The Role of Machine Learning in Tribology: A Systematic Review

The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many engineering processes. Machine learning algorithms solve nonlinear and complex relationships through data training; additionally, they can infer previo...

Full description

Saved in:
Bibliographic Details
Published inArchives of computational methods in engineering Vol. 30; no. 2; pp. 1345 - 1397
Main Authors Paturi, Uma Maheshwera Reddy, Palakurthy, Sai Teja, Reddy, N. S.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1134-3060
1886-1784
DOI10.1007/s11831-022-09841-5

Cover

Abstract The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many engineering processes. Machine learning algorithms solve nonlinear and complex relationships through data training; additionally, they can infer previously unknown relationships, allowing for a simplified model and estimation of hidden data. Unlike other statistical tools, machine learning does not impose process parameter restrictions and yields an accurate association between input and output parameters. Tribology is a branch of surface science concerned with studying and managing friction, lubrication, and wear on relatively interacting surfaces. While AI-based machine learning approaches have been adopted in tribology applications, modern tribo-contact simulation requires a deliberate decomposition of complex design challenges into simpler sub-threads, thereby identifying the relationships between the numerous interconnected features and processes. Numerous studies have established that artificial intelligence techniques can accurately model tribological processes and their properties based on various process parameters. The primary objective of this review is to conduct a thorough examination of the role of machine learning in tribological research and pave the way for future researchers by providing a specific research direction. In terms of future research directions and developments, the expanded application of artificial intelligence and various machine learning methods in tribology has been emphasized, including the characterization and design of complex tribological systems. Additionally, by combining machine learning methods with tribological experimental data, interdisciplinary research can be conducted to understand efficient resource utilization and resource conservation better. At the conclusion of this article, a detailed discussion of the limitations and future research opportunities associated with implementing various machine learning algorithms in tribology and its interdisciplinary fields is presented.
AbstractList The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many engineering processes. Machine learning algorithms solve nonlinear and complex relationships through data training; additionally, they can infer previously unknown relationships, allowing for a simplified model and estimation of hidden data. Unlike other statistical tools, machine learning does not impose process parameter restrictions and yields an accurate association between input and output parameters. Tribology is a branch of surface science concerned with studying and managing friction, lubrication, and wear on relatively interacting surfaces. While AI-based machine learning approaches have been adopted in tribology applications, modern tribo-contact simulation requires a deliberate decomposition of complex design challenges into simpler sub-threads, thereby identifying the relationships between the numerous interconnected features and processes. Numerous studies have established that artificial intelligence techniques can accurately model tribological processes and their properties based on various process parameters. The primary objective of this review is to conduct a thorough examination of the role of machine learning in tribological research and pave the way for future researchers by providing a specific research direction. In terms of future research directions and developments, the expanded application of artificial intelligence and various machine learning methods in tribology has been emphasized, including the characterization and design of complex tribological systems. Additionally, by combining machine learning methods with tribological experimental data, interdisciplinary research can be conducted to understand efficient resource utilization and resource conservation better. At the conclusion of this article, a detailed discussion of the limitations and future research opportunities associated with implementing various machine learning algorithms in tribology and its interdisciplinary fields is presented.
The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many engineering processes. Machine learning algorithms solve nonlinear and complex relationships through data training; additionally, they can infer previously unknown relationships, allowing for a simplified model and estimation of hidden data. Unlike other statistical tools, machine learning does not impose process parameter restrictions and yields an accurate association between input and output parameters. Tribology is a branch of surface science concerned with studying and managing friction, lubrication, and wear on relatively interacting surfaces. While AI-based machine learning approaches have been adopted in tribology applications, modern tribo-contact simulation requires a deliberate decomposition of complex design challenges into simpler sub-threads, thereby identifying the relationships between the numerous interconnected features and processes. Numerous studies have established that artificial intelligence techniques can accurately model tribological processes and their properties based on various process parameters. The primary objective of this review is to conduct a thorough examination of the role of machine learning in tribological research and pave the way for future researchers by providing a specific research direction. In terms of future research directions and developments, the expanded application of artificial intelligence and various machine learning methods in tribology has been emphasized, including the characterization and design of complex tribological systems. Additionally, by combining machine learning methods with tribological experimental data, interdisciplinary research can be conducted to understand efficient resource utilization and resource conservation better. At the conclusion of this article, a detailed discussion of the limitations and future research opportunities associated with implementing various machine learning algorithms in tribology and its interdisciplinary fields is presented.
Author Paturi, Uma Maheshwera Reddy
Reddy, N. S.
Palakurthy, Sai Teja
Author_xml – sequence: 1
  givenname: Uma Maheshwera Reddy
  orcidid: 0000-0001-5843-466X
  surname: Paturi
  fullname: Paturi, Uma Maheshwera Reddy
  email: maheshpaturi@gmail.com
  organization: Department of Mechanical Engineering, CVR College of Engineering
– sequence: 2
  givenname: Sai Teja
  surname: Palakurthy
  fullname: Palakurthy, Sai Teja
  organization: Department of Mechanical Engineering, CVR College of Engineering
– sequence: 3
  givenname: N. S.
  surname: Reddy
  fullname: Reddy, N. S.
  organization: School of Materials Science and Engineering, Gyeongsang National University
BookMark eNp9kE1LAzEQhoMo2Fb_gKeA59WZpPsRD0IpfkFFqPUcstvZNqVNarJV-u9dXUHw0NPM4X1mXp4-O3beEWMXCFcIkF9HxEJiAkIkoIohJukR62FRZAnmxfC43VEOEwkZnLJ-jCuAdKiU6LHb2ZL41K-J-5o_m2ppHfEJmeCsW3Dr-CzY0q_9Yn_DR_x1HxvamMZWfEoflj7P2Elt1pHOf-eAvd3fzcaPyeTl4Wk8miSVRNUk-dzMUyNrlSPmtSwICNAgGShhXoIxWYq1EpCpOVaCkBSBykWeYpmVEowcsMvu7jb49x3FRq_8Lrj2pZYizbK8AKHaVNGlquBjDFTryjZtW--aYOxaI-hvW7qzpVtb-seWTltU_EO3wW5M2B-GZAfFNuwWFP5aHaC-AFVrfNU
CitedBy_id crossref_primary_10_3390_lubricants12010020
crossref_primary_10_1038_s41598_024_68575_5
crossref_primary_10_1016_j_triboint_2024_109670
crossref_primary_10_3390_ma15249022
crossref_primary_10_1016_j_apsusc_2025_162954
crossref_primary_10_3390_lubricants11110461
crossref_primary_10_26599_FRICT_2025_9440951
crossref_primary_10_3390_lubricants11110463
crossref_primary_10_1007_s11249_023_01715_6
crossref_primary_10_5604_01_3001_0053_9061
crossref_primary_10_1016_j_wear_2023_205106
crossref_primary_10_1002_adem_202401944
crossref_primary_10_1016_j_wear_2023_205169
crossref_primary_10_3390_ma17184540
crossref_primary_10_1007_s13726_024_01434_2
crossref_primary_10_1016_j_icheatmasstransfer_2024_107870
crossref_primary_10_1108_ILT_04_2023_0121
crossref_primary_10_1016_j_triboint_2024_109988
crossref_primary_10_1007_s12540_023_01538_z
crossref_primary_10_1016_j_triboint_2024_109965
crossref_primary_10_3390_lubricants12100339
crossref_primary_10_1016_j_matpr_2023_05_704
crossref_primary_10_1016_j_triboint_2024_109940
crossref_primary_10_1186_s40323_025_00283_9
crossref_primary_10_3390_lubricants11070289
crossref_primary_10_1007_s40544_024_0879_2
crossref_primary_10_3390_lubricants12080280
crossref_primary_10_1088_2051_672X_ad9c9c
crossref_primary_10_3390_lubricants11090391
crossref_primary_10_1088_2051_672X_ad2056
crossref_primary_10_1016_j_simpa_2023_100531
crossref_primary_10_1109_ACCESS_2025_3542507
crossref_primary_10_3390_lubricants12040122
crossref_primary_10_3390_lubricants12020050
crossref_primary_10_1007_s11249_024_01957_y
crossref_primary_10_1007_s11665_024_10532_4
crossref_primary_10_1016_j_triboint_2024_110291
crossref_primary_10_1007_s12008_023_01411_8
crossref_primary_10_3390_lubricants12110365
crossref_primary_10_1016_j_matpr_2023_01_203
crossref_primary_10_2514_1_D0436
crossref_primary_10_1007_s41779_024_01098_4
crossref_primary_10_1155_2023_6681886
crossref_primary_10_1007_s00170_023_12108_3
Cites_doi 10.1109/SSCI.2017.8285325
10.1016/j.surfcoat.2011.04.099
10.24874/ti.2018.40.04.05
10.1007/978-3-319-21852-6_3
10.1016/j.wear.2009.02.016
10.1016/j.proeng.2013.09.156
10.1016/j.wear.2021.203797
10.1016/j.wear.2009.08.016
10.1007/s00521-018-3555-5
10.1016/j.jpcs.2017.06.028
10.1007/s11666-008-9183-3
10.1080/09518390902736512
10.1016/j.triboint.2020.106545
10.3390/lubricants8030029
10.1016/j.surfcoat.2020.125862
10.1080/10402009708983660
10.1016/j.wear.2021.203721
10.1007/s11814-010-0512-0
10.1016/j.neunet.2014.09.003
10.1007/s40735-020-00469-1
10.1080/10402004.2015.1045648
10.1115/1.4038688
10.1007/s11831-017-9212-9
10.1016/j.envpol.2020.115845
10.1016/S1003-6326(20)65482-6
10.1016/j.triboint.2008.08.010
10.1016/j.heliyon.2018.e00938
10.1007/s10462-012-9339-x
10.18203/issn.2454-2156.IntJSciRep20192801
10.1016/j.carbon.2015.02.041
10.1016/j.csite.2020.100605
10.1080/10402004.2014.887165
10.1016/j.ymssp.2016.09.016
10.1016/j.wear.2016.12.035
10.1016/j.triboint.2009.05.019
10.1002/app.47157
10.1002/pc.23740
10.1016/j.measurement.2018.05.059
10.1016/j.triboint.2009.03.005
10.1007/s40430-018-1237-y
10.1002/ls.1411
10.1016/j.eswa.2007.05.010
10.1016/j.triboint.2020.106650
10.1016/S1003-6326(17)60070-0
10.1002/ls.1363
10.1016/j.engappai.2015.06.015
10.1007/s11249-012-9948-1
10.1023/A:1019126732337
10.1038/s41598-019-56776-2
10.1016/j.techfore.2020.119928
10.1108/00368791211249647
10.1016/j.wear.2018.01.007
10.1016/j.surfcoat.2006.06.056
10.6180/jase.2015.18.1.07
10.1115/1.4032525
10.1109/CCDC.2012.6243100
10.1016/j.ymssp.2021.108349
10.1108/00368790810902241
10.1155/2015/815179
10.1093/oso/9780198538493.001.0001
10.1155/2016/4931502
10.1016/j.triboint.2019.105895
10.1016/S0043-1648(97)00260-3
10.1016/j.cplett.2021.138589
10.3103/S1067821215010174
10.5923/j.control.20170702.01
10.1016/j.rser.2012.02.064
10.1002/asi
10.1007/s40544-017-0145-y
10.1007/s00170-015-7812-9
10.1016/j.renene.2020.05.158
10.1016/j.biotri.2015.04.002
10.1243/09544070JAUTO256
10.1016/j.nocx.2020.100050
10.1080/10402004.2018.1439208
10.1016/j.neucom.2011.01.021
10.1108/JMTM-09-2017-0196
10.1115/1.3261450
10.1177/0021998320960520
10.1504/IJMA.2018.094489
10.1007/s11192-017-2591-8
10.1016/j.triboint.2010.05.013
10.1016/j.wear.2006.08.013
10.1088/0031-9120/30/3/009
10.1080/21693277.2016.1192517
10.1016/j.matlet.2021.131018
10.1016/j.triboint.2010.12.011
10.1080/10402000308982629
10.1016/j.triboint.2019.01.014
10.1016/j.jclepro.2020.123125
10.1007/s12666-015-0718-2
10.1016/j.wear.2018.12.081
10.1007/s11666-012-9734-5
10.1016/j.matpr.2017.12.079
10.1016/j.surfcoat.2006.07.088
10.1016/j.triboint.2021.107065
10.1115/1.4040836
10.1016/j.surfcoat.2018.12.024
10.1016/j.measurement.2020.108417
10.1115/1.4049256
10.1115/1.4036379
10.1504/IJMIC.2012.045691
10.1115/1.4039958
10.1080/17515831.2018.1437335
10.1016/S0043-1648(01)00841-9
10.1038/nature16961
10.1007/s11666-021-01212-z
10.1016/j.wear.2006.07.006
10.1016/j.surfcoat.2020.126143
10.1016/j.wear.2003.08.006
10.1108/ILT-07-2011-0057
10.1784/insi.2012.55.11.621
10.1007/s11666-012-9775-9
10.1007/s10462-018-9637-z
10.1037/h0054388
10.1155/2015/315710
10.1016/S0921-5093(03)00623-3
10.1007/s11666-021-01213-y
10.1007/978-3-030-20131-9_383
10.1016/j.crfs.2021.01.002
10.1088/2051-672X/abae13
10.1007/s11666-009-9385-3
10.1098/rstl.1886.0005
10.1016/j.jmatprotec.2007.02.019
10.1007/s12666-020-02107-3
10.1155/2013/580367
10.1007/s12666-019-01696-y
10.1016/j.triboint.2013.02.003
10.1016/j.jup.2021.101256
10.1088/0954-3899/31/6/019
10.1007/s11665-018-3684-0
10.1186/s10033-021-00576-1
10.1016/j.triboint.2018.07.045
10.1016/j.triboint.2011.05.022
10.1016/j.dcan.2017.10.002
10.1177/1350650118788929
10.1007/s12541-014-0584-6
10.1007/s11666-021-01239-2
10.1007/s11249-020-01294-w
10.1243/09544062JMES1677
10.1002/tt.3020060305
10.1016/j.wear.2009.11.008
10.1016/j.rcim.2018.03.011
10.1016/j.surfcoat.2020.125950
10.1016/j.triboint.2019.01.026
10.1007/s40544-017-0183-5
10.1016/j.eswa.2011.08.040
10.1007/s12666-017-1134-6
10.1023/b:tril.0000009709.83578.f5
10.1007/s40544-018-0249-z
10.1023/A:1010933404324
10.1016/S0301-679X(02)00234-7
10.1007/s11666-021-01198-8
10.1016/j.eswa.2010.07.119
10.1016/j.ptlrs.2021.05.009
10.1007/s11831-020-09402-8
10.1108/00368791211249674
10.1007/s11668-017-0362-8
10.1016/j.knosys.2019.105324
10.1016/j.matdes.2008.06.045
10.1021/acs.chemmater.7b05304
10.1023/B:TRIL.0000032436.09396.d4
10.1016/j.wear.2020.203477
10.1016/j.compscitech.2007.09.022
10.1016/j.wear.2012.11.045
10.1201/9780849377877.ch20
10.1080/10402004.2013.798448
10.1016/S0301-679X(03)00090-2
10.1007/s11831-021-09557-y
10.1016/j.wear.2005.10.006
10.1155/2016/8726781
10.1177/0021998319859924
10.1016/j.surfcoat.2004.12.026
10.1080/10402004.2014.971995
10.3390/lubricants9050050
10.1016/j.measurement.2016.02.024
10.1016/j.wear.2006.01.040
10.1007/s40544-017-0340-0
10.3390/lubricants6040108
10.1007/s40544-021-0493-5
10.1016/j.wear.2009.07.006
10.1109/TNN.2006.880583
10.1016/j.rser.2019.01.009
10.1007/s40544-014-0044-4
10.1016/j.wear.2021.203888
10.3390/lubricants9010002
10.1557/mrs.2019.158
10.1177/1350650113504907
10.1007/s10845-012-0657-2
10.1111/j.1468-0394.1988.tb00341.x
10.1016/j.scitotenv.2020.136765
10.1016/j.triboint.2015.11.045
10.1115/1.4044850
10.1007/s12666-020-02108-2
10.1016/j.ymssp.2018.02.016
10.1016/j.jmrt.2021.09.069
10.1007/s11665-007-9100-9
10.1016/S0257-8972(01)01128-8
10.1007/s11666-019-00874-0
10.1002/0471428019.ch5
10.1179/1751584X12Y.0000000002
10.1016/j.triboint.2018.12.041
10.1109/ICMLA.2009.25
10.2316/Journal.205.2011.1.205-5285
10.1115/1.4045013
10.1007/s11249-012-9975-y
10.1016/j.matpr.2018.10.206
10.3390/lubricants7040032
10.1016/j.mtcomm.2020.101615
10.1109/IJCNN.2000.857892
10.1111/nrm.12189
10.1016/j.wear.2018.12.087
10.1016/j.triboint.2019.05.040
10.1016/j.jmatprotec.2018.05.013
10.1016/j.triboint.2005.03.008
10.1007/s10115-007-0114-2
10.1016/j.triboint.2020.106829
10.1111/eufm.12326
10.1016/j.engappai.2012.03.018
10.1007/s11249-011-9805-7
10.1115/1.4032304
10.1016/j.neucom.2019.10.006
10.1007/s40735-021-00550-3
10.1093/cid/cix731
10.1016/j.autcon.2017.12.002
10.1007/978-3-319-52156-5_2
10.1177/1350650121992895
10.1007/s40544-021-0516-2
10.1016/j.surfcoat.2019.124988
10.1007/s11249-010-9635-z
10.1016/j.triboint.2007.01.008
10.1007/978-1-4614-7138-7
10.1016/S0043-1648(02)00023-6
10.1115/1.4032971
10.1016/j.triboint.2010.01.013
10.1243/09544070JAUTO583
10.1119/1.1933017
10.1016/S0301-679X(00)00115-8
10.1103/PhysRevLett.56.930
10.1115/1.4024638
10.1007/BF02478259
10.1016/j.ymssp.2020.107398
10.1155/2014/213548
10.7551/mitpress/13811.003.0007
10.1109/TNNLS.2015.2437901
10.1115/1.3261896
10.1016/j.istruc.2021.04.100
10.1021/nn100246g
10.1115/1.4050140
10.3906/elk-1108-19
10.1016/S0301-679X(97)00056-X
10.1016/j.ijrmhm.2021.105530
10.1080/10402004.2014.880979
10.3103/S1068366616040115
10.1088/2053-1591/aabec8
10.1016/j.triboint.2020.106811
10.1007/s00170-019-03701-6
10.1016/j.triboint.2021.106946
10.1007/s00521-020-04753-6
10.1007/s11665-021-05802-4
10.1002/ls.1238
10.1007/s11249-006-9067-y
10.1007/s11356-020-08792-3
10.1016/j.hlc.2021.05.101
10.1016/j.jbusres.2019.07.039
10.1016/j.neucom.2020.05.095
10.1007/BF02996108
10.1002/ls.3010100203
10.3390/LUBRICANTS9090086
10.1038/s41524-019-0221-0
10.1080/10402004.2021.1934618
10.1007/s40735-020-00444-w
10.1115/1.4050525
10.1007/s11249-004-8097-6
10.3390/MA13163489
10.3390/lubricants9070067
10.3233/IFS-141461
10.1016/j.matlet.2003.06.010
10.1109/ICMTMA.2014.201
10.1016/j.triboint.2019.06.006
10.1080/10402000903491317
10.1016/j.jmrt.2019.10.082
10.1080/10402009908982281
10.1007/s00170-009-2476-y
10.1016/j.asoc.2018.04.048
10.1007/s12206-011-1020-9
10.1109/COMPSAC.2017.164
10.1007/s12206-021-0333-6
10.1016/j.fuel.2018.12.094
10.1155/2014/763601
10.1016/j.apr.2021.101211
10.1007/s12206-009-0802-9
10.1007/s11666-015-0341-0
10.1016/j.triboint.2020.106280
10.1017/cbo9780511804779.026
10.1016/j.wear.2008.06.008
10.1179/1751584X11Y.0000000025
10.1002/ls.1535
10.1016/j.jmapro.2019.03.024
10.1115/1.4029332
10.1016/j.proeng.2016.05.148
10.1007/s40544-019-0332-0
10.1016/j.compscitech.2006.07.026
10.1108/ILT-03-2020-0109
10.1115/1.4049257
10.1016/j.surfcoat.2021.127370
10.1109/MSP.2012.2205597
10.1016/j.wear.2017.09.022
10.1016/j.mlwa.2020.100008
10.1177/1350650120925582
10.1016/j.wear.2021.203715
10.1007/978-1-4419-9326-7_1
10.3389/fmech.2019.00030
10.1007/s40033-021-00250-9
10.1016/j.triboint.2019.05.029
10.1016/j.neucom.2017.02.039
10.1016/j.surfcoat.2018.06.065
10.1109/5.364486
10.1177/1350650111424237
10.1016/j.surfcoat.2020.125365
10.1016/j.orp.2020.100147
10.1016/j.triboint.2020.106630
ContentType Journal Article
Copyright The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022.
Copyright_xml – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1007/s11831-022-09841-5
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 1397
ExternalDocumentID 10_1007_s11831_022_09841_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
PQGLB
PUEGO
7XB
8AL
8FK
JQ2
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-7dad5a3f97117f38e0e01a1ea0b0db0aa651f92069d1c2e1e9e0972751b6b30a3
IEDL.DBID BENPR
ISSN 1134-3060
IngestDate Mon Oct 06 18:36:20 EDT 2025
Thu Apr 24 22:58:46 EDT 2025
Wed Oct 01 04:56:07 EDT 2025
Fri Feb 21 02:45:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Lubrication
Review
Friction
Wear
Machine learning
Tribology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7dad5a3f97117f38e0e01a1ea0b0db0aa651f92069d1c2e1e9e0972751b6b30a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5843-466X
PQID 3256678029
PQPubID 1486352
PageCount 53
ParticipantIDs proquest_journals_3256678029
crossref_citationtrail_10_1007_s11831_022_09841_5
crossref_primary_10_1007_s11831_022_09841_5
springer_journals_10_1007_s11831_022_09841_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11):e00938. ISSN 2405-8440. https://doi.org/10.1016/j.heliyon.2018.e00938
DaiKGaoXEstimating antiwear properties of lubricant additives using a quantitative structure tribo-ability relationship model with back propagation neural networkWear201330624224710.1016/j.wear.2012.11.045
MathivananKThirumalaikumarasamyDAshokkumarMOptimization and prediction of AZ91D stellite-6 coated magnesium alloy using Box Behnken design and hybrid deep belief networkJ Market Res2021152953296910.1016/j.jmrt.2021.09.069
WangSChenQRenXYuHNeural network-based adaptive funnel sliding mode control for servo mechanisms with friction compensationNeurocomputing2020377162610.1016/j.neucom.2019.10.006
PrezeljJMurovecJHuemer-KalsSIdentification of different manifestations of nonlinear stick–slip phenomena during creep groan braking noise by using the unsupervised learning algorithms k-means and self-organizing mapMech Syst Signal Process202210.1016/j.ymssp.2021.108349
RosenkranzAMarianMProfitoFJThe use of artificial intelligence in tribology—a perspectiveLubricants2021911110.3390/lubricants9010002
DaineseACharm and beauty of the Large Hadron ColliderJ Phys G200510.1088/0954-3899/31/6/019
SunWGaoHTanSWear detection of WC-Cu based impregnated diamond bit matrix based on SEM image and deep learningInt J Refract Metal Hard Mater202110.1016/j.ijrmhm.2021.105530
JonesSPJansenRFusaroRLPreliminary investigation of neural network techniques to predict tribological propertiesTribol Trans19974031232010.1080/10402009708983660
KavimaniVPrakashKSTribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approachJ Phys Chem Solids201711040941910.1016/j.jpcs.2017.06.028
AltayOGurgencTUlasMPrediction of wear loss quantities of ferro-alloy coating using different machine learning algorithmsFriction2020810711410.1007/s40544-018-0249-z
PatiPRSatapathyATriboperformance analysis of coatings of LD slag premixed with TiO2 using experimental design and ANNTribol Trans20155834935610.1080/10402004.2014.971995
GuptaGSatapathyAStudies on erosion behavior of plasma sprayed coatings of glass microspheres premixed with Al2O3 particlesAdv Tribol201410.1155/2014/763601
Vapnik VN, Chervonenkis AY (2015) On the uniform convergence of relative frequencies of events to their probabilities. Measures of Complexity: Festschrift for Alexey Chervonenkis XVI:11–30. https://doi.org/10.1007/978-3-319-21852-6_3
ParikhHHGohilPPExperimental investigation and prediction of wear behavior of cotton fiber polyester compositesFriction2017518319310.1007/s40544-017-0145-y
ReddyASAgarwalPKChandSApplication of artificial neural networks for the fault detection and diagnosis of active magnetic bearingsInt J Mechatron Autom2018613014210.1504/IJMA.2018.094489
AbdelbaryAAbouelwafaMNel FahhamIMEvaluation and prediction of the effect of load frequency on the wear properties of pre-cracked nylon 66Friction2014224025410.1007/s40544-014-0044-4
KankarPKSharmaSCHarshaSPRolling element bearing fault diagnosis using wavelet transformNeurocomputing2011741638164510.1016/j.neucom.2011.01.021
GangwarSPathakVKDry sliding wear characteristics evaluation and prediction of vacuum casted marble dust (MD) reinforced ZA-27 alloy composites using hybrid improved bat algorithm and ANNMater Today Commun20202510161510.1016/j.mtcomm.2020.101615
RashmiWOsamaMKhalidMTribological performance of nanographite-based metalworking fluid and parametric investigation using artificial neural networkInt J Adv Manuf Technol201910435937410.1007/s00170-019-03701-6
TranAFurlanJMPagalthivarthiKVWearGP: a computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processesWear2019422–42392610.1016/j.wear.2018.12.081
ZhangGWangJChangSPredicting running-in wear volume with a SVMR-based model under a small amount of training samplesTribol Int201812834935510.1016/j.triboint.2018.07.045
BarberDLatent linear modelsBayesian Reason Mach Learn201210.1017/cbo9780511804779.026
AleksendrićDNeural network prediction of brake friction materials wearWear201026811712510.1016/j.wear.2009.07.006
LiHYuHCaoNApplications of artificial intelligence in oil and gas developmentArch Comput Methods Eng20212893794910.1007/s11831-020-09402-8
ISO 19291:2016 International standard, Lubricants—Determination of tribological quantities for oils and greases – Tribological test in the translator oscillation apparatus, 2016
PerčićMZelenikaSMezićIArtificial intelligence-based predictive model of nanoscale friction using experimental dataFriction202191726174810.1007/s40544-021-0493-5
XuXZhaoZXuXMachine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven modelsKnowl-Based Syst202019010532410.1016/j.knosys.2019.105324
MujtabaMAMasjukiHHKalamMAUltrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine—Cuckoo searchRenew Energy202015820221410.1016/j.renene.2020.05.158
JamesGWittenDHastieTTibshiraniRAn introduction to statistical learning2000New YorkSpringer10.1007/978-1-4614-7138-71281.62147
XuBWenGZhangZChenFWear particle classification using genetic programming evolved featuresLubr Sci20183022924610.1002/ls.1411
MojenaMARRocaASZamoraRSNeural network analysis for erosive wear of hard coatings deposited by thermal spray: Influence of microstructure and mechanical propertiesWear2017376–37755756510.1016/j.wear.2016.12.035
ParsazadehMFisherGMcDonaldAHoganJComputational investigation of the effect of microstructure on the scratch resistance of tungsten-carbide nickel composite coatingsWear202110.1016/j.wear.2021.203888
GangwarSSharmaSPathakVKPreliminary evaluation and wear properties optimization of boron carbide and molybdenum disulphide reinforced copper metal matrix composite using adaptive neuro-fuzzy inference systemJ Bio- Tribo-Corros202110.1007/s40735-020-00444-w
ȘtefanovTMarakaHVRMeagherPThin film metallic glass broad-spectrum mirror coatings for space telescope applicationsJ Non-Cryst Solids X2020710005010.1016/j.nocx.2020.100050
TrappenbergTPFundamentals of computational neuroscience2002OxfordOxford University Press1179.92013
LenzBHasselbruchHMehnerAAutomated evaluation of Rockwell adhesion tests for PVD coatings using convolutional neural networksSurf Coat Technol202038512536510.1016/j.surfcoat.2020.125365
MengFGongJYangSStudy on tribo-dynamic behaviors of rolling bearing-rotor system based on neural networkTribol Int202115610682910.1016/j.triboint.2020.106829
TsoumakasGA survey of machine learning techniques for food sales predictionArtif Intell Rev20195244144710.1007/s10462-018-9637-z
QiXWangYWangCZhangRMicrostructure and performance of nano-WC particle-strengthened Ni coatings by electro-brush platingJ Mater Eng Perform2018276069607910.1007/s11665-018-3684-0
CanbulutFYildirimŞSinanoǧluCDesign of an artificial neural network for analysis of frictional power loss of hydrostatic slipper bearingsTribol Lett20041788789910.1007/s11249-004-8097-6
Rosenblatt F (1957) The Perceptron—a perceiving and recognizing automaton. Report 85, Cornell Aeronautical Laboratory 460–461.
Albert BJ. Novikoff (1963) On convergence proofs for perceptrons. Station AHAU Arlington Hau Station Unclassified. Stanford research institute SRI Project No. 3605
WangSKhatirSAbdel WahabMProper orthogonal decomposition for the prediction of fretting wear characteristicsTribol Int202015210654510.1016/j.triboint.2020.106545
SadeghHMehdiANMehdiAClassification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithmTribol Int20169542643410.1016/j.triboint.2015.11.045
LiuMYuZWuHImplementation of artificial neural networks for forecasting the HVOF spray process and HVOF sprayed coatingsJ Therm Spray Technol2021301329134310.1007/s11666-021-01213-y
RaoTBPonugotiGRCharacterization, prediction, and optimization of dry sliding wear behaviour of Al6061/WC compositesTrans Indian Inst Met20217415917810.1007/s12666-020-02107-3
TimurMAydinFAnticipating the friction coefcient of friction materials used in automobiles by means of machine learning without using a test instrumentTurk J Electr Eng Comput Sci2013211440145410.3906/elk-1108-19
WangYGangLLiuSCuiYCoupling fractal model for fretting wear on rough contact surfacesJ Tribol202114311310.1115/1.4049256
BhaumikSPathakSDDeySDattaSArtificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological propertiesTribol Int201914010581310.1016/j.triboint.2019.06.006
ZhangHHafeziMDongGLiuYA design of coverage area for textured surface of sliding journal bearing based on genetic algorithmJ Tribol20181401810.1115/1.4039958
NaphonPArisariyawongTWiriyasartSSrichatAANFIS for analysis friction factor and Nusselt number of pulsating nanofluids flow in the fluted tube under magnetic fieldCase Stud Therm Eng20201810060510.1016/j.csite.2020.100605
Fereshteh-SanieeFNourbakhshSHPezeshkiSMEstimation of flow curve and friction coefficient by means of a one-step ring test using a neural network coupled with FE simulationsJ Mech Sci Technol20122615316010.1007/s12206-011-1020-9
DanaherSDattaSWaddleIHackneyPErosion modelling using Bayesian regulated artificial neural networksWear200425687988810.1016/j.wear.2003.08.006
SahaDManickavasaganAMachine learning techniques for analysis of hyperspectral images to determine quality of food products: a reviewCurr Res Food Sci20214284410.1016/j.crfs.2021.01.002
HonKKNgCWChanPWMachine learning based multi-index prediction of aviation turbulence over the Asia-PacificMach Learn Appl2020210000810.1016/j.mlwa.2020.100008
ProstJCihak-BayrUAdina NeacşuISemi-supervised classification of the state of operation in self-lubricating journal bearings using a random forest classif
TP Trappenberg (9841_CR59) 2002
RA Kanai (9841_CR296) 2016; 138
AF Kanta (9841_CR242) 2008; 17
T Sahraoui (9841_CR245) 2004; 58
TA Choudhury (9841_CR252) 2011; 205
Z Li (9841_CR291) 2012; 47
H Zhang (9841_CR210) 2017; 139
Z Jiang (9841_CR155) 2007; 67
9841_CR89
S Li (9841_CR113) 2019; 136
A Dainese (9841_CR138) 2005
NY Liang (9841_CR69) 2006; 17
K Hartz-Behrend (9841_CR256) 2016; 25
W Sun (9841_CR258) 2016; 69
S Katoch (9841_CR130) 2019; 140
9841_CR81
K Bobzin (9841_CR279) 2021
S Arif (9841_CR175) 2018
T Kolodziejczyk (9841_CR319) 2010; 268
O Oyebode (9841_CR67) 2018; 32
J Graser (9841_CR29) 2018; 30
L Gan (9841_CR9) 2020; 153
9841_CR227
Y Peng (9841_CR168) 2017; 392–393
P Podsiadlo (9841_CR152) 2005; 38
J Liu (9841_CR141) 2010; 4
D Aleksendric (9841_CR103) 2006; 261
S Schwarz (9841_CR330) 2021
G Boidi (9841_CR209) 2020
X Qiao (9841_CR264) 2019; 358
A Finke (9841_CR276) 2021
B Tang (9841_CR84) 2017; 241
Z Taha (9841_CR308) 2010; 50
9841_CR77
9841_CR75
B Basu (9841_CR211) 1998; 10
LA Bronshteyn (9841_CR2) 2011; 67
MA Mujtaba (9841_CR231) 2020; 158
JH Holland (9841_CR85) 2017; 679
J Zhu (9841_CR107) 2009; 30
SP Jones (9841_CR146) 1997; 40
S Al-Saeedi (9841_CR223) 2018; 61
D Aleksendrić (9841_CR33) 2008; 222
T Thankachan (9841_CR176) 2018
J Pang (9841_CR238) 2021
G Tsoumakas (9841_CR16) 2019; 52
N Wang (9841_CR232) 2020; 72
J Wiens (9841_CR14) 2018; 66
S Sardar (9841_CR111) 2021; 55
J Echávarri Otero (9841_CR221) 2017; 29
S Aziz (9841_CR10) 2021
H Cetinel (9841_CR254) 2012; 64
CP Gomes (9841_CR79) 2019; 44
II Argatov (9841_CR189) 2021; 235
TB Rao (9841_CR187) 2021; 74
M Kannaiyan (9841_CR181) 2020; 9
X Gao (9841_CR224) 2019
I Tzanakis (9841_CR3) 2012; 16
LA Gyurova (9841_CR106) 2010; 268
Z Zhang (9841_CR102) 2002; 252
RB Heimann (9841_CR250) 2010; 19
BS Ünlü (9841_CR320) 2012; 64
F Alambeigi (9841_CR200) 2016; 84
S Dhanasekaran (9841_CR153) 2007; 262
Q Qiao (9841_CR192) 2021; 476
PK Kankar (9841_CR289) 2011; 38
A Kurdi (9841_CR41) 2020
B Wu (9841_CR92) 2021; 143
N Shrivastava (9841_CR28) 2018; 25
D Aleksendrić (9841_CR94) 2009; 42
Z Wang (9841_CR282) 2021; 30
W Sun (9841_CR145) 2021
F Meng (9841_CR327) 2021; 156
K Bobzin (9841_CR263) 2018; 349
M Liu (9841_CR267) 2019; 378
S Bhaumik (9841_CR240) 2019; 140
M Liu (9841_CR281) 2021; 30
H Chang (9841_CR302) 2020; 147
S Gangwar (9841_CR188) 2021
9841_CR90
9841_CR134
L Roy (9841_CR321) 2013
S Wang (9841_CR185) 2020; 460–461
A Vinoth (9841_CR182) 2020; 54
L Wang (9841_CR248) 2007; 201
JP Patel (9841_CR294) 2016; 144
F Xu (9841_CR297) 2019; 233
MH Müser (9841_CR136) 2003; 126
D Silver (9841_CR57) 2016; 529
R Karri (9841_CR15) 2021; 30
IB Tijani (9841_CR110) 2012; 25
P Pradhan (9841_CR195) 2021; 30
J Zhu (9841_CR271) 2020; 394
MO Shabani (9841_CR170) 2018; 71
U Nirmal (9841_CR100) 2010; 43
AH Jackson (9841_CR7) 1988
MAR Mojena (9841_CR259) 2017; 376–377
T Ștefanov (9841_CR26) 2020; 7
D Aleksendrić (9841_CR104) 2007; 262
X LiuJie (9841_CR109) 2007; 189
K Reza Kashyzadeh (9841_CR262) 2017; 17
M Timur (9841_CR114) 2013; 21
NP Belfiore (9841_CR156) 2007; 40
S Ray (9841_CR105) 2009; 266
I Argatov (9841_CR40) 2019; 5
M Perčić (9841_CR120) 2021; 9
T Wang (9841_CR229) 2020; 142
M Ulas (9841_CR270) 2020; 8
MA Chowdhury (9841_CR112) 2015
Y Wang (9841_CR235) 2019; 133
A Suresh (9841_CR249) 2009; 266
MS Hasan (9841_CR101) 2021; 161
S Wang (9841_CR125) 2020; 377
B Sattari Baboukani (9841_CR131) 2020; 68
NB Jones (9841_CR287) 2000; 6
B Roy (9841_CR329) 2021; 235
A Garre (9841_CR17) 2020; 7
Y Wang (9841_CR196) 2021; 143
X Li (9841_CR34) 2016
9841_CR277
X Hu (9841_CR203) 2021
HI Kurt (9841_CR164) 2015
AO Kurban (9841_CR315) 2003; 36
MM Hsu (9841_CR324) 2015; 18
MI de Barros Bouchet (9841_CR140) 2015; 87
A Abdelhalim (9841_CR78) 2009; 2009
A Borjali (9841_CR179) 2019; 133
Y Peng (9841_CR180) 2019; 138
RG Desavale (9841_CR310) 2013
VS Dave (9841_CR65) 2014; 42
A Abdelbary (9841_CR161) 2014; 2
HH Parikh (9841_CR169) 2017; 5
II Argatov (9841_CR178) 2019; 138
F Fereshteh-Saniee (9841_CR115) 2012; 26
L Bornmann (9841_CR48) 2018; 114
FM Meng (9841_CR214) 2007; 221
N Wang (9841_CR316) 2004; 17
A Tran (9841_CR177) 2019; 422–423
FP Bowden (9841_CR91) 1951; 19
K Konno (9841_CR212) 2003; 36
R Egala (9841_CR183) 2021; 9
A Skariah (9841_CR305) 2021; 154
N Mokhtari (9841_CR304) 2020; 8
N Pillai (9841_CR36) 2018; 12
D Mehra (9841_CR143) 2018; 5
PK Kankar (9841_CR286) 2012; 15
K Velten (9841_CR149) 2000; 33
Y Ye (9841_CR202) 2021; 474–475
R Polikar (9841_CR87) 2012
P Naphon (9841_CR74) 2020; 18
N Sihag (9841_CR44) 2020; 275
VI Vitanov (9841_CR244) 2001; 140
G Zhang (9841_CR173) 2018; 128
J Wang (9841_CR58) 2021; 28
P He (9841_CR21) 2022; 307
WS McCulloch (9841_CR60) 1943; 5
DY Dhande (9841_CR193) 2021; 102
J Prezelj (9841_CR56) 2022
R Bhardwaj (9841_CR13) 2017; 2
O Altay (9841_CR265) 2020; 8
EW Bucholz (9841_CR127) 2012; 47
A Sircar (9841_CR19) 2021; 6
KK Hon (9841_CR22) 2020; 2
L Lv (9841_CR23) 2021; 12
X Gao (9841_CR220) 2015; 137
M Gohari (9841_CR323) 2017; 7
Y Yin (9841_CR199) 2014; 66
JB Long (9841_CR269) 2019; 72
D Jia (9841_CR230) 2019; 9
CM Lin (9841_CR253) 2012; 21
PK Kankar (9841_CR290) 2011; 74
K Zhang (9841_CR225) 2019; 134
Y Ao (9841_CR150) 2002; 252
J Hierrezuelo (9841_CR312) 1995; 30
TA Choudhury (9841_CR32) 2012; 21
D Aleksendrić (9841_CR198) 2010; 268
NB Shaik (9841_CR234) 2021; 7
F Canbulut (9841_CR313) 2004; 17
W Rashmi (9841_CR228) 2019; 104
BK Sharma (9841_CR213) 2004; 16
SPR Sahu (9841_CR251) 2010; 53
H Çetinel (9841_CR246) 2006; 261
SD Saravanan (9841_CR204) 2015; 56
A Rosenkranz (9841_CR39) 2021; 9
S Fan (9841_CR194) 2021; 35
S Bhaumik (9841_CR208) 2019; 241
P Lu (9841_CR283) 2021; 159
A Umeda (9841_CR147) 1998; 216
J Moder (9841_CR236) 2018
TM Shea (9841_CR239) 2003; 46
X Zhang (9841_CR284) 2018; 260
R Bammidi (9841_CR311) 2019; 5
PK Padhi (9841_CR160) 2013; 56
P Senthil Kumar (9841_CR162) 2014; 57
NR Sangwa (9841_CR42) 2018; 29
H Liu (9841_CR167) 2016; 2016
G Gupta (9841_CR255) 2014
YR Hwang (9841_CR285) 2009; 23
K Genel (9841_CR151) 2003; 363
T Waqar (9841_CR295) 2016; 86
RGS Asthana (9841_CR86) 2000
K Holmberg (9841_CR4) 2013; 62
L Tyagi (9841_CR122) 2021; 7
M Subrahmanyam (9841_CR306) 1997; 30
L Gorasso (9841_CR322) 2014
KM Saridakis (9841_CR309) 2012; 226
IB Tijani (9841_CR128) 2011; 31
J Schmidhuber (9841_CR61) 2015; 61
H Snyder (9841_CR43) 2019; 104
H Li (9841_CR20) 2021; 28
Z Jiang (9841_CR108) 2008; 68
T Sreekumar Rajesh (9841_CR261) 2018; 5
HS Kumar (9841_CR293) 2013; 64
RR Bush (9841_CR53) 1951; 58
A Shebani (9841_CR174) 2018; 406–407
T Wuest (9841_CR5) 2016; 4
J Echávarri Otero (9841_CR217) 2014; 26
Z Peng (9841_CR148) 1998; 5
S Jiang (9841_CR82) 2012; 39
H Zhang (9841_CR325) 2018; 140
KH Chung (9841_CR139) 2014; 15
S Wang (9841_CR184) 2020; 152
J Agee (9841_CR45) 2009; 22
H Sadegh (9841_CR30) 2016; 95
Y Tikhamarine (9841_CR63) 2020; 27
L Breiman (9841_CR80) 2001; 45
H Xie (9841_CR121) 2020; 142
JM Griffin (9841_CR129) 2017; 85
X Gao (9841_CR222) 2016; 138
S Kamnis (9841_CR268) 2019; 28
F König (9841_CR303) 2021
R Liu (9841_CR76) 2018; 108
T Nasir (9841_CR126) 2010; 224
DG Eckold (9841_CR163) 2015; 1–2
K Holmberg (9841_CR49) 2017; 5
Z Zhang (9841_CR292) 2013; 24
S Bhaumik (9841_CR207) 2017
C Magazzino (9841_CR12) 2021; 72
MR Hosseini (9841_CR47) 2018; 87
S Gangwar (9841_CR144) 2020; 25
YS Dambatta (9841_CR226) 2019; 41
F Canbulut (9841_CR317) 2004; 18
B Lenz (9841_CR243) 2020; 385
KP Katsaros (9841_CR326) 2021; 33
D Aleksendrić (9841_CR98) 2010; 43
R Ramesh (9841_CR154) 2007; 16
R Jaza (9841_CR31) 2021; 153
S Wirsching (9841_CR328) 2021; 9
S Wang (9841_CR142) 2019; 426–427
G Xiao (9841_CR99) 2010; 43
K Ravi Kumar (9841_CR117) 2012; 6
X Qi (9841_CR266) 2018; 27
X Wang (9841_CR37) 2021; 34
JO Valderrama (9841_CR215) 2011; 28
O Reynolds (9841_CR205) 1983; 177
KS Prakash (9841_CR166) 2017; 27
AA Sosimi (9841_CR191) 2020; 32
9841_CR1
X Jia (9841_CR24) 2021; 268
W Grzegorzek (9841_CR116) 2014; 228
A Senatore (9841_CR97) 2011; 44
A Bustillo (9841_CR201) 2018; 53
D Saha (9841_CR18) 2021; 4
X Liu (9841_CR46) 2013; 64
MS Hasan (9841_CR95) 2022; 144
JR Jang (9841_CR73) 1995; 83
B Stojanović (9841_CR133) 2018
K Dai (9841_CR216) 2013; 306
M Parsazadeh (9841_CR275) 2021
KK Ikpambese (9841_CR123) 2018; 40
PR Pati (9841_CR257) 2015; 58
W Lu (9841_CR218) 2014; 57
T Banerjee (9841_CR190) 2020; 73
AS Reddy (9841_CR299) 2018; 6
W Uczak de Goes (9841_CR27) 2020; 396
H Moayedi (9841_CR119) 2019; 31
M Zakaulla (9841_CR124) 2020; 26
G Binnig (9841_CR135) 1986; 56
G Hinton (9841_CR71) 2012; 29
D Li (9841_CR118) 2017; 38
B Xu (9841_CR171) 2018; 30
W Xia (9841_CR83) 2016; 27
M Agarwal (9841_CR273) 2021; 168
E Durak (9841_CR318) 2008; 60
9841_CR64
CM Bishop (9841_CR68) 1995
FS Rashed (9841_CR157) 2009; 42
M Sharma (9841_CR158) 2011; 43
X Xu (9841_CR300) 2020; 190
9841_CR62
F Aydin (9841_CR186) 2021; 31
S Danaher (9841_CR197) 2004; 256
E Alpaydin (9841_CR55) 2021
9841_CR206
G Zhang (9841_CR241) 2006; 200
CF Han (9841_CR298) 2018; 126
K Mathivanan (9841_CR278) 2021; 15
J da Wu (9841_CR288) 2008; 34
C Humelnicu (9841_CR237) 2019
M Liu (9841_CR280) 2021; 30
V Kavimani (9841_CR172) 2017; 110
MS Mahdavinejad (9841_CR11) 2018; 4
Z Guo (9841_CR301) 2013; 55
G James (9841_CR8) 2000
A Becker (9841_CR274) 2021
H Canales (9841_CR272) 2020; 401
S Vijayakumar (9841_CR159) 2012; 6
G Gupta (9841_CR260) 2016; 59
J Schmidt (9841_CR88) 2019
TDB Jacobs (9841_CR137) 2010; 39
9841_CR54
T Wang (9841_CR132) 2021; 33
Z Wan (9841_CR233) 2021; 773
S Kiranyaz (9841_CR66) 2021; 151
H Chen (9841_CR25) 2020
M Marian (9841_CR38) 2021; 9
LA Gyurova (9841_CR96) 2011; 44
9841_CR51
9841_CR52
G Kronberger (9841_CR93) 2018; 69
9841_CR50
J Prost (9841_CR314) 2021
LV Markova (9841_CR35) 2016; 37
L Haviez (9841_CR165) 2015; 28
GP Stachowiak (9841_CR307) 2006; 22
D Barber (9841_CR6) 2012
9841_CR219
M der Jean (9841_CR247) 2006; 201
Y Zheng (9841_CR72) 2020; 409
RC Deo (9841_CR70) 2019; 104
References_xml – reference: GorassoLWangLJournal bearing optimization using nonsorted genetic algorithm and artificial bee colony algorithmAdv Mech Eng201410.1155/2014/213548
– reference: KurtHIOduncuogluMApplication of a neural network model for prediction of wear properties of ultrahigh molecular weight polyethylene compositesInt J Polym Sci201510.1155/2015/315710
– reference: KantaAFMontavonGVardelleMArtificial neural networks vs. fuzzy logic: simple tools to predict and control complex processes—application to plasma spray processesJ Therm Spray Technol20081736537610.1007/s11666-008-9183-3
– reference: Tallian TE (1988) A computerized expert system for tribological failure diagnosis. 111: https://doi.org/10.1115/1.3261896
– reference: ZakaullaMParveenFAhmadNArtificial neural network based prediction on tribological properties of polycarbonate composites reinforced with graphene and boron carbide particleMater Today202026296304
– reference: BushRRMostellerFA mathematical model for simple learningPsychol Rev19515831332310.1037/h0054388
– reference: XuFWai Tat TSE PPFangYJLiangJQA fault diagnosis method combined with compound multiscale permutation entropy and particle swarm optimization–support vector machine for roller bearings diagnosisProc Inst Mech Eng Part J201923361562710.1177/1350650118788929
– reference: VeltenKReinickeRFriedrichKWear volume prediction with artificial neural networksTribol Int20003373173610.1016/S0301-679X(00)00115-8
– reference: SahraouiTGuessasmaSFeninecheNEFriction and wear behaviour prediction of HVOF coatings and electroplated hard chromium using neural computationMater Lett20045865466010.1016/j.matlet.2003.06.010
– reference: PolikarREnsembleMach Learn201210.1007/978-1-4419-9326-7_11040.68684
– reference: ZhangHHafeziMDongGLiuYA design of coverage area for textured surface of sliding journal bearing based on genetic algorithmJ Tribol20181401810.1115/1.4039958
– reference: MagazzinoCMeleMMorelliGSchneiderNThe nexus between information technology and environmental pollution: application of a new machine learning algorithm to OECD countriesUtil Policy20217210125610.1016/j.jup.2021.101256
– reference: HintonGDengLYuDDeep neural networks for acoustic modeling in speech recognition: the shared views of four research groupsIEEE Signal Process Mag201229829710.1109/MSP.2012.2205597
– reference: HosseiniMRMartekIZavadskasEKCritical evaluation of off-site construction research: a Scientometric analysisAutom Constr20188723524710.1016/j.autcon.2017.12.002
– reference: PrezeljJMurovecJHuemer-KalsSIdentification of different manifestations of nonlinear stick–slip phenomena during creep groan braking noise by using the unsupervised learning algorithms k-means and self-organizing mapMech Syst Signal Process202210.1016/j.ymssp.2021.108349
– reference: PillaiNKarthikeyanRDavimJPHeat treatment effects on tribological characteristics for AISI A8 tool steel and development of wear mechanism maps using K means clustering and neural networksTribology201812445610.1080/17515831.2018.1437335
– reference: HumelnicuCCiortanSAmortilaVArtificial neural network-based analysis of the tribological behavior of vegetable oil-diesel fuel mixturesLubricants201910.3390/lubricants7040032
– reference: WangYGangLLiuSCuiYCoupling fractal model for fretting wear on rough contact surfacesJ Tribol202114311310.1115/1.4049256
– reference: TikhamarineYMalikASouag-GamaneDArtificial intelligence models versus empirical equations for modeling monthly reference evapotranspirationEnviron Sci Pollut Res202027300013001910.1007/s11356-020-08792-3
– reference: WangSWuTHShaoTPengZXIntegrated model of BP neural network and CNN algorithm for automatic wear debris classificationWear2019426–4271761177010.1016/j.wear.2018.12.087
– reference: XiaWMitaYShibataTA nearest neighbor classifier employing critical boundary vectors for efficient on-chip template reductionIEEE Trans Neural Netw Learn Syst20162710941107349794610.1109/TNNLS.2015.2437901
– reference: Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11):e00938. ISSN 2405-8440. https://doi.org/10.1016/j.heliyon.2018.e00938
– reference: de Barros BouchetMIMattaCVacherBEnergy filtering transmission electron microscopy and atomistic simulations of tribo-induced hybridization change of nanocrystalline diamond coatingCarbon20158731732910.1016/j.carbon.2015.02.041
– reference: WangSKhatirSAbdel WahabMProper orthogonal decomposition for the prediction of fretting wear characteristicsTribol Int202015210654510.1016/j.triboint.2020.106545
– reference: WangSChenQRenXYuHNeural network-based adaptive funnel sliding mode control for servo mechanisms with friction compensationNeurocomputing2020377162610.1016/j.neucom.2019.10.006
– reference: BreimanLRandom forestsMach Learn20014553210.1023/A:10109334043241007.68152
– reference: MokhtariNPelhamJGNowoiskySFriction and wear monitoring methods for journal bearings of geared turbofans based on acoustic emission signals and machine learningLubricants2020812710.3390/lubricants8030029
– reference: ArgatovIIChaiYSAn artificial neural network supported regression model for wear rateTribol Int201913821121410.1016/j.triboint.2019.05.040
– reference: SahaDManickavasaganAMachine learning techniques for analysis of hyperspectral images to determine quality of food products: a reviewCurr Res Food Sci20214284410.1016/j.crfs.2021.01.002
– reference: BammidiRPrasadKSRaoPSStudies on features, physical, mechanical, tribological properties and applications of Ti-6Al-4V in aerospace industryInt J Sci Rep2019518710.18203/issn.2454-2156.IntJSciRep20192801
– reference: PradhanPSatapathyAAnalysis of dry sliding wear behavior of polyester filled with walnut shell powder using response surface method and neural networksJ Mater Eng Perform2021304012402910.1007/s11665-021-05802-4
– reference: PengZKirkTBAutomatic wear-particle classification using neural networksTribol Lett1998524925710.1023/A:1019126732337
– reference: YeYSunYShiDA wheel wear prediction model of non-Hertzian wheel-rail contact considering wheelset yaw: comparison between simulated and field test resultsWear2021474–47520371510.1016/j.wear.2021.203715
– reference: HierrezueloJCarneroCSliding and rolling: the physics of a rolling ballPhys Educ19953017718210.1088/0031-9120/30/3/009
– reference: GohariMIntegration intelligent estimators to disturbance observer to enhance robustness of active magnetic bearing controllerInt J Control Sci Eng20177253110.5923/j.control.20170702.01
– reference: KatochSSehgalRSinghVImprovement of tribological behavior of H-13 steel by optimizing the cryogenic-treatment process using evolutionary algorithmsTribol Int201914010589510.1016/j.triboint.2019.105895
– reference: AgarwalMKumar SinghMSrivastavaRGautamRKMicrostructural measurement and artificial neural network analysis for adhesion of tribolayer during sliding wear of powder-chip reinforcement based compositesMeasurement202116810841710.1016/j.measurement.2020.108417
– reference: UmedaASugimuraJYamamotoYCharacterization of wear particles and their relations with sliding conditionsWear199821622022810.1016/S0043-1648(97)00260-3
– reference: BelfioreNPIannielloFStocchiDA hybrid approach to the development of a multilayer neural network for wear and fatigue prediction in metal formingTribol Int2007401705171710.1016/j.triboint.2007.01.008
– reference: AleksendrićDBartonDCVasićBPrediction of brake friction materials recovery performance using artificial neural networksTribol Int2010432092209910.1016/j.triboint.2010.05.013
– reference: HolmbergKSiilastoRLaitinenTGlobal energy consumption due to friction in paper machinesTribol Int201362587710.1016/j.triboint.2013.02.003
– reference: Mizutani E, Dreyfus SE, Nishio K (2000) On derivation of MLP backpropagation from the Kelley-Bryson optimal-control gradient formula and its application. In: Proceedings of the International Joint Conference on Neural Networks. IEEE, pp 167–172. https://doi.org/10.1109/IJCNN.2000.857892
– reference: TzanakisIHadfieldMThomasBFuture perspectives on sustainable tribologyRenew Sustain Energy Rev2012164126414010.1016/j.rser.2012.02.064
– reference: Reza KashyzadehKMalekiEExperimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steelJ Fail Anal Prev2017171276128710.1007/s11668-017-0362-8
– reference: MengFGongJYangSStudy on tribo-dynamic behaviors of rolling bearing-rotor system based on neural networkTribol Int202115610682910.1016/j.triboint.2020.106829
– reference: DesavaleRGVenkatachalamRChavanSPAntifriction bearings damage analysis using experimental data based modelsJ Tribol201310.1115/1.4024638
– reference: BronshteynLAKreinerJHEnergy efficiency of industrial oils©Tribol Lubr Technol201167424810.1080/10402009908982281
– reference: GaoXWangZWangTBPNN-QSTR modeling to develop isosteres as sulfur-freeAnti-Wear Lubr Addit J Tribol201910.1115/1.4040836
– reference: WangYLiuZZhaoYResearch on an ANN system for monitoring hydrostatic turntable performance based on ODNE trainingTribol Int2019133213110.1016/j.triboint.2018.12.041
– reference: ZhuJWangXKouLPrediction of control parameters corresponding to in-flight particles in atmospheric plasma spray employing convolutional neural networksSurf Coat Technol202039412586210.1016/j.surfcoat.2020.125862
– reference: QiaoQHeHYuJApplicability of machine learning on predicting the mechanochemical wear of the borosilicate and phosphate glassWear202147620372110.1016/j.wear.2021.203721
– reference: ProstJCihak-BayrUAdina NeacşuISemi-supervised classification of the state of operation in self-lubricating journal bearings using a random forest classifierLubricants202110.3390/lubricants9050050
– reference: Zhi Z, Xiaohui L (2014) Acoustic emission monitoring for film thickness of mechanical seals based on feature dimension reduction and cascaded decision. In: Proceedings—2014 6th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2014, pp 64–70. https://doi.org/10.1109/ICMTMA.2014.201
– reference: SharmaMBijweJSinghKStudies for wear property correlation for carbon fabric-reinforced PES compositesTribol Lett20114326727310.1007/s11249-011-9805-7
– reference: LiuMYuZZhangYPrediction and analysis of high velocity oxy fuel (HVOF) sprayed coating using artificial neural networkSurf Coat Technol201937812498810.1016/j.surfcoat.2019.124988
– reference: LiuJieXDavimJPCardosoRPrediction on tribological behaviour of composite PEEK-CF30 using artificial neural networksJ Mater Process Technol200718937437810.1016/j.jmatprotec.2007.02.019
– reference: QiaoXWengWXLiQAcoustic emission monitoring and failure behavior discrimination of 8YSZ thermal barrier coatings under Vickers indentation testingSurf Coat Technol201935891392210.1016/j.surfcoat.2018.12.024
– reference: TangBHeHA local density-based approach for outlier detectionNeurocomputing201724117118010.1016/j.neucom.2017.02.039
– reference: WangLFangJCZhaoZYZengHPApplication of backward propagation network for forecasting hardness and porosity of coatings by plasma sprayingSurf Coat Technol20072015085508910.1016/j.surfcoat.2006.07.088
– reference: StojanovićBVenclABobićIExperimental optimisation of the tribological behaviour of Al/SiC/Gr hybrid composites based on Taguchi’s method and artificial neural networkJ Braz Soc Mech Sci Eng201810.1007/s40430-018-1237-y
– reference: KarriRKawaiAThongYJMachine learning outperforms existing clinical scoring tools in the prediction of postoperative atrial fibrillation during intensive care unit admission after cardiac surgeryHeart Lung Circ2021301929193710.1016/j.hlc.2021.05.101
– reference: ShabaniMOShamsipourMMazaheryAPahlevaniZPerformance of ANFIS coupled with PSO in manufacturing superior wear resistant aluminum matrix nano compositesTrans Indian Inst Met2018712095210310.1007/s12666-017-1134-6
– reference: SardarSDeySDasDModelling of tribological responses of composites using integrated ANN-GA techniqueJ Compos Mater20215587389610.1177/0021998320960520
– reference: PerčićMZelenikaSMezićIArtificial intelligence-based predictive model of nanoscale friction using experimental dataFriction202191726174810.1007/s40544-021-0493-5
– reference: TranAFurlanJMPagalthivarthiKVWearGP: a computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processesWear2019422–42392610.1016/j.wear.2018.12.081
– reference: LiSShaoMDuanCTribological behavior prediction of friction materials for ultrasonic motors using Monte Carlo-based artificial neural networkJ Appl Polym Sci20191361810.1002/app.47157
– reference: Hagenbuchner M, Tsoi AC, Scarselli F, Zhang SJ (2018) A fully recursive perceptron network architecture. In: 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017—Proceedings 2018–Janua:1–8. https://doi.org/10.1109/SSCI.2017.8285325
– reference: KönigFSousCOuald ChaibAJacobsGMachine learning based anomaly detection and classification of acoustic emission events for wear monitoring in sliding bearing systemsTribol Int202110.1016/j.triboint.2020.106811
– reference: BhaumikSMathewBRDattaSComputational intelligence-based design of lubricant with vegetable oil blend and various nano friction modifiersFuel201924173374310.1016/j.fuel.2018.12.094
– reference: FanSZhangTGuoXWulamuAFFWR-Net: A feature fusion wear particle recognition network for wear particle classificationJ Mech Sci Technol2021351699171010.1007/s12206-021-0333-6
– reference: HuXSongJLiaoZMorphological residual convolutional neural network (M-RCNN) for intelligent recognition of wear particles from artificial jointsFriction202110.1007/s40544-021-0516-2
– reference: GriffinJMDiazFGeerlingEControl of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signalsMech Syst Signal Process2017851020103410.1016/j.ymssp.2016.09.016
– reference: AleksendrićDDubokaČFade performance prediction of automotive friction materials by means of artificial neural networksWear200726277879010.1016/j.wear.2006.08.013
– reference: SubrahmanyamMSujathaCUsing neural networks for the diagnosis of localized defects in ball bearingsTribol Int19973073975210.1016/S0301-679X(97)00056-X
– reference: AlpaydinENeural networks and deep learningMach Learn202110.7551/mitpress/13811.003.0007
– reference: ÇetinelHÖztürkHÇelikEKarlikBArtificial neural network-based prediction technique for wear loss quantities in Mo coatingsWear20062611064106810.1016/j.wear.2006.01.040
– reference: EckoldDGDearnKDShepherdDETThe evolution of polymer wear debris from total disc arthroplastyBiotribology20151–2425010.1016/j.biotri.2015.04.002
– reference: TijaniIBWahyudiMTalibHAdaptive neuro-fuzzy inference system (ANFIS) for friction modelling and compensation in motion control systemInt J Model Simul201131324110.2316/Journal.205.2011.1.205-5285
– reference: ThankachanTSoorya PrakashKKamarthinMOptimizing the tribological behavior of hybrid copper surface composites using statistical and machine learning techniquesJ Tribol201810.1115/1.4038688
– reference: MujtabaMAMasjukiHHKalamMAUltrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine—Cuckoo searchRenew Energy202015820221410.1016/j.renene.2020.05.158
– reference: BarberDLatent linear modelsBayesian Reason Mach Learn201210.1017/cbo9780511804779.026
– reference: AltayOGurgencTUlasMPrediction of wear loss quantities of ferro-alloy coating using different machine learning algorithmsFriction2020810711410.1007/s40544-018-0249-z
– reference: LiuHWeiHWeiLThe segmentation of wear particles images using J-segmentation algorithmAdv Tribol2016201611110.1155/2016/4931502
– reference: AbdelbaryAAbouelwafaMNel FahhamIMEvaluation and prediction of the effect of load frequency on the wear properties of pre-cracked nylon 66Friction2014224025410.1007/s40544-014-0044-4
– reference: BasuBSaxenaDKaulVPrediction of oxidation stability of inhibited base oils from chemical composition using an Artificial Neural Network (ANN)Lubr Sci19981012113410.1002/ls.3010100203
– reference: AbdelhalimATraoreIA new method for learning decision trees from rulesInt Conf Mach Learn Appl2009200969369810.1109/ICMLA.2009.25
– reference: MathivananKThirumalaikumarasamyDAshokkumarMOptimization and prediction of AZ91D stellite-6 coated magnesium alloy using Box Behnken design and hybrid deep belief networkJ Market Res2021152953296910.1016/j.jmrt.2021.09.069
– reference: Bao J, Tong M, Zhu Z, Yin Y (2012) Intelligent tribological forecasting model and system for disc brake. In: Proceedings of the 2012 24th Chinese Control and Decision Conference, CCDC 2012, pp 3870–3874. https://doi.org/10.1109/CCDC.2012.6243100
– reference: PodsiadloPStachowiakGWDevelopment of advanced quantitative analysis methods for wear particle characterization and classification to aid tribological system diagnosisTribol Int20053888789710.1016/j.triboint.2005.03.008
– reference: DhanasekaranSGnanamoorthyRAbrasive wear behavior of sintered steels prepared with MoS2 additionWear200726261762310.1016/j.wear.2006.07.006
– reference: Choudhury TA, Berndt CC, Man Z (2015) Modular implementation of artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray process. Engineering Applications of Artificial Intelligence. Volume 45, 2015, pp 57–70, ISSN 0952-1976. https://doi.org/10.1016/j.engappai.2015.06.015
– reference: da WuJChiangPHChangYWShiao Y jungYAn expert system for fault diagnosis in internal combustion engines using probability neural networkExpert Syst Appl2008342704271310.1016/j.eswa.2007.05.010
– reference: MüserMHUrbakhMRobbinsMOStatistical mechanics of static and low-velocity kinetic frictionAdv Chem Phys200312618727210.1002/0471428019.ch5
– reference: ChangHBorghesaniPPengZAutomated assessment of gear wear mechanism and severity using mould images and convolutional neural networksTribol Int202014710628010.1016/j.triboint.2020.106280
– reference: OyebodeOStretchDNeural network modeling of hydrological systems: a review of implementation techniquesNat Resour Model201832e12189391579610.1111/nrm.12189
– reference: BhaumikSDattaSPathakSDAnalyses of tribological properties of castor oil with various carbonaceous microand nano-friction modifiersJ Tribol201710.1115/1.4036379
– reference: KumarHSSrinivasa PaiPSriramNSVijayGSANN based evaluation of performance of wavelet transform for condition monitoring of rolling element bearingProcedia Eng20136480581410.1016/j.proeng.2013.09.156
– reference: MarkovaLVIntelligent method for monitoring the state of lubricating oilJ Friction Wear20163730831410.3103/S1068366616040115
– reference: Hartz-BehrendKSchaupJZierhutJScheinJControlling the twin wire arc spray process using artificial neural networks (ANN)J Therm Spray Technol201625212710.1007/s11666-015-0341-0
– reference: KavimaniVPrakashKSTribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approachJ Phys Chem Solids201711040941910.1016/j.jpcs.2017.06.028
– reference: BinnigGQuateCFGerberCAtomic force microscopePhys Rev Lett19865693093310.1103/PhysRevLett.56.930
– reference: WangTZhangXLiKYangSMechanical performance analysis of a piezoelectric ceramic friction damper and research of its semi-active control strategyStructures2021331510153110.1016/j.istruc.2021.04.100
– reference: KanaiRADesavaleRGChavanSPExperimental-based fault diagnosis of rolling bearings using artificial neural networkJ Tribol20161381910.1115/1.4032525
– reference: BanerjeeTDeySSekharAPDesign of alumina reinforced aluminium alloy composites with improved tribo-mechanical properties: a machine learning approachTrans Indian Inst Met2020733059306910.1007/s12666-020-02108-2
– reference: ParsazadehMFisherGMcDonaldAHoganJComputational investigation of the effect of microstructure on the scratch resistance of tungsten-carbide nickel composite coatingsWear202110.1016/j.wear.2021.203888
– reference: DeoRCŞahinMAdamowskiJFMiJUniversally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: a new approachRenew Sustain Energy Rev201910423526110.1016/j.rser.2019.01.009
– reference: WaqarTDemetgulMThermal analysis MLP neural network based fault diagnosis on worm gearsMeasurement201686566610.1016/j.measurement.2016.02.024
– reference: WangNTsaiCMAssessment of artificial neural network for thermohydrodynamic lubrication analysisInd Lubr Tribol2020721233123810.1108/ILT-03-2020-0109
– reference: IkpambeseKKLawrenceEAComparative analysis of multiple linear regression and artificial neural network for predicting friction and wear of automotive brake pads produced from palm kernel shellTribol Ind20184056557310.24874/ti.2018.40.04.05
– reference: WanZde WangQLiuDLiangJDiscovery of ester lubricants with low coefficient of friction on material surface via machine learningChem Phys Lett202177313858910.1016/j.cplett.2021.138589
– reference: ShebaniAIwnickiSPrediction of wheel and rail wear under different contact conditions using artificial neural networksWear2018406–40717318410.1016/j.wear.2018.01.007
– reference: BucholzEWKongCSMarchmanKRData-driven model for estimation of friction coefficient via informatics methodsTribol Lett20124721122110.1007/s11249-012-9975-y
– reference: ChenHXuLAiWKernel functions embedded in support vector machine learning models for rapid water pollution assessment via near-infrared spectroscopySci Total Environ202010.1016/j.scitotenv.2020.136765
– reference: KurbanAOYildirimŞAnalysis of a hydrodynamic thrust bearing with elastic deformation using a recurrent neural networkTribol Int20033694394810.1016/S0301-679X(03)00090-2
– reference: XuBWenGZhangZChenFWear particle classification using genetic programming evolved featuresLubr Sci20183022924610.1002/ls.1411
– reference: McCullochWSPittsWA logical calculus of the ideas immanent in nervous activityBull Math Biophys194351151331038810.1007/BF024782590063.03860
– reference: AoYWangQJChenPSimulating the worn surface in a wear processWear2002252374710.1016/S0043-1648(01)00841-9
– reference: DaiKGaoXEstimating antiwear properties of lubricant additives using a quantitative structure tribo-ability relationship model with back propagation neural networkWear201330624224710.1016/j.wear.2012.11.045
– reference: WangZCaiSChenWAnalysis of critical velocity of cold spray based on machine learning method with feature selectionJ Therm Spray Technol2021301213122510.1007/s11666-021-01198-8
– reference: SangwaNRSangwanKSLeanness assessment of organizational performance: a systematic literature reviewJ Manuf Technol Manag20182976878810.1108/JMTM-09-2017-0196
– reference: GomesCPSelmanBGregoireJMArtificial intelligence for materials discoveryMRS Bull20194453854410.1557/mrs.2019.158
– reference: MahdavinejadMSRezvanMBarekatainMMachine learning for internet of things data analysis: a surveyDigit Commun Netw2018416117510.1016/j.dcan.2017.10.002
– reference: Tallian TE (1986) Tribological design decisions using computerized databases. 109:381–386. https://doi.org/10.1115/1.3261450
– reference: Uczak de GoesWMarkocsanNGuptaMThermal barrier coatings with novel architectures for diesel engine applicationsSurf Coat Technol202039612595010.1016/j.surfcoat.2020.125950
– reference: SihagNSangwanKSA systematic literature review on machine tool energy consumptionJ Clean Prod202027512312510.1016/j.jclepro.2020.123125
– reference: TimurMAydinFAnticipating the friction coefcient of friction materials used in automobiles by means of machine learning without using a test instrumentTurk J Electr Eng Comput Sci2013211440145410.3906/elk-1108-19
– reference: SunWGaoHTanSWear detection of WC-Cu based impregnated diamond bit matrix based on SEM image and deep learningInt J Refract Metal Hard Mater202110.1016/j.ijrmhm.2021.105530
– reference: DhandeDYPhateMRSinagaNComparative analysis of abrasive wear using response surface method and artificial neural networkJ Inst Eng2021102273710.1007/s40033-021-00250-9
– reference: AsthanaRGSEvolutionary algorithms and neural networks2000ChamSpringer
– reference: GanLWangHYangZMachine learning solutions to challenges in finance: an application to the pricing of financial productsTechnol Forecast Soc Chang202015311992810.1016/j.techfore.2020.119928
– reference: ZhengYChenQFanJGaoXHierarchical convolutional neural network via hierarchical cluster validity based visual tree learningNeurocomputing202040940841910.1016/j.neucom.2020.05.095
– reference: KatsarosKPNikolakopoulosPGOn the tilting-pad thrust bearings hydrodynamic lubrication under combined numerical and machine learning techniquesLubr Sci20213315317010.1002/ls.1535
– reference: MarianMTremmelSCurrent trends and applications of machine learning in tribology—a reviewLubricants202198610.3390/LUBRICANTS9090086
– reference: KiranyazSAvciOAbdeljaberOInceTGabboujMInmanDJ1D convolutional neural networks and applications: a surveyMech Syst Signal Process2021151739810.1016/j.ymssp.2020.107398
– reference: GuptaGSatapathyAStudies on erosion behavior of plasma sprayed coatings of glass microspheres premixed with Al2O3 particlesAdv Tribol201410.1155/2014/763601
– reference: Wu X, Kumar V, Ross QJ, et al (2008) Top 10 algorithms in data mining. https://doi.org/10.1007/s10115-007-0114-2
– reference: AleksendrićDBartonDCNeural network prediction of disc brake performanceTribol Int2009421074108010.1016/j.triboint.2009.03.005
– reference: ChowdhuryMADebnathUKNuruzzamanDMIslamMMExperimental evaluation of erosion of gunmetal under asymmetrical shaped sand particleAdv Tribol201510.1155/2015/815179
– reference: ISO 14830:2019 International standard, Condition monitoring and diagnostics of machine systems – Tribology-based monitoring and diagnostics—Part 1: General requirements and guidelines, 2019
– reference: DurakESalmanÖKurbanoluCAnalysis of effects of oil additive into friction coefficient variations on journal bearing using artificial neural networkInd Lubr Tribol20086030931610.1108/00368790810902241
– reference: ReynoldsOOn the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oilPhilos Trans R Soc Lond198317713521710.1098/rstl.1886.0005
– reference: MoayediHHayatiSArtificial intelligence design charts for predicting friction capacity of driven pile in clayNeural Comput Appl2019317429744510.1007/s00521-018-3555-5
– reference: MojenaMARRocaASZamoraRSNeural network analysis for erosive wear of hard coatings deposited by thermal spray: Influence of microstructure and mechanical propertiesWear2017376–37755756510.1016/j.wear.2016.12.035
– reference: AleksendrićDNeural network prediction of brake friction materials wearWear201026811712510.1016/j.wear.2009.07.006
– reference: WangNChangYZApplication of the genetic algorithm to the multi-objective optimization of air bearingsTribol Lett20041711912810.1023/B:TRIL.0000032436.09396.d4
– reference: HaviezLToscanoRel YoussefMSemi-physical neural network model for fretting wear estimationJ Intell Fuzzy Syst2015281745175310.3233/IFS-141461
– reference: TyagiLButolaRKemLSingariRMComparative analysis of response surface methodology and artificial neural network on the wear properties of surface composite fabricated by friction stir processingJ Bio- Tribo-Corros2021711410.1007/s40735-020-00469-1
– reference: SureshAHarshaAPGhoshMKSolid particle erosion studies on polyphenylene sulfide composites and prediction on erosion data using artificial neural networksWear200926618419310.1016/j.wear.2008.06.008
– reference: Ravi KumarKMohanasundaramKMArumaikkannuGSubramanianRArtificial neural networks based prediction of wear and frictional behaviour of aluminium (A380)-fly ash compositesTribology20126151910.1179/1751584X11Y.0000000025
– reference: WuestTWeimerDIrgensCThobenKDMachine learning in manufacturing: advantages, challenges, and applicationsProd Manuf Res20164234510.1080/21693277.2016.1192517
– reference: WuBQinDHuJLiuYExperimental data mining research on factors influencing friction coefficient of wet clutchJ Tribol202114311010.1115/1.4050140
– reference: UlasMAltayOGurgencTÖzelCA new approach for prediction of the wear loss of PTA surface coatings using artificial neural network and basic, kernel-based, and weighted extreme learning machineFriction202081102111610.1007/s40544-017-0340-0
– reference: TrappenbergTPFundamentals of computational neuroscience2002OxfordOxford University Press1179.92013
– reference: SchmidtJMarquesMRGBottiSMarquesMALRecent advances and applications of machine learning in solid-state materials scienceNPJ Comput Mater201910.1038/s41524-019-0221-0
– reference: HePLiuQKruzicJJLiXMachine-learning assisted additive manufacturing of a TiCN reinforced AlSi10Mg composite with tailorable mechanical propertiesMater Lett202230713101810.1016/j.matlet.2021.131018
– reference: ShrivastavaNKhanZMApplication of soft computing in the field of internal combustion engines: a reviewArch Comput Methods Eng20182570772610.1007/s11831-017-9212-91397.80015
– reference: ChoudhuryTAHosseinzadehNBerndtCCImproving the generalization ability of an artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray processJ Therm Spray Technol20122193594910.1007/s11666-012-9775-9
– reference: ZhangZFriedrichKVeltenKPrediction on tribological properties of short fibre composites using artificial neural networksWear200225266867510.1016/S0043-1648(02)00023-6
– reference: LongJBLiXBZhongYCPengDApplication of BP neural networks on the thickness prediction of sherardizing coatingTrans Indian Inst Met2019722443244810.1007/s12666-019-01696-y
– reference: JiangZZhangZFriedrichKPrediction on wear properties of polymer composites with artificial neural networksCompos Sci Technol20076716817610.1016/j.compscitech.2006.07.026
– reference: Echávarri OteroJde La GuerraOEChacõn TanarroEArtificial neural network approach to predict the lubricated friction coefficientLubr Sci20142614116210.1002/ls.1238
– reference: GaoXWangRWangZDaiKBPNN-QSTR friction model for organic compounds as potential lubricant base oilsJ Tribol20161381810.1115/1.4032304
– reference: ChoudhuryTAHosseinzadehNBerndtCCArtificial Neural Network application for predicting in-flight particle characteristics of an atmospheric plasma spray processSurf Coat Technol20112054886489510.1016/j.surfcoat.2011.04.099
– reference: SircarAYadavKRayavarapuKApplication of machine learning and artificial intelligence in oil and gas industryPet Res2021637939110.1016/j.ptlrs.2021.05.009
– reference: CanalesHCanoIGDostaSWindow of deposition description and prediction of deposition efficiency via machine learning techniques in cold sprayingSurf Coat Technol202040112614310.1016/j.surfcoat.2020.126143
– reference: SheaTMGunselSModeling base oil properties using nmr spectroscopy and neural networksTribol Trans20034629630210.1080/10402000308982629
– reference: LvLWeiPLiJHuJApplication of machine learning algorithms to improve numerical simulation prediction of PM2.5 and chemical componentsAtmos Pollut Res20211210121110.1016/j.apr.2021.101211
– reference: SosimiAAGbeneborOPOyerindeOAnalysing wear behaviour of Al–CaCO3 composites using ANN and Sugeno-type fuzzy inference systemsNeural Comput Appl202032134531346410.1007/s00521-020-04753-6
– reference: AgeeJDeveloping qualitative research questions: a reflective processInt J Qual Stud Educ200922443144710.1080/09518390902736512
– reference: NasirTYousifBFMcWilliamSAn artificial neural network for prediction of the friction coefficient of multi-layer polymeric composites in three different orientationsProc Inst Mech Eng C201022441942910.1243/09544062JMES1677
– reference: RashmiWOsamaMKhalidMTribological performance of nanographite-based metalworking fluid and parametric investigation using artificial neural networkInt J Adv Manuf Technol201910435937410.1007/s00170-019-03701-6
– reference: CanbulutFYildirimŞSinanoǧluCDesign of an artificial neural network for analysis of frictional power loss of hydrostatic slipper bearingsTribol Lett20041788789910.1007/s11249-004-8097-6
– reference: BornmannLHaunschildRHugSEVisualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysisScientometrics201811442743710.1007/s11192-017-2591-8
– reference: LuWZhangGLiuXPrediction of surface topography at the end of sliding running-in wear based on areal surface parametersTribol Trans20145755356010.1080/10402004.2014.887165
– reference: ArgatovIArtificial neural networks (ANNs) as a novel modeling technique in tribologyFront Mech Eng201951910.3389/fmech.2019.00030
– reference: ZhangHDongGNHuaMChinKSImprovement of tribological behaviors by optimizing concave texture shape under reciprocating sliding motionJ Tribol20171391910.1115/1.4032971
– reference: PengYWuTCaoGA hybrid search-tree discriminant technique for multivariate wear debris classificationWear2017392–39315215810.1016/j.wear.2017.09.022
– reference: WangSWuTZhengPKwokNOptimized CNN model for identifying similar 3D wear particles in few samplesWear2020460–46120347710.1016/j.wear.2020.203477
– reference: Robbins MO, Müser MH (2001) Computer simulations of friction, lubrication, and wear. In: Bhushan B (ed) Modern tribology handbook, pp 717–765. CRC Press, Boca Raton (cond-mat/0001056)
– reference: SenatoreAD’AgostinoVdi GiudaRPetroneVExperimental investigation and neural network prediction of brakes and clutch material frictional behaviour considering the sliding acceleration influenceTribol Int2011441199120710.1016/j.triboint.2011.05.022
– reference: JacobsTDBGotsmannBLantzMACarpickRWOn the application of transition state theory to atomic-scale wearTribol Lett20103925727110.1007/s11249-010-9635-z
– reference: DaineseACharm and beauty of the Large Hadron ColliderJ Phys G200510.1088/0954-3899/31/6/019
– reference: ISO 19291:2016 International standard, Lubricants—Determination of tribological quantities for oils and greases – Tribological test in the translator oscillation apparatus, 2016
– reference: LiuXFull-text citation analysis: a new method to enhanceJ Am Soc Inform Sci Technol2013641852186310.1002/asi
– reference: BobzinKWiethegerWHeinemannHPrediction of particle properties in plasma spraying based on machine learningJ Therm Spray Technol202110.1007/s11666-021-01239-2
– reference: XuXZhaoZXuXMachine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven modelsKnowl-Based Syst202019010532410.1016/j.knosys.2019.105324
– reference: JacksonAHMachine learning: a probabilistic perspective198810.1111/j.1468-0394.1988.tb00341.x
– reference: JangJRNeuro-fuzzy modelingProc IEEE19958337840610.1109/5.364486
– reference: KonnoKKameiDYokosukaTThe development of computational chemistry approach to predict the viscosity of lubricantsTribol Int20033645545810.1016/S0301-679X(02)00234-7
– reference: LiDLvRSiGYouYHybrid neural network-based prediction model for tribological properties of polyamide6-based friction materialsPolym Compos2017381705171110.1002/pc.23740
– reference: LiXFuPChenKThe contact state monitoring for seal end faces based on acoustic emission detectionShock Vib201610.1155/2016/8726781
– reference: JiaDDuanHZhanSDesign and development of lubricating material database and research on performance prediction method of machine learningSci Rep2019911110.1038/s41598-019-56776-2
– reference: HasanMSKordijaziARohatgiPKNosonovskyMTriboinformatics approach for friction and wear prediction of Al-graphite composites using machine learning methodsJ Tribol202214411310.1115/1.4050525
– reference: CetinelHThe artificial neural network based prediction of friction properties of Al 2O 3-TiO 2 coatingsInd Lubr Tribol20126428829310.1108/00368791211249674
– reference: SkariahAPradeepRRejithRBijudasCRHealth monitoring of rolling element bearings using improved wavelet cross spectrum technique and support vector machinesTribol Int202115410665010.1016/j.triboint.2020.106650
– reference: JiangSPangGWuMKuangLAn improved K-nearest-neighbor algorithm for text categorizationExpert Syst Appl2012391503150910.1016/j.eswa.2011.08.040
– reference: SunWTianMZhangPOptimization of plating processing, microstructure and properties of Ni–TiC coatings based on BP artificial neural networksTrans Indian Inst Met2016691501151110.1007/s12666-015-0718-2
– reference: SilverDHuangAMaddisonCJMastering the game of Go with deep neural networks and tree searchNature201652948448910.1038/nature16961
– reference: BeckerAFalsHDCRocaASArtificial neural networks applied to the analysis of performance and wear resistance of binary coatings Cr3C237WC18M and WC20Cr3C27NiWear202110.1016/j.wear.2021.203797
– reference: AzizSDowlingMHammamiHPiepenbrinkAMachine learning in finance: a topic modeling approachEur Financ Manag202110.1111/eufm.12326
– reference: RameshRGnanamoorthyRArtificial neural network prediction of fretting wear behavior of structural steel, en 24 against bearing steel, en 31J Mater Eng Perform20071670370910.1007/s11665-007-9100-9
– reference: GenelKKurnazSCDurmanMModeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural networkMater Sci Eng A200336320321010.1016/S0921-5093(03)00623-3
– reference: KolodziejczykTToscanoRFouvrySMorales-EspejelGArtificial intelligence as efficient technique for ball bearing fretting wear damage predictionWear201026830931510.1016/j.wear.2009.08.016
– reference: ZhangGGuessasmaSLiaoHInvestigation of friction and wear behaviour of SiC-filled PEEK coating using artificial neural networkSurf Coat Technol20062002610261710.1016/j.surfcoat.2004.12.026
– reference: BustilloAPimenovDYMatuszewskiMMikolajczykTUsing artificial intelligence models for the prediction of surface wear based on surface isotropy levelsRobot Comput-Integr Manuf20185321522710.1016/j.rcim.2018.03.011
– reference: StachowiakGPPodsiadloPStachowiakGWEvaluation of methods for reduction of surface texture featuresTribol Lett20062215116510.1007/s11249-006-9067-y
– reference: ZhuJShiYFengXPrediction on tribological properties of carbon fiber and TiO2 synergistic reinforced polytetrafluoroethylene composites with artificial neural networksMater Des2009301042104910.1016/j.matdes.2008.06.045
– reference: PatiPRSatapathyATriboperformance analysis of coatings of LD slag premixed with TiO2 using experimental design and ANNTribol Trans20155834935610.1080/10402004.2014.971995
– reference: VijayakumarSKarunamoorthyLModelling wear behaviour of Al-SiC metal matrix composites: soft computing techniqueTribology20126253010.1179/1751584X12Y.0000000002
– reference: GaoXWangZDaiKWangTA quantitative structure tribo-ability relationship model for ester lubricant base oilsJ Tribol20151371710.1115/1.4029332
– reference: LiuMYuZWuHImplementation of artificial neural networks for forecasting the HVOF spray process and HVOF sprayed coatingsJ Therm Spray Technol2021301329134310.1007/s11666-021-01213-y
– reference: ZhangKPengXZhangYNumerical thermal analysis of grease-lubrication in limited line contacts considering asperity contactTribol Int201913437238410.1016/j.triboint.2019.01.026
– reference: Vapnik VN, Chervonenkis AY (2015) On the uniform convergence of relative frequencies of events to their probabilities. Measures of Complexity: Festschrift for Alexey Chervonenkis XVI:11–30. https://doi.org/10.1007/978-3-319-21852-6_3
– reference: BorjaliAMonsonKRaeymaekersBPredicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: Deriving a data-driven model using machine learning methodsTribol Int201913310111010.1016/j.triboint.2019.01.014
– reference: PatelJPUpadhyaySHComparison between artificial neural network and support vector method for a fault diagnostics in rolling element bearingsProcedia Eng201614439039710.1016/j.proeng.2016.05.148
– reference: SchwarzSGrillenbergerHTremmelSWartzackSPrediction of rolling bearing cage dynamics using dynamics simulations and machine learning algorithmsTribol Trans202110.1080/10402004.2021.1934618
– reference: JazaRMollonGDescartesSLessons learned using machine learning to link third body particles morphology to interface rheologyTribol Int202115310663010.1016/j.triboint.2020.106630
– reference: GuptaGSatapathyAErosive wear characteristics of plasma-sprayed coatings of glass microspheres premixed with TiO2 particlesTribol Trans201659808810.1080/10402004.2015.1045648
– reference: ReddyASAgarwalPKChandSApplication of artificial neural networks for the fault detection and diagnosis of active magnetic bearingsInt J Mechatron Autom2018613014210.1504/IJMA.2018.094489
– reference: LiuJNotbohmJKCarpickRWTurnerKTMethod for characterizing nanoscale wear of atomic force microscope tipsACS Nano201043763377210.1021/nn100246g
– reference: GyurovaLAFriedrichKArtificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide compositesTribol Int20114460360910.1016/j.triboint.2010.12.011
– reference: GrzegorzekWScieszkaSFPrediction on friction characteristics of industrial brakes using artificial neural networksProc Inst Mech Eng Part J20142281025103510.1177/1350650113504907
– reference: VinothADattaSDesign of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: an artificial intelligence approachJ Compos Mater20205417919210.1177/0021998319859924
– reference: LiuMWuHYuZDescription and prediction of multi-layer profile in cold spray using artificial neural networksJ Therm Spray Technol2021301453146310.1007/s11666-021-01212-z
– reference: KurdiAAlhazmiNAlhazmiHTabbakhTPractice of simulation and life cycle assessment in tribology—a reviewMaterials202010.3390/MA13163489
– reference: SahuSPRSatapathyAMishraDTribo-performance analysis of fly ash-aluminum coatings using experimental design and ANNTribol Trans20105353354210.1080/10402000903491317
– reference: QiXWangYWangCZhangRMicrostructure and performance of nano-WC particle-strengthened Ni coatings by electro-brush platingJ Mater Eng Perform2018276069607910.1007/s11665-018-3684-0
– reference: LiHYuHCaoNApplications of artificial intelligence in oil and gas developmentArch Comput Methods Eng20212893794910.1007/s11831-020-09402-8
– reference: der JeanMLinBTChouJHDesign of a fuzzy logic approach for optimization reinforced zirconia depositions using plasma sprayingsSurf Coat Technol20062013129313810.1016/j.surfcoat.2006.06.056
– reference: MehraDSujithSVMahapatraMMHarshaSPModeling of wear process parameters of in-situ RZ5-10wt%TiC Composite using artificial neural networkMater Today20185241242413210.1016/j.matpr.2018.10.206
– reference: BobzinKBrögelmannTKruppeNCCorrelation of HPPMS plasma and coating properties using artificial neural networksSurf Coat Technol20183491130113610.1016/j.surfcoat.2018.06.065
– reference: LiuRYangBZioEChenXArtificial intelligence for fault diagnosis of rotating machinery: a reviewMech Syst Signal Process2018108334710.1016/j.ymssp.2018.02.016
– reference: BishopCMNeural networks for pattern recognition1995OxfordClarendon Press0868.68096
– reference: Albert BJ. Novikoff (1963) On convergence proofs for perceptrons. Station AHAU Arlington Hau Station Unclassified. Stanford research institute SRI Project No. 3605
– reference: EgalaRJagadeeshGVSettiSGExperimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy compositesFriction2021925027210.1007/s40544-019-0332-0
– reference: AleksendricDDubokaČPrediction of automotive friction material characteristics using artificial neural networks-cold performanceWear200626126928210.1016/j.wear.2005.10.006
– reference: PangJChenYHeSClassification of friction and wear state of wind turbine gearboxes using decision tree and random forest algorithmsJ Tribol202110.1115/1.4049257
– reference: RaoTBPonugotiGRCharacterization, prediction, and optimization of dry sliding wear behaviour of Al6061/WC compositesTrans Indian Inst Met20217415917810.1007/s12666-020-02107-3
– reference: RoyLKakotySKOptimum groove location of hydrodynamic journal bearing using genetic algorithmAdv Tribol201310.1155/2013/580367
– reference: AydinFDurgutREstimation of wear performance of AZ91 alloy under dry sliding conditions using machine learning methodsTrans Nonferrous Met Soc China (English Edition)20213112513710.1016/S1003-6326(20)65482-6
– reference: JonesSPJansenRFusaroRLPreliminary investigation of neural network techniques to predict tribological propertiesTribol Trans19974031232010.1080/10402009708983660
– reference: PadhiPKSatapathyAAnalysis of sliding wear characteristics of BFS filled composites using an experimental design approach integrated with ANNTribol Trans20135678979610.1080/10402004.2013.798448
– reference: SaridakisKMNikolakopoulosPGPapadopoulosCADentsorasAJIdentification of wear and misalignment on journal bearings using artificial neural networksProc Inst Mech Eng Part J2012226465610.1177/1350650111424237
– reference: HwangYRJenKKShenYTApplication of cepstrum and neural network to bearing fault detectionJ Mech Sci Technol2009232730273710.1007/s12206-009-0802-9
– reference: SadeghHMehdiANMehdiAClassification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithmTribol Int20169542643410.1016/j.triboint.2015.11.045
– reference: ȘtefanovTMarakaHVRMeagherPThin film metallic glass broad-spectrum mirror coatings for space telescope applicationsJ Non-Cryst Solids X2020710005010.1016/j.nocx.2020.100050
– reference: GangwarSSharmaSPathakVKPreliminary evaluation and wear properties optimization of boron carbide and molybdenum disulphide reinforced copper metal matrix composite using adaptive neuro-fuzzy inference systemJ Bio- Tribo-Corros202110.1007/s40735-020-00444-w
– reference: BhardwajRNambiarARDuttaDA study of machine learning in healthcareProceedings2017223624110.1109/COMPSAC.2017.164
– reference: ChungKHWear characteristics of atomic force microscopy tips: a reivewInt J Precis Eng Manuf2014152219223010.1007/s12541-014-0584-6
– reference: HeimannRBBetter quality control: stochastic approaches to optimize properties and performance of plasma-sprayed coatingsJ Therm Spray Technol20101976577810.1007/s11666-009-9385-3
– reference: BhaumikSPathakSDDeySDattaSArtificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological propertiesTribol Int201914010581310.1016/j.triboint.2019.06.006
– reference: DambattaYSSayutiMSarhanAADTribological performance of SiO2-based nanofluids in minimum quantity lubrication grinding of Si3N4 ceramicJ Manuf Process20194113514710.1016/j.jmapro.2019.03.024
– reference: LuPPowrieHEWoodRJKEarly wear detection and its significance for condition monitoringTribol Int202115911010.1016/j.triboint.2021.106946
– reference: TahaZWidiyatiKArtificial neural network for bearing defect detection based on acoustic emissionInt J Adv Manuf Technol20105028929610.1007/s00170-009-2476-y
– reference: AlambeigiFKhademSMKhorsandHMirza Seied HasanEA comparison of performance of artificial intelligence methods in prediction of dry sliding wear behaviorInt J Adv Manuf Technol2016841981199410.1007/s00170-015-7812-9
– reference: LiangNYHuangGBSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Trans Neural Netw200617614112310.1109/TNN.2006.880583
– reference: HanCFHeHQWeiCCTechniques developed for fault diagnosis of long-range running ball screw drive machine to evaluate lubrication conditionMeasurement201812627428810.1016/j.measurement.2018.05.059
– reference: HasanMSKordijaziARohatgiPKNosonovskyMTriboinformatic modeling of dry friction and wear of aluminum base alloys using machine learning algorithmsTribol Int202116110706510.1016/j.triboint.2021.107065
– reference: FinkeAEscobarJMunozJPetitMPrediction of salt spray test results of micro arc oxidation coatings on AA2024 alloys by combination of accelerated electrochemical test and artificial neural networkSurf Coat Technol202110.1016/j.surfcoat.2021.127370
– reference: MengFMHuYZWangHZhangYYAnalysis of the dynamic performances of a piston-crankshaft system considering oil-film forces reconstructed by a neural networkProc Inst Mech Eng Part D200722117118010.1243/09544070JAUTO256
– reference: RoyBDeySMachine learning-based performance analysis of two-axial-groove hydrodynamic journal bearingsProc Inst Mech Eng Part J20212352211222410.1177/1350650121992895
– reference: HolmbergKErdemirAInfluence of tribology on global energy consumption, costs and emissionsFriction2017526328410.1007/s40544-017-0183-5
– reference: ZhangGWangJChangSPredicting running-in wear volume with a SVMR-based model under a small amount of training samplesTribol Int201812834935510.1016/j.triboint.2018.07.045
– reference: SaravananSDSenthilkumarMPrediction of tribological behaviour of rice husk ash reinforced aluminum alloy matrix composites using artificial neural networkRuss J Non-Ferrous Met2015569710610.3103/S1067821215010174
– reference: ArifSAlamMTAnsariAHAnalysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network techniqueMater Res Express201810.1088/2053-1591/aabec8
– reference: ModerJBergmannPGrünFLubrication Regime classification of hydrodynamic journal bearings by machine learning using Torque DataLubricants201810.3390/lubricants6040108
– reference: LiZYanXGuoZA new intelligent fusion method of multi-dimensional sensors and its application to tribo-system fault diagnosis of marine diesel enginesTribol Lett20124711510.1007/s11249-012-9948-1
– reference: BoidiGda SilvaMRProfitoFJMachadoIFUsing machine learning radial basis function (RBF) method for predicting lubricated friction on textured and porous surfacesSurf Topogr Metrol Prop202010.1088/2051-672X/abae13
– reference: JamesGWittenDHastieTTibshiraniRAn introduction to statistical learning2000New YorkSpringer10.1007/978-1-4614-7138-71281.62147
– reference: HonKKNgCWChanPWMachine learning based multi-index prediction of aviation turbulence over the Asia-PacificMach Learn Appl2020210000810.1016/j.mlwa.2020.100008
– reference: GangwarSPathakVKDry sliding wear characteristics evaluation and prediction of vacuum casted marble dust (MD) reinforced ZA-27 alloy composites using hybrid improved bat algorithm and ANNMater Today Commun20202510161510.1016/j.mtcomm.2020.101615
– reference: VitanovVIVoutchkovIIBedfordGMNeurofuzzy approach to process parameter selection for friction surfacing applicationsSurf Coat Technol200114025626210.1016/S0257-8972(01)01128-8
– reference: YinYBaoJYangLWear performance and its online monitoring of the semimetal brake lining for automobilesInd Lubr Tribol20146610010510.1108/ILT-07-2011-0057
– reference: Rosenblatt F (1957) The Perceptron—a perceiving and recognizing automaton. Report 85, Cornell Aeronautical Laboratory 460–461.
– reference: RosenkranzAMarianMProfitoFJThe use of artificial intelligence in tribology—a perspectiveLubricants2021911110.3390/lubricants9010002
– reference: XiaoGZhuZFriction materials development by using DOE/RSM and artificial neural networkTribol Int20104321822710.1016/j.triboint.2009.05.019
– reference: Senthil KumarPManisekarKNarayanasamyRExperimental and prediction of abrasive wear behavior of sintered Cu-SiC composites containing graphite by using artificial neural networksTribol Trans20145745547110.1080/10402004.2014.880979
– reference: KronbergerGKommendaMLughoferEUsing robust generalized fuzzy modeling and enhanced symbolic regression to model tribological systemsAppl Soft Comput J20186961062410.1016/j.asoc.2018.04.048
– reference: WangJChengRLiaoPCTrends of multimodal neural engineering study: a bibliometric reviewArchives of Computational Methods in Engineering2021284487450110.1007/s11831-021-09557-y
– reference: Al-SaeediSSarhanAADBushroaARInvestigating the tribological characteristics of burnished polyoxymethylene—ANFIS and FE modelingTribol Trans20186188088810.1080/10402004.2018.1439208
– reference: XieHWangZQinNPrediction of friction coefficients during scratch based on an integrated finite element and artificial neural network methodJ Tribol202014211310.1115/1.4045013
– reference: WangTWangZChenHBPNN-QSTR models for triazine derivatives for lubricant additivesJ Tribol20201421610.1115/1.4044850
– reference: GarreARuizMCHontoriaEApplication of Machine Learning to support production planning of a food industry in the context of waste generation under uncertaintyOper Res Perspect2020710014710.1016/j.orp.2020.100147
– reference: GyurovaLAMiniño-JustelPSchlarbAKModeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networksWear201026870871410.1016/j.wear.2009.11.008
– reference: HollandJHGenetic algorithmsStud Comput Intell2017679111910.1007/978-3-319-52156-5_2
– reference: TijaniIBAkmeliawatiRSupport vector regression based friction modeling and compensation in motion control systemEng Appl Artif Intell2012251043105210.1016/j.engappai.2012.03.018
– reference: KankarPKSharmaSCHarshaSPFault diagnosis of ball bearings using machine learning methodsExpert Syst Appl2011381876188610.1016/j.eswa.2010.07.119
– reference: DanaherSDattaSWaddleIHackneyPErosion modelling using Bayesian regulated artificial neural networksWear200425687988810.1016/j.wear.2003.08.006
– reference: WiensJShenoyESMachine learning for healthcare: on the verge of a major shift in healthcare epidemiologyClin Infect Dis20186614915310.1093/cid/cix731
– reference: Fereshteh-SanieeFNourbakhshSHPezeshkiSMEstimation of flow curve and friction coefficient by means of a one-step ring test using a neural network coupled with FE simulationsJ Mech Sci Technol20122615316010.1007/s12206-011-1020-9
– reference: Sattari BaboukaniBYeZG. ReyesKNalamPCPrediction of nanoscale friction for two-dimensional materials using a machine learning approachTribol Lett20206821410.1007/s11249-020-01294-w
– reference: DaveVSDuttaKNeural network based models for software effort estimation: a reviewArtif Intell Rev20144229530710.1007/s10462-012-9339-x
– reference: JonesNBLiYHA review of condition monitoring and fault diagnosis for diesel enginesTribo Test2000626729110.1002/tt.3020060305
– reference: GuoZYuanCLiZCondition identification of the cylinder liner-piston ring in a marine diesel engine using bispectrum analysis and artificial neural networksInsight20135562162610.1784/insi.2012.55.11.621
– reference: AleksendrićDDubokaČMariottiGVNeural modelling of friction material cold performanceProc Inst Mech Eng Part D20082221201120910.1243/09544070JAUTO583
– reference: PrakashKSThankachanTRadhakrishnanRParametric optimization of dry sliding wear loss of copper–MWCNT compositesTrans Nonferrous Met Soc China (English Edition)20172762763710.1016/S1003-6326(17)60070-0
– reference: KankarPKSharmaSCHarshaSPVibration-based fault diagnosis of a rotor bearing system using artificial neural network and support vector machineInt J Model Ident Control20121518519810.1504/IJMIC.2012.045691
– reference: ShaikNBMantralaKMBakthavatchalamBCorrosion behavior of LENS deposited CoCrMo alloy using Bayesian regularization-based artificial neural network (BRANN)J Bio- Tribo-Corros2021711310.1007/s40735-021-00550-3
– reference: Jost HP (1996) Lubrication (tribology)—a report on the present position and industry’s needs. Department of Education and Science, HM Stationary Office, London, UK
– reference: GraserJKauweSKSparksTDMachine learning and energy minimization approaches for crystal structure predictions: a review and new horizonsChem Mater2018303601361210.1021/acs.chemmater.7b05304
– reference: ZhangZWangYWangKFault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural networkJ Intell Manuf2013241213122710.1007/s10845-012-0657-2
– reference: SharmaBKStipanovicAJPredicting low temperature lubricant rheology using nuclear magnetic resonance spectroscopy and mass spectrometryTribol Lett200416111910.1023/b:tril.0000009709.83578.f5
– reference: NirmalUPrediction of friction coefficient of treated betelnut fibre reinforced polyester (T-BFRP) composite using artificial neural networksTribol Int2010431417142910.1016/j.triboint.2010.01.013
– reference: JiangZGyurovaLASchlarbAKStudy on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particlesCompos Sci Technol20086873474210.1016/j.compscitech.2007.09.022
– reference: Logozzo S, Valigi MC (2019) Investigation of instabilities in mechanical face seals: prediction of critical speed values. In: Mechanisms and machine science, pp 3865–3872. https://doi.org/10.1007/978-3-030-20131-9_383
– reference: LinCMParameter optimisation of a vacuum plasma spraying process using boron carbideJ Therm Spray Technol20122187388110.1007/s11666-012-9734-5
– reference: ValderramaJOMuñozJMRojasREViscosity of ionic liquids using the concept of mass connectivity and artificial neural networksKorean J Chem Eng2011281451145710.1007/s11814-010-0512-0
– reference: WirschingSMarianMBartzMGeometrical optimization of the EHL roller face/rib contact for energy efficiency in tapered roller bearingsLubricants202196710.3390/lubricants9070067
– reference: KankarPKSharmaSCHarshaSPRolling element bearing fault diagnosis using wavelet transformNeurocomputing2011741638164510.1016/j.neucom.2011.01.021
– reference: ÜnlüBSDurmuşHMeriçCDetermination of tribological properties at CuSn10 alloy journal bearings by experimental and means of artificial neural networks methodInd Lubrication Tribol20126425826410.1108/00368791211249647
– reference: ArgatovIIChaiYSArtificial neural network modeling of sliding wearProc Inst Mech Eng Part J202123574875710.1177/1350650120925582
– reference: HsuMMChenSCNguyenVSHuTHFuzzy and online trained adaptive neural network controller for an AMB systemJ Appl Sci Eng201518475810.6180/jase.2015.18.1.07
– reference: RaySChowdhurySKRPrediction of contact temperature rise between rough sliding bodies: an artificial neural network approachWear20092661029103810.1016/j.wear.2009.02.016
– reference: Sreekumar RajeshTVenkata RaoRExperimental investigation and parameter optimization of Al2O3-40% TiO2 atmospheric plasma spray coating on SS316 steel substrateMater Today201855012502010.1016/j.matpr.2017.12.079
– reference: JiaXO’ConnorDShiZHouDVIRS based detection in combination with machine learning for mapping soil pollutionEnviron Pollut202126811584510.1016/j.envpol.2020.115845
– reference: SnyderHLiterature review as a research methodology: an overview and guidelinesJ Bus Res201910433333910.1016/j.jbusres.2019.07.039
– reference: WangXWangTMingADeep spatiotemporal convolutional-neural-network-based remaining useful life estimation of bearingsChin J Mech Eng (English Edition)20213411510.1186/s10033-021-00576-1
– reference: KamnisSMalamousiKMarrsAAeroacoustics and artificial neural network modeling of airborne acoustic emissions during high kinetic energy thermal sprayingJ Therm Spray Technol20192894696210.1007/s11666-019-00874-0
– reference: ParikhHHGohilPPExperimental investigation and prediction of wear behavior of cotton fiber polyester compositesFriction2017518319310.1007/s40544-017-0145-y
– reference: KannaiyanMKarthikeyanGThankachi RaghuvaranJGPrediction of specific wear rate for LM25/ZrO2 composites using Levenberg-Marquardt backpropagation algorithmJ Market Res2020953053810.1016/j.jmrt.2019.10.082
– reference: SchmidhuberJDeep learning in neural networks: an overviewNeural Netw2015618511710.1016/j.neunet.2014.09.003
– reference: CanbulutFSinanogluCYildirimSAnalysis of effects of sizes of orifice and pockets on the rigidity of hydrostatic bearing using neural network predictor systemKSME Int J20041843244210.1007/BF02996108
– reference: RashedFSMahmoudTSPrediction of wear behaviour of A356/SiCp MMCs using neural networksTribol Int20094264264810.1016/j.triboint.2008.08.010
– reference: ZhangXChenHXuJA novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machineJ Mater Process Technol201826091910.1016/j.jmatprotec.2018.05.013
– reference: TsoumakasGA survey of machine learning techniques for food sales predictionArtif Intell Rev20195244144710.1007/s10462-018-9637-z
– reference: BowdenFPTaborDPalmerFThe friction and lubrication of solidsAm J Phys19511942842910.1119/1.1933017
– reference: NaphonPArisariyawongTWiriyasartSSrichatAANFIS for analysis friction factor and Nusselt number of pulsating nanofluids flow in the fluted tube under magnetic fieldCase Stud Therm Eng20201810060510.1016/j.csite.2020.100605
– reference: Echávarri OteroJde la GuerraOEBellón VallinotIChacón TanarroEOptimising the design of textured surfaces for reducing lubricated friction coefficientLubr Sci20172918319910.1002/ls.1363
– reference: PengYCaiJWuTA hybrid convolutional neural network for intelligent wear particle classificationTribol Int201913816617310.1016/j.triboint.2019.05.029
– reference: LenzBHasselbruchHMehnerAAutomated evaluation of Rockwell adhesion tests for PVD coatings using convolutional neural networksSurf Coat Technol202038512536510.1016/j.surfcoat.2020.125365
– ident: 9841_CR75
  doi: 10.1109/SSCI.2017.8285325
– volume: 205
  start-page: 4886
  year: 2011
  ident: 9841_CR252
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2011.04.099
– volume: 40
  start-page: 565
  year: 2018
  ident: 9841_CR123
  publication-title: Tribol Ind
  doi: 10.24874/ti.2018.40.04.05
– ident: 9841_CR77
  doi: 10.1007/978-3-319-21852-6_3
– volume: 266
  start-page: 1029
  year: 2009
  ident: 9841_CR105
  publication-title: Wear
  doi: 10.1016/j.wear.2009.02.016
– volume: 64
  start-page: 805
  year: 2013
  ident: 9841_CR293
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2013.09.156
– year: 2021
  ident: 9841_CR274
  publication-title: Wear
  doi: 10.1016/j.wear.2021.203797
– volume: 268
  start-page: 309
  year: 2010
  ident: 9841_CR319
  publication-title: Wear
  doi: 10.1016/j.wear.2009.08.016
– volume: 31
  start-page: 7429
  year: 2019
  ident: 9841_CR119
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3555-5
– volume: 110
  start-page: 409
  year: 2017
  ident: 9841_CR172
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2017.06.028
– volume: 17
  start-page: 365
  year: 2008
  ident: 9841_CR242
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-008-9183-3
– volume: 22
  start-page: 431
  issue: 4
  year: 2009
  ident: 9841_CR45
  publication-title: Int J Qual Stud Educ
  doi: 10.1080/09518390902736512
– volume: 152
  start-page: 106545
  year: 2020
  ident: 9841_CR184
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106545
– volume: 8
  start-page: 1
  year: 2020
  ident: 9841_CR304
  publication-title: Lubricants
  doi: 10.3390/lubricants8030029
– volume: 394
  start-page: 125862
  year: 2020
  ident: 9841_CR271
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2020.125862
– volume: 40
  start-page: 312
  year: 1997
  ident: 9841_CR146
  publication-title: Tribol Trans
  doi: 10.1080/10402009708983660
– volume: 476
  start-page: 203721
  year: 2021
  ident: 9841_CR192
  publication-title: Wear
  doi: 10.1016/j.wear.2021.203721
– volume: 28
  start-page: 1451
  year: 2011
  ident: 9841_CR215
  publication-title: Korean J Chem Eng
  doi: 10.1007/s11814-010-0512-0
– volume: 61
  start-page: 85
  year: 2015
  ident: 9841_CR61
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– volume: 7
  start-page: 1
  year: 2021
  ident: 9841_CR122
  publication-title: J Bio- Tribo-Corros
  doi: 10.1007/s40735-020-00469-1
– volume: 59
  start-page: 80
  year: 2016
  ident: 9841_CR260
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2015.1045648
– year: 2018
  ident: 9841_CR176
  publication-title: J Tribol
  doi: 10.1115/1.4038688
– volume: 25
  start-page: 707
  year: 2018
  ident: 9841_CR28
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-017-9212-9
– volume: 268
  start-page: 115845
  year: 2021
  ident: 9841_CR24
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.115845
– volume: 31
  start-page: 125
  year: 2021
  ident: 9841_CR186
  publication-title: Trans Nonferrous Met Soc China (English Edition)
  doi: 10.1016/S1003-6326(20)65482-6
– volume: 42
  start-page: 642
  year: 2009
  ident: 9841_CR157
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2008.08.010
– ident: 9841_CR64
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 42
  start-page: 295
  year: 2014
  ident: 9841_CR65
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-012-9339-x
– volume: 5
  start-page: 187
  year: 2019
  ident: 9841_CR311
  publication-title: Int J Sci Rep
  doi: 10.18203/issn.2454-2156.IntJSciRep20192801
– volume: 87
  start-page: 317
  year: 2015
  ident: 9841_CR140
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.02.041
– volume: 18
  start-page: 100605
  year: 2020
  ident: 9841_CR74
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2020.100605
– volume: 57
  start-page: 553
  year: 2014
  ident: 9841_CR218
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2014.887165
– volume: 85
  start-page: 1020
  year: 2017
  ident: 9841_CR129
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.09.016
– volume: 376–377
  start-page: 557
  year: 2017
  ident: 9841_CR259
  publication-title: Wear
  doi: 10.1016/j.wear.2016.12.035
– ident: 9841_CR1
– volume: 43
  start-page: 218
  year: 2010
  ident: 9841_CR99
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2009.05.019
– volume: 136
  start-page: 1
  year: 2019
  ident: 9841_CR113
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.47157
– volume: 38
  start-page: 1705
  year: 2017
  ident: 9841_CR118
  publication-title: Polym Compos
  doi: 10.1002/pc.23740
– volume: 126
  start-page: 274
  year: 2018
  ident: 9841_CR298
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.05.059
– volume: 42
  start-page: 1074
  year: 2009
  ident: 9841_CR94
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2009.03.005
– ident: 9841_CR51
– year: 2018
  ident: 9841_CR133
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-018-1237-y
– volume: 30
  start-page: 229
  year: 2018
  ident: 9841_CR171
  publication-title: Lubr Sci
  doi: 10.1002/ls.1411
– volume: 34
  start-page: 2704
  year: 2008
  ident: 9841_CR288
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.05.010
– volume: 154
  start-page: 106650
  year: 2021
  ident: 9841_CR305
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106650
– volume: 27
  start-page: 627
  year: 2017
  ident: 9841_CR166
  publication-title: Trans Nonferrous Met Soc China (English Edition)
  doi: 10.1016/S1003-6326(17)60070-0
– volume: 29
  start-page: 183
  year: 2017
  ident: 9841_CR221
  publication-title: Lubr Sci
  doi: 10.1002/ls.1363
– ident: 9841_CR277
  doi: 10.1016/j.engappai.2015.06.015
– volume: 47
  start-page: 1
  year: 2012
  ident: 9841_CR291
  publication-title: Tribol Lett
  doi: 10.1007/s11249-012-9948-1
– volume: 5
  start-page: 249
  year: 1998
  ident: 9841_CR148
  publication-title: Tribol Lett
  doi: 10.1023/A:1019126732337
– volume: 9
  start-page: 1
  year: 2019
  ident: 9841_CR230
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56776-2
– volume: 153
  start-page: 119928
  year: 2020
  ident: 9841_CR9
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2020.119928
– volume: 64
  start-page: 258
  year: 2012
  ident: 9841_CR320
  publication-title: Ind Lubrication Tribol
  doi: 10.1108/00368791211249647
– volume: 406–407
  start-page: 173
  year: 2018
  ident: 9841_CR174
  publication-title: Wear
  doi: 10.1016/j.wear.2018.01.007
– volume: 201
  start-page: 3129
  year: 2006
  ident: 9841_CR247
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2006.06.056
– volume: 18
  start-page: 47
  year: 2015
  ident: 9841_CR324
  publication-title: J Appl Sci Eng
  doi: 10.6180/jase.2015.18.1.07
– volume: 138
  start-page: 1
  year: 2016
  ident: 9841_CR296
  publication-title: J Tribol
  doi: 10.1115/1.4032525
– ident: 9841_CR134
  doi: 10.1109/CCDC.2012.6243100
– year: 2022
  ident: 9841_CR56
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108349
– volume: 60
  start-page: 309
  year: 2008
  ident: 9841_CR318
  publication-title: Ind Lubr Tribol
  doi: 10.1108/00368790810902241
– year: 2015
  ident: 9841_CR112
  publication-title: Adv Tribol
  doi: 10.1155/2015/815179
– ident: 9841_CR50
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 9841_CR68
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 2016
  start-page: 1
  year: 2016
  ident: 9841_CR167
  publication-title: Adv Tribol
  doi: 10.1155/2016/4931502
– volume: 140
  start-page: 105895
  year: 2019
  ident: 9841_CR130
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.105895
– volume: 216
  start-page: 220
  year: 1998
  ident: 9841_CR147
  publication-title: Wear
  doi: 10.1016/S0043-1648(97)00260-3
– volume: 773
  start-page: 138589
  year: 2021
  ident: 9841_CR233
  publication-title: Chem Phys Lett
  doi: 10.1016/j.cplett.2021.138589
– volume: 56
  start-page: 97
  year: 2015
  ident: 9841_CR204
  publication-title: Russ J Non-Ferrous Met
  doi: 10.3103/S1067821215010174
– volume: 7
  start-page: 25
  year: 2017
  ident: 9841_CR323
  publication-title: Int J Control Sci Eng
  doi: 10.5923/j.control.20170702.01
– volume: 16
  start-page: 4126
  year: 2012
  ident: 9841_CR3
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.02.064
– volume: 64
  start-page: 1852
  year: 2013
  ident: 9841_CR46
  publication-title: J Am Soc Inform Sci Technol
  doi: 10.1002/asi
– volume: 5
  start-page: 183
  year: 2017
  ident: 9841_CR169
  publication-title: Friction
  doi: 10.1007/s40544-017-0145-y
– volume: 84
  start-page: 1981
  year: 2016
  ident: 9841_CR200
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7812-9
– volume: 158
  start-page: 202
  year: 2020
  ident: 9841_CR231
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.05.158
– volume: 1–2
  start-page: 42
  year: 2015
  ident: 9841_CR163
  publication-title: Biotribology
  doi: 10.1016/j.biotri.2015.04.002
– volume: 221
  start-page: 171
  year: 2007
  ident: 9841_CR214
  publication-title: Proc Inst Mech Eng Part D
  doi: 10.1243/09544070JAUTO256
– volume: 7
  start-page: 100050
  year: 2020
  ident: 9841_CR26
  publication-title: J Non-Cryst Solids X
  doi: 10.1016/j.nocx.2020.100050
– volume: 61
  start-page: 880
  year: 2018
  ident: 9841_CR223
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2018.1439208
– volume: 74
  start-page: 1638
  year: 2011
  ident: 9841_CR290
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.01.021
– volume: 29
  start-page: 768
  year: 2018
  ident: 9841_CR42
  publication-title: J Manuf Technol Manag
  doi: 10.1108/JMTM-09-2017-0196
– ident: 9841_CR89
  doi: 10.1115/1.3261450
– volume: 55
  start-page: 873
  year: 2021
  ident: 9841_CR111
  publication-title: J Compos Mater
  doi: 10.1177/0021998320960520
– volume: 6
  start-page: 130
  year: 2018
  ident: 9841_CR299
  publication-title: Int J Mechatron Autom
  doi: 10.1504/IJMA.2018.094489
– volume: 114
  start-page: 427
  year: 2018
  ident: 9841_CR48
  publication-title: Scientometrics
  doi: 10.1007/s11192-017-2591-8
– volume-title: Evolutionary algorithms and neural networks
  year: 2000
  ident: 9841_CR86
– volume: 43
  start-page: 2092
  year: 2010
  ident: 9841_CR98
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2010.05.013
– volume: 262
  start-page: 778
  year: 2007
  ident: 9841_CR104
  publication-title: Wear
  doi: 10.1016/j.wear.2006.08.013
– volume-title: Fundamentals of computational neuroscience
  year: 2002
  ident: 9841_CR59
– volume: 30
  start-page: 177
  year: 1995
  ident: 9841_CR312
  publication-title: Phys Educ
  doi: 10.1088/0031-9120/30/3/009
– volume: 4
  start-page: 23
  year: 2016
  ident: 9841_CR5
  publication-title: Prod Manuf Res
  doi: 10.1080/21693277.2016.1192517
– volume: 307
  start-page: 131018
  year: 2022
  ident: 9841_CR21
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2021.131018
– volume: 44
  start-page: 603
  year: 2011
  ident: 9841_CR96
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2010.12.011
– volume: 46
  start-page: 296
  year: 2003
  ident: 9841_CR239
  publication-title: Tribol Trans
  doi: 10.1080/10402000308982629
– volume: 133
  start-page: 101
  year: 2019
  ident: 9841_CR179
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.01.014
– volume: 275
  start-page: 123125
  year: 2020
  ident: 9841_CR44
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123125
– volume: 69
  start-page: 1501
  year: 2016
  ident: 9841_CR258
  publication-title: Trans Indian Inst Met
  doi: 10.1007/s12666-015-0718-2
– volume: 422–423
  start-page: 9
  year: 2019
  ident: 9841_CR177
  publication-title: Wear
  doi: 10.1016/j.wear.2018.12.081
– volume: 21
  start-page: 873
  year: 2012
  ident: 9841_CR253
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-012-9734-5
– volume: 5
  start-page: 5012
  year: 2018
  ident: 9841_CR261
  publication-title: Mater Today
  doi: 10.1016/j.matpr.2017.12.079
– volume: 201
  start-page: 5085
  year: 2007
  ident: 9841_CR248
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2006.07.088
– volume: 161
  start-page: 107065
  year: 2021
  ident: 9841_CR101
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2021.107065
– year: 2019
  ident: 9841_CR224
  publication-title: Anti-Wear Lubr Addit J Tribol
  doi: 10.1115/1.4040836
– volume: 358
  start-page: 913
  year: 2019
  ident: 9841_CR264
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.12.024
– volume: 168
  start-page: 108417
  year: 2021
  ident: 9841_CR273
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108417
– volume: 143
  start-page: 1
  year: 2021
  ident: 9841_CR196
  publication-title: J Tribol
  doi: 10.1115/1.4049256
– year: 2017
  ident: 9841_CR207
  publication-title: J Tribol
  doi: 10.1115/1.4036379
– volume: 15
  start-page: 185
  year: 2012
  ident: 9841_CR286
  publication-title: Int J Model Ident Control
  doi: 10.1504/IJMIC.2012.045691
– volume: 140
  start-page: 1
  year: 2018
  ident: 9841_CR325
  publication-title: J Tribol
  doi: 10.1115/1.4039958
– volume: 12
  start-page: 44
  year: 2018
  ident: 9841_CR36
  publication-title: Tribology
  doi: 10.1080/17515831.2018.1437335
– volume: 252
  start-page: 37
  year: 2002
  ident: 9841_CR150
  publication-title: Wear
  doi: 10.1016/S0043-1648(01)00841-9
– volume: 529
  start-page: 484
  year: 2016
  ident: 9841_CR57
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 30
  start-page: 1453
  year: 2021
  ident: 9841_CR280
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-021-01212-z
– volume: 262
  start-page: 617
  year: 2007
  ident: 9841_CR153
  publication-title: Wear
  doi: 10.1016/j.wear.2006.07.006
– volume: 401
  start-page: 126143
  year: 2020
  ident: 9841_CR272
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2020.126143
– volume: 256
  start-page: 879
  year: 2004
  ident: 9841_CR197
  publication-title: Wear
  doi: 10.1016/j.wear.2003.08.006
– volume: 66
  start-page: 100
  year: 2014
  ident: 9841_CR199
  publication-title: Ind Lubr Tribol
  doi: 10.1108/ILT-07-2011-0057
– volume: 55
  start-page: 621
  year: 2013
  ident: 9841_CR301
  publication-title: Insight
  doi: 10.1784/insi.2012.55.11.621
– volume: 21
  start-page: 935
  year: 2012
  ident: 9841_CR32
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-012-9775-9
– volume: 52
  start-page: 441
  year: 2019
  ident: 9841_CR16
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-018-9637-z
– volume: 26
  start-page: 296
  year: 2020
  ident: 9841_CR124
  publication-title: Mater Today
– volume: 58
  start-page: 313
  year: 1951
  ident: 9841_CR53
  publication-title: Psychol Rev
  doi: 10.1037/h0054388
– year: 2015
  ident: 9841_CR164
  publication-title: Int J Polym Sci
  doi: 10.1155/2015/315710
– volume: 363
  start-page: 203
  year: 2003
  ident: 9841_CR151
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(03)00623-3
– volume: 30
  start-page: 1329
  year: 2021
  ident: 9841_CR281
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-021-01213-y
– ident: 9841_CR227
  doi: 10.1007/978-3-030-20131-9_383
– volume: 4
  start-page: 28
  year: 2021
  ident: 9841_CR18
  publication-title: Curr Res Food Sci
  doi: 10.1016/j.crfs.2021.01.002
– year: 2020
  ident: 9841_CR209
  publication-title: Surf Topogr Metrol Prop
  doi: 10.1088/2051-672X/abae13
– volume: 19
  start-page: 765
  year: 2010
  ident: 9841_CR250
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-009-9385-3
– volume: 177
  start-page: 135
  year: 1983
  ident: 9841_CR205
  publication-title: Philos Trans R Soc Lond
  doi: 10.1098/rstl.1886.0005
– volume: 189
  start-page: 374
  year: 2007
  ident: 9841_CR109
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.02.019
– volume: 74
  start-page: 159
  year: 2021
  ident: 9841_CR187
  publication-title: Trans Indian Inst Met
  doi: 10.1007/s12666-020-02107-3
– year: 2013
  ident: 9841_CR321
  publication-title: Adv Tribol
  doi: 10.1155/2013/580367
– volume: 72
  start-page: 2443
  year: 2019
  ident: 9841_CR269
  publication-title: Trans Indian Inst Met
  doi: 10.1007/s12666-019-01696-y
– volume: 62
  start-page: 58
  year: 2013
  ident: 9841_CR4
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2013.02.003
– volume: 72
  start-page: 101256
  year: 2021
  ident: 9841_CR12
  publication-title: Util Policy
  doi: 10.1016/j.jup.2021.101256
– year: 2005
  ident: 9841_CR138
  publication-title: J Phys G
  doi: 10.1088/0954-3899/31/6/019
– volume: 27
  start-page: 6069
  year: 2018
  ident: 9841_CR266
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-018-3684-0
– volume: 34
  start-page: 1
  year: 2021
  ident: 9841_CR37
  publication-title: Chin J Mech Eng (English Edition)
  doi: 10.1186/s10033-021-00576-1
– volume: 128
  start-page: 349
  year: 2018
  ident: 9841_CR173
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2018.07.045
– volume: 44
  start-page: 1199
  year: 2011
  ident: 9841_CR97
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2011.05.022
– volume: 4
  start-page: 161
  year: 2018
  ident: 9841_CR11
  publication-title: Digit Commun Netw
  doi: 10.1016/j.dcan.2017.10.002
– volume: 233
  start-page: 615
  year: 2019
  ident: 9841_CR297
  publication-title: Proc Inst Mech Eng Part J
  doi: 10.1177/1350650118788929
– volume: 15
  start-page: 2219
  year: 2014
  ident: 9841_CR139
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-014-0584-6
– year: 2021
  ident: 9841_CR279
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-021-01239-2
– ident: 9841_CR54
– volume: 68
  start-page: 1
  issue: 2
  year: 2020
  ident: 9841_CR131
  publication-title: Tribol Lett
  doi: 10.1007/s11249-020-01294-w
– volume: 224
  start-page: 419
  year: 2010
  ident: 9841_CR126
  publication-title: Proc Inst Mech Eng C
  doi: 10.1243/09544062JMES1677
– volume: 6
  start-page: 267
  year: 2000
  ident: 9841_CR287
  publication-title: Tribo Test
  doi: 10.1002/tt.3020060305
– volume: 268
  start-page: 708
  year: 2010
  ident: 9841_CR106
  publication-title: Wear
  doi: 10.1016/j.wear.2009.11.008
– volume: 53
  start-page: 215
  year: 2018
  ident: 9841_CR201
  publication-title: Robot Comput-Integr Manuf
  doi: 10.1016/j.rcim.2018.03.011
– volume: 396
  start-page: 125950
  year: 2020
  ident: 9841_CR27
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2020.125950
– volume: 134
  start-page: 372
  year: 2019
  ident: 9841_CR225
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.01.026
– volume: 5
  start-page: 263
  year: 2017
  ident: 9841_CR49
  publication-title: Friction
  doi: 10.1007/s40544-017-0183-5
– volume: 39
  start-page: 1503
  year: 2012
  ident: 9841_CR82
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.08.040
– volume: 71
  start-page: 2095
  year: 2018
  ident: 9841_CR170
  publication-title: Trans Indian Inst Met
  doi: 10.1007/s12666-017-1134-6
– volume: 16
  start-page: 11
  year: 2004
  ident: 9841_CR213
  publication-title: Tribol Lett
  doi: 10.1023/b:tril.0000009709.83578.f5
– volume: 8
  start-page: 107
  year: 2020
  ident: 9841_CR265
  publication-title: Friction
  doi: 10.1007/s40544-018-0249-z
– volume: 45
  start-page: 5
  year: 2001
  ident: 9841_CR80
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 36
  start-page: 455
  year: 2003
  ident: 9841_CR212
  publication-title: Tribol Int
  doi: 10.1016/S0301-679X(02)00234-7
– volume: 30
  start-page: 1213
  year: 2021
  ident: 9841_CR282
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-021-01198-8
– volume: 38
  start-page: 1876
  year: 2011
  ident: 9841_CR289
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.07.119
– volume: 6
  start-page: 379
  year: 2021
  ident: 9841_CR19
  publication-title: Pet Res
  doi: 10.1016/j.ptlrs.2021.05.009
– volume: 28
  start-page: 937
  year: 2021
  ident: 9841_CR20
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-020-09402-8
– volume: 64
  start-page: 288
  year: 2012
  ident: 9841_CR254
  publication-title: Ind Lubr Tribol
  doi: 10.1108/00368791211249674
– volume: 17
  start-page: 1276
  year: 2017
  ident: 9841_CR262
  publication-title: J Fail Anal Prev
  doi: 10.1007/s11668-017-0362-8
– volume: 190
  start-page: 105324
  year: 2020
  ident: 9841_CR300
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105324
– volume: 30
  start-page: 1042
  year: 2009
  ident: 9841_CR107
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2008.06.045
– volume: 30
  start-page: 3601
  year: 2018
  ident: 9841_CR29
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b05304
– volume: 17
  start-page: 119
  year: 2004
  ident: 9841_CR316
  publication-title: Tribol Lett
  doi: 10.1023/B:TRIL.0000032436.09396.d4
– volume: 460–461
  start-page: 203477
  year: 2020
  ident: 9841_CR185
  publication-title: Wear
  doi: 10.1016/j.wear.2020.203477
– volume: 68
  start-page: 734
  year: 2008
  ident: 9841_CR108
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2007.09.022
– volume: 306
  start-page: 242
  year: 2013
  ident: 9841_CR216
  publication-title: Wear
  doi: 10.1016/j.wear.2012.11.045
– ident: 9841_CR206
  doi: 10.1201/9780849377877.ch20
– volume: 56
  start-page: 789
  year: 2013
  ident: 9841_CR160
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2013.798448
– volume: 36
  start-page: 943
  year: 2003
  ident: 9841_CR315
  publication-title: Tribol Int
  doi: 10.1016/S0301-679X(03)00090-2
– volume: 28
  start-page: 4487
  year: 2021
  ident: 9841_CR58
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-021-09557-y
– volume: 261
  start-page: 269
  year: 2006
  ident: 9841_CR103
  publication-title: Wear
  doi: 10.1016/j.wear.2005.10.006
– year: 2016
  ident: 9841_CR34
  publication-title: Shock Vib
  doi: 10.1155/2016/8726781
– volume: 54
  start-page: 179
  year: 2020
  ident: 9841_CR182
  publication-title: J Compos Mater
  doi: 10.1177/0021998319859924
– volume: 200
  start-page: 2610
  year: 2006
  ident: 9841_CR241
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2004.12.026
– volume: 58
  start-page: 349
  year: 2015
  ident: 9841_CR257
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2014.971995
– year: 2021
  ident: 9841_CR314
  publication-title: Lubricants
  doi: 10.3390/lubricants9050050
– volume: 86
  start-page: 56
  year: 2016
  ident: 9841_CR295
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.02.024
– volume: 261
  start-page: 1064
  year: 2006
  ident: 9841_CR246
  publication-title: Wear
  doi: 10.1016/j.wear.2006.01.040
– volume: 8
  start-page: 1102
  year: 2020
  ident: 9841_CR270
  publication-title: Friction
  doi: 10.1007/s40544-017-0340-0
– year: 2018
  ident: 9841_CR236
  publication-title: Lubricants
  doi: 10.3390/lubricants6040108
– volume: 9
  start-page: 1726
  year: 2021
  ident: 9841_CR120
  publication-title: Friction
  doi: 10.1007/s40544-021-0493-5
– volume: 268
  start-page: 117
  year: 2010
  ident: 9841_CR198
  publication-title: Wear
  doi: 10.1016/j.wear.2009.07.006
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 9841_CR69
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880583
– volume: 104
  start-page: 235
  year: 2019
  ident: 9841_CR70
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.01.009
– volume: 2
  start-page: 240
  year: 2014
  ident: 9841_CR161
  publication-title: Friction
  doi: 10.1007/s40544-014-0044-4
– year: 2021
  ident: 9841_CR275
  publication-title: Wear
  doi: 10.1016/j.wear.2021.203888
– volume: 9
  start-page: 1
  year: 2021
  ident: 9841_CR39
  publication-title: Lubricants
  doi: 10.3390/lubricants9010002
– volume: 44
  start-page: 538
  year: 2019
  ident: 9841_CR79
  publication-title: MRS Bull
  doi: 10.1557/mrs.2019.158
– volume: 228
  start-page: 1025
  year: 2014
  ident: 9841_CR116
  publication-title: Proc Inst Mech Eng Part J
  doi: 10.1177/1350650113504907
– volume: 24
  start-page: 1213
  year: 2013
  ident: 9841_CR292
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-012-0657-2
– year: 1988
  ident: 9841_CR7
  publication-title: Machine learning: a probabilistic perspective
  doi: 10.1111/j.1468-0394.1988.tb00341.x
– year: 2020
  ident: 9841_CR25
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.136765
– volume: 95
  start-page: 426
  year: 2016
  ident: 9841_CR30
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2015.11.045
– volume: 142
  start-page: 1
  year: 2020
  ident: 9841_CR229
  publication-title: J Tribol
  doi: 10.1115/1.4044850
– volume: 73
  start-page: 3059
  year: 2020
  ident: 9841_CR190
  publication-title: Trans Indian Inst Met
  doi: 10.1007/s12666-020-02108-2
– volume: 108
  start-page: 33
  year: 2018
  ident: 9841_CR76
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 15
  start-page: 2953
  year: 2021
  ident: 9841_CR278
  publication-title: J Market Res
  doi: 10.1016/j.jmrt.2021.09.069
– volume: 16
  start-page: 703
  year: 2007
  ident: 9841_CR154
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-007-9100-9
– volume: 140
  start-page: 256
  year: 2001
  ident: 9841_CR244
  publication-title: Surf Coat Technol
  doi: 10.1016/S0257-8972(01)01128-8
– volume: 28
  start-page: 946
  year: 2019
  ident: 9841_CR268
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-019-00874-0
– volume: 126
  start-page: 187
  year: 2003
  ident: 9841_CR136
  publication-title: Adv Chem Phys
  doi: 10.1002/0471428019.ch5
– volume: 6
  start-page: 25
  year: 2012
  ident: 9841_CR159
  publication-title: Tribology
  doi: 10.1179/1751584X12Y.0000000002
– volume: 133
  start-page: 21
  year: 2019
  ident: 9841_CR235
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2018.12.041
– volume: 2009
  start-page: 693
  year: 2009
  ident: 9841_CR78
  publication-title: Int Conf Mach Learn Appl
  doi: 10.1109/ICMLA.2009.25
– volume: 31
  start-page: 32
  year: 2011
  ident: 9841_CR128
  publication-title: Int J Model Simul
  doi: 10.2316/Journal.205.2011.1.205-5285
– volume: 142
  start-page: 1
  year: 2020
  ident: 9841_CR121
  publication-title: J Tribol
  doi: 10.1115/1.4045013
– volume: 47
  start-page: 211
  year: 2012
  ident: 9841_CR127
  publication-title: Tribol Lett
  doi: 10.1007/s11249-012-9975-y
– volume: 5
  start-page: 24124
  year: 2018
  ident: 9841_CR143
  publication-title: Mater Today
  doi: 10.1016/j.matpr.2018.10.206
– year: 2019
  ident: 9841_CR237
  publication-title: Lubricants
  doi: 10.3390/lubricants7040032
– volume: 25
  start-page: 101615
  year: 2020
  ident: 9841_CR144
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2020.101615
– ident: 9841_CR62
  doi: 10.1109/IJCNN.2000.857892
– volume: 32
  start-page: e12189
  year: 2018
  ident: 9841_CR67
  publication-title: Nat Resour Model
  doi: 10.1111/nrm.12189
– volume: 426–427
  start-page: 1761
  year: 2019
  ident: 9841_CR142
  publication-title: Wear
  doi: 10.1016/j.wear.2018.12.087
– volume: 138
  start-page: 211
  year: 2019
  ident: 9841_CR178
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.05.040
– volume: 260
  start-page: 9
  year: 2018
  ident: 9841_CR284
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2018.05.013
– volume: 38
  start-page: 887
  year: 2005
  ident: 9841_CR152
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2005.03.008
– ident: 9841_CR81
  doi: 10.1007/s10115-007-0114-2
– volume: 156
  start-page: 106829
  year: 2021
  ident: 9841_CR327
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106829
– year: 2021
  ident: 9841_CR10
  publication-title: Eur Financ Manag
  doi: 10.1111/eufm.12326
– volume: 25
  start-page: 1043
  year: 2012
  ident: 9841_CR110
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.03.018
– volume: 43
  start-page: 267
  year: 2011
  ident: 9841_CR158
  publication-title: Tribol Lett
  doi: 10.1007/s11249-011-9805-7
– volume: 138
  start-page: 1
  year: 2016
  ident: 9841_CR222
  publication-title: J Tribol
  doi: 10.1115/1.4032304
– volume: 377
  start-page: 16
  year: 2020
  ident: 9841_CR125
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.006
– volume: 7
  start-page: 1
  year: 2021
  ident: 9841_CR234
  publication-title: J Bio- Tribo-Corros
  doi: 10.1007/s40735-021-00550-3
– volume: 66
  start-page: 149
  year: 2018
  ident: 9841_CR14
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cix731
– volume: 87
  start-page: 235
  year: 2018
  ident: 9841_CR47
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2017.12.002
– volume: 679
  start-page: 11
  year: 2017
  ident: 9841_CR85
  publication-title: Stud Comput Intell
  doi: 10.1007/978-3-319-52156-5_2
– volume: 235
  start-page: 2211
  year: 2021
  ident: 9841_CR329
  publication-title: Proc Inst Mech Eng Part J
  doi: 10.1177/1350650121992895
– year: 2021
  ident: 9841_CR203
  publication-title: Friction
  doi: 10.1007/s40544-021-0516-2
– volume: 378
  start-page: 124988
  year: 2019
  ident: 9841_CR267
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2019.124988
– volume: 39
  start-page: 257
  year: 2010
  ident: 9841_CR137
  publication-title: Tribol Lett
  doi: 10.1007/s11249-010-9635-z
– volume: 40
  start-page: 1705
  year: 2007
  ident: 9841_CR156
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2007.01.008
– volume-title: An introduction to statistical learning
  year: 2000
  ident: 9841_CR8
  doi: 10.1007/978-1-4614-7138-7
– volume: 252
  start-page: 668
  year: 2002
  ident: 9841_CR102
  publication-title: Wear
  doi: 10.1016/S0043-1648(02)00023-6
– volume: 139
  start-page: 1
  year: 2017
  ident: 9841_CR210
  publication-title: J Tribol
  doi: 10.1115/1.4032971
– volume: 43
  start-page: 1417
  year: 2010
  ident: 9841_CR100
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2010.01.013
– volume: 222
  start-page: 1201
  year: 2008
  ident: 9841_CR33
  publication-title: Proc Inst Mech Eng Part D
  doi: 10.1243/09544070JAUTO583
– volume: 19
  start-page: 428
  year: 1951
  ident: 9841_CR91
  publication-title: Am J Phys
  doi: 10.1119/1.1933017
– volume: 33
  start-page: 731
  year: 2000
  ident: 9841_CR149
  publication-title: Tribol Int
  doi: 10.1016/S0301-679X(00)00115-8
– volume: 56
  start-page: 930
  year: 1986
  ident: 9841_CR135
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.56.930
– year: 2013
  ident: 9841_CR310
  publication-title: J Tribol
  doi: 10.1115/1.4024638
– volume: 5
  start-page: 115
  year: 1943
  ident: 9841_CR60
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– volume: 151
  start-page: 7398
  year: 2021
  ident: 9841_CR66
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107398
– year: 2014
  ident: 9841_CR322
  publication-title: Adv Mech Eng
  doi: 10.1155/2014/213548
– year: 2021
  ident: 9841_CR55
  publication-title: Mach Learn
  doi: 10.7551/mitpress/13811.003.0007
– volume: 27
  start-page: 1094
  year: 2016
  ident: 9841_CR83
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2437901
– ident: 9841_CR90
  doi: 10.1115/1.3261896
– volume: 33
  start-page: 1510
  year: 2021
  ident: 9841_CR132
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.04.100
– volume: 4
  start-page: 3763
  year: 2010
  ident: 9841_CR141
  publication-title: ACS Nano
  doi: 10.1021/nn100246g
– volume: 143
  start-page: 1
  year: 2021
  ident: 9841_CR92
  publication-title: J Tribol
  doi: 10.1115/1.4050140
– volume: 21
  start-page: 1440
  year: 2013
  ident: 9841_CR114
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-1108-19
– volume: 30
  start-page: 739
  year: 1997
  ident: 9841_CR306
  publication-title: Tribol Int
  doi: 10.1016/S0301-679X(97)00056-X
– year: 2021
  ident: 9841_CR145
  publication-title: Int J Refract Metal Hard Mater
  doi: 10.1016/j.ijrmhm.2021.105530
– volume: 57
  start-page: 455
  year: 2014
  ident: 9841_CR162
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2014.880979
– volume: 37
  start-page: 308
  year: 2016
  ident: 9841_CR35
  publication-title: J Friction Wear
  doi: 10.3103/S1068366616040115
– year: 2018
  ident: 9841_CR175
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/aabec8
– year: 2021
  ident: 9841_CR303
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106811
– volume: 104
  start-page: 359
  year: 2019
  ident: 9841_CR228
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-019-03701-6
– volume: 159
  start-page: 1
  year: 2021
  ident: 9841_CR283
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2021.106946
– volume: 32
  start-page: 13453
  year: 2020
  ident: 9841_CR191
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04753-6
– volume: 30
  start-page: 4012
  year: 2021
  ident: 9841_CR195
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-021-05802-4
– volume: 26
  start-page: 141
  year: 2014
  ident: 9841_CR217
  publication-title: Lubr Sci
  doi: 10.1002/ls.1238
– volume: 22
  start-page: 151
  year: 2006
  ident: 9841_CR307
  publication-title: Tribol Lett
  doi: 10.1007/s11249-006-9067-y
– volume: 27
  start-page: 30001
  year: 2020
  ident: 9841_CR63
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-08792-3
– volume: 30
  start-page: 1929
  year: 2021
  ident: 9841_CR15
  publication-title: Heart Lung Circ
  doi: 10.1016/j.hlc.2021.05.101
– volume: 104
  start-page: 333
  year: 2019
  ident: 9841_CR43
  publication-title: J Bus Res
  doi: 10.1016/j.jbusres.2019.07.039
– volume: 409
  start-page: 408
  year: 2020
  ident: 9841_CR72
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.095
– volume: 18
  start-page: 432
  year: 2004
  ident: 9841_CR317
  publication-title: KSME Int J
  doi: 10.1007/BF02996108
– volume: 10
  start-page: 121
  year: 1998
  ident: 9841_CR211
  publication-title: Lubr Sci
  doi: 10.1002/ls.3010100203
– volume: 9
  start-page: 86
  year: 2021
  ident: 9841_CR38
  publication-title: Lubricants
  doi: 10.3390/LUBRICANTS9090086
– ident: 9841_CR52
– year: 2019
  ident: 9841_CR88
  publication-title: NPJ Comput Mater
  doi: 10.1038/s41524-019-0221-0
– year: 2021
  ident: 9841_CR330
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2021.1934618
– year: 2021
  ident: 9841_CR188
  publication-title: J Bio- Tribo-Corros
  doi: 10.1007/s40735-020-00444-w
– volume: 144
  start-page: 1
  year: 2022
  ident: 9841_CR95
  publication-title: J Tribol
  doi: 10.1115/1.4050525
– volume: 17
  start-page: 887
  year: 2004
  ident: 9841_CR313
  publication-title: Tribol Lett
  doi: 10.1007/s11249-004-8097-6
– year: 2020
  ident: 9841_CR41
  publication-title: Materials
  doi: 10.3390/MA13163489
– volume: 9
  start-page: 67
  year: 2021
  ident: 9841_CR328
  publication-title: Lubricants
  doi: 10.3390/lubricants9070067
– volume: 28
  start-page: 1745
  year: 2015
  ident: 9841_CR165
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-141461
– volume: 58
  start-page: 654
  year: 2004
  ident: 9841_CR245
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2003.06.010
– ident: 9841_CR219
  doi: 10.1109/ICMTMA.2014.201
– volume: 140
  start-page: 105813
  year: 2019
  ident: 9841_CR240
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.06.006
– volume: 53
  start-page: 533
  year: 2010
  ident: 9841_CR251
  publication-title: Tribol Trans
  doi: 10.1080/10402000903491317
– volume: 9
  start-page: 530
  year: 2020
  ident: 9841_CR181
  publication-title: J Market Res
  doi: 10.1016/j.jmrt.2019.10.082
– volume: 67
  start-page: 42
  year: 2011
  ident: 9841_CR2
  publication-title: Tribol Lubr Technol
  doi: 10.1080/10402009908982281
– volume: 50
  start-page: 289
  year: 2010
  ident: 9841_CR308
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2476-y
– volume: 69
  start-page: 610
  year: 2018
  ident: 9841_CR93
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.04.048
– volume: 26
  start-page: 153
  year: 2012
  ident: 9841_CR115
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-011-1020-9
– volume: 2
  start-page: 236
  year: 2017
  ident: 9841_CR13
  publication-title: Proceedings
  doi: 10.1109/COMPSAC.2017.164
– volume: 35
  start-page: 1699
  year: 2021
  ident: 9841_CR194
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-021-0333-6
– volume: 241
  start-page: 733
  year: 2019
  ident: 9841_CR208
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.12.094
– year: 2014
  ident: 9841_CR255
  publication-title: Adv Tribol
  doi: 10.1155/2014/763601
– volume: 12
  start-page: 101211
  year: 2021
  ident: 9841_CR23
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2021.101211
– volume: 23
  start-page: 2730
  year: 2009
  ident: 9841_CR285
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-009-0802-9
– volume: 25
  start-page: 21
  year: 2016
  ident: 9841_CR256
  publication-title: J Therm Spray Technol
  doi: 10.1007/s11666-015-0341-0
– volume: 147
  start-page: 106280
  year: 2020
  ident: 9841_CR302
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106280
– year: 2012
  ident: 9841_CR6
  publication-title: Bayesian Reason Mach Learn
  doi: 10.1017/cbo9780511804779.026
– volume: 266
  start-page: 184
  year: 2009
  ident: 9841_CR249
  publication-title: Wear
  doi: 10.1016/j.wear.2008.06.008
– volume: 6
  start-page: 15
  year: 2012
  ident: 9841_CR117
  publication-title: Tribology
  doi: 10.1179/1751584X11Y.0000000025
– volume: 33
  start-page: 153
  year: 2021
  ident: 9841_CR326
  publication-title: Lubr Sci
  doi: 10.1002/ls.1535
– volume: 41
  start-page: 135
  year: 2019
  ident: 9841_CR226
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.03.024
– volume: 137
  start-page: 1
  year: 2015
  ident: 9841_CR220
  publication-title: J Tribol
  doi: 10.1115/1.4029332
– volume: 144
  start-page: 390
  year: 2016
  ident: 9841_CR294
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2016.05.148
– volume: 9
  start-page: 250
  year: 2021
  ident: 9841_CR183
  publication-title: Friction
  doi: 10.1007/s40544-019-0332-0
– volume: 67
  start-page: 168
  year: 2007
  ident: 9841_CR155
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2006.07.026
– volume: 72
  start-page: 1233
  year: 2020
  ident: 9841_CR232
  publication-title: Ind Lubr Tribol
  doi: 10.1108/ILT-03-2020-0109
– year: 2021
  ident: 9841_CR238
  publication-title: J Tribol
  doi: 10.1115/1.4049257
– year: 2021
  ident: 9841_CR276
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2021.127370
– volume: 29
  start-page: 82
  year: 2012
  ident: 9841_CR71
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– volume: 392–393
  start-page: 152
  year: 2017
  ident: 9841_CR168
  publication-title: Wear
  doi: 10.1016/j.wear.2017.09.022
– volume: 2
  start-page: 100008
  year: 2020
  ident: 9841_CR22
  publication-title: Mach Learn Appl
  doi: 10.1016/j.mlwa.2020.100008
– volume: 235
  start-page: 748
  year: 2021
  ident: 9841_CR189
  publication-title: Proc Inst Mech Eng Part J
  doi: 10.1177/1350650120925582
– volume: 474–475
  start-page: 203715
  year: 2021
  ident: 9841_CR202
  publication-title: Wear
  doi: 10.1016/j.wear.2021.203715
– year: 2012
  ident: 9841_CR87
  publication-title: Mach Learn
  doi: 10.1007/978-1-4419-9326-7_1
– volume: 5
  start-page: 1
  year: 2019
  ident: 9841_CR40
  publication-title: Front Mech Eng
  doi: 10.3389/fmech.2019.00030
– volume: 102
  start-page: 27
  year: 2021
  ident: 9841_CR193
  publication-title: J Inst Eng
  doi: 10.1007/s40033-021-00250-9
– volume: 138
  start-page: 166
  year: 2019
  ident: 9841_CR180
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.05.029
– volume: 241
  start-page: 171
  year: 2017
  ident: 9841_CR84
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.039
– volume: 349
  start-page: 1130
  year: 2018
  ident: 9841_CR263
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2018.06.065
– volume: 83
  start-page: 378
  year: 1995
  ident: 9841_CR73
  publication-title: Proc IEEE
  doi: 10.1109/5.364486
– volume: 226
  start-page: 46
  year: 2012
  ident: 9841_CR309
  publication-title: Proc Inst Mech Eng Part J
  doi: 10.1177/1350650111424237
– volume: 385
  start-page: 125365
  year: 2020
  ident: 9841_CR243
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2020.125365
– volume: 7
  start-page: 100147
  year: 2020
  ident: 9841_CR17
  publication-title: Oper Res Perspect
  doi: 10.1016/j.orp.2020.100147
– volume: 153
  start-page: 106630
  year: 2021
  ident: 9841_CR31
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2020.106630
SSID ssj0054992
Score 2.5436742
SecondaryResourceType review_article
Snippet The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1345
SubjectTerms Algorithms
Artificial intelligence
Design
Energy consumption
Engineering
Fault diagnosis
Friction
Fuzzy logic
Interdisciplinary aspects
Interdisciplinary studies
Journal bearings
Lubricants & lubrication
Machine learning
Mathematical and Computational Engineering
Neural networks
Process parameters
Resource conservation
Resource utilization
Review Article
Support vector machines
Tribology
Useful life
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOhBFDWiaHrwpiPt1nXUgwkxINHgQSXB07KurTGSYWRc_Ovtto4pURPP65rt9b2-798DOGVU6i7r-g7RMXeMJAaOYDpwXFdQoqUwPJMF9Ed3bDimNxN_YpvC5mW1e5mSzG_qqtnNcJ9xfY3zhHmXEsdfh3qOt1WDeu_66bZf3sCZy5NnOYmXRf0Zts0yP-_yXSFVVuZKYjTXN4MGjMsvLcpMXjuLVHTijxUQx__-yjZsWQMU9QqO2YE1lTShYY1RZEV93oTNL0iFu3Bp2Andz6YKzTQa5QWYClls1mf0kqAMgSSP0F-gHnpYwkOjIvewB-NB__Fq6NjRC05sZDJ1AhlJP_I0DwgJtNdVWGESERVhgaXAUcR8ormLGZckdhVRXGU4QIFPBBMejrx9qCWzRB0AiomULtWUa0mpEpExkDVXVEvfUyTmcQtISf8wtrjk2XiMaVghKmfkCg25wpxcod-Cs-U7bwUqx5-r2-WxhlZC56FnbD2jqLHLW3BenlL1-PfdDv-3_Ag2sgn1RdlaG2rp-0IdGzsmFSeWbT8BV0vlPw
  priority: 102
  providerName: Springer Nature
Title The Role of Machine Learning in Tribology: A Systematic Review
URI https://link.springer.com/article/10.1007/s11831-022-09841-5
https://www.proquest.com/docview/3256678029
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: ADMLS
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1886-1784
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vXjxLdZHycGbBpPd7COCStU-UFvEWqinJdkkIkjro_5_k92sRUFPe8gmh8k8MzPfABzETJk0TiNMTc6xlcQEy9gkOAgko0ZJyzPuQb8_iHsjdj2OxgswqHphXFllpRMLRa2muXsjPw6tbbaKlQT8_PUNu6lRLrtajdAQfrSCOi0gxhahHjhkrBrUL9qDu_tKN7tgqMh_0tDlA2Li22jKZjrL3Ta0tsEZ4SmjOPppqub-56-UaWGJOquw7F1I1CrvfA0W9GQdVrw7ibywfmzAmWUBdD990WhqUL8omtTI46k-oecJcqghxav6CWqh4TekMyrzBZsw6rQfLnvYj0vAuZWjGU6UUJEIDU8oTUyYaqIJFVQLIomSRIg4ooYHJOaK5oGmmmuH3ZNEVMYyJCLcgtpkOtHbgHKqVMAM40YxpqWwTq3hmhkVhZrmPG8ArSiT5R5L3I20eMnmKMiOmpmlZlZQM4sacPi957VE0vj3772K4JmXqo9szgMNOKouYb7892k7_5-2C0tuinxZWrYHtdn7p963vsZMNmEx7XSbUG9d9W-H7tt9vGk3PVvZ1VHQ-gL9HdJT
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOMCFHVFWH-AEFnbiJDUSIFYVugixSNyCHdsICbVAixA_x7dhJ04rkODGOY4P4zebx_MGYCNmytTiWoSpyTi2mphgGZsEB4Fk1ChpMeMu9FvtuH7LLu6iuwp8lr0w7lllaRNzQ626mbsj3wmtb7aGlQT84PkFu6lRrrpajtAQfrSC2sspxnxjR0N_vNsUrrd3fmLPezMIzk5vjuvYTxnAmYVfHydKqEiEhieUJiasaaIJFVQLIomSRIg4ooYHJOaKZoGmmmtHeZNEVMYyJCK0-47AGAsZt8nf2NFp-_Kq9AUu-crrrTR09YeY-LadonnPapNN5W0ySHiNURx9d43DePdHiTb3fGfTMOlDVnRYYGwGKrozC1M-fEXeOPTmYN9CDl11nzTqGtTKH2lq5PlbH9BjBzmWkvwWfxcdousBhTQq6hPzcPsvgluA0U63oxcBZVSpgBnGjWJMS2GDaMM1MyoKNc14VgVaSibNPHe5G6HxlA5Zl500UyvNNJdmGlVha_DPc8Hc8efqlVLgqdfiXjrEXBW2y0MYfv59t6W_d1uH8fpNq5k2z9uNZZhwE-yLZ20rMNp_fdOrNs7pyzUPJgT3_43fL--0CkU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAcuEG1pE3ThgPSBEzjsQkBk3armiZBSFM3sfL_SfrYBgIkzk1zcOz4sx1_BjhlVOqQhb5DdMIdY4mBI5gOHNcVlGgpjM7YhH6vz7oDejf0hwtd_Plr96okWfQ0WJamNGtNpG7NG9-MJpow2ARSmIeUOP4yrFBLlGA0euC2q7vYBj95vZN4Nv_PcNk28_MeX13THG9-K5HmnqezBRslZETt4oy3YUmlddgs4SMqjXNah_UFbsEduDQKgJ7GI4XGGvXyJ5MKlWyqr-gtRZYzJM-pX6A2ep4ROqOiWrALg87Ny1XXKYclOImxoswJZCz92NM8ICTQXqiwwiQmKsYCS4HjmPlEcxczLkniKqK4ssw9gU8EEx6OvT2opeNU7QNKiJQu1ZRrSakSsYG0miuqpe8pkvCkAaSSU5SUTOJ2oMUomnMgW9lGRrZRLtvIb8DZ7J9JwaPx5-pmJf6otKlp5Bl0ZlwrdnkDzqsjmX_-fbeD_y0_gdXH6070cNu_P4Q1O16-eHPWhFr2_qGODAjJxHGuZ5_NEM9l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Machine+Learning+in+Tribology%3A+A+Systematic+Review&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Paturi%2C+Uma+Maheshwera+Reddy&rft.au=Palakurthy%2C+Sai+Teja&rft.au=Reddy%2C+N.+S&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=30&rft.issue=2&rft.spage=1345&rft.epage=1397&rft_id=info:doi/10.1007%2Fs11831-022-09841-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon