Criminal Search Optimization Algorithm: A Population-Based Meta-Heuristic Optimization Technique to Solve Real-World Optimization Problems
Optimization techniques are widely used to solve variety of problems related to the fields of engineering, statistics, finance, etc. In this article, a new optimization algorithm named criminal search optimization algorithm (CSOA) has been proposed. This proposed algorithm is inspired by policemen a...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 47; no. 3; pp. 3551 - 3571 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2193-567X 1319-8025 2191-4281 |
DOI | 10.1007/s13369-021-06446-1 |
Cover
Abstract | Optimization techniques are widely used to solve variety of problems related to the fields of engineering, statistics, finance, etc. In this article, a new optimization algorithm named criminal search optimization algorithm (CSOA) has been proposed. This proposed algorithm is inspired by policemen and replicates the strategies and intelligence used by a team of the policemen to catch a criminal for a crime. The performance of CSOA is validated using two suites of benchmark functions (CEC-2005 and CEC-2020). Further, the proposed method is used to solve a multi-objective real-world optimization problem, i.e. a combined emission economic dispatch problem. To evaluate the performance of the proposed method, five test cases have been considered in this study. The results obtained are compared with other existing well-known optimization methods to show the superiority of the proposed CSOA method. |
---|---|
AbstractList | Optimization techniques are widely used to solve variety of problems related to the fields of engineering, statistics, finance, etc. In this article, a new optimization algorithm named criminal search optimization algorithm (CSOA) has been proposed. This proposed algorithm is inspired by policemen and replicates the strategies and intelligence used by a team of the policemen to catch a criminal for a crime. The performance of CSOA is validated using two suites of benchmark functions (CEC-2005 and CEC-2020). Further, the proposed method is used to solve a multi-objective real-world optimization problem, i.e. a combined emission economic dispatch problem. To evaluate the performance of the proposed method, five test cases have been considered in this study. The results obtained are compared with other existing well-known optimization methods to show the superiority of the proposed CSOA method. |
Author | Das, Dushmanta Kumar Srivastava, Abhishek |
Author_xml | – sequence: 1 givenname: Abhishek surname: Srivastava fullname: Srivastava, Abhishek organization: Department of Electrical and Electronics Engineering, National Institute of Technology Nagaland – sequence: 2 givenname: Dushmanta Kumar surname: Das fullname: Das, Dushmanta Kumar organization: Department of Electrical and Electronics Engineering, National Institute of Technology Nagaland |
BookMark | eNp9kN9KHDEUh4NY0FpfoFeBXqfm32SS3m2XVgWLogv2LmQyZ9yU7GSbZAv6CD61425B9MKrHA6_7-Sc7yPaH9MICH1m9CujtD0pTAhlCOWMUCWlImwPHXJmGJFcs_1tLUij2t8H6LiU0FGphWkYE4focZ7DKowu4htw2S_x5bpOjQdXQxrxLN6lHOpy9Q3P8FVab-K2T767Aj3-BdWRM9jkUGrwr8kF-OUY_m4A14RvUvwH-BpcJLcpx_519CqnLsKqfEIfBhcLHP9_j9Di54_F_IxcXJ6ez2cXxAtmKmmha7VptdBMagdOMe5bA93AuFScS6qhl8b0gxxk69uG0sZr6bXoeGNUL47Ql93YdU7TfqXaP2mTJwPFciUFVw0VckrxXcrnVEqGwa4nUS7fW0bts3W7s24n63Zr3bIJ0m8gH-r2yJpdiO-jYoeW6Z_xDvLLVu9QT9ETmk8 |
CitedBy_id | crossref_primary_10_1007_s13369_022_07350_y crossref_primary_10_1515_mt_2022_0055 crossref_primary_10_1515_mt_2022_0123 crossref_primary_10_3390_s23042218 crossref_primary_10_1007_s00202_024_02469_7 crossref_primary_10_1016_j_knosys_2023_110337 crossref_primary_10_1016_j_prime_2024_100527 crossref_primary_10_1016_j_ces_2024_120024 crossref_primary_10_1016_j_cogsys_2024_101237 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_3390_su16010397 crossref_primary_10_1016_j_prime_2023_100309 crossref_primary_10_1007_s10586_024_04669_z crossref_primary_10_1007_s10489_024_05517_8 crossref_primary_10_1007_s40747_022_00852_0 crossref_primary_10_1016_j_eswa_2023_120452 crossref_primary_10_1038_s41598_022_25031_6 crossref_primary_10_1007_s00202_023_02048_2 crossref_primary_10_1038_s41598_024_83589_9 |
Cites_doi | 10.1109/UPCON47278.2019.8980245 10.1080/0952813X.2013.782347 10.1016/j.asej.2020.04.006 10.1016/j.energy.2018.11.034 10.1016/j.energy.2016.08.079 10.1109/TETC.2018.2812927 10.1016/j.ins.2015.09.051 10.1108/02644401211235834 10.1016/j.ijepes.2015.11.093 10.1016/j.engappai.2019.01.001 10.1038/scientificamerican0792-66 10.1016/j.epsr.2019.106061 10.1002/2050-7038.12026 10.1109/60.222703 10.1016/j.asoc.2020.106172 10.1016/j.scient.2012.02.030 10.1109/ICNN.1995.488968 10.1016/j.enconman.2014.09.034 10.1016/j.asoc.2010.11.014 10.1016/j.engappai.2020.103763 10.1109/JAS.2018.7511138 10.1023/A:1015059928466 10.1016/j.asoc.2019.03.019 10.1002/etep.2683 10.1109/TCYB.2020.3024607 10.1109/59.387899 10.1016/j.cad.2010.12.015 10.1049/ip-c.1984.0012 10.1109/SoCPaR.2009.21 10.1016/j.ijepes.2018.03.019 10.1016/j.energy.2019.01.010 10.1049/iet-gtd.2017.0257 10.1016/j.asoc.2019.03.038 10.1016/j.ins.2009.03.004 10.1016/j.ins.2012.08.023 10.1016/j.advengsoft.2016.01.008 10.1016/j.swevo.2014.02.002 10.1016/j.energy.2016.02.041 10.1016/j.ipl.2006.10.005 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2021 King Fahd University of Petroleum & Minerals 2021. |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2021 – notice: King Fahd University of Petroleum & Minerals 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-021-06446-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 3571 |
ExternalDocumentID | 10_1007_s13369_021_06446_1 |
GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c319t-7eb7897838148aea612c79ebf124622408ed499df4f47c75005c84c83b2596d3 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 09:07:07 EDT 2025 Tue Jul 01 01:34:23 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Fri Feb 21 02:46:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | CEC-2005 benchmark functions CEC-2020 benchmark functions Combined emission and economic dispatch (CEED) problem Meta-heuristic techniques |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c319t-7eb7897838148aea612c79ebf124622408ed499df4f47c75005c84c83b2596d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2643265034 |
PQPubID | 2044268 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2643265034 crossref_primary_10_1007_s13369_021_06446_1 crossref_citationtrail_10_1007_s13369_021_06446_1 springer_journals_10_1007_s13369_021_06446_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ChenCLWangSCBranch-and-bound scheduling for thermal generating unitsIEEE Trans. Energy Convers.19938218418910.1109/60.222703 GognaATayalAMetaheuristics: review and applicationJ. Exp. Theor. Artif. Intell.201325450352610.1080/0952813X.2013.782347 KansalVDhillonJSEmended salp swarm algorithm for multiobjective electric power dispatch problemAppl. Soft Comput.20209010617210.1016/j.asoc.2020.106172 KheshtiMKangXLiJRegulskiPTerzijaVLightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraintsIET Gener. Transm. Distrib.201712110411610.1049/iet-gtd.2017.0257 RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf. Sci.2009179132232224810.1016/j.ins.2009.03.004 AbdelazizAAliEElazimSAImplementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systemsEnergy201610150651810.1016/j.energy.2016.02.041 WuGAcross neighborhood search for numerical optimizationInf. Sci.201632959761810.1016/j.ins.2015.09.051 DeyBRoySKBhattacharyyaBSolving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithmsEng. Sci. Technol. Int. J.20192215566 HatamlouABlack hole: A new heuristic optimization approach for data clusteringInf. Sci.2013222175184299850710.1016/j.ins.2012.08.023 GüvençUSönmezYDumanSYörükerenNCombined economic and emission dispatch solution using gravitational search algorithmSci. Iranica20121961754176210.1016/j.scient.2012.02.030 Kashan, AH.: League championship algorithm: a new algorithm for numerical function optimization. In: Soft Computing and Pattern Recognition, 2009. SOCPAR’09. International Conference of, IEEE, pp 43–48 (2009) AbdelazizAAliEElazimSACombined economic and emission dispatch solution using flower pollination algorithmInt. J. Electr. Power Energy Syst.20168026427410.1016/j.ijepes.2015.11.093 ElattarEEEnvironmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithmEnergy201917125626910.1016/j.energy.2019.01.010 Das, P.; Das, DK.; Dey, S.: A new class topper optimization algorithm with an application to data clustering. IEEE Transactions on Emerging Topics in Computing (2018) Srivastava, A.; Das, DK.: A new aggrandized class topper optimization algorithm to solve economic load dispatch problem in a power system. IEEE Trans. Cybern. (2020) MoosavianNRoodsariBKSoccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networksSwarm Evol. Comput.201417142410.1016/j.swevo.2014.02.002 LeKGoldenJStansberryCViceRWoodJBallanceJBrownGKamyaJNielsenENakajimaHPotential impacts of clean air regulations on system operationsIEEE Trans. Power Syst.199510264765610.1109/59.387899 LiangHLiuYLiFShenYA multiobjective hybrid bat algorithm for combined economic/emission dispatchInt.l J. Electr. Power Energy Syst.201810110311510.1016/j.ijepes.2018.03.019 WoodAJWollenbergBFShebléGBPower Generation, Operation, and Control2013HobokenJohn Wiley & Sons ManteawEDOderoNACombined economic and emission dispatch solution using abc\_pso hybrid algorithm with valve point loading effectInt. J. Sci. Res. Publ.201221219 MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008 JiangMLuoYPYangSYStochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithmInf. Process. Lett.20071021816229477610.1016/j.ipl.2006.10.005 SrivastavaADasDKA new kho-kho optimization algorithm: An application to solve combined emission economic dispatch and combined heat and power economic dispatch problemEng. Appl. Artif. Intell.20209410376310.1016/j.engappai.2020.103763 RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput. Aided Des.201143330331510.1016/j.cad.2010.12.015 Yang, XS.; Gandomi, AH.: Bat algorithm: a novel approach for global engineering optimization. Engineering computations (2012) ZhangQZouDDuanNShenXAn adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problemAppl. Soft Comput.20197864166910.1016/j.asoc.2019.03.019 BasuMEconomic environmental dispatch using multi-objective differential evolutionAppl. Soft Comput.20111122845285310.1016/j.asoc.2010.11.014 BeyerHGSchwefelHPEvolution strategies-a comprehensive introduction.Nat. Comput.200211352190749210.1023/A:1015059928466 DasguptaDMichalewiczZEvolutionary Algorithms in Engineering Applications2013BerlinSpringer Science & Business Media0879.68043 Kennedy, J.; Eberhart, R.: Particle swarm optimization (pso). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, pp 1942–1948 (1995) RajagopalanAKasinathanPNagarajanKRamachandaramurthyVKSengodenVAlavandarSChaotic self-adaptive interior search algorithm to solve combined economic emission dispatch problems with security constraintsInt. Trans. Electr. Energy Syst.2019291202610.1002/2050-7038.12026 SinghDDhillonJAmeliorated grey wolf optimization for economic load dispatch problemEnergy201916939841910.1016/j.energy.2018.11.034 NocedalJWrightSNumerical Optimization2006BerlinSpringer Science & Business Media1104.65059 Khatsu, S.; Srivastava, A.; Das, DK.: An adaptive phasor particle swarm optimization to solve economic load dispatch and combined emission economic load dispatch problem. In: 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp 1–5, (2019) https://doi.org/10.1109/UPCON47278.2019.8980245 TabassumMFSaeedMChaudhryNAAliJFarmanMAkramSEvolutionary simplex adaptive Hooke-Jeeves algorithm for economic load dispatch problem considering valve point loading effectsAin Shams Eng. J.20211211001101510.1016/j.asej.2020.04.006 Lee, K.; Park, Y.; Ortiz, J.: Fuel-cost minimisation for both real-and reactive-power dispatches. In: IEE Proceedings C (Generation, Transmission and Distribution), IET, vol 131, pp 85–93 (1984) PanSJianJChenHYangLA full mixed-integer linear programming formulation for economic dispatch with valve-point effects, transmission loss and prohibited operating zonesElectric Power Syst. Res.202018010606110.1016/j.epsr.2019.106061 ShadravanSNajiHBardsiriVKThe sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problemsEng. Appl. Artif. Intell.201980203410.1016/j.engappai.2019.01.001 SecuiDCA new modified artificial bee colony algorithm for the economic dispatch problemEnergy Convers. Manage.201589436210.1016/j.enconman.2014.09.034 KarthikNParvathyAKArulRMulti-objective economic emission dispatch using interior search algorithmInt. Trans. Electr. Energy Syst.2019291e268310.1002/etep.2683 GherbiYABouzeboudjaHGherbiFZThe combined economic environmental dispatch using new hybrid metaheuristicEnergy201611546847710.1016/j.energy.2016.08.079 ZhaoJLiuSZhouMGuoXQiLModified cuckoo search algorithm to solve economic power dispatch optimization problemsIEEE/CAA J. Autom. Sin.201854794806381382210.1109/JAS.2018.7511138 HollandJHGenetic algorithms.Sci. Am.19922671667310.1038/scientificamerican0792-66 GholamghasemiMAkbariEAsadpoorMBGhasemiMA new solution to the non-convex economic load dispatch problems using phasor particle swarm optimizationAppl. Soft Comput.20197911112410.1016/j.asoc.2019.03.038 E Rashedi (6446_CR6) 2009; 179 6446_CR14 6446_CR36 M Jiang (6446_CR17) 2007; 102 N Karthik (6446_CR34) 2019; 29 JH Holland (6446_CR3) 1992; 267 G Wu (6446_CR2) 2016; 329 A Gogna (6446_CR23) 2013; 25 N Moosavian (6446_CR16) 2014; 17 B Dey (6446_CR22) 2019; 22 6446_CR8 EE Elattar (6446_CR33) 2019; 171 J Zhao (6446_CR30) 2018; 5 RV Rao (6446_CR13) 2011; 43 S Mirjalili (6446_CR9) 2016; 95 A Abdelaziz (6446_CR43) 2016; 80 M Gholamghasemi (6446_CR18) 2019; 79 A Rajagopalan (6446_CR35) 2019; 29 AJ Wood (6446_CR19) 2013 K Le (6446_CR32) 1995; 10 6446_CR10 6446_CR12 YA Gherbi (6446_CR38) 2016; 115 6446_CR26 M Kheshti (6446_CR42) 2017; 12 Q Zhang (6446_CR24) 2019; 78 S Pan (6446_CR27) 2020; 180 D Singh (6446_CR29) 2019; 169 H Liang (6446_CR31) 2018; 101 D Dasgupta (6446_CR5) 2013 DC Secui (6446_CR44) 2015; 89 ED Manteaw (6446_CR41) 2012; 2 A Hatamlou (6446_CR7) 2013; 222 M Basu (6446_CR39) 2011; 11 S Shadravan (6446_CR11) 2019; 80 J Nocedal (6446_CR1) 2006 MF Tabassum (6446_CR28) 2021; 12 V Kansal (6446_CR25) 2020; 90 HG Beyer (6446_CR4) 2002; 1 U Güvenç (6446_CR40) 2012; 19 CL Chen (6446_CR21) 1993; 8 6446_CR20 A Abdelaziz (6446_CR37) 2016; 101 A Srivastava (6446_CR15) 2020; 94 |
References_xml | – reference: ZhangQZouDDuanNShenXAn adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problemAppl. Soft Comput.20197864166910.1016/j.asoc.2019.03.019 – reference: SrivastavaADasDKA new kho-kho optimization algorithm: An application to solve combined emission economic dispatch and combined heat and power economic dispatch problemEng. Appl. Artif. Intell.20209410376310.1016/j.engappai.2020.103763 – reference: Srivastava, A.; Das, DK.: A new aggrandized class topper optimization algorithm to solve economic load dispatch problem in a power system. IEEE Trans. Cybern. (2020) – reference: TabassumMFSaeedMChaudhryNAAliJFarmanMAkramSEvolutionary simplex adaptive Hooke-Jeeves algorithm for economic load dispatch problem considering valve point loading effectsAin Shams Eng. J.20211211001101510.1016/j.asej.2020.04.006 – reference: KansalVDhillonJSEmended salp swarm algorithm for multiobjective electric power dispatch problemAppl. Soft Comput.20209010617210.1016/j.asoc.2020.106172 – reference: ManteawEDOderoNACombined economic and emission dispatch solution using abc\_pso hybrid algorithm with valve point loading effectInt. J. Sci. Res. Publ.201221219 – reference: RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf. Sci.2009179132232224810.1016/j.ins.2009.03.004 – reference: JiangMLuoYPYangSYStochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithmInf. Process. Lett.20071021816229477610.1016/j.ipl.2006.10.005 – reference: WuGAcross neighborhood search for numerical optimizationInf. Sci.201632959761810.1016/j.ins.2015.09.051 – reference: GholamghasemiMAkbariEAsadpoorMBGhasemiMA new solution to the non-convex economic load dispatch problems using phasor particle swarm optimizationAppl. Soft Comput.20197911112410.1016/j.asoc.2019.03.038 – reference: GherbiYABouzeboudjaHGherbiFZThe combined economic environmental dispatch using new hybrid metaheuristicEnergy201611546847710.1016/j.energy.2016.08.079 – reference: KheshtiMKangXLiJRegulskiPTerzijaVLightning flash algorithm for solving non-convex combined emission economic dispatch with generator constraintsIET Gener. Transm. Distrib.201712110411610.1049/iet-gtd.2017.0257 – reference: GüvençUSönmezYDumanSYörükerenNCombined economic and emission dispatch solution using gravitational search algorithmSci. Iranica20121961754176210.1016/j.scient.2012.02.030 – reference: Kashan, AH.: League championship algorithm: a new algorithm for numerical function optimization. In: Soft Computing and Pattern Recognition, 2009. SOCPAR’09. International Conference of, IEEE, pp 43–48 (2009) – reference: LeKGoldenJStansberryCViceRWoodJBallanceJBrownGKamyaJNielsenENakajimaHPotential impacts of clean air regulations on system operationsIEEE Trans. Power Syst.199510264765610.1109/59.387899 – reference: RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput. Aided Des.201143330331510.1016/j.cad.2010.12.015 – reference: PanSJianJChenHYangLA full mixed-integer linear programming formulation for economic dispatch with valve-point effects, transmission loss and prohibited operating zonesElectric Power Syst. Res.202018010606110.1016/j.epsr.2019.106061 – reference: SinghDDhillonJAmeliorated grey wolf optimization for economic load dispatch problemEnergy201916939841910.1016/j.energy.2018.11.034 – reference: ChenCLWangSCBranch-and-bound scheduling for thermal generating unitsIEEE Trans. Energy Convers.19938218418910.1109/60.222703 – reference: AbdelazizAAliEElazimSACombined economic and emission dispatch solution using flower pollination algorithmInt. J. Electr. Power Energy Syst.20168026427410.1016/j.ijepes.2015.11.093 – reference: HatamlouABlack hole: A new heuristic optimization approach for data clusteringInf. Sci.2013222175184299850710.1016/j.ins.2012.08.023 – reference: MoosavianNRoodsariBKSoccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networksSwarm Evol. Comput.201417142410.1016/j.swevo.2014.02.002 – reference: ElattarEEEnvironmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithmEnergy201917125626910.1016/j.energy.2019.01.010 – reference: Yang, XS.; Gandomi, AH.: Bat algorithm: a novel approach for global engineering optimization. Engineering computations (2012) – reference: KarthikNParvathyAKArulRMulti-objective economic emission dispatch using interior search algorithmInt. Trans. Electr. Energy Syst.2019291e268310.1002/etep.2683 – reference: Khatsu, S.; Srivastava, A.; Das, DK.: An adaptive phasor particle swarm optimization to solve economic load dispatch and combined emission economic load dispatch problem. In: 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp 1–5, (2019) https://doi.org/10.1109/UPCON47278.2019.8980245 – reference: Kennedy, J.; Eberhart, R.: Particle swarm optimization (pso). In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, pp 1942–1948 (1995) – reference: Lee, K.; Park, Y.; Ortiz, J.: Fuel-cost minimisation for both real-and reactive-power dispatches. In: IEE Proceedings C (Generation, Transmission and Distribution), IET, vol 131, pp 85–93 (1984) – reference: DasguptaDMichalewiczZEvolutionary Algorithms in Engineering Applications2013BerlinSpringer Science & Business Media0879.68043 – reference: HollandJHGenetic algorithms.Sci. Am.19922671667310.1038/scientificamerican0792-66 – reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008 – reference: SecuiDCA new modified artificial bee colony algorithm for the economic dispatch problemEnergy Convers. Manage.201589436210.1016/j.enconman.2014.09.034 – reference: DeyBRoySKBhattacharyyaBSolving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithmsEng. Sci. Technol. Int. J.20192215566 – reference: ShadravanSNajiHBardsiriVKThe sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problemsEng. Appl. Artif. Intell.201980203410.1016/j.engappai.2019.01.001 – reference: AbdelazizAAliEElazimSAImplementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systemsEnergy201610150651810.1016/j.energy.2016.02.041 – reference: WoodAJWollenbergBFShebléGBPower Generation, Operation, and Control2013HobokenJohn Wiley & Sons – reference: LiangHLiuYLiFShenYA multiobjective hybrid bat algorithm for combined economic/emission dispatchInt.l J. Electr. Power Energy Syst.201810110311510.1016/j.ijepes.2018.03.019 – reference: RajagopalanAKasinathanPNagarajanKRamachandaramurthyVKSengodenVAlavandarSChaotic self-adaptive interior search algorithm to solve combined economic emission dispatch problems with security constraintsInt. Trans. Electr. Energy Syst.2019291202610.1002/2050-7038.12026 – reference: Das, P.; Das, DK.; Dey, S.: A new class topper optimization algorithm with an application to data clustering. IEEE Transactions on Emerging Topics in Computing (2018) – reference: BeyerHGSchwefelHPEvolution strategies-a comprehensive introduction.Nat. Comput.200211352190749210.1023/A:1015059928466 – reference: BasuMEconomic environmental dispatch using multi-objective differential evolutionAppl. Soft Comput.20111122845285310.1016/j.asoc.2010.11.014 – reference: GognaATayalAMetaheuristics: review and applicationJ. Exp. Theor. Artif. Intell.201325450352610.1080/0952813X.2013.782347 – reference: ZhaoJLiuSZhouMGuoXQiLModified cuckoo search algorithm to solve economic power dispatch optimization problemsIEEE/CAA J. Autom. Sin.201854794806381382210.1109/JAS.2018.7511138 – reference: NocedalJWrightSNumerical Optimization2006BerlinSpringer Science & Business Media1104.65059 – ident: 6446_CR36 doi: 10.1109/UPCON47278.2019.8980245 – volume: 25 start-page: 503 issue: 4 year: 2013 ident: 6446_CR23 publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2013.782347 – volume: 12 start-page: 1001 issue: 1 year: 2021 ident: 6446_CR28 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2020.04.006 – volume: 169 start-page: 398 year: 2019 ident: 6446_CR29 publication-title: Energy doi: 10.1016/j.energy.2018.11.034 – volume: 22 start-page: 55 issue: 1 year: 2019 ident: 6446_CR22 publication-title: Eng. Sci. Technol. Int. J. – volume: 115 start-page: 468 year: 2016 ident: 6446_CR38 publication-title: Energy doi: 10.1016/j.energy.2016.08.079 – ident: 6446_CR12 doi: 10.1109/TETC.2018.2812927 – volume: 329 start-page: 597 year: 2016 ident: 6446_CR2 publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.09.051 – ident: 6446_CR10 doi: 10.1108/02644401211235834 – volume: 80 start-page: 264 year: 2016 ident: 6446_CR43 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.11.093 – volume: 80 start-page: 20 year: 2019 ident: 6446_CR11 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.01.001 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 6446_CR3 publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 180 start-page: 106061 year: 2020 ident: 6446_CR27 publication-title: Electric Power Syst. Res. doi: 10.1016/j.epsr.2019.106061 – volume: 29 start-page: 12026 year: 2019 ident: 6446_CR35 publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/2050-7038.12026 – volume: 8 start-page: 184 issue: 2 year: 1993 ident: 6446_CR21 publication-title: IEEE Trans. Energy Convers. doi: 10.1109/60.222703 – volume: 90 start-page: 106172 year: 2020 ident: 6446_CR25 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106172 – volume: 19 start-page: 1754 issue: 6 year: 2012 ident: 6446_CR40 publication-title: Sci. Iranica doi: 10.1016/j.scient.2012.02.030 – volume-title: Numerical Optimization year: 2006 ident: 6446_CR1 – ident: 6446_CR8 doi: 10.1109/ICNN.1995.488968 – volume-title: Power Generation, Operation, and Control year: 2013 ident: 6446_CR19 – volume: 2 start-page: 1 issue: 12 year: 2012 ident: 6446_CR41 publication-title: Int. J. Sci. Res. Publ. – volume: 89 start-page: 43 year: 2015 ident: 6446_CR44 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.09.034 – volume: 11 start-page: 2845 issue: 2 year: 2011 ident: 6446_CR39 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.11.014 – volume: 94 start-page: 103763 year: 2020 ident: 6446_CR15 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103763 – volume: 5 start-page: 794 issue: 4 year: 2018 ident: 6446_CR30 publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2018.7511138 – volume: 1 start-page: 3 issue: 1 year: 2002 ident: 6446_CR4 publication-title: Nat. Comput. doi: 10.1023/A:1015059928466 – volume: 78 start-page: 641 year: 2019 ident: 6446_CR24 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.019 – volume: 29 start-page: e2683 issue: 1 year: 2019 ident: 6446_CR34 publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/etep.2683 – ident: 6446_CR26 doi: 10.1109/TCYB.2020.3024607 – volume: 10 start-page: 647 issue: 2 year: 1995 ident: 6446_CR32 publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.387899 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 6446_CR13 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – ident: 6446_CR20 doi: 10.1049/ip-c.1984.0012 – ident: 6446_CR14 doi: 10.1109/SoCPaR.2009.21 – volume: 101 start-page: 103 year: 2018 ident: 6446_CR31 publication-title: Int.l J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.03.019 – volume: 171 start-page: 256 year: 2019 ident: 6446_CR33 publication-title: Energy doi: 10.1016/j.energy.2019.01.010 – volume: 12 start-page: 104 issue: 1 year: 2017 ident: 6446_CR42 publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2017.0257 – volume: 79 start-page: 111 year: 2019 ident: 6446_CR18 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.038 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 6446_CR6 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 222 start-page: 175 year: 2013 ident: 6446_CR7 publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.08.023 – volume: 95 start-page: 51 year: 2016 ident: 6446_CR9 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 17 start-page: 14 year: 2014 ident: 6446_CR16 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.02.002 – volume-title: Evolutionary Algorithms in Engineering Applications year: 2013 ident: 6446_CR5 – volume: 101 start-page: 506 year: 2016 ident: 6446_CR37 publication-title: Energy doi: 10.1016/j.energy.2016.02.041 – volume: 102 start-page: 8 issue: 1 year: 2007 ident: 6446_CR17 publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2006.10.005 |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.3564925 |
Snippet | Optimization techniques are widely used to solve variety of problems related to the fields of engineering, statistics, finance, etc. In this article, a new... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3551 |
SubjectTerms | Algorithms Crime Emission analysis Engineering Heuristic methods Humanities and Social Sciences multidisciplinary Multiple objective analysis Optimization Optimization algorithms Optimization techniques Performance evaluation Research Article-Electrical Engineering Science |
Title | Criminal Search Optimization Algorithm: A Population-Based Meta-Heuristic Optimization Technique to Solve Real-World Optimization Problems |
URI | https://link.springer.com/article/10.1007/s13369-021-06446-1 https://www.proquest.com/docview/2643265034 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKdoHDxF8xNiYfuAVXSeMmDreUrarQ1k0ik3qL7MShk7oWtWkPfAS-Fl-MZztxkgITcImqJHbbvF-ef-_5_UHoHR2EXFDuEZZHjFDJMiK4n5EoUvZELgqma-ldTYPJLf00G856vR-tqKVtKfrZt9_mlfyPVOEcyFVlyf6DZO2kcAI-g3zhCBKG41_J2PbkMkHDzjW8__dVYqUTL76swPKfG0-8c2M7dZERrFy5cyVLTiZya0o1d8cmtrIrUNPPq8VOdXfgC2JCbzq33piONJs2y9WdntdclTOv97t1OGOtSJSzvlUIsa-8_nqykVbNzRXr_1nf7Tjw2B13YjFXYfw2wejcZKSdbzfze0AJd3TQeNuZAXawjebqODNVpLbaP7HJNlo3q3wr5po86b7U50Dfggk8MF1faoVuSnhWwPVb2hm4ldda6f2h6f7yyyriVlnVvh9ERMWwAG-jAfGaNbOOE5hep-Pby8s0uZglj9DhIAQCpzLOZ17j6AMCrrt8GXoQeEyHPdh_U2VymXzO_W_ssqXGBNrbtddkKHmKjiqZ4thA8hnqyeVz9KQluBfoew1ObMCJ26jBFpwfcIz3oYm70OyOtNDE5QpraOIGmt1ba2i-RMn4Ivk4IVXjD5LBUylJKEXIlE-SgbHOJQcWnoWRFAWQ0UBxUCZzsNTzghY0zIDzusOM0Yz5Aoz5IPdfoYPlailfIxx5hSsGeUBFIKmbwZLqhQHlEhY2GBrSY-TVzzfNqqL4qjfLIm3KeSuZpCCTVMsk9Y6RY8d8NSVhHrz7tBZbWqmOTQpWCJhNQ9eHH_C-FmVz-c-zvXl4thP0uHmrTtFBud7Kt0CaS3GGDuPxaDQ90-D8CSVTwuU |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Criminal+Search+Optimization+Algorithm%3A+A+Population-Based+Meta-Heuristic+Optimization+Technique+to+Solve+Real-World+Optimization+Problems&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Srivastava+Abhishek&rft.au=Das%2C+Dushmanta+Kumar&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=47&rft.issue=3&rft.spage=3551&rft.epage=3571&rft_id=info:doi/10.1007%2Fs13369-021-06446-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |