CEC-2020). Further, the proposed method is used to solve a multi-objective real-world optimization problem, i.e. a combined emission economic dispatch problem. To evaluate the performance of the proposed method, five test cases have been considered in this study. The results obtained are compared with other existing well-known optimization methods to show the superiority of the proposed CSOA method.
AbstractList Optimization techniques are widely used to solve variety of problems related to the fields of engineering, statistics, finance, etc. In this article, a new optimization algorithm named criminal search optimization algorithm (CSOA) has been proposed. This proposed algorithm is inspired by policemen and replicates the strategies and intelligence used by a team of the policemen to catch a criminal for a crime. The performance of CSOA is validated using two suites of benchmark functions (CEC-2005 and CEC-2020). Further, the proposed method is used to solve a multi-objective real-world optimization problem, i.e. a combined emission economic dispatch problem. To evaluate the performance of the proposed method, five test cases have been considered in this study. The results obtained are compared with other existing well-known optimization methods to show the superiority of the proposed CSOA method.
Author Das, Dushmanta Kumar
Srivastava, Abhishek
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Srivastava
  fullname: Srivastava, Abhishek
  organization: Department of Electrical and Electronics Engineering, National Institute of Technology Nagaland
– sequence: 2
  givenname: Dushmanta Kumar
  surname: Das
  fullname: Das, Dushmanta Kumar
  organization: Department of Electrical and Electronics Engineering, National Institute of Technology Nagaland
BookMark eNp9kN9KHDEUh4NY0FpfoFeBXqfm32SS3m2XVgWLogv2LmQyZ9yU7GSbZAv6CD61425B9MKrHA6_7-Sc7yPaH9MICH1m9CujtD0pTAhlCOWMUCWlImwPHXJmGJFcs_1tLUij2t8H6LiU0FGphWkYE4focZ7DKowu4htw2S_x5bpOjQdXQxrxLN6lHOpy9Q3P8FVab-K2T767Aj3-BdWRM9jkUGrwr8kF-OUY_m4A14RvUvwH-BpcJLcpx_519CqnLsKqfEIfBhcLHP9_j9Di54_F_IxcXJ6ez2cXxAtmKmmha7VptdBMagdOMe5bA93AuFScS6qhl8b0gxxk69uG0sZr6bXoeGNUL47Ql93YdU7TfqXaP2mTJwPFciUFVw0VckrxXcrnVEqGwa4nUS7fW0bts3W7s24n63Zr3bIJ0m8gH-r2yJpdiO-jYoeW6Z_xDvLLVu9QT9ETmk8
CitedBy_id crossref_primary_10_1007_s13369_022_07350_y
crossref_primary_10_1515_mt_2022_0055
crossref_primary_10_1515_mt_2022_0123
crossref_primary_10_3390_s23042218
crossref_primary_10_1007_s00202_024_02469_7
crossref_primary_10_1016_j_knosys_2023_110337
crossref_primary_10_1016_j_prime_2024_100527
crossref_primary_10_1016_j_ces_2024_120024
crossref_primary_10_1016_j_cogsys_2024_101237
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_3390_su16010397
crossref_primary_10_1016_j_prime_2023_100309
crossref_primary_10_1007_s10586_024_04669_z
crossref_primary_10_1007_s10489_024_05517_8
crossref_primary_10_1007_s40747_022_00852_0
crossref_primary_10_1016_j_eswa_2023_120452
crossref_primary_10_1038_s41598_022_25031_6
crossref_primary_10_1007_s00202_023_02048_2
crossref_primary_10_1038_s41598_024_83589_9
Cites_doi 10.1109/UPCON47278.2019.8980245
10.1080/0952813X.2013.782347
10.1016/j.asej.2020.04.006
10.1016/j.energy.2018.11.034
10.1016/j.energy.2016.08.079
10.1109/TETC.2018.2812927
10.1016/j.ins.2015.09.051
10.1108/02644401211235834
10.1016/j.ijepes.2015.11.093
10.1016/j.engappai.2019.01.001
10.1038/scientificamerican0792-66
10.1016/j.epsr.2019.106061
10.1002/2050-7038.12026
10.1109/60.222703
10.1016/j.asoc.2020.106172
10.1016/j.scient.2012.02.030
10.1109/ICNN.1995.488968
10.1016/j.enconman.2014.09.034
10.1016/j.asoc.2010.11.014
10.1016/j.engappai.2020.103763
10.1109/JAS.2018.7511138
10.1023/A:1015059928466
10.1016/j.asoc.2019.03.019
10.1002/etep.2683
10.1109/TCYB.2020.3024607
10.1109/59.387899
10.1016/j.cad.2010.12.015
10.1049/ip-c.1984.0012
10.1109/SoCPaR.2009.21
10.1016/j.ijepes.2018.03.019
10.1016/j.energy.2019.01.010
10.1049/iet-gtd.2017.0257
10.1016/j.asoc.2019.03.038
10.1016/j.ins.2009.03.004
10.1016/j.ins.2012.08.023
10.1016/j.advengsoft.2016.01.008
10.1016/j.swevo.2014.02.002
10.1016/j.energy.2016.02.041
10.1016/j.ipl.2006.10.005
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2021
King Fahd University of Petroleum & Minerals 2021.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2021
– notice: King Fahd University of Petroleum & Minerals 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13369-021-06446-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 3571
ExternalDocumentID 10_1007_s13369_021_06446_1
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-7eb7897838148aea612c79ebf124622408ed499df4f47c75005c84c83b2596d3
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:07:07 EDT 2025
Tue Jul 01 01:34:23 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Fri Feb 21 02:46:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords CEC-2005 benchmark functions
CEC-2020 benchmark functions
Combined emission and economic dispatch (CEED) problem
Meta-heuristic techniques
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-7eb7897838148aea612c79ebf124622408ed499df4f47c75005c84c83b2596d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2643265034
PQPubID 2044268
PageCount 21
ParticipantIDs proquest_journals_2643265034
crossref_primary_10_1007_s13369_021_06446_1
crossref_citationtrail_10_1007_s13369_021_06446_1
springer_journals_10_1007_s13369_021_06446_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ChenCLWangSCBranch-and-bound scheduling for thermal generating unitsIEEE Trans. Energy Convers.19938218418910.1109/60.222703
GognaATayalAMetaheuristics: review and applicationJ. Exp. Theor. Artif. Intell.201325450352610.1080/0952813X.2013.782347
KansalVDhillonJSEmended salp swarm algorithm for multiobjective electric power dispatch problemAppl. Soft Comput.20209010617210.1016/j.asoc.2020.106172
KheshtiMKangXLiJRegulskiPTerzijaVLightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraintsIET Gener. Transm. Distrib.201712110411610.1049/iet-gtd.2017.0257
RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf. Sci.2009179132232224810.1016/j.ins.2009.03.004
AbdelazizAAliEElazimSAImplementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systemsEnergy201610150651810.1016/j.energy.2016.02.041
WuGAcross neighborhood search for numerical optimizationInf. Sci.201632959761810.1016/j.ins.2015.09.051
DeyBRoySKBhattacharyyaBSolving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithmsEng. Sci. Technol. Int. J.20192215566
HatamlouABlack hole: A new heuristic optimization approach for data clusteringInf. Sci.2013222175184299850710.1016/j.ins.2012.08.023
GüvençUSönmezYDumanSYörükerenNCombined economic and emission dispatch solution using gravitational search algorithmSci. Iranica20121961754176210.1016/j.scient.2012.02.030
Kashan, AH.: League championship algorithm: a new algorithm for numerical function optimization. In: Soft Computing and Pattern Recognition, 2009. SOCPAR’09. International Conference of, IEEE, pp 43–48 (2009)
AbdelazizAAliEElazimSACombined economic and emission dispatch solution using flower pollination algorithmInt. J. Electr. Power Energy Syst.20168026427410.1016/j.ijepes.2015.11.093
ElattarEEEnvironmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithmEnergy201917125626910.1016/j.energy.2019.01.010
Das, P.; Das, DK.; Dey, S.: A new class topper optimization algorithm with an application to data clustering. IEEE Transactions on Emerging Topics in Computing (2018)
Srivastava, A.; Das, DK.: A new aggrandized class topper optimization algorithm to solve economic load dispatch problem in a power system. IEEE Trans. Cybern. (2020)
MoosavianNRoodsariBKSoccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networksSwarm Evol. Comput.201417142410.1016/j.swevo.2014.02.002
LeKGoldenJStansberryCViceRWoodJBallanceJBrownGKamyaJNielsenENakajimaHPotential impacts of clean air regulations on system operationsIEEE Trans. Power Syst.199510264765610.1109/59.387899
LiangHLiuYLiFShenYA multiobjective hybrid bat algorithm for combined economic/emission dispatchInt.l J. Electr. Power Energy Syst.201810110311510.1016/j.ijepes.2018.03.019
WoodAJWollenbergBFShebléGBPower Generation, Operation, and Control2013HobokenJohn Wiley & Sons
ManteawEDOderoNACombined economic and emission dispatch solution using abc\_pso hybrid algorithm with valve point loading effectInt. J. Sci. Res. Publ.201221219
MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
JiangMLuoYPYangSYStochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithmInf. Process. Lett.20071021816229477610.1016/j.ipl.2006.10.005
SrivastavaADasDKA new kho-kho optimization algorithm: An application to solve combined emission economic dispatch and combined heat and power economic dispatch problemEng. Appl. Artif. Intell.20209410376310.1016/j.engappai.2020.103763
RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput. Aided Des.201143330331510.1016/j.cad.2010.12.015
Yang, XS.; Gandomi, AH.: Bat algorithm: a novel approach for global engineering optimization. Engineering computations (2012)
ZhangQZouDDuanNShenXAn adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problemAppl. Soft Comput.20197864166910.1016/j.asoc.2019.03.019
BasuMEconomic environmental dispatch using multi-objective differential evolutionAppl. Soft Comput.20111122845285310.1016/j.asoc.2010.11.014
BeyerHGSchwefelHPEvolution strategies-a comprehensive introduction.Nat. Comput.200211352190749210.1023/A:1015059928466
DasguptaDMichalewiczZEvolutionary Algorithms in Engineering Applications2013BerlinSpringer Science & Business Media0879.68043
Kennedy, J.; Eberhart, R.: Particle swarm optimization (pso). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, pp 1942–1948 (1995)
RajagopalanAKasinathanPNagarajanKRamachandaramurthyVKSengodenVAlavandarSChaotic self-adaptive interior search algorithm to solve combined economic emission dispatch problems with security constraintsInt. Trans. Electr. Energy Syst.2019291202610.1002/2050-7038.12026
SinghDDhillonJAmeliorated grey wolf optimization for economic load dispatch problemEnergy201916939841910.1016/j.energy.2018.11.034
NocedalJWrightSNumerical Optimization2006BerlinSpringer Science & Business Media1104.65059
Khatsu, S.; Srivastava, A.; Das, DK.: An adaptive phasor particle swarm optimization to solve economic load dispatch and combined emission economic load dispatch problem. In: 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp 1–5, (2019) https://doi.org/10.1109/UPCON47278.2019.8980245
TabassumMFSaeedMChaudhryNAAliJFarmanMAkramSEvolutionary simplex adaptive Hooke-Jeeves algorithm for economic load dispatch problem considering valve point loading effectsAin Shams Eng. J.20211211001101510.1016/j.asej.2020.04.006
Lee, K.; Park, Y.; Ortiz, J.: Fuel-cost minimisation for both real-and reactive-power dispatches. In: IEE Proceedings C (Generation, Transmission and Distribution), IET, vol 131, pp 85–93 (1984)
PanSJianJChenHYangLA full mixed-integer linear programming formulation for economic dispatch with valve-point effects, transmission loss and prohibited operating zonesElectric Power Syst. Res.202018010606110.1016/j.epsr.2019.106061
ShadravanSNajiHBardsiriVKThe sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problemsEng. Appl. Artif. Intell.201980203410.1016/j.engappai.2019.01.001
SecuiDCA new modified artificial bee colony algorithm for the economic dispatch problemEnergy Convers. Manage.201589436210.1016/j.enconman.2014.09.034
KarthikNParvathyAKArulRMulti-objective economic emission dispatch using interior search algorithmInt. Trans. Electr. Energy Syst.2019291e268310.1002/etep.2683
GherbiYABouzeboudjaHGherbiFZThe combined economic environmental dispatch using new hybrid metaheuristicEnergy201611546847710.1016/j.energy.2016.08.079
ZhaoJLiuSZhouMGuoXQiLModified cuckoo search algorithm to solve economic power dispatch optimization problemsIEEE/CAA J. Autom. Sin.201854794806381382210.1109/JAS.2018.7511138
HollandJHGenetic algorithms.Sci. Am.19922671667310.1038/scientificamerican0792-66
GholamghasemiMAkbariEAsadpoorMBGhasemiMA new solution to the non-convex economic load dispatch problems using phasor particle swarm optimizationAppl. Soft Comput.20197911112410.1016/j.asoc.2019.03.038
E Rashedi (6446_CR6) 2009; 179
6446_CR14
6446_CR36
M Jiang (6446_CR17) 2007; 102
N Karthik (6446_CR34) 2019; 29
JH Holland (6446_CR3) 1992; 267
G Wu (6446_CR2) 2016; 329
A Gogna (6446_CR23) 2013; 25
N Moosavian (6446_CR16) 2014; 17
B Dey (6446_CR22) 2019; 22
6446_CR8
EE Elattar (6446_CR33) 2019; 171
J Zhao (6446_CR30) 2018; 5
RV Rao (6446_CR13) 2011; 43
S Mirjalili (6446_CR9) 2016; 95
A Abdelaziz (6446_CR43) 2016; 80
M Gholamghasemi (6446_CR18) 2019; 79
A Rajagopalan (6446_CR35) 2019; 29
AJ Wood (6446_CR19) 2013
K Le (6446_CR32) 1995; 10
6446_CR10
6446_CR12
YA Gherbi (6446_CR38) 2016; 115
6446_CR26
M Kheshti (6446_CR42) 2017; 12
Q Zhang (6446_CR24) 2019; 78
S Pan (6446_CR27) 2020; 180
D Singh (6446_CR29) 2019; 169
H Liang (6446_CR31) 2018; 101
D Dasgupta (6446_CR5) 2013
DC Secui (6446_CR44) 2015; 89
ED Manteaw (6446_CR41) 2012; 2
A Hatamlou (6446_CR7) 2013; 222
M Basu (6446_CR39) 2011; 11
S Shadravan (6446_CR11) 2019; 80
J Nocedal (6446_CR1) 2006
MF Tabassum (6446_CR28) 2021; 12
V Kansal (6446_CR25) 2020; 90
HG Beyer (6446_CR4) 2002; 1
U Güvenç (6446_CR40) 2012; 19
CL Chen (6446_CR21) 1993; 8
6446_CR20
A Abdelaziz (6446_CR37) 2016; 101
A Srivastava (6446_CR15) 2020; 94
References_xml – reference: ZhangQZouDDuanNShenXAn adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problemAppl. Soft Comput.20197864166910.1016/j.asoc.2019.03.019
– reference: SrivastavaADasDKA new kho-kho optimization algorithm: An application to solve combined emission economic dispatch and combined heat and power economic dispatch problemEng. Appl. Artif. Intell.20209410376310.1016/j.engappai.2020.103763
– reference: Srivastava, A.; Das, DK.: A new aggrandized class topper optimization algorithm to solve economic load dispatch problem in a power system. IEEE Trans. Cybern. (2020)
– reference: TabassumMFSaeedMChaudhryNAAliJFarmanMAkramSEvolutionary simplex adaptive Hooke-Jeeves algorithm for economic load dispatch problem considering valve point loading effectsAin Shams Eng. J.20211211001101510.1016/j.asej.2020.04.006
– reference: KansalVDhillonJSEmended salp swarm algorithm for multiobjective electric power dispatch problemAppl. Soft Comput.20209010617210.1016/j.asoc.2020.106172
– reference: ManteawEDOderoNACombined economic and emission dispatch solution using abc\_pso hybrid algorithm with valve point loading effectInt. J. Sci. Res. Publ.201221219
– reference: RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf. Sci.2009179132232224810.1016/j.ins.2009.03.004
– reference: JiangMLuoYPYangSYStochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithmInf. Process. Lett.20071021816229477610.1016/j.ipl.2006.10.005
– reference: WuGAcross neighborhood search for numerical optimizationInf. Sci.201632959761810.1016/j.ins.2015.09.051
– reference: GholamghasemiMAkbariEAsadpoorMBGhasemiMA new solution to the non-convex economic load dispatch problems using phasor particle swarm optimizationAppl. Soft Comput.20197911112410.1016/j.asoc.2019.03.038
– reference: GherbiYABouzeboudjaHGherbiFZThe combined economic environmental dispatch using new hybrid metaheuristicEnergy201611546847710.1016/j.energy.2016.08.079
– reference: KheshtiMKangXLiJRegulskiPTerzijaVLightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraintsIET Gener. Transm. Distrib.201712110411610.1049/iet-gtd.2017.0257
– reference: GüvençUSönmezYDumanSYörükerenNCombined economic and emission dispatch solution using gravitational search algorithmSci. Iranica20121961754176210.1016/j.scient.2012.02.030
– reference: Kashan, AH.: League championship algorithm: a new algorithm for numerical function optimization. In: Soft Computing and Pattern Recognition, 2009. SOCPAR’09. International Conference of, IEEE, pp 43–48 (2009)
– reference: LeKGoldenJStansberryCViceRWoodJBallanceJBrownGKamyaJNielsenENakajimaHPotential impacts of clean air regulations on system operationsIEEE Trans. Power Syst.199510264765610.1109/59.387899
– reference: RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput. Aided Des.201143330331510.1016/j.cad.2010.12.015
– reference: PanSJianJChenHYangLA full mixed-integer linear programming formulation for economic dispatch with valve-point effects, transmission loss and prohibited operating zonesElectric Power Syst. Res.202018010606110.1016/j.epsr.2019.106061
– reference: SinghDDhillonJAmeliorated grey wolf optimization for economic load dispatch problemEnergy201916939841910.1016/j.energy.2018.11.034
– reference: ChenCLWangSCBranch-and-bound scheduling for thermal generating unitsIEEE Trans. Energy Convers.19938218418910.1109/60.222703
– reference: AbdelazizAAliEElazimSACombined economic and emission dispatch solution using flower pollination algorithmInt. J. Electr. Power Energy Syst.20168026427410.1016/j.ijepes.2015.11.093
– reference: HatamlouABlack hole: A new heuristic optimization approach for data clusteringInf. Sci.2013222175184299850710.1016/j.ins.2012.08.023
– reference: MoosavianNRoodsariBKSoccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networksSwarm Evol. Comput.201417142410.1016/j.swevo.2014.02.002
– reference: ElattarEEEnvironmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithmEnergy201917125626910.1016/j.energy.2019.01.010
– reference: Yang, XS.; Gandomi, AH.: Bat algorithm: a novel approach for global engineering optimization. Engineering computations (2012)
– reference: KarthikNParvathyAKArulRMulti-objective economic emission dispatch using interior search algorithmInt. Trans. Electr. Energy Syst.2019291e268310.1002/etep.2683
– reference: Khatsu, S.; Srivastava, A.; Das, DK.: An adaptive phasor particle swarm optimization to solve economic load dispatch and combined emission economic load dispatch problem. In: 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp 1–5, (2019) https://doi.org/10.1109/UPCON47278.2019.8980245
– reference: Kennedy, J.; Eberhart, R.: Particle swarm optimization (pso). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, pp 1942–1948 (1995)
– reference: Lee, K.; Park, Y.; Ortiz, J.: Fuel-cost minimisation for both real-and reactive-power dispatches. In: IEE Proceedings C (Generation, Transmission and Distribution), IET, vol 131, pp 85–93 (1984)
– reference: DasguptaDMichalewiczZEvolutionary Algorithms in Engineering Applications2013BerlinSpringer Science & Business Media0879.68043
– reference: HollandJHGenetic algorithms.Sci. Am.19922671667310.1038/scientificamerican0792-66
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
– reference: SecuiDCA new modified artificial bee colony algorithm for the economic dispatch problemEnergy Convers. Manage.201589436210.1016/j.enconman.2014.09.034
– reference: DeyBRoySKBhattacharyyaBSolving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithmsEng. Sci. Technol. Int. J.20192215566
– reference: ShadravanSNajiHBardsiriVKThe sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problemsEng. Appl. Artif. Intell.201980203410.1016/j.engappai.2019.01.001
– reference: AbdelazizAAliEElazimSAImplementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systemsEnergy201610150651810.1016/j.energy.2016.02.041
– reference: WoodAJWollenbergBFShebléGBPower Generation, Operation, and Control2013HobokenJohn Wiley & Sons
– reference: LiangHLiuYLiFShenYA multiobjective hybrid bat algorithm for combined economic/emission dispatchInt.l J. Electr. Power Energy Syst.201810110311510.1016/j.ijepes.2018.03.019
– reference: RajagopalanAKasinathanPNagarajanKRamachandaramurthyVKSengodenVAlavandarSChaotic self-adaptive interior search algorithm to solve combined economic emission dispatch problems with security constraintsInt. Trans. Electr. Energy Syst.2019291202610.1002/2050-7038.12026
– reference: Das, P.; Das, DK.; Dey, S.: A new class topper optimization algorithm with an application to data clustering. IEEE Transactions on Emerging Topics in Computing (2018)
– reference: BeyerHGSchwefelHPEvolution strategies-a comprehensive introduction.Nat. Comput.200211352190749210.1023/A:1015059928466
– reference: BasuMEconomic environmental dispatch using multi-objective differential evolutionAppl. Soft Comput.20111122845285310.1016/j.asoc.2010.11.014
– reference: GognaATayalAMetaheuristics: review and applicationJ. Exp. Theor. Artif. Intell.201325450352610.1080/0952813X.2013.782347
– reference: ZhaoJLiuSZhouMGuoXQiLModified cuckoo search algorithm to solve economic power dispatch optimization problemsIEEE/CAA J. Autom. Sin.201854794806381382210.1109/JAS.2018.7511138
– reference: NocedalJWrightSNumerical Optimization2006BerlinSpringer Science & Business Media1104.65059
– ident: 6446_CR36
  doi: 10.1109/UPCON47278.2019.8980245
– volume: 25
  start-page: 503
  issue: 4
  year: 2013
  ident: 6446_CR23
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2013.782347
– volume: 12
  start-page: 1001
  issue: 1
  year: 2021
  ident: 6446_CR28
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2020.04.006
– volume: 169
  start-page: 398
  year: 2019
  ident: 6446_CR29
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.034
– volume: 22
  start-page: 55
  issue: 1
  year: 2019
  ident: 6446_CR22
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 115
  start-page: 468
  year: 2016
  ident: 6446_CR38
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.079
– ident: 6446_CR12
  doi: 10.1109/TETC.2018.2812927
– volume: 329
  start-page: 597
  year: 2016
  ident: 6446_CR2
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.09.051
– ident: 6446_CR10
  doi: 10.1108/02644401211235834
– volume: 80
  start-page: 264
  year: 2016
  ident: 6446_CR43
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.11.093
– volume: 80
  start-page: 20
  year: 2019
  ident: 6446_CR11
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.01.001
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 6446_CR3
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 180
  start-page: 106061
  year: 2020
  ident: 6446_CR27
  publication-title: Electric Power Syst. Res.
  doi: 10.1016/j.epsr.2019.106061
– volume: 29
  start-page: 12026
  year: 2019
  ident: 6446_CR35
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12026
– volume: 8
  start-page: 184
  issue: 2
  year: 1993
  ident: 6446_CR21
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/60.222703
– volume: 90
  start-page: 106172
  year: 2020
  ident: 6446_CR25
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106172
– volume: 19
  start-page: 1754
  issue: 6
  year: 2012
  ident: 6446_CR40
  publication-title: Sci. Iranica
  doi: 10.1016/j.scient.2012.02.030
– volume-title: Numerical Optimization
  year: 2006
  ident: 6446_CR1
– ident: 6446_CR8
  doi: 10.1109/ICNN.1995.488968
– volume-title: Power Generation, Operation, and Control
  year: 2013
  ident: 6446_CR19
– volume: 2
  start-page: 1
  issue: 12
  year: 2012
  ident: 6446_CR41
  publication-title: Int. J. Sci. Res. Publ.
– volume: 89
  start-page: 43
  year: 2015
  ident: 6446_CR44
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.09.034
– volume: 11
  start-page: 2845
  issue: 2
  year: 2011
  ident: 6446_CR39
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.11.014
– volume: 94
  start-page: 103763
  year: 2020
  ident: 6446_CR15
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103763
– volume: 5
  start-page: 794
  issue: 4
  year: 2018
  ident: 6446_CR30
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2018.7511138
– volume: 1
  start-page: 3
  issue: 1
  year: 2002
  ident: 6446_CR4
  publication-title: Nat. Comput.
  doi: 10.1023/A:1015059928466
– volume: 78
  start-page: 641
  year: 2019
  ident: 6446_CR24
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.019
– volume: 29
  start-page: e2683
  issue: 1
  year: 2019
  ident: 6446_CR34
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/etep.2683
– ident: 6446_CR26
  doi: 10.1109/TCYB.2020.3024607
– volume: 10
  start-page: 647
  issue: 2
  year: 1995
  ident: 6446_CR32
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.387899
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 6446_CR13
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– ident: 6446_CR20
  doi: 10.1049/ip-c.1984.0012
– ident: 6446_CR14
  doi: 10.1109/SoCPaR.2009.21
– volume: 101
  start-page: 103
  year: 2018
  ident: 6446_CR31
  publication-title: Int.l J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.03.019
– volume: 171
  start-page: 256
  year: 2019
  ident: 6446_CR33
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.010
– volume: 12
  start-page: 104
  issue: 1
  year: 2017
  ident: 6446_CR42
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2017.0257
– volume: 79
  start-page: 111
  year: 2019
  ident: 6446_CR18
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.038
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 6446_CR6
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 222
  start-page: 175
  year: 2013
  ident: 6446_CR7
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.08.023
– volume: 95
  start-page: 51
  year: 2016
  ident: 6446_CR9
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 17
  start-page: 14
  year: 2014
  ident: 6446_CR16
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.02.002
– volume-title: Evolutionary Algorithms in Engineering Applications
  year: 2013
  ident: 6446_CR5
– volume: 101
  start-page: 506
  year: 2016
  ident: 6446_CR37
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.041
– volume: 102
  start-page: 8
  issue: 1
  year: 2007
  ident: 6446_CR17
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2006.10.005
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.3564925
Snippet Optimization techniques are widely used to solve variety of problems related to the fields of engineering, statistics, finance, etc. In this article, a new...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3551
SubjectTerms Algorithms
Crime
Emission analysis
Engineering
Heuristic methods
Humanities and Social Sciences
multidisciplinary
Multiple objective analysis
Optimization
Optimization algorithms
Optimization techniques
Performance evaluation
Research Article-Electrical Engineering
Science
Title Criminal Search Optimization Algorithm: A Population-Based Meta-Heuristic Optimization Technique to Solve Real-World Optimization Problems
URI https://link.springer.com/article/10.1007/s13369-021-06446-1
https://www.proquest.com/docview/2643265034
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKdoHDxF8xNiYfuAVXSeMmDreUrarQ1k0ik3qL7MShk7oWtWkPfAS-Fl-MZztxkgITcImqJHbbvF-ef-_5_UHoHR2EXFDuEZZHjFDJMiK4n5EoUvZELgqma-ldTYPJLf00G856vR-tqKVtKfrZt9_mlfyPVOEcyFVlyf6DZO2kcAI-g3zhCBKG41_J2PbkMkHDzjW8__dVYqUTL76swPKfG0-8c2M7dZERrFy5cyVLTiZya0o1d8cmtrIrUNPPq8VOdXfgC2JCbzq33piONJs2y9WdntdclTOv97t1OGOtSJSzvlUIsa-8_nqykVbNzRXr_1nf7Tjw2B13YjFXYfw2wejcZKSdbzfze0AJd3TQeNuZAXawjebqODNVpLbaP7HJNlo3q3wr5po86b7U50Dfggk8MF1faoVuSnhWwPVb2hm4ldda6f2h6f7yyyriVlnVvh9ERMWwAG-jAfGaNbOOE5hep-Pby8s0uZglj9DhIAQCpzLOZ17j6AMCrrt8GXoQeEyHPdh_U2VymXzO_W_ssqXGBNrbtddkKHmKjiqZ4thA8hnqyeVz9KQluBfoew1ObMCJ26jBFpwfcIz3oYm70OyOtNDE5QpraOIGmt1ba2i-RMn4Ivk4IVXjD5LBUylJKEXIlE-SgbHOJQcWnoWRFAWQ0UBxUCZzsNTzghY0zIDzusOM0Yz5Aoz5IPdfoYPlailfIxx5hSsGeUBFIKmbwZLqhQHlEhY2GBrSY-TVzzfNqqL4qjfLIm3KeSuZpCCTVMsk9Y6RY8d8NSVhHrz7tBZbWqmOTQpWCJhNQ9eHH_C-FmVz-c-zvXl4thP0uHmrTtFBud7Kt0CaS3GGDuPxaDQ90-D8CSVTwuU
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Criminal+Search+Optimization+Algorithm%3A+A+Population-Based+Meta-Heuristic+Optimization+Technique+to+Solve+Real-World+Optimization+Problems&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Srivastava+Abhishek&rft.au=Das%2C+Dushmanta+Kumar&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=47&rft.issue=3&rft.spage=3551&rft.epage=3571&rft_id=info:doi/10.1007%2Fs13369-021-06446-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon