The Role of Machine Learning in Tribology: A Systematic Review
The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many engineering processes. Machine learning algorithms solve nonlinear and complex relationships through data training; additionally, they can infer previo...
Saved in:
| Published in | Archives of computational methods in engineering Vol. 30; no. 2; pp. 1345 - 1397 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.03.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1134-3060 1886-1784 |
| DOI | 10.1007/s11831-022-09841-5 |
Cover
| Abstract | The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many engineering processes. Machine learning algorithms solve nonlinear and complex relationships through data training; additionally, they can infer previously unknown relationships, allowing for a simplified model and estimation of hidden data. Unlike other statistical tools, machine learning does not impose process parameter restrictions and yields an accurate association between input and output parameters. Tribology is a branch of surface science concerned with studying and managing friction, lubrication, and wear on relatively interacting surfaces. While AI-based machine learning approaches have been adopted in tribology applications, modern tribo-contact simulation requires a deliberate decomposition of complex design challenges into simpler sub-threads, thereby identifying the relationships between the numerous interconnected features and processes. Numerous studies have established that artificial intelligence techniques can accurately model tribological processes and their properties based on various process parameters. The primary objective of this review is to conduct a thorough examination of the role of machine learning in tribological research and pave the way for future researchers by providing a specific research direction. In terms of future research directions and developments, the expanded application of artificial intelligence and various machine learning methods in tribology has been emphasized, including the characterization and design of complex tribological systems. Additionally, by combining machine learning methods with tribological experimental data, interdisciplinary research can be conducted to understand efficient resource utilization and resource conservation better. At the conclusion of this article, a detailed discussion of the limitations and future research opportunities associated with implementing various machine learning algorithms in tribology and its interdisciplinary fields is presented. |
|---|---|
| AbstractList | The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many engineering processes. Machine learning algorithms solve nonlinear and complex relationships through data training; additionally, they can infer previously unknown relationships, allowing for a simplified model and estimation of hidden data. Unlike other statistical tools, machine learning does not impose process parameter restrictions and yields an accurate association between input and output parameters. Tribology is a branch of surface science concerned with studying and managing friction, lubrication, and wear on relatively interacting surfaces. While AI-based machine learning approaches have been adopted in tribology applications, modern tribo-contact simulation requires a deliberate decomposition of complex design challenges into simpler sub-threads, thereby identifying the relationships between the numerous interconnected features and processes. Numerous studies have established that artificial intelligence techniques can accurately model tribological processes and their properties based on various process parameters. The primary objective of this review is to conduct a thorough examination of the role of machine learning in tribological research and pave the way for future researchers by providing a specific research direction. In terms of future research directions and developments, the expanded application of artificial intelligence and various machine learning methods in tribology has been emphasized, including the characterization and design of complex tribological systems. Additionally, by combining machine learning methods with tribological experimental data, interdisciplinary research can be conducted to understand efficient resource utilization and resource conservation better. At the conclusion of this article, a detailed discussion of the limitations and future research opportunities associated with implementing various machine learning algorithms in tribology and its interdisciplinary fields is presented. The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many engineering processes. Machine learning algorithms solve nonlinear and complex relationships through data training; additionally, they can infer previously unknown relationships, allowing for a simplified model and estimation of hidden data. Unlike other statistical tools, machine learning does not impose process parameter restrictions and yields an accurate association between input and output parameters. Tribology is a branch of surface science concerned with studying and managing friction, lubrication, and wear on relatively interacting surfaces. While AI-based machine learning approaches have been adopted in tribology applications, modern tribo-contact simulation requires a deliberate decomposition of complex design challenges into simpler sub-threads, thereby identifying the relationships between the numerous interconnected features and processes. Numerous studies have established that artificial intelligence techniques can accurately model tribological processes and their properties based on various process parameters. The primary objective of this review is to conduct a thorough examination of the role of machine learning in tribological research and pave the way for future researchers by providing a specific research direction. In terms of future research directions and developments, the expanded application of artificial intelligence and various machine learning methods in tribology has been emphasized, including the characterization and design of complex tribological systems. Additionally, by combining machine learning methods with tribological experimental data, interdisciplinary research can be conducted to understand efficient resource utilization and resource conservation better. At the conclusion of this article, a detailed discussion of the limitations and future research opportunities associated with implementing various machine learning algorithms in tribology and its interdisciplinary fields is presented. |
| Author | Paturi, Uma Maheshwera Reddy Reddy, N. S. Palakurthy, Sai Teja |
| Author_xml | – sequence: 1 givenname: Uma Maheshwera Reddy orcidid: 0000-0001-5843-466X surname: Paturi fullname: Paturi, Uma Maheshwera Reddy email: maheshpaturi@gmail.com organization: Department of Mechanical Engineering, CVR College of Engineering – sequence: 2 givenname: Sai Teja surname: Palakurthy fullname: Palakurthy, Sai Teja organization: Department of Mechanical Engineering, CVR College of Engineering – sequence: 3 givenname: N. S. surname: Reddy fullname: Reddy, N. S. organization: School of Materials Science and Engineering, Gyeongsang National University |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gKeA59WZpPsRD0IpfkFFqPUcstvZNqVNarJV-u9dXUHw0NPM4X1mXp4-O3beEWMXCFcIkF9HxEJiAkIkoIohJukR62FRZAnmxfC43VEOEwkZnLJ-jCuAdKiU6LHb2ZL41K-J-5o_m2ppHfEJmeCsW3Dr-CzY0q_9Yn_DR_x1HxvamMZWfEoflj7P2Elt1pHOf-eAvd3fzcaPyeTl4Wk8miSVRNUk-dzMUyNrlSPmtSwICNAgGShhXoIxWYq1EpCpOVaCkBSBykWeYpmVEowcsMvu7jb49x3FRq_8Lrj2pZYizbK8AKHaVNGlquBjDFTryjZtW--aYOxaI-hvW7qzpVtb-seWTltU_EO3wW5M2B-GZAfFNuwWFP5aHaC-AFVrfNU |
| CitedBy_id | crossref_primary_10_3390_lubricants12010020 crossref_primary_10_1038_s41598_024_68575_5 crossref_primary_10_1016_j_triboint_2024_109670 crossref_primary_10_3390_ma15249022 crossref_primary_10_1016_j_apsusc_2025_162954 crossref_primary_10_3390_lubricants11110461 crossref_primary_10_26599_FRICT_2025_9440951 crossref_primary_10_3390_lubricants11110463 crossref_primary_10_1007_s11249_023_01715_6 crossref_primary_10_5604_01_3001_0053_9061 crossref_primary_10_1016_j_wear_2023_205106 crossref_primary_10_1002_adem_202401944 crossref_primary_10_1016_j_wear_2023_205169 crossref_primary_10_3390_ma17184540 crossref_primary_10_1007_s13726_024_01434_2 crossref_primary_10_1016_j_icheatmasstransfer_2024_107870 crossref_primary_10_1108_ILT_04_2023_0121 crossref_primary_10_1016_j_triboint_2024_109988 crossref_primary_10_1007_s12540_023_01538_z crossref_primary_10_1016_j_triboint_2024_109965 crossref_primary_10_3390_lubricants12100339 crossref_primary_10_1016_j_matpr_2023_05_704 crossref_primary_10_1016_j_triboint_2024_109940 crossref_primary_10_1186_s40323_025_00283_9 crossref_primary_10_3390_lubricants11070289 crossref_primary_10_1007_s40544_024_0879_2 crossref_primary_10_3390_lubricants12080280 crossref_primary_10_1088_2051_672X_ad9c9c crossref_primary_10_3390_lubricants11090391 crossref_primary_10_1088_2051_672X_ad2056 crossref_primary_10_1016_j_simpa_2023_100531 crossref_primary_10_1109_ACCESS_2025_3542507 crossref_primary_10_3390_lubricants12040122 crossref_primary_10_3390_lubricants12020050 crossref_primary_10_1007_s11249_024_01957_y crossref_primary_10_1007_s11665_024_10532_4 crossref_primary_10_1016_j_triboint_2024_110291 crossref_primary_10_1007_s12008_023_01411_8 crossref_primary_10_3390_lubricants12110365 crossref_primary_10_1016_j_matpr_2023_01_203 crossref_primary_10_2514_1_D0436 crossref_primary_10_1007_s41779_024_01098_4 crossref_primary_10_1155_2023_6681886 crossref_primary_10_1007_s00170_023_12108_3 |
| Cites_doi | 10.1109/SSCI.2017.8285325 10.1016/j.surfcoat.2011.04.099 10.24874/ti.2018.40.04.05 10.1007/978-3-319-21852-6_3 10.1016/j.wear.2009.02.016 10.1016/j.proeng.2013.09.156 10.1016/j.wear.2021.203797 10.1016/j.wear.2009.08.016 10.1007/s00521-018-3555-5 10.1016/j.jpcs.2017.06.028 10.1007/s11666-008-9183-3 10.1080/09518390902736512 10.1016/j.triboint.2020.106545 10.3390/lubricants8030029 10.1016/j.surfcoat.2020.125862 10.1080/10402009708983660 10.1016/j.wear.2021.203721 10.1007/s11814-010-0512-0 10.1016/j.neunet.2014.09.003 10.1007/s40735-020-00469-1 10.1080/10402004.2015.1045648 10.1115/1.4038688 10.1007/s11831-017-9212-9 10.1016/j.envpol.2020.115845 10.1016/S1003-6326(20)65482-6 10.1016/j.triboint.2008.08.010 10.1016/j.heliyon.2018.e00938 10.1007/s10462-012-9339-x 10.18203/issn.2454-2156.IntJSciRep20192801 10.1016/j.carbon.2015.02.041 10.1016/j.csite.2020.100605 10.1080/10402004.2014.887165 10.1016/j.ymssp.2016.09.016 10.1016/j.wear.2016.12.035 10.1016/j.triboint.2009.05.019 10.1002/app.47157 10.1002/pc.23740 10.1016/j.measurement.2018.05.059 10.1016/j.triboint.2009.03.005 10.1007/s40430-018-1237-y 10.1002/ls.1411 10.1016/j.eswa.2007.05.010 10.1016/j.triboint.2020.106650 10.1016/S1003-6326(17)60070-0 10.1002/ls.1363 10.1016/j.engappai.2015.06.015 10.1007/s11249-012-9948-1 10.1023/A:1019126732337 10.1038/s41598-019-56776-2 10.1016/j.techfore.2020.119928 10.1108/00368791211249647 10.1016/j.wear.2018.01.007 10.1016/j.surfcoat.2006.06.056 10.6180/jase.2015.18.1.07 10.1115/1.4032525 10.1109/CCDC.2012.6243100 10.1016/j.ymssp.2021.108349 10.1108/00368790810902241 10.1155/2015/815179 10.1093/oso/9780198538493.001.0001 10.1155/2016/4931502 10.1016/j.triboint.2019.105895 10.1016/S0043-1648(97)00260-3 10.1016/j.cplett.2021.138589 10.3103/S1067821215010174 10.5923/j.control.20170702.01 10.1016/j.rser.2012.02.064 10.1002/asi 10.1007/s40544-017-0145-y 10.1007/s00170-015-7812-9 10.1016/j.renene.2020.05.158 10.1016/j.biotri.2015.04.002 10.1243/09544070JAUTO256 10.1016/j.nocx.2020.100050 10.1080/10402004.2018.1439208 10.1016/j.neucom.2011.01.021 10.1108/JMTM-09-2017-0196 10.1115/1.3261450 10.1177/0021998320960520 10.1504/IJMA.2018.094489 10.1007/s11192-017-2591-8 10.1016/j.triboint.2010.05.013 10.1016/j.wear.2006.08.013 10.1088/0031-9120/30/3/009 10.1080/21693277.2016.1192517 10.1016/j.matlet.2021.131018 10.1016/j.triboint.2010.12.011 10.1080/10402000308982629 10.1016/j.triboint.2019.01.014 10.1016/j.jclepro.2020.123125 10.1007/s12666-015-0718-2 10.1016/j.wear.2018.12.081 10.1007/s11666-012-9734-5 10.1016/j.matpr.2017.12.079 10.1016/j.surfcoat.2006.07.088 10.1016/j.triboint.2021.107065 10.1115/1.4040836 10.1016/j.surfcoat.2018.12.024 10.1016/j.measurement.2020.108417 10.1115/1.4049256 10.1115/1.4036379 10.1504/IJMIC.2012.045691 10.1115/1.4039958 10.1080/17515831.2018.1437335 10.1016/S0043-1648(01)00841-9 10.1038/nature16961 10.1007/s11666-021-01212-z 10.1016/j.wear.2006.07.006 10.1016/j.surfcoat.2020.126143 10.1016/j.wear.2003.08.006 10.1108/ILT-07-2011-0057 10.1784/insi.2012.55.11.621 10.1007/s11666-012-9775-9 10.1007/s10462-018-9637-z 10.1037/h0054388 10.1155/2015/315710 10.1016/S0921-5093(03)00623-3 10.1007/s11666-021-01213-y 10.1007/978-3-030-20131-9_383 10.1016/j.crfs.2021.01.002 10.1088/2051-672X/abae13 10.1007/s11666-009-9385-3 10.1098/rstl.1886.0005 10.1016/j.jmatprotec.2007.02.019 10.1007/s12666-020-02107-3 10.1155/2013/580367 10.1007/s12666-019-01696-y 10.1016/j.triboint.2013.02.003 10.1016/j.jup.2021.101256 10.1088/0954-3899/31/6/019 10.1007/s11665-018-3684-0 10.1186/s10033-021-00576-1 10.1016/j.triboint.2018.07.045 10.1016/j.triboint.2011.05.022 10.1016/j.dcan.2017.10.002 10.1177/1350650118788929 10.1007/s12541-014-0584-6 10.1007/s11666-021-01239-2 10.1007/s11249-020-01294-w 10.1243/09544062JMES1677 10.1002/tt.3020060305 10.1016/j.wear.2009.11.008 10.1016/j.rcim.2018.03.011 10.1016/j.surfcoat.2020.125950 10.1016/j.triboint.2019.01.026 10.1007/s40544-017-0183-5 10.1016/j.eswa.2011.08.040 10.1007/s12666-017-1134-6 10.1023/b:tril.0000009709.83578.f5 10.1007/s40544-018-0249-z 10.1023/A:1010933404324 10.1016/S0301-679X(02)00234-7 10.1007/s11666-021-01198-8 10.1016/j.eswa.2010.07.119 10.1016/j.ptlrs.2021.05.009 10.1007/s11831-020-09402-8 10.1108/00368791211249674 10.1007/s11668-017-0362-8 10.1016/j.knosys.2019.105324 10.1016/j.matdes.2008.06.045 10.1021/acs.chemmater.7b05304 10.1023/B:TRIL.0000032436.09396.d4 10.1016/j.wear.2020.203477 10.1016/j.compscitech.2007.09.022 10.1016/j.wear.2012.11.045 10.1201/9780849377877.ch20 10.1080/10402004.2013.798448 10.1016/S0301-679X(03)00090-2 10.1007/s11831-021-09557-y 10.1016/j.wear.2005.10.006 10.1155/2016/8726781 10.1177/0021998319859924 10.1016/j.surfcoat.2004.12.026 10.1080/10402004.2014.971995 10.3390/lubricants9050050 10.1016/j.measurement.2016.02.024 10.1016/j.wear.2006.01.040 10.1007/s40544-017-0340-0 10.3390/lubricants6040108 10.1007/s40544-021-0493-5 10.1016/j.wear.2009.07.006 10.1109/TNN.2006.880583 10.1016/j.rser.2019.01.009 10.1007/s40544-014-0044-4 10.1016/j.wear.2021.203888 10.3390/lubricants9010002 10.1557/mrs.2019.158 10.1177/1350650113504907 10.1007/s10845-012-0657-2 10.1111/j.1468-0394.1988.tb00341.x 10.1016/j.scitotenv.2020.136765 10.1016/j.triboint.2015.11.045 10.1115/1.4044850 10.1007/s12666-020-02108-2 10.1016/j.ymssp.2018.02.016 10.1016/j.jmrt.2021.09.069 10.1007/s11665-007-9100-9 10.1016/S0257-8972(01)01128-8 10.1007/s11666-019-00874-0 10.1002/0471428019.ch5 10.1179/1751584X12Y.0000000002 10.1016/j.triboint.2018.12.041 10.1109/ICMLA.2009.25 10.2316/Journal.205.2011.1.205-5285 10.1115/1.4045013 10.1007/s11249-012-9975-y 10.1016/j.matpr.2018.10.206 10.3390/lubricants7040032 10.1016/j.mtcomm.2020.101615 10.1109/IJCNN.2000.857892 10.1111/nrm.12189 10.1016/j.wear.2018.12.087 10.1016/j.triboint.2019.05.040 10.1016/j.jmatprotec.2018.05.013 10.1016/j.triboint.2005.03.008 10.1007/s10115-007-0114-2 10.1016/j.triboint.2020.106829 10.1111/eufm.12326 10.1016/j.engappai.2012.03.018 10.1007/s11249-011-9805-7 10.1115/1.4032304 10.1016/j.neucom.2019.10.006 10.1007/s40735-021-00550-3 10.1093/cid/cix731 10.1016/j.autcon.2017.12.002 10.1007/978-3-319-52156-5_2 10.1177/1350650121992895 10.1007/s40544-021-0516-2 10.1016/j.surfcoat.2019.124988 10.1007/s11249-010-9635-z 10.1016/j.triboint.2007.01.008 10.1007/978-1-4614-7138-7 10.1016/S0043-1648(02)00023-6 10.1115/1.4032971 10.1016/j.triboint.2010.01.013 10.1243/09544070JAUTO583 10.1119/1.1933017 10.1016/S0301-679X(00)00115-8 10.1103/PhysRevLett.56.930 10.1115/1.4024638 10.1007/BF02478259 10.1016/j.ymssp.2020.107398 10.1155/2014/213548 10.7551/mitpress/13811.003.0007 10.1109/TNNLS.2015.2437901 10.1115/1.3261896 10.1016/j.istruc.2021.04.100 10.1021/nn100246g 10.1115/1.4050140 10.3906/elk-1108-19 10.1016/S0301-679X(97)00056-X 10.1016/j.ijrmhm.2021.105530 10.1080/10402004.2014.880979 10.3103/S1068366616040115 10.1088/2053-1591/aabec8 10.1016/j.triboint.2020.106811 10.1007/s00170-019-03701-6 10.1016/j.triboint.2021.106946 10.1007/s00521-020-04753-6 10.1007/s11665-021-05802-4 10.1002/ls.1238 10.1007/s11249-006-9067-y 10.1007/s11356-020-08792-3 10.1016/j.hlc.2021.05.101 10.1016/j.jbusres.2019.07.039 10.1016/j.neucom.2020.05.095 10.1007/BF02996108 10.1002/ls.3010100203 10.3390/LUBRICANTS9090086 10.1038/s41524-019-0221-0 10.1080/10402004.2021.1934618 10.1007/s40735-020-00444-w 10.1115/1.4050525 10.1007/s11249-004-8097-6 10.3390/MA13163489 10.3390/lubricants9070067 10.3233/IFS-141461 10.1016/j.matlet.2003.06.010 10.1109/ICMTMA.2014.201 10.1016/j.triboint.2019.06.006 10.1080/10402000903491317 10.1016/j.jmrt.2019.10.082 10.1080/10402009908982281 10.1007/s00170-009-2476-y 10.1016/j.asoc.2018.04.048 10.1007/s12206-011-1020-9 10.1109/COMPSAC.2017.164 10.1007/s12206-021-0333-6 10.1016/j.fuel.2018.12.094 10.1155/2014/763601 10.1016/j.apr.2021.101211 10.1007/s12206-009-0802-9 10.1007/s11666-015-0341-0 10.1016/j.triboint.2020.106280 10.1017/cbo9780511804779.026 10.1016/j.wear.2008.06.008 10.1179/1751584X11Y.0000000025 10.1002/ls.1535 10.1016/j.jmapro.2019.03.024 10.1115/1.4029332 10.1016/j.proeng.2016.05.148 10.1007/s40544-019-0332-0 10.1016/j.compscitech.2006.07.026 10.1108/ILT-03-2020-0109 10.1115/1.4049257 10.1016/j.surfcoat.2021.127370 10.1109/MSP.2012.2205597 10.1016/j.wear.2017.09.022 10.1016/j.mlwa.2020.100008 10.1177/1350650120925582 10.1016/j.wear.2021.203715 10.1007/978-1-4419-9326-7_1 10.3389/fmech.2019.00030 10.1007/s40033-021-00250-9 10.1016/j.triboint.2019.05.029 10.1016/j.neucom.2017.02.039 10.1016/j.surfcoat.2018.06.065 10.1109/5.364486 10.1177/1350650111424237 10.1016/j.surfcoat.2020.125365 10.1016/j.orp.2020.100147 10.1016/j.triboint.2020.106630 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2022. |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8AL 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1007/s11831-022-09841-5 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1886-1784 |
| EndPage | 1397 |
| ExternalDocumentID | 10_1007_s11831_022_09841_5 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M0N M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JZLTJ PHGZM PHGZT PQGLB PUEGO 7XB 8AL 8FK JQ2 L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-7dad5a3f97117f38e0e01a1ea0b0db0aa651f92069d1c2e1e9e0972751b6b30a3 |
| IEDL.DBID | BENPR |
| ISSN | 1134-3060 |
| IngestDate | Mon Oct 06 18:36:20 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 Wed Oct 01 04:56:07 EDT 2025 Fri Feb 21 02:45:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Lubrication Review Friction Wear Machine learning Tribology |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-7dad5a3f97117f38e0e01a1ea0b0db0aa651f92069d1c2e1e9e0972751b6b30a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5843-466X |
| PQID | 3256678029 |
| PQPubID | 1486352 |
| PageCount | 53 |
| ParticipantIDs | proquest_journals_3256678029 crossref_citationtrail_10_1007_s11831_022_09841_5 crossref_primary_10_1007_s11831_022_09841_5 springer_journals_10_1007_s11831_022_09841_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | State of the Art Reviews |
| PublicationTitle | Archives of computational methods in engineering |
| PublicationTitleAbbrev | Arch Computat Methods Eng |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11):e00938. ISSN 2405-8440. https://doi.org/10.1016/j.heliyon.2018.e00938 DaiKGaoXEstimating antiwear properties of lubricant additives using a quantitative structure tribo-ability relationship model with back propagation neural networkWear201330624224710.1016/j.wear.2012.11.045 MathivananKThirumalaikumarasamyDAshokkumarMOptimization and prediction of AZ91D stellite-6 coated magnesium alloy using Box Behnken design and hybrid deep belief networkJ Market Res2021152953296910.1016/j.jmrt.2021.09.069 WangSChenQRenXYuHNeural network-based adaptive funnel sliding mode control for servo mechanisms with friction compensationNeurocomputing2020377162610.1016/j.neucom.2019.10.006 PrezeljJMurovecJHuemer-KalsSIdentification of different manifestations of nonlinear stick–slip phenomena during creep groan braking noise by using the unsupervised learning algorithms k-means and self-organizing mapMech Syst Signal Process202210.1016/j.ymssp.2021.108349 RosenkranzAMarianMProfitoFJThe use of artificial intelligence in tribology—a perspectiveLubricants2021911110.3390/lubricants9010002 DaineseACharm and beauty of the Large Hadron ColliderJ Phys G200510.1088/0954-3899/31/6/019 SunWGaoHTanSWear detection of WC-Cu based impregnated diamond bit matrix based on SEM image and deep learningInt J Refract Metal Hard Mater202110.1016/j.ijrmhm.2021.105530 JonesSPJansenRFusaroRLPreliminary investigation of neural network techniques to predict tribological propertiesTribol Trans19974031232010.1080/10402009708983660 KavimaniVPrakashKSTribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approachJ Phys Chem Solids201711040941910.1016/j.jpcs.2017.06.028 AltayOGurgencTUlasMPrediction of wear loss quantities of ferro-alloy coating using different machine learning algorithmsFriction2020810711410.1007/s40544-018-0249-z PatiPRSatapathyATriboperformance analysis of coatings of LD slag premixed with TiO2 using experimental design and ANNTribol Trans20155834935610.1080/10402004.2014.971995 GuptaGSatapathyAStudies on erosion behavior of plasma sprayed coatings of glass microspheres premixed with Al2O3 particlesAdv Tribol201410.1155/2014/763601 Vapnik VN, Chervonenkis AY (2015) On the uniform convergence of relative frequencies of events to their probabilities. Measures of Complexity: Festschrift for Alexey Chervonenkis XVI:11–30. https://doi.org/10.1007/978-3-319-21852-6_3 ParikhHHGohilPPExperimental investigation and prediction of wear behavior of cotton fiber polyester compositesFriction2017518319310.1007/s40544-017-0145-y ReddyASAgarwalPKChandSApplication of artificial neural networks for the fault detection and diagnosis of active magnetic bearingsInt J Mechatron Autom2018613014210.1504/IJMA.2018.094489 AbdelbaryAAbouelwafaMNel FahhamIMEvaluation and prediction of the effect of load frequency on the wear properties of pre-cracked nylon 66Friction2014224025410.1007/s40544-014-0044-4 KankarPKSharmaSCHarshaSPRolling element bearing fault diagnosis using wavelet transformNeurocomputing2011741638164510.1016/j.neucom.2011.01.021 GangwarSPathakVKDry sliding wear characteristics evaluation and prediction of vacuum casted marble dust (MD) reinforced ZA-27 alloy composites using hybrid improved bat algorithm and ANNMater Today Commun20202510161510.1016/j.mtcomm.2020.101615 RashmiWOsamaMKhalidMTribological performance of nanographite-based metalworking fluid and parametric investigation using artificial neural networkInt J Adv Manuf Technol201910435937410.1007/s00170-019-03701-6 TranAFurlanJMPagalthivarthiKVWearGP: a computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processesWear2019422–42392610.1016/j.wear.2018.12.081 ZhangGWangJChangSPredicting running-in wear volume with a SVMR-based model under a small amount of training samplesTribol Int201812834935510.1016/j.triboint.2018.07.045 BarberDLatent linear modelsBayesian Reason Mach Learn201210.1017/cbo9780511804779.026 AleksendrićDNeural network prediction of brake friction materials wearWear201026811712510.1016/j.wear.2009.07.006 LiHYuHCaoNApplications of artificial intelligence in oil and gas developmentArch Comput Methods Eng20212893794910.1007/s11831-020-09402-8 ISO 19291:2016 International standard, Lubricants—Determination of tribological quantities for oils and greases – Tribological test in the translator oscillation apparatus, 2016 PerčićMZelenikaSMezićIArtificial intelligence-based predictive model of nanoscale friction using experimental dataFriction202191726174810.1007/s40544-021-0493-5 XuXZhaoZXuXMachine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven modelsKnowl-Based Syst202019010532410.1016/j.knosys.2019.105324 MujtabaMAMasjukiHHKalamMAUltrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine—Cuckoo searchRenew Energy202015820221410.1016/j.renene.2020.05.158 JamesGWittenDHastieTTibshiraniRAn introduction to statistical learning2000New YorkSpringer10.1007/978-1-4614-7138-71281.62147 XuBWenGZhangZChenFWear particle classification using genetic programming evolved featuresLubr Sci20183022924610.1002/ls.1411 MojenaMARRocaASZamoraRSNeural network analysis for erosive wear of hard coatings deposited by thermal spray: Influence of microstructure and mechanical propertiesWear2017376–37755756510.1016/j.wear.2016.12.035 ParsazadehMFisherGMcDonaldAHoganJComputational investigation of the effect of microstructure on the scratch resistance of tungsten-carbide nickel composite coatingsWear202110.1016/j.wear.2021.203888 GangwarSSharmaSPathakVKPreliminary evaluation and wear properties optimization of boron carbide and molybdenum disulphide reinforced copper metal matrix composite using adaptive neuro-fuzzy inference systemJ Bio- Tribo-Corros202110.1007/s40735-020-00444-w ȘtefanovTMarakaHVRMeagherPThin film metallic glass broad-spectrum mirror coatings for space telescope applicationsJ Non-Cryst Solids X2020710005010.1016/j.nocx.2020.100050 TrappenbergTPFundamentals of computational neuroscience2002OxfordOxford University Press1179.92013 LenzBHasselbruchHMehnerAAutomated evaluation of Rockwell adhesion tests for PVD coatings using convolutional neural networksSurf Coat Technol202038512536510.1016/j.surfcoat.2020.125365 MengFGongJYangSStudy on tribo-dynamic behaviors of rolling bearing-rotor system based on neural networkTribol Int202115610682910.1016/j.triboint.2020.106829 TsoumakasGA survey of machine learning techniques for food sales predictionArtif Intell Rev20195244144710.1007/s10462-018-9637-z QiXWangYWangCZhangRMicrostructure and performance of nano-WC particle-strengthened Ni coatings by electro-brush platingJ Mater Eng Perform2018276069607910.1007/s11665-018-3684-0 CanbulutFYildirimŞSinanoǧluCDesign of an artificial neural network for analysis of frictional power loss of hydrostatic slipper bearingsTribol Lett20041788789910.1007/s11249-004-8097-6 Rosenblatt F (1957) The Perceptron—a perceiving and recognizing automaton. Report 85, Cornell Aeronautical Laboratory 460–461. Albert BJ. Novikoff (1963) On convergence proofs for perceptrons. Station AHAU Arlington Hau Station Unclassified. Stanford research institute SRI Project No. 3605 WangSKhatirSAbdel WahabMProper orthogonal decomposition for the prediction of fretting wear characteristicsTribol Int202015210654510.1016/j.triboint.2020.106545 SadeghHMehdiANMehdiAClassification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithmTribol Int20169542643410.1016/j.triboint.2015.11.045 LiuMYuZWuHImplementation of artificial neural networks for forecasting the HVOF spray process and HVOF sprayed coatingsJ Therm Spray Technol2021301329134310.1007/s11666-021-01213-y RaoTBPonugotiGRCharacterization, prediction, and optimization of dry sliding wear behaviour of Al6061/WC compositesTrans Indian Inst Met20217415917810.1007/s12666-020-02107-3 TimurMAydinFAnticipating the friction coefcient of friction materials used in automobiles by means of machine learning without using a test instrumentTurk J Electr Eng Comput Sci2013211440145410.3906/elk-1108-19 WangYGangLLiuSCuiYCoupling fractal model for fretting wear on rough contact surfacesJ Tribol202114311310.1115/1.4049256 BhaumikSPathakSDDeySDattaSArtificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological propertiesTribol Int201914010581310.1016/j.triboint.2019.06.006 ZhangHHafeziMDongGLiuYA design of coverage area for textured surface of sliding journal bearing based on genetic algorithmJ Tribol20181401810.1115/1.4039958 NaphonPArisariyawongTWiriyasartSSrichatAANFIS for analysis friction factor and Nusselt number of pulsating nanofluids flow in the fluted tube under magnetic fieldCase Stud Therm Eng20201810060510.1016/j.csite.2020.100605 Fereshteh-SanieeFNourbakhshSHPezeshkiSMEstimation of flow curve and friction coefficient by means of a one-step ring test using a neural network coupled with FE simulationsJ Mech Sci Technol20122615316010.1007/s12206-011-1020-9 DanaherSDattaSWaddleIHackneyPErosion modelling using Bayesian regulated artificial neural networksWear200425687988810.1016/j.wear.2003.08.006 SahaDManickavasaganAMachine learning techniques for analysis of hyperspectral images to determine quality of food products: a reviewCurr Res Food Sci20214284410.1016/j.crfs.2021.01.002 HonKKNgCWChanPWMachine learning based multi-index prediction of aviation turbulence over the Asia-PacificMach Learn Appl2020210000810.1016/j.mlwa.2020.100008 ProstJCihak-BayrUAdina NeacşuISemi-supervised classification of the state of operation in self-lubricating journal bearings using a random forest classif TP Trappenberg (9841_CR59) 2002 RA Kanai (9841_CR296) 2016; 138 AF Kanta (9841_CR242) 2008; 17 T Sahraoui (9841_CR245) 2004; 58 TA Choudhury (9841_CR252) 2011; 205 Z Li (9841_CR291) 2012; 47 H Zhang (9841_CR210) 2017; 139 Z Jiang (9841_CR155) 2007; 67 9841_CR89 S Li (9841_CR113) 2019; 136 A Dainese (9841_CR138) 2005 NY Liang (9841_CR69) 2006; 17 K Hartz-Behrend (9841_CR256) 2016; 25 W Sun (9841_CR258) 2016; 69 S Katoch (9841_CR130) 2019; 140 9841_CR81 K Bobzin (9841_CR279) 2021 S Arif (9841_CR175) 2018 T Kolodziejczyk (9841_CR319) 2010; 268 O Oyebode (9841_CR67) 2018; 32 J Graser (9841_CR29) 2018; 30 L Gan (9841_CR9) 2020; 153 9841_CR227 Y Peng (9841_CR168) 2017; 392–393 P Podsiadlo (9841_CR152) 2005; 38 J Liu (9841_CR141) 2010; 4 D Aleksendric (9841_CR103) 2006; 261 S Schwarz (9841_CR330) 2021 G Boidi (9841_CR209) 2020 X Qiao (9841_CR264) 2019; 358 A Finke (9841_CR276) 2021 B Tang (9841_CR84) 2017; 241 Z Taha (9841_CR308) 2010; 50 9841_CR77 9841_CR75 B Basu (9841_CR211) 1998; 10 LA Bronshteyn (9841_CR2) 2011; 67 MA Mujtaba (9841_CR231) 2020; 158 JH Holland (9841_CR85) 2017; 679 J Zhu (9841_CR107) 2009; 30 SP Jones (9841_CR146) 1997; 40 S Al-Saeedi (9841_CR223) 2018; 61 D Aleksendrić (9841_CR33) 2008; 222 T Thankachan (9841_CR176) 2018 J Pang (9841_CR238) 2021 G Tsoumakas (9841_CR16) 2019; 52 N Wang (9841_CR232) 2020; 72 J Wiens (9841_CR14) 2018; 66 S Sardar (9841_CR111) 2021; 55 J Echávarri Otero (9841_CR221) 2017; 29 S Aziz (9841_CR10) 2021 H Cetinel (9841_CR254) 2012; 64 CP Gomes (9841_CR79) 2019; 44 II Argatov (9841_CR189) 2021; 235 TB Rao (9841_CR187) 2021; 74 M Kannaiyan (9841_CR181) 2020; 9 X Gao (9841_CR224) 2019 I Tzanakis (9841_CR3) 2012; 16 LA Gyurova (9841_CR106) 2010; 268 Z Zhang (9841_CR102) 2002; 252 RB Heimann (9841_CR250) 2010; 19 BS Ünlü (9841_CR320) 2012; 64 F Alambeigi (9841_CR200) 2016; 84 S Dhanasekaran (9841_CR153) 2007; 262 Q Qiao (9841_CR192) 2021; 476 PK Kankar (9841_CR289) 2011; 38 A Kurdi (9841_CR41) 2020 B Wu (9841_CR92) 2021; 143 N Shrivastava (9841_CR28) 2018; 25 D Aleksendrić (9841_CR94) 2009; 42 Z Wang (9841_CR282) 2021; 30 W Sun (9841_CR145) 2021 F Meng (9841_CR327) 2021; 156 K Bobzin (9841_CR263) 2018; 349 M Liu (9841_CR267) 2019; 378 S Bhaumik (9841_CR240) 2019; 140 M Liu (9841_CR281) 2021; 30 H Chang (9841_CR302) 2020; 147 S Gangwar (9841_CR188) 2021 9841_CR90 9841_CR134 L Roy (9841_CR321) 2013 S Wang (9841_CR185) 2020; 460–461 A Vinoth (9841_CR182) 2020; 54 L Wang (9841_CR248) 2007; 201 JP Patel (9841_CR294) 2016; 144 F Xu (9841_CR297) 2019; 233 MH Müser (9841_CR136) 2003; 126 D Silver (9841_CR57) 2016; 529 R Karri (9841_CR15) 2021; 30 IB Tijani (9841_CR110) 2012; 25 P Pradhan (9841_CR195) 2021; 30 J Zhu (9841_CR271) 2020; 394 MO Shabani (9841_CR170) 2018; 71 U Nirmal (9841_CR100) 2010; 43 AH Jackson (9841_CR7) 1988 MAR Mojena (9841_CR259) 2017; 376–377 T Ștefanov (9841_CR26) 2020; 7 D Aleksendrić (9841_CR104) 2007; 262 X LiuJie (9841_CR109) 2007; 189 K Reza Kashyzadeh (9841_CR262) 2017; 17 M Timur (9841_CR114) 2013; 21 NP Belfiore (9841_CR156) 2007; 40 S Ray (9841_CR105) 2009; 266 I Argatov (9841_CR40) 2019; 5 M Perčić (9841_CR120) 2021; 9 T Wang (9841_CR229) 2020; 142 M Ulas (9841_CR270) 2020; 8 MA Chowdhury (9841_CR112) 2015 Y Wang (9841_CR235) 2019; 133 A Suresh (9841_CR249) 2009; 266 MS Hasan (9841_CR101) 2021; 161 S Wang (9841_CR125) 2020; 377 B Sattari Baboukani (9841_CR131) 2020; 68 NB Jones (9841_CR287) 2000; 6 B Roy (9841_CR329) 2021; 235 A Garre (9841_CR17) 2020; 7 Y Wang (9841_CR196) 2021; 143 X Li (9841_CR34) 2016 9841_CR277 X Hu (9841_CR203) 2021 HI Kurt (9841_CR164) 2015 AO Kurban (9841_CR315) 2003; 36 MM Hsu (9841_CR324) 2015; 18 MI de Barros Bouchet (9841_CR140) 2015; 87 A Abdelhalim (9841_CR78) 2009; 2009 A Borjali (9841_CR179) 2019; 133 Y Peng (9841_CR180) 2019; 138 RG Desavale (9841_CR310) 2013 VS Dave (9841_CR65) 2014; 42 A Abdelbary (9841_CR161) 2014; 2 HH Parikh (9841_CR169) 2017; 5 II Argatov (9841_CR178) 2019; 138 F Fereshteh-Saniee (9841_CR115) 2012; 26 L Bornmann (9841_CR48) 2018; 114 FM Meng (9841_CR214) 2007; 221 N Wang (9841_CR316) 2004; 17 A Tran (9841_CR177) 2019; 422–423 FP Bowden (9841_CR91) 1951; 19 K Konno (9841_CR212) 2003; 36 R Egala (9841_CR183) 2021; 9 A Skariah (9841_CR305) 2021; 154 N Mokhtari (9841_CR304) 2020; 8 N Pillai (9841_CR36) 2018; 12 D Mehra (9841_CR143) 2018; 5 PK Kankar (9841_CR286) 2012; 15 K Velten (9841_CR149) 2000; 33 Y Ye (9841_CR202) 2021; 474–475 R Polikar (9841_CR87) 2012 P Naphon (9841_CR74) 2020; 18 N Sihag (9841_CR44) 2020; 275 VI Vitanov (9841_CR244) 2001; 140 G Zhang (9841_CR173) 2018; 128 J Wang (9841_CR58) 2021; 28 P He (9841_CR21) 2022; 307 WS McCulloch (9841_CR60) 1943; 5 DY Dhande (9841_CR193) 2021; 102 J Prezelj (9841_CR56) 2022 R Bhardwaj (9841_CR13) 2017; 2 O Altay (9841_CR265) 2020; 8 EW Bucholz (9841_CR127) 2012; 47 A Sircar (9841_CR19) 2021; 6 KK Hon (9841_CR22) 2020; 2 L Lv (9841_CR23) 2021; 12 X Gao (9841_CR220) 2015; 137 M Gohari (9841_CR323) 2017; 7 Y Yin (9841_CR199) 2014; 66 JB Long (9841_CR269) 2019; 72 D Jia (9841_CR230) 2019; 9 CM Lin (9841_CR253) 2012; 21 PK Kankar (9841_CR290) 2011; 74 K Zhang (9841_CR225) 2019; 134 Y Ao (9841_CR150) 2002; 252 J Hierrezuelo (9841_CR312) 1995; 30 TA Choudhury (9841_CR32) 2012; 21 D Aleksendrić (9841_CR198) 2010; 268 NB Shaik (9841_CR234) 2021; 7 F Canbulut (9841_CR313) 2004; 17 W Rashmi (9841_CR228) 2019; 104 BK Sharma (9841_CR213) 2004; 16 SPR Sahu (9841_CR251) 2010; 53 H Çetinel (9841_CR246) 2006; 261 SD Saravanan (9841_CR204) 2015; 56 A Rosenkranz (9841_CR39) 2021; 9 S Fan (9841_CR194) 2021; 35 S Bhaumik (9841_CR208) 2019; 241 P Lu (9841_CR283) 2021; 159 A Umeda (9841_CR147) 1998; 216 J Moder (9841_CR236) 2018 TM Shea (9841_CR239) 2003; 46 X Zhang (9841_CR284) 2018; 260 R Bammidi (9841_CR311) 2019; 5 PK Padhi (9841_CR160) 2013; 56 P Senthil Kumar (9841_CR162) 2014; 57 NR Sangwa (9841_CR42) 2018; 29 H Liu (9841_CR167) 2016; 2016 G Gupta (9841_CR255) 2014 YR Hwang (9841_CR285) 2009; 23 K Genel (9841_CR151) 2003; 363 T Waqar (9841_CR295) 2016; 86 RGS Asthana (9841_CR86) 2000 K Holmberg (9841_CR4) 2013; 62 L Tyagi (9841_CR122) 2021; 7 M Subrahmanyam (9841_CR306) 1997; 30 L Gorasso (9841_CR322) 2014 KM Saridakis (9841_CR309) 2012; 226 IB Tijani (9841_CR128) 2011; 31 J Schmidhuber (9841_CR61) 2015; 61 H Snyder (9841_CR43) 2019; 104 H Li (9841_CR20) 2021; 28 Z Jiang (9841_CR108) 2008; 68 T Sreekumar Rajesh (9841_CR261) 2018; 5 HS Kumar (9841_CR293) 2013; 64 RR Bush (9841_CR53) 1951; 58 A Shebani (9841_CR174) 2018; 406–407 T Wuest (9841_CR5) 2016; 4 J Echávarri Otero (9841_CR217) 2014; 26 Z Peng (9841_CR148) 1998; 5 S Jiang (9841_CR82) 2012; 39 H Zhang (9841_CR325) 2018; 140 KH Chung (9841_CR139) 2014; 15 S Wang (9841_CR184) 2020; 152 J Agee (9841_CR45) 2009; 22 H Sadegh (9841_CR30) 2016; 95 Y Tikhamarine (9841_CR63) 2020; 27 L Breiman (9841_CR80) 2001; 45 H Xie (9841_CR121) 2020; 142 JM Griffin (9841_CR129) 2017; 85 X Gao (9841_CR222) 2016; 138 S Kamnis (9841_CR268) 2019; 28 F König (9841_CR303) 2021 R Liu (9841_CR76) 2018; 108 T Nasir (9841_CR126) 2010; 224 DG Eckold (9841_CR163) 2015; 1–2 K Holmberg (9841_CR49) 2017; 5 Z Zhang (9841_CR292) 2013; 24 S Bhaumik (9841_CR207) 2017 C Magazzino (9841_CR12) 2021; 72 MR Hosseini (9841_CR47) 2018; 87 S Gangwar (9841_CR144) 2020; 25 YS Dambatta (9841_CR226) 2019; 41 F Canbulut (9841_CR317) 2004; 18 B Lenz (9841_CR243) 2020; 385 KP Katsaros (9841_CR326) 2021; 33 D Aleksendrić (9841_CR98) 2010; 43 R Ramesh (9841_CR154) 2007; 16 R Jaza (9841_CR31) 2021; 153 S Wirsching (9841_CR328) 2021; 9 S Wang (9841_CR142) 2019; 426–427 G Xiao (9841_CR99) 2010; 43 K Ravi Kumar (9841_CR117) 2012; 6 X Qi (9841_CR266) 2018; 27 X Wang (9841_CR37) 2021; 34 JO Valderrama (9841_CR215) 2011; 28 O Reynolds (9841_CR205) 1983; 177 KS Prakash (9841_CR166) 2017; 27 AA Sosimi (9841_CR191) 2020; 32 9841_CR1 X Jia (9841_CR24) 2021; 268 W Grzegorzek (9841_CR116) 2014; 228 A Senatore (9841_CR97) 2011; 44 A Bustillo (9841_CR201) 2018; 53 D Saha (9841_CR18) 2021; 4 X Liu (9841_CR46) 2013; 64 MS Hasan (9841_CR95) 2022; 144 JR Jang (9841_CR73) 1995; 83 B Stojanović (9841_CR133) 2018 K Dai (9841_CR216) 2013; 306 M Parsazadeh (9841_CR275) 2021 KK Ikpambese (9841_CR123) 2018; 40 PR Pati (9841_CR257) 2015; 58 W Lu (9841_CR218) 2014; 57 T Banerjee (9841_CR190) 2020; 73 AS Reddy (9841_CR299) 2018; 6 W Uczak de Goes (9841_CR27) 2020; 396 H Moayedi (9841_CR119) 2019; 31 M Zakaulla (9841_CR124) 2020; 26 G Binnig (9841_CR135) 1986; 56 G Hinton (9841_CR71) 2012; 29 D Li (9841_CR118) 2017; 38 B Xu (9841_CR171) 2018; 30 W Xia (9841_CR83) 2016; 27 M Agarwal (9841_CR273) 2021; 168 E Durak (9841_CR318) 2008; 60 9841_CR64 CM Bishop (9841_CR68) 1995 FS Rashed (9841_CR157) 2009; 42 M Sharma (9841_CR158) 2011; 43 X Xu (9841_CR300) 2020; 190 9841_CR62 F Aydin (9841_CR186) 2021; 31 S Danaher (9841_CR197) 2004; 256 E Alpaydin (9841_CR55) 2021 9841_CR206 G Zhang (9841_CR241) 2006; 200 CF Han (9841_CR298) 2018; 126 K Mathivanan (9841_CR278) 2021; 15 J da Wu (9841_CR288) 2008; 34 C Humelnicu (9841_CR237) 2019 M Liu (9841_CR280) 2021; 30 V Kavimani (9841_CR172) 2017; 110 MS Mahdavinejad (9841_CR11) 2018; 4 Z Guo (9841_CR301) 2013; 55 G James (9841_CR8) 2000 A Becker (9841_CR274) 2021 H Canales (9841_CR272) 2020; 401 S Vijayakumar (9841_CR159) 2012; 6 G Gupta (9841_CR260) 2016; 59 J Schmidt (9841_CR88) 2019 TDB Jacobs (9841_CR137) 2010; 39 9841_CR54 T Wang (9841_CR132) 2021; 33 Z Wan (9841_CR233) 2021; 773 S Kiranyaz (9841_CR66) 2021; 151 H Chen (9841_CR25) 2020 M Marian (9841_CR38) 2021; 9 LA Gyurova (9841_CR96) 2011; 44 9841_CR51 9841_CR52 G Kronberger (9841_CR93) 2018; 69 9841_CR50 J Prost (9841_CR314) 2021 LV Markova (9841_CR35) 2016; 37 L Haviez (9841_CR165) 2015; 28 GP Stachowiak (9841_CR307) 2006; 22 D Barber (9841_CR6) 2012 9841_CR219 M der Jean (9841_CR247) 2006; 201 Y Zheng (9841_CR72) 2020; 409 RC Deo (9841_CR70) 2019; 104 |
| References_xml | – reference: GorassoLWangLJournal bearing optimization using nonsorted genetic algorithm and artificial bee colony algorithmAdv Mech Eng201410.1155/2014/213548 – reference: KurtHIOduncuogluMApplication of a neural network model for prediction of wear properties of ultrahigh molecular weight polyethylene compositesInt J Polym Sci201510.1155/2015/315710 – reference: KantaAFMontavonGVardelleMArtificial neural networks vs. fuzzy logic: simple tools to predict and control complex processes—application to plasma spray processesJ Therm Spray Technol20081736537610.1007/s11666-008-9183-3 – reference: Tallian TE (1988) A computerized expert system for tribological failure diagnosis. 111: https://doi.org/10.1115/1.3261896 – reference: ZakaullaMParveenFAhmadNArtificial neural network based prediction on tribological properties of polycarbonate composites reinforced with graphene and boron carbide particleMater Today202026296304 – reference: BushRRMostellerFA mathematical model for simple learningPsychol Rev19515831332310.1037/h0054388 – reference: XuFWai Tat TSE PPFangYJLiangJQA fault diagnosis method combined with compound multiscale permutation entropy and particle swarm optimization–support vector machine for roller bearings diagnosisProc Inst Mech Eng Part J201923361562710.1177/1350650118788929 – reference: VeltenKReinickeRFriedrichKWear volume prediction with artificial neural networksTribol Int20003373173610.1016/S0301-679X(00)00115-8 – reference: SahraouiTGuessasmaSFeninecheNEFriction and wear behaviour prediction of HVOF coatings and electroplated hard chromium using neural computationMater Lett20045865466010.1016/j.matlet.2003.06.010 – reference: PolikarREnsembleMach Learn201210.1007/978-1-4419-9326-7_11040.68684 – reference: ZhangHHafeziMDongGLiuYA design of coverage area for textured surface of sliding journal bearing based on genetic algorithmJ Tribol20181401810.1115/1.4039958 – reference: MagazzinoCMeleMMorelliGSchneiderNThe nexus between information technology and environmental pollution: application of a new machine learning algorithm to OECD countriesUtil Policy20217210125610.1016/j.jup.2021.101256 – reference: HintonGDengLYuDDeep neural networks for acoustic modeling in speech recognition: the shared views of four research groupsIEEE Signal Process Mag201229829710.1109/MSP.2012.2205597 – reference: HosseiniMRMartekIZavadskasEKCritical evaluation of off-site construction research: a Scientometric analysisAutom Constr20188723524710.1016/j.autcon.2017.12.002 – reference: PrezeljJMurovecJHuemer-KalsSIdentification of different manifestations of nonlinear stick–slip phenomena during creep groan braking noise by using the unsupervised learning algorithms k-means and self-organizing mapMech Syst Signal Process202210.1016/j.ymssp.2021.108349 – reference: PillaiNKarthikeyanRDavimJPHeat treatment effects on tribological characteristics for AISI A8 tool steel and development of wear mechanism maps using K means clustering and neural networksTribology201812445610.1080/17515831.2018.1437335 – reference: HumelnicuCCiortanSAmortilaVArtificial neural network-based analysis of the tribological behavior of vegetable oil-diesel fuel mixturesLubricants201910.3390/lubricants7040032 – reference: WangYGangLLiuSCuiYCoupling fractal model for fretting wear on rough contact surfacesJ Tribol202114311310.1115/1.4049256 – reference: TikhamarineYMalikASouag-GamaneDArtificial intelligence models versus empirical equations for modeling monthly reference evapotranspirationEnviron Sci Pollut Res202027300013001910.1007/s11356-020-08792-3 – reference: WangSWuTHShaoTPengZXIntegrated model of BP neural network and CNN algorithm for automatic wear debris classificationWear2019426–4271761177010.1016/j.wear.2018.12.087 – reference: XiaWMitaYShibataTA nearest neighbor classifier employing critical boundary vectors for efficient on-chip template reductionIEEE Trans Neural Netw Learn Syst20162710941107349794610.1109/TNNLS.2015.2437901 – reference: Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11):e00938. ISSN 2405-8440. https://doi.org/10.1016/j.heliyon.2018.e00938 – reference: de Barros BouchetMIMattaCVacherBEnergy filtering transmission electron microscopy and atomistic simulations of tribo-induced hybridization change of nanocrystalline diamond coatingCarbon20158731732910.1016/j.carbon.2015.02.041 – reference: WangSKhatirSAbdel WahabMProper orthogonal decomposition for the prediction of fretting wear characteristicsTribol Int202015210654510.1016/j.triboint.2020.106545 – reference: WangSChenQRenXYuHNeural network-based adaptive funnel sliding mode control for servo mechanisms with friction compensationNeurocomputing2020377162610.1016/j.neucom.2019.10.006 – reference: BreimanLRandom forestsMach Learn20014553210.1023/A:10109334043241007.68152 – reference: MokhtariNPelhamJGNowoiskySFriction and wear monitoring methods for journal bearings of geared turbofans based on acoustic emission signals and machine learningLubricants2020812710.3390/lubricants8030029 – reference: ArgatovIIChaiYSAn artificial neural network supported regression model for wear rateTribol Int201913821121410.1016/j.triboint.2019.05.040 – reference: SahaDManickavasaganAMachine learning techniques for analysis of hyperspectral images to determine quality of food products: a reviewCurr Res Food Sci20214284410.1016/j.crfs.2021.01.002 – reference: BammidiRPrasadKSRaoPSStudies on features, physical, mechanical, tribological properties and applications of Ti-6Al-4V in aerospace industryInt J Sci Rep2019518710.18203/issn.2454-2156.IntJSciRep20192801 – reference: PradhanPSatapathyAAnalysis of dry sliding wear behavior of polyester filled with walnut shell powder using response surface method and neural networksJ Mater Eng Perform2021304012402910.1007/s11665-021-05802-4 – reference: PengZKirkTBAutomatic wear-particle classification using neural networksTribol Lett1998524925710.1023/A:1019126732337 – reference: YeYSunYShiDA wheel wear prediction model of non-Hertzian wheel-rail contact considering wheelset yaw: comparison between simulated and field test resultsWear2021474–47520371510.1016/j.wear.2021.203715 – reference: HierrezueloJCarneroCSliding and rolling: the physics of a rolling ballPhys Educ19953017718210.1088/0031-9120/30/3/009 – reference: GohariMIntegration intelligent estimators to disturbance observer to enhance robustness of active magnetic bearing controllerInt J Control Sci Eng20177253110.5923/j.control.20170702.01 – reference: KatochSSehgalRSinghVImprovement of tribological behavior of H-13 steel by optimizing the cryogenic-treatment process using evolutionary algorithmsTribol Int201914010589510.1016/j.triboint.2019.105895 – reference: AgarwalMKumar SinghMSrivastavaRGautamRKMicrostructural measurement and artificial neural network analysis for adhesion of tribolayer during sliding wear of powder-chip reinforcement based compositesMeasurement202116810841710.1016/j.measurement.2020.108417 – reference: UmedaASugimuraJYamamotoYCharacterization of wear particles and their relations with sliding conditionsWear199821622022810.1016/S0043-1648(97)00260-3 – reference: BelfioreNPIannielloFStocchiDA hybrid approach to the development of a multilayer neural network for wear and fatigue prediction in metal formingTribol Int2007401705171710.1016/j.triboint.2007.01.008 – reference: AleksendrićDBartonDCVasićBPrediction of brake friction materials recovery performance using artificial neural networksTribol Int2010432092209910.1016/j.triboint.2010.05.013 – reference: HolmbergKSiilastoRLaitinenTGlobal energy consumption due to friction in paper machinesTribol Int201362587710.1016/j.triboint.2013.02.003 – reference: Mizutani E, Dreyfus SE, Nishio K (2000) On derivation of MLP backpropagation from the Kelley-Bryson optimal-control gradient formula and its application. In: Proceedings of the International Joint Conference on Neural Networks. IEEE, pp 167–172. https://doi.org/10.1109/IJCNN.2000.857892 – reference: TzanakisIHadfieldMThomasBFuture perspectives on sustainable tribologyRenew Sustain Energy Rev2012164126414010.1016/j.rser.2012.02.064 – reference: Reza KashyzadehKMalekiEExperimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steelJ Fail Anal Prev2017171276128710.1007/s11668-017-0362-8 – reference: MengFGongJYangSStudy on tribo-dynamic behaviors of rolling bearing-rotor system based on neural networkTribol Int202115610682910.1016/j.triboint.2020.106829 – reference: DesavaleRGVenkatachalamRChavanSPAntifriction bearings damage analysis using experimental data based modelsJ Tribol201310.1115/1.4024638 – reference: BronshteynLAKreinerJHEnergy efficiency of industrial oils©Tribol Lubr Technol201167424810.1080/10402009908982281 – reference: GaoXWangZWangTBPNN-QSTR modeling to develop isosteres as sulfur-freeAnti-Wear Lubr Addit J Tribol201910.1115/1.4040836 – reference: WangYLiuZZhaoYResearch on an ANN system for monitoring hydrostatic turntable performance based on ODNE trainingTribol Int2019133213110.1016/j.triboint.2018.12.041 – reference: ZhuJWangXKouLPrediction of control parameters corresponding to in-flight particles in atmospheric plasma spray employing convolutional neural networksSurf Coat Technol202039412586210.1016/j.surfcoat.2020.125862 – reference: QiaoQHeHYuJApplicability of machine learning on predicting the mechanochemical wear of the borosilicate and phosphate glassWear202147620372110.1016/j.wear.2021.203721 – reference: ProstJCihak-BayrUAdina NeacşuISemi-supervised classification of the state of operation in self-lubricating journal bearings using a random forest classifierLubricants202110.3390/lubricants9050050 – reference: Zhi Z, Xiaohui L (2014) Acoustic emission monitoring for film thickness of mechanical seals based on feature dimension reduction and cascaded decision. In: Proceedings—2014 6th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2014, pp 64–70. https://doi.org/10.1109/ICMTMA.2014.201 – reference: SharmaMBijweJSinghKStudies for wear property correlation for carbon fabric-reinforced PES compositesTribol Lett20114326727310.1007/s11249-011-9805-7 – reference: LiuMYuZZhangYPrediction and analysis of high velocity oxy fuel (HVOF) sprayed coating using artificial neural networkSurf Coat Technol201937812498810.1016/j.surfcoat.2019.124988 – reference: LiuJieXDavimJPCardosoRPrediction on tribological behaviour of composite PEEK-CF30 using artificial neural networksJ Mater Process Technol200718937437810.1016/j.jmatprotec.2007.02.019 – reference: QiaoXWengWXLiQAcoustic emission monitoring and failure behavior discrimination of 8YSZ thermal barrier coatings under Vickers indentation testingSurf Coat Technol201935891392210.1016/j.surfcoat.2018.12.024 – reference: TangBHeHA local density-based approach for outlier detectionNeurocomputing201724117118010.1016/j.neucom.2017.02.039 – reference: WangLFangJCZhaoZYZengHPApplication of backward propagation network for forecasting hardness and porosity of coatings by plasma sprayingSurf Coat Technol20072015085508910.1016/j.surfcoat.2006.07.088 – reference: StojanovićBVenclABobićIExperimental optimisation of the tribological behaviour of Al/SiC/Gr hybrid composites based on Taguchi’s method and artificial neural networkJ Braz Soc Mech Sci Eng201810.1007/s40430-018-1237-y – reference: KarriRKawaiAThongYJMachine learning outperforms existing clinical scoring tools in the prediction of postoperative atrial fibrillation during intensive care unit admission after cardiac surgeryHeart Lung Circ2021301929193710.1016/j.hlc.2021.05.101 – reference: ShabaniMOShamsipourMMazaheryAPahlevaniZPerformance of ANFIS coupled with PSO in manufacturing superior wear resistant aluminum matrix nano compositesTrans Indian Inst Met2018712095210310.1007/s12666-017-1134-6 – reference: SardarSDeySDasDModelling of tribological responses of composites using integrated ANN-GA techniqueJ Compos Mater20215587389610.1177/0021998320960520 – reference: PerčićMZelenikaSMezićIArtificial intelligence-based predictive model of nanoscale friction using experimental dataFriction202191726174810.1007/s40544-021-0493-5 – reference: TranAFurlanJMPagalthivarthiKVWearGP: a computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processesWear2019422–42392610.1016/j.wear.2018.12.081 – reference: LiSShaoMDuanCTribological behavior prediction of friction materials for ultrasonic motors using Monte Carlo-based artificial neural networkJ Appl Polym Sci20191361810.1002/app.47157 – reference: Hagenbuchner M, Tsoi AC, Scarselli F, Zhang SJ (2018) A fully recursive perceptron network architecture. In: 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017—Proceedings 2018–Janua:1–8. https://doi.org/10.1109/SSCI.2017.8285325 – reference: KönigFSousCOuald ChaibAJacobsGMachine learning based anomaly detection and classification of acoustic emission events for wear monitoring in sliding bearing systemsTribol Int202110.1016/j.triboint.2020.106811 – reference: BhaumikSMathewBRDattaSComputational intelligence-based design of lubricant with vegetable oil blend and various nano friction modifiersFuel201924173374310.1016/j.fuel.2018.12.094 – reference: FanSZhangTGuoXWulamuAFFWR-Net: A feature fusion wear particle recognition network for wear particle classificationJ Mech Sci Technol2021351699171010.1007/s12206-021-0333-6 – reference: HuXSongJLiaoZMorphological residual convolutional neural network (M-RCNN) for intelligent recognition of wear particles from artificial jointsFriction202110.1007/s40544-021-0516-2 – reference: GriffinJMDiazFGeerlingEControl of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signalsMech Syst Signal Process2017851020103410.1016/j.ymssp.2016.09.016 – reference: AleksendrićDDubokaČFade performance prediction of automotive friction materials by means of artificial neural networksWear200726277879010.1016/j.wear.2006.08.013 – reference: SubrahmanyamMSujathaCUsing neural networks for the diagnosis of localized defects in ball bearingsTribol Int19973073975210.1016/S0301-679X(97)00056-X – reference: AlpaydinENeural networks and deep learningMach Learn202110.7551/mitpress/13811.003.0007 – reference: ÇetinelHÖztürkHÇelikEKarlikBArtificial neural network-based prediction technique for wear loss quantities in Mo coatingsWear20062611064106810.1016/j.wear.2006.01.040 – reference: EckoldDGDearnKDShepherdDETThe evolution of polymer wear debris from total disc arthroplastyBiotribology20151–2425010.1016/j.biotri.2015.04.002 – reference: TijaniIBWahyudiMTalibHAdaptive neuro-fuzzy inference system (ANFIS) for friction modelling and compensation in motion control systemInt J Model Simul201131324110.2316/Journal.205.2011.1.205-5285 – reference: ThankachanTSoorya PrakashKKamarthinMOptimizing the tribological behavior of hybrid copper surface composites using statistical and machine learning techniquesJ Tribol201810.1115/1.4038688 – reference: MujtabaMAMasjukiHHKalamMAUltrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine—Cuckoo searchRenew Energy202015820221410.1016/j.renene.2020.05.158 – reference: BarberDLatent linear modelsBayesian Reason Mach Learn201210.1017/cbo9780511804779.026 – reference: AltayOGurgencTUlasMPrediction of wear loss quantities of ferro-alloy coating using different machine learning algorithmsFriction2020810711410.1007/s40544-018-0249-z – reference: LiuHWeiHWeiLThe segmentation of wear particles images using J-segmentation algorithmAdv Tribol2016201611110.1155/2016/4931502 – reference: AbdelbaryAAbouelwafaMNel FahhamIMEvaluation and prediction of the effect of load frequency on the wear properties of pre-cracked nylon 66Friction2014224025410.1007/s40544-014-0044-4 – reference: BasuBSaxenaDKaulVPrediction of oxidation stability of inhibited base oils from chemical composition using an Artificial Neural Network (ANN)Lubr Sci19981012113410.1002/ls.3010100203 – reference: AbdelhalimATraoreIA new method for learning decision trees from rulesInt Conf Mach Learn Appl2009200969369810.1109/ICMLA.2009.25 – reference: MathivananKThirumalaikumarasamyDAshokkumarMOptimization and prediction of AZ91D stellite-6 coated magnesium alloy using Box Behnken design and hybrid deep belief networkJ Market Res2021152953296910.1016/j.jmrt.2021.09.069 – reference: Bao J, Tong M, Zhu Z, Yin Y (2012) Intelligent tribological forecasting model and system for disc brake. In: Proceedings of the 2012 24th Chinese Control and Decision Conference, CCDC 2012, pp 3870–3874. https://doi.org/10.1109/CCDC.2012.6243100 – reference: PodsiadloPStachowiakGWDevelopment of advanced quantitative analysis methods for wear particle characterization and classification to aid tribological system diagnosisTribol Int20053888789710.1016/j.triboint.2005.03.008 – reference: DhanasekaranSGnanamoorthyRAbrasive wear behavior of sintered steels prepared with MoS2 additionWear200726261762310.1016/j.wear.2006.07.006 – reference: Choudhury TA, Berndt CC, Man Z (2015) Modular implementation of artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray process. Engineering Applications of Artificial Intelligence. Volume 45, 2015, pp 57–70, ISSN 0952-1976. https://doi.org/10.1016/j.engappai.2015.06.015 – reference: da WuJChiangPHChangYWShiao Y jungYAn expert system for fault diagnosis in internal combustion engines using probability neural networkExpert Syst Appl2008342704271310.1016/j.eswa.2007.05.010 – reference: MüserMHUrbakhMRobbinsMOStatistical mechanics of static and low-velocity kinetic frictionAdv Chem Phys200312618727210.1002/0471428019.ch5 – reference: ChangHBorghesaniPPengZAutomated assessment of gear wear mechanism and severity using mould images and convolutional neural networksTribol Int202014710628010.1016/j.triboint.2020.106280 – reference: OyebodeOStretchDNeural network modeling of hydrological systems: a review of implementation techniquesNat Resour Model201832e12189391579610.1111/nrm.12189 – reference: BhaumikSDattaSPathakSDAnalyses of tribological properties of castor oil with various carbonaceous microand nano-friction modifiersJ Tribol201710.1115/1.4036379 – reference: KumarHSSrinivasa PaiPSriramNSVijayGSANN based evaluation of performance of wavelet transform for condition monitoring of rolling element bearingProcedia Eng20136480581410.1016/j.proeng.2013.09.156 – reference: MarkovaLVIntelligent method for monitoring the state of lubricating oilJ Friction Wear20163730831410.3103/S1068366616040115 – reference: Hartz-BehrendKSchaupJZierhutJScheinJControlling the twin wire arc spray process using artificial neural networks (ANN)J Therm Spray Technol201625212710.1007/s11666-015-0341-0 – reference: KavimaniVPrakashKSTribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approachJ Phys Chem Solids201711040941910.1016/j.jpcs.2017.06.028 – reference: BinnigGQuateCFGerberCAtomic force microscopePhys Rev Lett19865693093310.1103/PhysRevLett.56.930 – reference: WangTZhangXLiKYangSMechanical performance analysis of a piezoelectric ceramic friction damper and research of its semi-active control strategyStructures2021331510153110.1016/j.istruc.2021.04.100 – reference: KanaiRADesavaleRGChavanSPExperimental-based fault diagnosis of rolling bearings using artificial neural networkJ Tribol20161381910.1115/1.4032525 – reference: BanerjeeTDeySSekharAPDesign of alumina reinforced aluminium alloy composites with improved tribo-mechanical properties: a machine learning approachTrans Indian Inst Met2020733059306910.1007/s12666-020-02108-2 – reference: ParsazadehMFisherGMcDonaldAHoganJComputational investigation of the effect of microstructure on the scratch resistance of tungsten-carbide nickel composite coatingsWear202110.1016/j.wear.2021.203888 – reference: DeoRCŞahinMAdamowskiJFMiJUniversally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: a new approachRenew Sustain Energy Rev201910423526110.1016/j.rser.2019.01.009 – reference: WaqarTDemetgulMThermal analysis MLP neural network based fault diagnosis on worm gearsMeasurement201686566610.1016/j.measurement.2016.02.024 – reference: WangNTsaiCMAssessment of artificial neural network for thermohydrodynamic lubrication analysisInd Lubr Tribol2020721233123810.1108/ILT-03-2020-0109 – reference: IkpambeseKKLawrenceEAComparative analysis of multiple linear regression and artificial neural network for predicting friction and wear of automotive brake pads produced from palm kernel shellTribol Ind20184056557310.24874/ti.2018.40.04.05 – reference: WanZde WangQLiuDLiangJDiscovery of ester lubricants with low coefficient of friction on material surface via machine learningChem Phys Lett202177313858910.1016/j.cplett.2021.138589 – reference: ShebaniAIwnickiSPrediction of wheel and rail wear under different contact conditions using artificial neural networksWear2018406–40717318410.1016/j.wear.2018.01.007 – reference: BucholzEWKongCSMarchmanKRData-driven model for estimation of friction coefficient via informatics methodsTribol Lett20124721122110.1007/s11249-012-9975-y – reference: ChenHXuLAiWKernel functions embedded in support vector machine learning models for rapid water pollution assessment via near-infrared spectroscopySci Total Environ202010.1016/j.scitotenv.2020.136765 – reference: KurbanAOYildirimŞAnalysis of a hydrodynamic thrust bearing with elastic deformation using a recurrent neural networkTribol Int20033694394810.1016/S0301-679X(03)00090-2 – reference: XuBWenGZhangZChenFWear particle classification using genetic programming evolved featuresLubr Sci20183022924610.1002/ls.1411 – reference: McCullochWSPittsWA logical calculus of the ideas immanent in nervous activityBull Math Biophys194351151331038810.1007/BF024782590063.03860 – reference: AoYWangQJChenPSimulating the worn surface in a wear processWear2002252374710.1016/S0043-1648(01)00841-9 – reference: DaiKGaoXEstimating antiwear properties of lubricant additives using a quantitative structure tribo-ability relationship model with back propagation neural networkWear201330624224710.1016/j.wear.2012.11.045 – reference: WangZCaiSChenWAnalysis of critical velocity of cold spray based on machine learning method with feature selectionJ Therm Spray Technol2021301213122510.1007/s11666-021-01198-8 – reference: SangwaNRSangwanKSLeanness assessment of organizational performance: a systematic literature reviewJ Manuf Technol Manag20182976878810.1108/JMTM-09-2017-0196 – reference: GomesCPSelmanBGregoireJMArtificial intelligence for materials discoveryMRS Bull20194453854410.1557/mrs.2019.158 – reference: MahdavinejadMSRezvanMBarekatainMMachine learning for internet of things data analysis: a surveyDigit Commun Netw2018416117510.1016/j.dcan.2017.10.002 – reference: Tallian TE (1986) Tribological design decisions using computerized databases. 109:381–386. https://doi.org/10.1115/1.3261450 – reference: Uczak de GoesWMarkocsanNGuptaMThermal barrier coatings with novel architectures for diesel engine applicationsSurf Coat Technol202039612595010.1016/j.surfcoat.2020.125950 – reference: SihagNSangwanKSA systematic literature review on machine tool energy consumptionJ Clean Prod202027512312510.1016/j.jclepro.2020.123125 – reference: TimurMAydinFAnticipating the friction coefcient of friction materials used in automobiles by means of machine learning without using a test instrumentTurk J Electr Eng Comput Sci2013211440145410.3906/elk-1108-19 – reference: SunWGaoHTanSWear detection of WC-Cu based impregnated diamond bit matrix based on SEM image and deep learningInt J Refract Metal Hard Mater202110.1016/j.ijrmhm.2021.105530 – reference: DhandeDYPhateMRSinagaNComparative analysis of abrasive wear using response surface method and artificial neural networkJ Inst Eng2021102273710.1007/s40033-021-00250-9 – reference: AsthanaRGSEvolutionary algorithms and neural networks2000ChamSpringer – reference: GanLWangHYangZMachine learning solutions to challenges in finance: an application to the pricing of financial productsTechnol Forecast Soc Chang202015311992810.1016/j.techfore.2020.119928 – reference: ZhengYChenQFanJGaoXHierarchical convolutional neural network via hierarchical cluster validity based visual tree learningNeurocomputing202040940841910.1016/j.neucom.2020.05.095 – reference: KatsarosKPNikolakopoulosPGOn the tilting-pad thrust bearings hydrodynamic lubrication under combined numerical and machine learning techniquesLubr Sci20213315317010.1002/ls.1535 – reference: MarianMTremmelSCurrent trends and applications of machine learning in tribology—a reviewLubricants202198610.3390/LUBRICANTS9090086 – reference: KiranyazSAvciOAbdeljaberOInceTGabboujMInmanDJ1D convolutional neural networks and applications: a surveyMech Syst Signal Process2021151739810.1016/j.ymssp.2020.107398 – reference: GuptaGSatapathyAStudies on erosion behavior of plasma sprayed coatings of glass microspheres premixed with Al2O3 particlesAdv Tribol201410.1155/2014/763601 – reference: Wu X, Kumar V, Ross QJ, et al (2008) Top 10 algorithms in data mining. https://doi.org/10.1007/s10115-007-0114-2 – reference: AleksendrićDBartonDCNeural network prediction of disc brake performanceTribol Int2009421074108010.1016/j.triboint.2009.03.005 – reference: ChowdhuryMADebnathUKNuruzzamanDMIslamMMExperimental evaluation of erosion of gunmetal under asymmetrical shaped sand particleAdv Tribol201510.1155/2015/815179 – reference: ISO 14830:2019 International standard, Condition monitoring and diagnostics of machine systems – Tribology-based monitoring and diagnostics—Part 1: General requirements and guidelines, 2019 – reference: DurakESalmanÖKurbanoluCAnalysis of effects of oil additive into friction coefficient variations on journal bearing using artificial neural networkInd Lubr Tribol20086030931610.1108/00368790810902241 – reference: ReynoldsOOn the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oilPhilos Trans R Soc Lond198317713521710.1098/rstl.1886.0005 – reference: MoayediHHayatiSArtificial intelligence design charts for predicting friction capacity of driven pile in clayNeural Comput Appl2019317429744510.1007/s00521-018-3555-5 – reference: MojenaMARRocaASZamoraRSNeural network analysis for erosive wear of hard coatings deposited by thermal spray: Influence of microstructure and mechanical propertiesWear2017376–37755756510.1016/j.wear.2016.12.035 – reference: AleksendrićDNeural network prediction of brake friction materials wearWear201026811712510.1016/j.wear.2009.07.006 – reference: WangNChangYZApplication of the genetic algorithm to the multi-objective optimization of air bearingsTribol Lett20041711912810.1023/B:TRIL.0000032436.09396.d4 – reference: HaviezLToscanoRel YoussefMSemi-physical neural network model for fretting wear estimationJ Intell Fuzzy Syst2015281745175310.3233/IFS-141461 – reference: TyagiLButolaRKemLSingariRMComparative analysis of response surface methodology and artificial neural network on the wear properties of surface composite fabricated by friction stir processingJ Bio- Tribo-Corros2021711410.1007/s40735-020-00469-1 – reference: SureshAHarshaAPGhoshMKSolid particle erosion studies on polyphenylene sulfide composites and prediction on erosion data using artificial neural networksWear200926618419310.1016/j.wear.2008.06.008 – reference: Ravi KumarKMohanasundaramKMArumaikkannuGSubramanianRArtificial neural networks based prediction of wear and frictional behaviour of aluminium (A380)-fly ash compositesTribology20126151910.1179/1751584X11Y.0000000025 – reference: WuestTWeimerDIrgensCThobenKDMachine learning in manufacturing: advantages, challenges, and applicationsProd Manuf Res20164234510.1080/21693277.2016.1192517 – reference: WuBQinDHuJLiuYExperimental data mining research on factors influencing friction coefficient of wet clutchJ Tribol202114311010.1115/1.4050140 – reference: UlasMAltayOGurgencTÖzelCA new approach for prediction of the wear loss of PTA surface coatings using artificial neural network and basic, kernel-based, and weighted extreme learning machineFriction202081102111610.1007/s40544-017-0340-0 – reference: TrappenbergTPFundamentals of computational neuroscience2002OxfordOxford University Press1179.92013 – reference: SchmidtJMarquesMRGBottiSMarquesMALRecent advances and applications of machine learning in solid-state materials scienceNPJ Comput Mater201910.1038/s41524-019-0221-0 – reference: HePLiuQKruzicJJLiXMachine-learning assisted additive manufacturing of a TiCN reinforced AlSi10Mg composite with tailorable mechanical propertiesMater Lett202230713101810.1016/j.matlet.2021.131018 – reference: ShrivastavaNKhanZMApplication of soft computing in the field of internal combustion engines: a reviewArch Comput Methods Eng20182570772610.1007/s11831-017-9212-91397.80015 – reference: ChoudhuryTAHosseinzadehNBerndtCCImproving the generalization ability of an artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray processJ Therm Spray Technol20122193594910.1007/s11666-012-9775-9 – reference: ZhangZFriedrichKVeltenKPrediction on tribological properties of short fibre composites using artificial neural networksWear200225266867510.1016/S0043-1648(02)00023-6 – reference: LongJBLiXBZhongYCPengDApplication of BP neural networks on the thickness prediction of sherardizing coatingTrans Indian Inst Met2019722443244810.1007/s12666-019-01696-y – reference: JiangZZhangZFriedrichKPrediction on wear properties of polymer composites with artificial neural networksCompos Sci Technol20076716817610.1016/j.compscitech.2006.07.026 – reference: Echávarri OteroJde La GuerraOEChacõn TanarroEArtificial neural network approach to predict the lubricated friction coefficientLubr Sci20142614116210.1002/ls.1238 – reference: GaoXWangRWangZDaiKBPNN-QSTR friction model for organic compounds as potential lubricant base oilsJ Tribol20161381810.1115/1.4032304 – reference: ChoudhuryTAHosseinzadehNBerndtCCArtificial Neural Network application for predicting in-flight particle characteristics of an atmospheric plasma spray processSurf Coat Technol20112054886489510.1016/j.surfcoat.2011.04.099 – reference: SircarAYadavKRayavarapuKApplication of machine learning and artificial intelligence in oil and gas industryPet Res2021637939110.1016/j.ptlrs.2021.05.009 – reference: CanalesHCanoIGDostaSWindow of deposition description and prediction of deposition efficiency via machine learning techniques in cold sprayingSurf Coat Technol202040112614310.1016/j.surfcoat.2020.126143 – reference: SheaTMGunselSModeling base oil properties using nmr spectroscopy and neural networksTribol Trans20034629630210.1080/10402000308982629 – reference: LvLWeiPLiJHuJApplication of machine learning algorithms to improve numerical simulation prediction of PM2.5 and chemical componentsAtmos Pollut Res20211210121110.1016/j.apr.2021.101211 – reference: SosimiAAGbeneborOPOyerindeOAnalysing wear behaviour of Al–CaCO3 composites using ANN and Sugeno-type fuzzy inference systemsNeural Comput Appl202032134531346410.1007/s00521-020-04753-6 – reference: AgeeJDeveloping qualitative research questions: a reflective processInt J Qual Stud Educ200922443144710.1080/09518390902736512 – reference: NasirTYousifBFMcWilliamSAn artificial neural network for prediction of the friction coefficient of multi-layer polymeric composites in three different orientationsProc Inst Mech Eng C201022441942910.1243/09544062JMES1677 – reference: RashmiWOsamaMKhalidMTribological performance of nanographite-based metalworking fluid and parametric investigation using artificial neural networkInt J Adv Manuf Technol201910435937410.1007/s00170-019-03701-6 – reference: CanbulutFYildirimŞSinanoǧluCDesign of an artificial neural network for analysis of frictional power loss of hydrostatic slipper bearingsTribol Lett20041788789910.1007/s11249-004-8097-6 – reference: BornmannLHaunschildRHugSEVisualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysisScientometrics201811442743710.1007/s11192-017-2591-8 – reference: LuWZhangGLiuXPrediction of surface topography at the end of sliding running-in wear based on areal surface parametersTribol Trans20145755356010.1080/10402004.2014.887165 – reference: ArgatovIArtificial neural networks (ANNs) as a novel modeling technique in tribologyFront Mech Eng201951910.3389/fmech.2019.00030 – reference: ZhangHDongGNHuaMChinKSImprovement of tribological behaviors by optimizing concave texture shape under reciprocating sliding motionJ Tribol20171391910.1115/1.4032971 – reference: PengYWuTCaoGA hybrid search-tree discriminant technique for multivariate wear debris classificationWear2017392–39315215810.1016/j.wear.2017.09.022 – reference: WangSWuTZhengPKwokNOptimized CNN model for identifying similar 3D wear particles in few samplesWear2020460–46120347710.1016/j.wear.2020.203477 – reference: Robbins MO, Müser MH (2001) Computer simulations of friction, lubrication, and wear. In: Bhushan B (ed) Modern tribology handbook, pp 717–765. CRC Press, Boca Raton (cond-mat/0001056) – reference: SenatoreAD’AgostinoVdi GiudaRPetroneVExperimental investigation and neural network prediction of brakes and clutch material frictional behaviour considering the sliding acceleration influenceTribol Int2011441199120710.1016/j.triboint.2011.05.022 – reference: JacobsTDBGotsmannBLantzMACarpickRWOn the application of transition state theory to atomic-scale wearTribol Lett20103925727110.1007/s11249-010-9635-z – reference: DaineseACharm and beauty of the Large Hadron ColliderJ Phys G200510.1088/0954-3899/31/6/019 – reference: ISO 19291:2016 International standard, Lubricants—Determination of tribological quantities for oils and greases – Tribological test in the translator oscillation apparatus, 2016 – reference: LiuXFull-text citation analysis: a new method to enhanceJ Am Soc Inform Sci Technol2013641852186310.1002/asi – reference: BobzinKWiethegerWHeinemannHPrediction of particle properties in plasma spraying based on machine learningJ Therm Spray Technol202110.1007/s11666-021-01239-2 – reference: XuXZhaoZXuXMachine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven modelsKnowl-Based Syst202019010532410.1016/j.knosys.2019.105324 – reference: JacksonAHMachine learning: a probabilistic perspective198810.1111/j.1468-0394.1988.tb00341.x – reference: JangJRNeuro-fuzzy modelingProc IEEE19958337840610.1109/5.364486 – reference: KonnoKKameiDYokosukaTThe development of computational chemistry approach to predict the viscosity of lubricantsTribol Int20033645545810.1016/S0301-679X(02)00234-7 – reference: LiDLvRSiGYouYHybrid neural network-based prediction model for tribological properties of polyamide6-based friction materialsPolym Compos2017381705171110.1002/pc.23740 – reference: LiXFuPChenKThe contact state monitoring for seal end faces based on acoustic emission detectionShock Vib201610.1155/2016/8726781 – reference: JiaDDuanHZhanSDesign and development of lubricating material database and research on performance prediction method of machine learningSci Rep2019911110.1038/s41598-019-56776-2 – reference: HasanMSKordijaziARohatgiPKNosonovskyMTriboinformatics approach for friction and wear prediction of Al-graphite composites using machine learning methodsJ Tribol202214411310.1115/1.4050525 – reference: CetinelHThe artificial neural network based prediction of friction properties of Al 2O 3-TiO 2 coatingsInd Lubr Tribol20126428829310.1108/00368791211249674 – reference: SkariahAPradeepRRejithRBijudasCRHealth monitoring of rolling element bearings using improved wavelet cross spectrum technique and support vector machinesTribol Int202115410665010.1016/j.triboint.2020.106650 – reference: JiangSPangGWuMKuangLAn improved K-nearest-neighbor algorithm for text categorizationExpert Syst Appl2012391503150910.1016/j.eswa.2011.08.040 – reference: SunWTianMZhangPOptimization of plating processing, microstructure and properties of Ni–TiC coatings based on BP artificial neural networksTrans Indian Inst Met2016691501151110.1007/s12666-015-0718-2 – reference: SilverDHuangAMaddisonCJMastering the game of Go with deep neural networks and tree searchNature201652948448910.1038/nature16961 – reference: BeckerAFalsHDCRocaASArtificial neural networks applied to the analysis of performance and wear resistance of binary coatings Cr3C237WC18M and WC20Cr3C27NiWear202110.1016/j.wear.2021.203797 – reference: AzizSDowlingMHammamiHPiepenbrinkAMachine learning in finance: a topic modeling approachEur Financ Manag202110.1111/eufm.12326 – reference: RameshRGnanamoorthyRArtificial neural network prediction of fretting wear behavior of structural steel, en 24 against bearing steel, en 31J Mater Eng Perform20071670370910.1007/s11665-007-9100-9 – reference: GenelKKurnazSCDurmanMModeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural networkMater Sci Eng A200336320321010.1016/S0921-5093(03)00623-3 – reference: KolodziejczykTToscanoRFouvrySMorales-EspejelGArtificial intelligence as efficient technique for ball bearing fretting wear damage predictionWear201026830931510.1016/j.wear.2009.08.016 – reference: ZhangGGuessasmaSLiaoHInvestigation of friction and wear behaviour of SiC-filled PEEK coating using artificial neural networkSurf Coat Technol20062002610261710.1016/j.surfcoat.2004.12.026 – reference: BustilloAPimenovDYMatuszewskiMMikolajczykTUsing artificial intelligence models for the prediction of surface wear based on surface isotropy levelsRobot Comput-Integr Manuf20185321522710.1016/j.rcim.2018.03.011 – reference: StachowiakGPPodsiadloPStachowiakGWEvaluation of methods for reduction of surface texture featuresTribol Lett20062215116510.1007/s11249-006-9067-y – reference: ZhuJShiYFengXPrediction on tribological properties of carbon fiber and TiO2 synergistic reinforced polytetrafluoroethylene composites with artificial neural networksMater Des2009301042104910.1016/j.matdes.2008.06.045 – reference: PatiPRSatapathyATriboperformance analysis of coatings of LD slag premixed with TiO2 using experimental design and ANNTribol Trans20155834935610.1080/10402004.2014.971995 – reference: VijayakumarSKarunamoorthyLModelling wear behaviour of Al-SiC metal matrix composites: soft computing techniqueTribology20126253010.1179/1751584X12Y.0000000002 – reference: GaoXWangZDaiKWangTA quantitative structure tribo-ability relationship model for ester lubricant base oilsJ Tribol20151371710.1115/1.4029332 – reference: LiuMYuZWuHImplementation of artificial neural networks for forecasting the HVOF spray process and HVOF sprayed coatingsJ Therm Spray Technol2021301329134310.1007/s11666-021-01213-y – reference: ZhangKPengXZhangYNumerical thermal analysis of grease-lubrication in limited line contacts considering asperity contactTribol Int201913437238410.1016/j.triboint.2019.01.026 – reference: Vapnik VN, Chervonenkis AY (2015) On the uniform convergence of relative frequencies of events to their probabilities. Measures of Complexity: Festschrift for Alexey Chervonenkis XVI:11–30. https://doi.org/10.1007/978-3-319-21852-6_3 – reference: BorjaliAMonsonKRaeymaekersBPredicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: Deriving a data-driven model using machine learning methodsTribol Int201913310111010.1016/j.triboint.2019.01.014 – reference: PatelJPUpadhyaySHComparison between artificial neural network and support vector method for a fault diagnostics in rolling element bearingsProcedia Eng201614439039710.1016/j.proeng.2016.05.148 – reference: SchwarzSGrillenbergerHTremmelSWartzackSPrediction of rolling bearing cage dynamics using dynamics simulations and machine learning algorithmsTribol Trans202110.1080/10402004.2021.1934618 – reference: JazaRMollonGDescartesSLessons learned using machine learning to link third body particles morphology to interface rheologyTribol Int202115310663010.1016/j.triboint.2020.106630 – reference: GuptaGSatapathyAErosive wear characteristics of plasma-sprayed coatings of glass microspheres premixed with TiO2 particlesTribol Trans201659808810.1080/10402004.2015.1045648 – reference: ReddyASAgarwalPKChandSApplication of artificial neural networks for the fault detection and diagnosis of active magnetic bearingsInt J Mechatron Autom2018613014210.1504/IJMA.2018.094489 – reference: LiuJNotbohmJKCarpickRWTurnerKTMethod for characterizing nanoscale wear of atomic force microscope tipsACS Nano201043763377210.1021/nn100246g – reference: GyurovaLAFriedrichKArtificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide compositesTribol Int20114460360910.1016/j.triboint.2010.12.011 – reference: GrzegorzekWScieszkaSFPrediction on friction characteristics of industrial brakes using artificial neural networksProc Inst Mech Eng Part J20142281025103510.1177/1350650113504907 – reference: VinothADattaSDesign of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: an artificial intelligence approachJ Compos Mater20205417919210.1177/0021998319859924 – reference: LiuMWuHYuZDescription and prediction of multi-layer profile in cold spray using artificial neural networksJ Therm Spray Technol2021301453146310.1007/s11666-021-01212-z – reference: KurdiAAlhazmiNAlhazmiHTabbakhTPractice of simulation and life cycle assessment in tribology—a reviewMaterials202010.3390/MA13163489 – reference: SahuSPRSatapathyAMishraDTribo-performance analysis of fly ash-aluminum coatings using experimental design and ANNTribol Trans20105353354210.1080/10402000903491317 – reference: QiXWangYWangCZhangRMicrostructure and performance of nano-WC particle-strengthened Ni coatings by electro-brush platingJ Mater Eng Perform2018276069607910.1007/s11665-018-3684-0 – reference: LiHYuHCaoNApplications of artificial intelligence in oil and gas developmentArch Comput Methods Eng20212893794910.1007/s11831-020-09402-8 – reference: der JeanMLinBTChouJHDesign of a fuzzy logic approach for optimization reinforced zirconia depositions using plasma sprayingsSurf Coat Technol20062013129313810.1016/j.surfcoat.2006.06.056 – reference: MehraDSujithSVMahapatraMMHarshaSPModeling of wear process parameters of in-situ RZ5-10wt%TiC Composite using artificial neural networkMater Today20185241242413210.1016/j.matpr.2018.10.206 – reference: BobzinKBrögelmannTKruppeNCCorrelation of HPPMS plasma and coating properties using artificial neural networksSurf Coat Technol20183491130113610.1016/j.surfcoat.2018.06.065 – reference: LiuRYangBZioEChenXArtificial intelligence for fault diagnosis of rotating machinery: a reviewMech Syst Signal Process2018108334710.1016/j.ymssp.2018.02.016 – reference: BishopCMNeural networks for pattern recognition1995OxfordClarendon Press0868.68096 – reference: Albert BJ. Novikoff (1963) On convergence proofs for perceptrons. Station AHAU Arlington Hau Station Unclassified. Stanford research institute SRI Project No. 3605 – reference: EgalaRJagadeeshGVSettiSGExperimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy compositesFriction2021925027210.1007/s40544-019-0332-0 – reference: AleksendricDDubokaČPrediction of automotive friction material characteristics using artificial neural networks-cold performanceWear200626126928210.1016/j.wear.2005.10.006 – reference: PangJChenYHeSClassification of friction and wear state of wind turbine gearboxes using decision tree and random forest algorithmsJ Tribol202110.1115/1.4049257 – reference: RaoTBPonugotiGRCharacterization, prediction, and optimization of dry sliding wear behaviour of Al6061/WC compositesTrans Indian Inst Met20217415917810.1007/s12666-020-02107-3 – reference: RoyLKakotySKOptimum groove location of hydrodynamic journal bearing using genetic algorithmAdv Tribol201310.1155/2013/580367 – reference: AydinFDurgutREstimation of wear performance of AZ91 alloy under dry sliding conditions using machine learning methodsTrans Nonferrous Met Soc China (English Edition)20213112513710.1016/S1003-6326(20)65482-6 – reference: JonesSPJansenRFusaroRLPreliminary investigation of neural network techniques to predict tribological propertiesTribol Trans19974031232010.1080/10402009708983660 – reference: PadhiPKSatapathyAAnalysis of sliding wear characteristics of BFS filled composites using an experimental design approach integrated with ANNTribol Trans20135678979610.1080/10402004.2013.798448 – reference: SaridakisKMNikolakopoulosPGPapadopoulosCADentsorasAJIdentification of wear and misalignment on journal bearings using artificial neural networksProc Inst Mech Eng Part J2012226465610.1177/1350650111424237 – reference: HwangYRJenKKShenYTApplication of cepstrum and neural network to bearing fault detectionJ Mech Sci Technol2009232730273710.1007/s12206-009-0802-9 – reference: SadeghHMehdiANMehdiAClassification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithmTribol Int20169542643410.1016/j.triboint.2015.11.045 – reference: ȘtefanovTMarakaHVRMeagherPThin film metallic glass broad-spectrum mirror coatings for space telescope applicationsJ Non-Cryst Solids X2020710005010.1016/j.nocx.2020.100050 – reference: GangwarSSharmaSPathakVKPreliminary evaluation and wear properties optimization of boron carbide and molybdenum disulphide reinforced copper metal matrix composite using adaptive neuro-fuzzy inference systemJ Bio- Tribo-Corros202110.1007/s40735-020-00444-w – reference: BhardwajRNambiarARDuttaDA study of machine learning in healthcareProceedings2017223624110.1109/COMPSAC.2017.164 – reference: ChungKHWear characteristics of atomic force microscopy tips: a reivewInt J Precis Eng Manuf2014152219223010.1007/s12541-014-0584-6 – reference: HeimannRBBetter quality control: stochastic approaches to optimize properties and performance of plasma-sprayed coatingsJ Therm Spray Technol20101976577810.1007/s11666-009-9385-3 – reference: BhaumikSPathakSDDeySDattaSArtificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological propertiesTribol Int201914010581310.1016/j.triboint.2019.06.006 – reference: DambattaYSSayutiMSarhanAADTribological performance of SiO2-based nanofluids in minimum quantity lubrication grinding of Si3N4 ceramicJ Manuf Process20194113514710.1016/j.jmapro.2019.03.024 – reference: LuPPowrieHEWoodRJKEarly wear detection and its significance for condition monitoringTribol Int202115911010.1016/j.triboint.2021.106946 – reference: TahaZWidiyatiKArtificial neural network for bearing defect detection based on acoustic emissionInt J Adv Manuf Technol20105028929610.1007/s00170-009-2476-y – reference: AlambeigiFKhademSMKhorsandHMirza Seied HasanEA comparison of performance of artificial intelligence methods in prediction of dry sliding wear behaviorInt J Adv Manuf Technol2016841981199410.1007/s00170-015-7812-9 – reference: LiangNYHuangGBSaratchandranPSundararajanNA fast and accurate online sequential learning algorithm for feedforward networksIEEE Trans Neural Netw200617614112310.1109/TNN.2006.880583 – reference: HanCFHeHQWeiCCTechniques developed for fault diagnosis of long-range running ball screw drive machine to evaluate lubrication conditionMeasurement201812627428810.1016/j.measurement.2018.05.059 – reference: HasanMSKordijaziARohatgiPKNosonovskyMTriboinformatic modeling of dry friction and wear of aluminum base alloys using machine learning algorithmsTribol Int202116110706510.1016/j.triboint.2021.107065 – reference: FinkeAEscobarJMunozJPetitMPrediction of salt spray test results of micro arc oxidation coatings on AA2024 alloys by combination of accelerated electrochemical test and artificial neural networkSurf Coat Technol202110.1016/j.surfcoat.2021.127370 – reference: MengFMHuYZWangHZhangYYAnalysis of the dynamic performances of a piston-crankshaft system considering oil-film forces reconstructed by a neural networkProc Inst Mech Eng Part D200722117118010.1243/09544070JAUTO256 – reference: RoyBDeySMachine learning-based performance analysis of two-axial-groove hydrodynamic journal bearingsProc Inst Mech Eng Part J20212352211222410.1177/1350650121992895 – reference: HolmbergKErdemirAInfluence of tribology on global energy consumption, costs and emissionsFriction2017526328410.1007/s40544-017-0183-5 – reference: ZhangGWangJChangSPredicting running-in wear volume with a SVMR-based model under a small amount of training samplesTribol Int201812834935510.1016/j.triboint.2018.07.045 – reference: SaravananSDSenthilkumarMPrediction of tribological behaviour of rice husk ash reinforced aluminum alloy matrix composites using artificial neural networkRuss J Non-Ferrous Met2015569710610.3103/S1067821215010174 – reference: ArifSAlamMTAnsariAHAnalysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network techniqueMater Res Express201810.1088/2053-1591/aabec8 – reference: ModerJBergmannPGrünFLubrication Regime classification of hydrodynamic journal bearings by machine learning using Torque DataLubricants201810.3390/lubricants6040108 – reference: LiZYanXGuoZA new intelligent fusion method of multi-dimensional sensors and its application to tribo-system fault diagnosis of marine diesel enginesTribol Lett20124711510.1007/s11249-012-9948-1 – reference: BoidiGda SilvaMRProfitoFJMachadoIFUsing machine learning radial basis function (RBF) method for predicting lubricated friction on textured and porous surfacesSurf Topogr Metrol Prop202010.1088/2051-672X/abae13 – reference: JamesGWittenDHastieTTibshiraniRAn introduction to statistical learning2000New YorkSpringer10.1007/978-1-4614-7138-71281.62147 – reference: HonKKNgCWChanPWMachine learning based multi-index prediction of aviation turbulence over the Asia-PacificMach Learn Appl2020210000810.1016/j.mlwa.2020.100008 – reference: GangwarSPathakVKDry sliding wear characteristics evaluation and prediction of vacuum casted marble dust (MD) reinforced ZA-27 alloy composites using hybrid improved bat algorithm and ANNMater Today Commun20202510161510.1016/j.mtcomm.2020.101615 – reference: VitanovVIVoutchkovIIBedfordGMNeurofuzzy approach to process parameter selection for friction surfacing applicationsSurf Coat Technol200114025626210.1016/S0257-8972(01)01128-8 – reference: YinYBaoJYangLWear performance and its online monitoring of the semimetal brake lining for automobilesInd Lubr Tribol20146610010510.1108/ILT-07-2011-0057 – reference: Rosenblatt F (1957) The Perceptron—a perceiving and recognizing automaton. Report 85, Cornell Aeronautical Laboratory 460–461. – reference: RosenkranzAMarianMProfitoFJThe use of artificial intelligence in tribology—a perspectiveLubricants2021911110.3390/lubricants9010002 – reference: XiaoGZhuZFriction materials development by using DOE/RSM and artificial neural networkTribol Int20104321822710.1016/j.triboint.2009.05.019 – reference: Senthil KumarPManisekarKNarayanasamyRExperimental and prediction of abrasive wear behavior of sintered Cu-SiC composites containing graphite by using artificial neural networksTribol Trans20145745547110.1080/10402004.2014.880979 – reference: KronbergerGKommendaMLughoferEUsing robust generalized fuzzy modeling and enhanced symbolic regression to model tribological systemsAppl Soft Comput J20186961062410.1016/j.asoc.2018.04.048 – reference: WangJChengRLiaoPCTrends of multimodal neural engineering study: a bibliometric reviewArchives of Computational Methods in Engineering2021284487450110.1007/s11831-021-09557-y – reference: Al-SaeediSSarhanAADBushroaARInvestigating the tribological characteristics of burnished polyoxymethylene—ANFIS and FE modelingTribol Trans20186188088810.1080/10402004.2018.1439208 – reference: XieHWangZQinNPrediction of friction coefficients during scratch based on an integrated finite element and artificial neural network methodJ Tribol202014211310.1115/1.4045013 – reference: WangTWangZChenHBPNN-QSTR models for triazine derivatives for lubricant additivesJ Tribol20201421610.1115/1.4044850 – reference: GarreARuizMCHontoriaEApplication of Machine Learning to support production planning of a food industry in the context of waste generation under uncertaintyOper Res Perspect2020710014710.1016/j.orp.2020.100147 – reference: GyurovaLAMiniño-JustelPSchlarbAKModeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networksWear201026870871410.1016/j.wear.2009.11.008 – reference: HollandJHGenetic algorithmsStud Comput Intell2017679111910.1007/978-3-319-52156-5_2 – reference: TijaniIBAkmeliawatiRSupport vector regression based friction modeling and compensation in motion control systemEng Appl Artif Intell2012251043105210.1016/j.engappai.2012.03.018 – reference: KankarPKSharmaSCHarshaSPFault diagnosis of ball bearings using machine learning methodsExpert Syst Appl2011381876188610.1016/j.eswa.2010.07.119 – reference: DanaherSDattaSWaddleIHackneyPErosion modelling using Bayesian regulated artificial neural networksWear200425687988810.1016/j.wear.2003.08.006 – reference: WiensJShenoyESMachine learning for healthcare: on the verge of a major shift in healthcare epidemiologyClin Infect Dis20186614915310.1093/cid/cix731 – reference: Fereshteh-SanieeFNourbakhshSHPezeshkiSMEstimation of flow curve and friction coefficient by means of a one-step ring test using a neural network coupled with FE simulationsJ Mech Sci Technol20122615316010.1007/s12206-011-1020-9 – reference: Sattari BaboukaniBYeZG. ReyesKNalamPCPrediction of nanoscale friction for two-dimensional materials using a machine learning approachTribol Lett20206821410.1007/s11249-020-01294-w – reference: DaveVSDuttaKNeural network based models for software effort estimation: a reviewArtif Intell Rev20144229530710.1007/s10462-012-9339-x – reference: JonesNBLiYHA review of condition monitoring and fault diagnosis for diesel enginesTribo Test2000626729110.1002/tt.3020060305 – reference: GuoZYuanCLiZCondition identification of the cylinder liner-piston ring in a marine diesel engine using bispectrum analysis and artificial neural networksInsight20135562162610.1784/insi.2012.55.11.621 – reference: AleksendrićDDubokaČMariottiGVNeural modelling of friction material cold performanceProc Inst Mech Eng Part D20082221201120910.1243/09544070JAUTO583 – reference: PrakashKSThankachanTRadhakrishnanRParametric optimization of dry sliding wear loss of copper–MWCNT compositesTrans Nonferrous Met Soc China (English Edition)20172762763710.1016/S1003-6326(17)60070-0 – reference: KankarPKSharmaSCHarshaSPVibration-based fault diagnosis of a rotor bearing system using artificial neural network and support vector machineInt J Model Ident Control20121518519810.1504/IJMIC.2012.045691 – reference: ShaikNBMantralaKMBakthavatchalamBCorrosion behavior of LENS deposited CoCrMo alloy using Bayesian regularization-based artificial neural network (BRANN)J Bio- Tribo-Corros2021711310.1007/s40735-021-00550-3 – reference: Jost HP (1996) Lubrication (tribology)—a report on the present position and industry’s needs. Department of Education and Science, HM Stationary Office, London, UK – reference: GraserJKauweSKSparksTDMachine learning and energy minimization approaches for crystal structure predictions: a review and new horizonsChem Mater2018303601361210.1021/acs.chemmater.7b05304 – reference: ZhangZWangYWangKFault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural networkJ Intell Manuf2013241213122710.1007/s10845-012-0657-2 – reference: SharmaBKStipanovicAJPredicting low temperature lubricant rheology using nuclear magnetic resonance spectroscopy and mass spectrometryTribol Lett200416111910.1023/b:tril.0000009709.83578.f5 – reference: NirmalUPrediction of friction coefficient of treated betelnut fibre reinforced polyester (T-BFRP) composite using artificial neural networksTribol Int2010431417142910.1016/j.triboint.2010.01.013 – reference: JiangZGyurovaLASchlarbAKStudy on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particlesCompos Sci Technol20086873474210.1016/j.compscitech.2007.09.022 – reference: Logozzo S, Valigi MC (2019) Investigation of instabilities in mechanical face seals: prediction of critical speed values. In: Mechanisms and machine science, pp 3865–3872. https://doi.org/10.1007/978-3-030-20131-9_383 – reference: LinCMParameter optimisation of a vacuum plasma spraying process using boron carbideJ Therm Spray Technol20122187388110.1007/s11666-012-9734-5 – reference: ValderramaJOMuñozJMRojasREViscosity of ionic liquids using the concept of mass connectivity and artificial neural networksKorean J Chem Eng2011281451145710.1007/s11814-010-0512-0 – reference: WirschingSMarianMBartzMGeometrical optimization of the EHL roller face/rib contact for energy efficiency in tapered roller bearingsLubricants202196710.3390/lubricants9070067 – reference: KankarPKSharmaSCHarshaSPRolling element bearing fault diagnosis using wavelet transformNeurocomputing2011741638164510.1016/j.neucom.2011.01.021 – reference: ÜnlüBSDurmuşHMeriçCDetermination of tribological properties at CuSn10 alloy journal bearings by experimental and means of artificial neural networks methodInd Lubrication Tribol20126425826410.1108/00368791211249647 – reference: ArgatovIIChaiYSArtificial neural network modeling of sliding wearProc Inst Mech Eng Part J202123574875710.1177/1350650120925582 – reference: HsuMMChenSCNguyenVSHuTHFuzzy and online trained adaptive neural network controller for an AMB systemJ Appl Sci Eng201518475810.6180/jase.2015.18.1.07 – reference: RaySChowdhurySKRPrediction of contact temperature rise between rough sliding bodies: an artificial neural network approachWear20092661029103810.1016/j.wear.2009.02.016 – reference: Sreekumar RajeshTVenkata RaoRExperimental investigation and parameter optimization of Al2O3-40% TiO2 atmospheric plasma spray coating on SS316 steel substrateMater Today201855012502010.1016/j.matpr.2017.12.079 – reference: JiaXO’ConnorDShiZHouDVIRS based detection in combination with machine learning for mapping soil pollutionEnviron Pollut202126811584510.1016/j.envpol.2020.115845 – reference: SnyderHLiterature review as a research methodology: an overview and guidelinesJ Bus Res201910433333910.1016/j.jbusres.2019.07.039 – reference: WangXWangTMingADeep spatiotemporal convolutional-neural-network-based remaining useful life estimation of bearingsChin J Mech Eng (English Edition)20213411510.1186/s10033-021-00576-1 – reference: KamnisSMalamousiKMarrsAAeroacoustics and artificial neural network modeling of airborne acoustic emissions during high kinetic energy thermal sprayingJ Therm Spray Technol20192894696210.1007/s11666-019-00874-0 – reference: ParikhHHGohilPPExperimental investigation and prediction of wear behavior of cotton fiber polyester compositesFriction2017518319310.1007/s40544-017-0145-y – reference: KannaiyanMKarthikeyanGThankachi RaghuvaranJGPrediction of specific wear rate for LM25/ZrO2 composites using Levenberg-Marquardt backpropagation algorithmJ Market Res2020953053810.1016/j.jmrt.2019.10.082 – reference: SchmidhuberJDeep learning in neural networks: an overviewNeural Netw2015618511710.1016/j.neunet.2014.09.003 – reference: CanbulutFSinanogluCYildirimSAnalysis of effects of sizes of orifice and pockets on the rigidity of hydrostatic bearing using neural network predictor systemKSME Int J20041843244210.1007/BF02996108 – reference: RashedFSMahmoudTSPrediction of wear behaviour of A356/SiCp MMCs using neural networksTribol Int20094264264810.1016/j.triboint.2008.08.010 – reference: ZhangXChenHXuJA novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machineJ Mater Process Technol201826091910.1016/j.jmatprotec.2018.05.013 – reference: TsoumakasGA survey of machine learning techniques for food sales predictionArtif Intell Rev20195244144710.1007/s10462-018-9637-z – reference: BowdenFPTaborDPalmerFThe friction and lubrication of solidsAm J Phys19511942842910.1119/1.1933017 – reference: NaphonPArisariyawongTWiriyasartSSrichatAANFIS for analysis friction factor and Nusselt number of pulsating nanofluids flow in the fluted tube under magnetic fieldCase Stud Therm Eng20201810060510.1016/j.csite.2020.100605 – reference: Echávarri OteroJde la GuerraOEBellón VallinotIChacón TanarroEOptimising the design of textured surfaces for reducing lubricated friction coefficientLubr Sci20172918319910.1002/ls.1363 – reference: PengYCaiJWuTA hybrid convolutional neural network for intelligent wear particle classificationTribol Int201913816617310.1016/j.triboint.2019.05.029 – reference: LenzBHasselbruchHMehnerAAutomated evaluation of Rockwell adhesion tests for PVD coatings using convolutional neural networksSurf Coat Technol202038512536510.1016/j.surfcoat.2020.125365 – ident: 9841_CR75 doi: 10.1109/SSCI.2017.8285325 – volume: 205 start-page: 4886 year: 2011 ident: 9841_CR252 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2011.04.099 – volume: 40 start-page: 565 year: 2018 ident: 9841_CR123 publication-title: Tribol Ind doi: 10.24874/ti.2018.40.04.05 – ident: 9841_CR77 doi: 10.1007/978-3-319-21852-6_3 – volume: 266 start-page: 1029 year: 2009 ident: 9841_CR105 publication-title: Wear doi: 10.1016/j.wear.2009.02.016 – volume: 64 start-page: 805 year: 2013 ident: 9841_CR293 publication-title: Procedia Eng doi: 10.1016/j.proeng.2013.09.156 – year: 2021 ident: 9841_CR274 publication-title: Wear doi: 10.1016/j.wear.2021.203797 – volume: 268 start-page: 309 year: 2010 ident: 9841_CR319 publication-title: Wear doi: 10.1016/j.wear.2009.08.016 – volume: 31 start-page: 7429 year: 2019 ident: 9841_CR119 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3555-5 – volume: 110 start-page: 409 year: 2017 ident: 9841_CR172 publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2017.06.028 – volume: 17 start-page: 365 year: 2008 ident: 9841_CR242 publication-title: J Therm Spray Technol doi: 10.1007/s11666-008-9183-3 – volume: 22 start-page: 431 issue: 4 year: 2009 ident: 9841_CR45 publication-title: Int J Qual Stud Educ doi: 10.1080/09518390902736512 – volume: 152 start-page: 106545 year: 2020 ident: 9841_CR184 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106545 – volume: 8 start-page: 1 year: 2020 ident: 9841_CR304 publication-title: Lubricants doi: 10.3390/lubricants8030029 – volume: 394 start-page: 125862 year: 2020 ident: 9841_CR271 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.125862 – volume: 40 start-page: 312 year: 1997 ident: 9841_CR146 publication-title: Tribol Trans doi: 10.1080/10402009708983660 – volume: 476 start-page: 203721 year: 2021 ident: 9841_CR192 publication-title: Wear doi: 10.1016/j.wear.2021.203721 – volume: 28 start-page: 1451 year: 2011 ident: 9841_CR215 publication-title: Korean J Chem Eng doi: 10.1007/s11814-010-0512-0 – volume: 61 start-page: 85 year: 2015 ident: 9841_CR61 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – volume: 7 start-page: 1 year: 2021 ident: 9841_CR122 publication-title: J Bio- Tribo-Corros doi: 10.1007/s40735-020-00469-1 – volume: 59 start-page: 80 year: 2016 ident: 9841_CR260 publication-title: Tribol Trans doi: 10.1080/10402004.2015.1045648 – year: 2018 ident: 9841_CR176 publication-title: J Tribol doi: 10.1115/1.4038688 – volume: 25 start-page: 707 year: 2018 ident: 9841_CR28 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-017-9212-9 – volume: 268 start-page: 115845 year: 2021 ident: 9841_CR24 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.115845 – volume: 31 start-page: 125 year: 2021 ident: 9841_CR186 publication-title: Trans Nonferrous Met Soc China (English Edition) doi: 10.1016/S1003-6326(20)65482-6 – volume: 42 start-page: 642 year: 2009 ident: 9841_CR157 publication-title: Tribol Int doi: 10.1016/j.triboint.2008.08.010 – ident: 9841_CR64 doi: 10.1016/j.heliyon.2018.e00938 – volume: 42 start-page: 295 year: 2014 ident: 9841_CR65 publication-title: Artif Intell Rev doi: 10.1007/s10462-012-9339-x – volume: 5 start-page: 187 year: 2019 ident: 9841_CR311 publication-title: Int J Sci Rep doi: 10.18203/issn.2454-2156.IntJSciRep20192801 – volume: 87 start-page: 317 year: 2015 ident: 9841_CR140 publication-title: Carbon doi: 10.1016/j.carbon.2015.02.041 – volume: 18 start-page: 100605 year: 2020 ident: 9841_CR74 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2020.100605 – volume: 57 start-page: 553 year: 2014 ident: 9841_CR218 publication-title: Tribol Trans doi: 10.1080/10402004.2014.887165 – volume: 85 start-page: 1020 year: 2017 ident: 9841_CR129 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.09.016 – volume: 376–377 start-page: 557 year: 2017 ident: 9841_CR259 publication-title: Wear doi: 10.1016/j.wear.2016.12.035 – ident: 9841_CR1 – volume: 43 start-page: 218 year: 2010 ident: 9841_CR99 publication-title: Tribol Int doi: 10.1016/j.triboint.2009.05.019 – volume: 136 start-page: 1 year: 2019 ident: 9841_CR113 publication-title: J Appl Polym Sci doi: 10.1002/app.47157 – volume: 38 start-page: 1705 year: 2017 ident: 9841_CR118 publication-title: Polym Compos doi: 10.1002/pc.23740 – volume: 126 start-page: 274 year: 2018 ident: 9841_CR298 publication-title: Measurement doi: 10.1016/j.measurement.2018.05.059 – volume: 42 start-page: 1074 year: 2009 ident: 9841_CR94 publication-title: Tribol Int doi: 10.1016/j.triboint.2009.03.005 – ident: 9841_CR51 – year: 2018 ident: 9841_CR133 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-018-1237-y – volume: 30 start-page: 229 year: 2018 ident: 9841_CR171 publication-title: Lubr Sci doi: 10.1002/ls.1411 – volume: 34 start-page: 2704 year: 2008 ident: 9841_CR288 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.05.010 – volume: 154 start-page: 106650 year: 2021 ident: 9841_CR305 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106650 – volume: 27 start-page: 627 year: 2017 ident: 9841_CR166 publication-title: Trans Nonferrous Met Soc China (English Edition) doi: 10.1016/S1003-6326(17)60070-0 – volume: 29 start-page: 183 year: 2017 ident: 9841_CR221 publication-title: Lubr Sci doi: 10.1002/ls.1363 – ident: 9841_CR277 doi: 10.1016/j.engappai.2015.06.015 – volume: 47 start-page: 1 year: 2012 ident: 9841_CR291 publication-title: Tribol Lett doi: 10.1007/s11249-012-9948-1 – volume: 5 start-page: 249 year: 1998 ident: 9841_CR148 publication-title: Tribol Lett doi: 10.1023/A:1019126732337 – volume: 9 start-page: 1 year: 2019 ident: 9841_CR230 publication-title: Sci Rep doi: 10.1038/s41598-019-56776-2 – volume: 153 start-page: 119928 year: 2020 ident: 9841_CR9 publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2020.119928 – volume: 64 start-page: 258 year: 2012 ident: 9841_CR320 publication-title: Ind Lubrication Tribol doi: 10.1108/00368791211249647 – volume: 406–407 start-page: 173 year: 2018 ident: 9841_CR174 publication-title: Wear doi: 10.1016/j.wear.2018.01.007 – volume: 201 start-page: 3129 year: 2006 ident: 9841_CR247 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2006.06.056 – volume: 18 start-page: 47 year: 2015 ident: 9841_CR324 publication-title: J Appl Sci Eng doi: 10.6180/jase.2015.18.1.07 – volume: 138 start-page: 1 year: 2016 ident: 9841_CR296 publication-title: J Tribol doi: 10.1115/1.4032525 – ident: 9841_CR134 doi: 10.1109/CCDC.2012.6243100 – year: 2022 ident: 9841_CR56 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.108349 – volume: 60 start-page: 309 year: 2008 ident: 9841_CR318 publication-title: Ind Lubr Tribol doi: 10.1108/00368790810902241 – year: 2015 ident: 9841_CR112 publication-title: Adv Tribol doi: 10.1155/2015/815179 – ident: 9841_CR50 – volume-title: Neural networks for pattern recognition year: 1995 ident: 9841_CR68 doi: 10.1093/oso/9780198538493.001.0001 – volume: 2016 start-page: 1 year: 2016 ident: 9841_CR167 publication-title: Adv Tribol doi: 10.1155/2016/4931502 – volume: 140 start-page: 105895 year: 2019 ident: 9841_CR130 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.105895 – volume: 216 start-page: 220 year: 1998 ident: 9841_CR147 publication-title: Wear doi: 10.1016/S0043-1648(97)00260-3 – volume: 773 start-page: 138589 year: 2021 ident: 9841_CR233 publication-title: Chem Phys Lett doi: 10.1016/j.cplett.2021.138589 – volume: 56 start-page: 97 year: 2015 ident: 9841_CR204 publication-title: Russ J Non-Ferrous Met doi: 10.3103/S1067821215010174 – volume: 7 start-page: 25 year: 2017 ident: 9841_CR323 publication-title: Int J Control Sci Eng doi: 10.5923/j.control.20170702.01 – volume: 16 start-page: 4126 year: 2012 ident: 9841_CR3 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.02.064 – volume: 64 start-page: 1852 year: 2013 ident: 9841_CR46 publication-title: J Am Soc Inform Sci Technol doi: 10.1002/asi – volume: 5 start-page: 183 year: 2017 ident: 9841_CR169 publication-title: Friction doi: 10.1007/s40544-017-0145-y – volume: 84 start-page: 1981 year: 2016 ident: 9841_CR200 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7812-9 – volume: 158 start-page: 202 year: 2020 ident: 9841_CR231 publication-title: Renew Energy doi: 10.1016/j.renene.2020.05.158 – volume: 1–2 start-page: 42 year: 2015 ident: 9841_CR163 publication-title: Biotribology doi: 10.1016/j.biotri.2015.04.002 – volume: 221 start-page: 171 year: 2007 ident: 9841_CR214 publication-title: Proc Inst Mech Eng Part D doi: 10.1243/09544070JAUTO256 – volume: 7 start-page: 100050 year: 2020 ident: 9841_CR26 publication-title: J Non-Cryst Solids X doi: 10.1016/j.nocx.2020.100050 – volume: 61 start-page: 880 year: 2018 ident: 9841_CR223 publication-title: Tribol Trans doi: 10.1080/10402004.2018.1439208 – volume: 74 start-page: 1638 year: 2011 ident: 9841_CR290 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.01.021 – volume: 29 start-page: 768 year: 2018 ident: 9841_CR42 publication-title: J Manuf Technol Manag doi: 10.1108/JMTM-09-2017-0196 – ident: 9841_CR89 doi: 10.1115/1.3261450 – volume: 55 start-page: 873 year: 2021 ident: 9841_CR111 publication-title: J Compos Mater doi: 10.1177/0021998320960520 – volume: 6 start-page: 130 year: 2018 ident: 9841_CR299 publication-title: Int J Mechatron Autom doi: 10.1504/IJMA.2018.094489 – volume: 114 start-page: 427 year: 2018 ident: 9841_CR48 publication-title: Scientometrics doi: 10.1007/s11192-017-2591-8 – volume-title: Evolutionary algorithms and neural networks year: 2000 ident: 9841_CR86 – volume: 43 start-page: 2092 year: 2010 ident: 9841_CR98 publication-title: Tribol Int doi: 10.1016/j.triboint.2010.05.013 – volume: 262 start-page: 778 year: 2007 ident: 9841_CR104 publication-title: Wear doi: 10.1016/j.wear.2006.08.013 – volume-title: Fundamentals of computational neuroscience year: 2002 ident: 9841_CR59 – volume: 30 start-page: 177 year: 1995 ident: 9841_CR312 publication-title: Phys Educ doi: 10.1088/0031-9120/30/3/009 – volume: 4 start-page: 23 year: 2016 ident: 9841_CR5 publication-title: Prod Manuf Res doi: 10.1080/21693277.2016.1192517 – volume: 307 start-page: 131018 year: 2022 ident: 9841_CR21 publication-title: Mater Lett doi: 10.1016/j.matlet.2021.131018 – volume: 44 start-page: 603 year: 2011 ident: 9841_CR96 publication-title: Tribol Int doi: 10.1016/j.triboint.2010.12.011 – volume: 46 start-page: 296 year: 2003 ident: 9841_CR239 publication-title: Tribol Trans doi: 10.1080/10402000308982629 – volume: 133 start-page: 101 year: 2019 ident: 9841_CR179 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.01.014 – volume: 275 start-page: 123125 year: 2020 ident: 9841_CR44 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123125 – volume: 69 start-page: 1501 year: 2016 ident: 9841_CR258 publication-title: Trans Indian Inst Met doi: 10.1007/s12666-015-0718-2 – volume: 422–423 start-page: 9 year: 2019 ident: 9841_CR177 publication-title: Wear doi: 10.1016/j.wear.2018.12.081 – volume: 21 start-page: 873 year: 2012 ident: 9841_CR253 publication-title: J Therm Spray Technol doi: 10.1007/s11666-012-9734-5 – volume: 5 start-page: 5012 year: 2018 ident: 9841_CR261 publication-title: Mater Today doi: 10.1016/j.matpr.2017.12.079 – volume: 201 start-page: 5085 year: 2007 ident: 9841_CR248 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2006.07.088 – volume: 161 start-page: 107065 year: 2021 ident: 9841_CR101 publication-title: Tribol Int doi: 10.1016/j.triboint.2021.107065 – year: 2019 ident: 9841_CR224 publication-title: Anti-Wear Lubr Addit J Tribol doi: 10.1115/1.4040836 – volume: 358 start-page: 913 year: 2019 ident: 9841_CR264 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.12.024 – volume: 168 start-page: 108417 year: 2021 ident: 9841_CR273 publication-title: Measurement doi: 10.1016/j.measurement.2020.108417 – volume: 143 start-page: 1 year: 2021 ident: 9841_CR196 publication-title: J Tribol doi: 10.1115/1.4049256 – year: 2017 ident: 9841_CR207 publication-title: J Tribol doi: 10.1115/1.4036379 – volume: 15 start-page: 185 year: 2012 ident: 9841_CR286 publication-title: Int J Model Ident Control doi: 10.1504/IJMIC.2012.045691 – volume: 140 start-page: 1 year: 2018 ident: 9841_CR325 publication-title: J Tribol doi: 10.1115/1.4039958 – volume: 12 start-page: 44 year: 2018 ident: 9841_CR36 publication-title: Tribology doi: 10.1080/17515831.2018.1437335 – volume: 252 start-page: 37 year: 2002 ident: 9841_CR150 publication-title: Wear doi: 10.1016/S0043-1648(01)00841-9 – volume: 529 start-page: 484 year: 2016 ident: 9841_CR57 publication-title: Nature doi: 10.1038/nature16961 – volume: 30 start-page: 1453 year: 2021 ident: 9841_CR280 publication-title: J Therm Spray Technol doi: 10.1007/s11666-021-01212-z – volume: 262 start-page: 617 year: 2007 ident: 9841_CR153 publication-title: Wear doi: 10.1016/j.wear.2006.07.006 – volume: 401 start-page: 126143 year: 2020 ident: 9841_CR272 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.126143 – volume: 256 start-page: 879 year: 2004 ident: 9841_CR197 publication-title: Wear doi: 10.1016/j.wear.2003.08.006 – volume: 66 start-page: 100 year: 2014 ident: 9841_CR199 publication-title: Ind Lubr Tribol doi: 10.1108/ILT-07-2011-0057 – volume: 55 start-page: 621 year: 2013 ident: 9841_CR301 publication-title: Insight doi: 10.1784/insi.2012.55.11.621 – volume: 21 start-page: 935 year: 2012 ident: 9841_CR32 publication-title: J Therm Spray Technol doi: 10.1007/s11666-012-9775-9 – volume: 52 start-page: 441 year: 2019 ident: 9841_CR16 publication-title: Artif Intell Rev doi: 10.1007/s10462-018-9637-z – volume: 26 start-page: 296 year: 2020 ident: 9841_CR124 publication-title: Mater Today – volume: 58 start-page: 313 year: 1951 ident: 9841_CR53 publication-title: Psychol Rev doi: 10.1037/h0054388 – year: 2015 ident: 9841_CR164 publication-title: Int J Polym Sci doi: 10.1155/2015/315710 – volume: 363 start-page: 203 year: 2003 ident: 9841_CR151 publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(03)00623-3 – volume: 30 start-page: 1329 year: 2021 ident: 9841_CR281 publication-title: J Therm Spray Technol doi: 10.1007/s11666-021-01213-y – ident: 9841_CR227 doi: 10.1007/978-3-030-20131-9_383 – volume: 4 start-page: 28 year: 2021 ident: 9841_CR18 publication-title: Curr Res Food Sci doi: 10.1016/j.crfs.2021.01.002 – year: 2020 ident: 9841_CR209 publication-title: Surf Topogr Metrol Prop doi: 10.1088/2051-672X/abae13 – volume: 19 start-page: 765 year: 2010 ident: 9841_CR250 publication-title: J Therm Spray Technol doi: 10.1007/s11666-009-9385-3 – volume: 177 start-page: 135 year: 1983 ident: 9841_CR205 publication-title: Philos Trans R Soc Lond doi: 10.1098/rstl.1886.0005 – volume: 189 start-page: 374 year: 2007 ident: 9841_CR109 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.02.019 – volume: 74 start-page: 159 year: 2021 ident: 9841_CR187 publication-title: Trans Indian Inst Met doi: 10.1007/s12666-020-02107-3 – year: 2013 ident: 9841_CR321 publication-title: Adv Tribol doi: 10.1155/2013/580367 – volume: 72 start-page: 2443 year: 2019 ident: 9841_CR269 publication-title: Trans Indian Inst Met doi: 10.1007/s12666-019-01696-y – volume: 62 start-page: 58 year: 2013 ident: 9841_CR4 publication-title: Tribol Int doi: 10.1016/j.triboint.2013.02.003 – volume: 72 start-page: 101256 year: 2021 ident: 9841_CR12 publication-title: Util Policy doi: 10.1016/j.jup.2021.101256 – year: 2005 ident: 9841_CR138 publication-title: J Phys G doi: 10.1088/0954-3899/31/6/019 – volume: 27 start-page: 6069 year: 2018 ident: 9841_CR266 publication-title: J Mater Eng Perform doi: 10.1007/s11665-018-3684-0 – volume: 34 start-page: 1 year: 2021 ident: 9841_CR37 publication-title: Chin J Mech Eng (English Edition) doi: 10.1186/s10033-021-00576-1 – volume: 128 start-page: 349 year: 2018 ident: 9841_CR173 publication-title: Tribol Int doi: 10.1016/j.triboint.2018.07.045 – volume: 44 start-page: 1199 year: 2011 ident: 9841_CR97 publication-title: Tribol Int doi: 10.1016/j.triboint.2011.05.022 – volume: 4 start-page: 161 year: 2018 ident: 9841_CR11 publication-title: Digit Commun Netw doi: 10.1016/j.dcan.2017.10.002 – volume: 233 start-page: 615 year: 2019 ident: 9841_CR297 publication-title: Proc Inst Mech Eng Part J doi: 10.1177/1350650118788929 – volume: 15 start-page: 2219 year: 2014 ident: 9841_CR139 publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-014-0584-6 – year: 2021 ident: 9841_CR279 publication-title: J Therm Spray Technol doi: 10.1007/s11666-021-01239-2 – ident: 9841_CR54 – volume: 68 start-page: 1 issue: 2 year: 2020 ident: 9841_CR131 publication-title: Tribol Lett doi: 10.1007/s11249-020-01294-w – volume: 224 start-page: 419 year: 2010 ident: 9841_CR126 publication-title: Proc Inst Mech Eng C doi: 10.1243/09544062JMES1677 – volume: 6 start-page: 267 year: 2000 ident: 9841_CR287 publication-title: Tribo Test doi: 10.1002/tt.3020060305 – volume: 268 start-page: 708 year: 2010 ident: 9841_CR106 publication-title: Wear doi: 10.1016/j.wear.2009.11.008 – volume: 53 start-page: 215 year: 2018 ident: 9841_CR201 publication-title: Robot Comput-Integr Manuf doi: 10.1016/j.rcim.2018.03.011 – volume: 396 start-page: 125950 year: 2020 ident: 9841_CR27 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.125950 – volume: 134 start-page: 372 year: 2019 ident: 9841_CR225 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.01.026 – volume: 5 start-page: 263 year: 2017 ident: 9841_CR49 publication-title: Friction doi: 10.1007/s40544-017-0183-5 – volume: 39 start-page: 1503 year: 2012 ident: 9841_CR82 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.08.040 – volume: 71 start-page: 2095 year: 2018 ident: 9841_CR170 publication-title: Trans Indian Inst Met doi: 10.1007/s12666-017-1134-6 – volume: 16 start-page: 11 year: 2004 ident: 9841_CR213 publication-title: Tribol Lett doi: 10.1023/b:tril.0000009709.83578.f5 – volume: 8 start-page: 107 year: 2020 ident: 9841_CR265 publication-title: Friction doi: 10.1007/s40544-018-0249-z – volume: 45 start-page: 5 year: 2001 ident: 9841_CR80 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 36 start-page: 455 year: 2003 ident: 9841_CR212 publication-title: Tribol Int doi: 10.1016/S0301-679X(02)00234-7 – volume: 30 start-page: 1213 year: 2021 ident: 9841_CR282 publication-title: J Therm Spray Technol doi: 10.1007/s11666-021-01198-8 – volume: 38 start-page: 1876 year: 2011 ident: 9841_CR289 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.07.119 – volume: 6 start-page: 379 year: 2021 ident: 9841_CR19 publication-title: Pet Res doi: 10.1016/j.ptlrs.2021.05.009 – volume: 28 start-page: 937 year: 2021 ident: 9841_CR20 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-020-09402-8 – volume: 64 start-page: 288 year: 2012 ident: 9841_CR254 publication-title: Ind Lubr Tribol doi: 10.1108/00368791211249674 – volume: 17 start-page: 1276 year: 2017 ident: 9841_CR262 publication-title: J Fail Anal Prev doi: 10.1007/s11668-017-0362-8 – volume: 190 start-page: 105324 year: 2020 ident: 9841_CR300 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105324 – volume: 30 start-page: 1042 year: 2009 ident: 9841_CR107 publication-title: Mater Des doi: 10.1016/j.matdes.2008.06.045 – volume: 30 start-page: 3601 year: 2018 ident: 9841_CR29 publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b05304 – volume: 17 start-page: 119 year: 2004 ident: 9841_CR316 publication-title: Tribol Lett doi: 10.1023/B:TRIL.0000032436.09396.d4 – volume: 460–461 start-page: 203477 year: 2020 ident: 9841_CR185 publication-title: Wear doi: 10.1016/j.wear.2020.203477 – volume: 68 start-page: 734 year: 2008 ident: 9841_CR108 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2007.09.022 – volume: 306 start-page: 242 year: 2013 ident: 9841_CR216 publication-title: Wear doi: 10.1016/j.wear.2012.11.045 – ident: 9841_CR206 doi: 10.1201/9780849377877.ch20 – volume: 56 start-page: 789 year: 2013 ident: 9841_CR160 publication-title: Tribol Trans doi: 10.1080/10402004.2013.798448 – volume: 36 start-page: 943 year: 2003 ident: 9841_CR315 publication-title: Tribol Int doi: 10.1016/S0301-679X(03)00090-2 – volume: 28 start-page: 4487 year: 2021 ident: 9841_CR58 publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-021-09557-y – volume: 261 start-page: 269 year: 2006 ident: 9841_CR103 publication-title: Wear doi: 10.1016/j.wear.2005.10.006 – year: 2016 ident: 9841_CR34 publication-title: Shock Vib doi: 10.1155/2016/8726781 – volume: 54 start-page: 179 year: 2020 ident: 9841_CR182 publication-title: J Compos Mater doi: 10.1177/0021998319859924 – volume: 200 start-page: 2610 year: 2006 ident: 9841_CR241 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2004.12.026 – volume: 58 start-page: 349 year: 2015 ident: 9841_CR257 publication-title: Tribol Trans doi: 10.1080/10402004.2014.971995 – year: 2021 ident: 9841_CR314 publication-title: Lubricants doi: 10.3390/lubricants9050050 – volume: 86 start-page: 56 year: 2016 ident: 9841_CR295 publication-title: Measurement doi: 10.1016/j.measurement.2016.02.024 – volume: 261 start-page: 1064 year: 2006 ident: 9841_CR246 publication-title: Wear doi: 10.1016/j.wear.2006.01.040 – volume: 8 start-page: 1102 year: 2020 ident: 9841_CR270 publication-title: Friction doi: 10.1007/s40544-017-0340-0 – year: 2018 ident: 9841_CR236 publication-title: Lubricants doi: 10.3390/lubricants6040108 – volume: 9 start-page: 1726 year: 2021 ident: 9841_CR120 publication-title: Friction doi: 10.1007/s40544-021-0493-5 – volume: 268 start-page: 117 year: 2010 ident: 9841_CR198 publication-title: Wear doi: 10.1016/j.wear.2009.07.006 – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: 9841_CR69 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.880583 – volume: 104 start-page: 235 year: 2019 ident: 9841_CR70 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.01.009 – volume: 2 start-page: 240 year: 2014 ident: 9841_CR161 publication-title: Friction doi: 10.1007/s40544-014-0044-4 – year: 2021 ident: 9841_CR275 publication-title: Wear doi: 10.1016/j.wear.2021.203888 – volume: 9 start-page: 1 year: 2021 ident: 9841_CR39 publication-title: Lubricants doi: 10.3390/lubricants9010002 – volume: 44 start-page: 538 year: 2019 ident: 9841_CR79 publication-title: MRS Bull doi: 10.1557/mrs.2019.158 – volume: 228 start-page: 1025 year: 2014 ident: 9841_CR116 publication-title: Proc Inst Mech Eng Part J doi: 10.1177/1350650113504907 – volume: 24 start-page: 1213 year: 2013 ident: 9841_CR292 publication-title: J Intell Manuf doi: 10.1007/s10845-012-0657-2 – year: 1988 ident: 9841_CR7 publication-title: Machine learning: a probabilistic perspective doi: 10.1111/j.1468-0394.1988.tb00341.x – year: 2020 ident: 9841_CR25 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.136765 – volume: 95 start-page: 426 year: 2016 ident: 9841_CR30 publication-title: Tribol Int doi: 10.1016/j.triboint.2015.11.045 – volume: 142 start-page: 1 year: 2020 ident: 9841_CR229 publication-title: J Tribol doi: 10.1115/1.4044850 – volume: 73 start-page: 3059 year: 2020 ident: 9841_CR190 publication-title: Trans Indian Inst Met doi: 10.1007/s12666-020-02108-2 – volume: 108 start-page: 33 year: 2018 ident: 9841_CR76 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.02.016 – volume: 15 start-page: 2953 year: 2021 ident: 9841_CR278 publication-title: J Market Res doi: 10.1016/j.jmrt.2021.09.069 – volume: 16 start-page: 703 year: 2007 ident: 9841_CR154 publication-title: J Mater Eng Perform doi: 10.1007/s11665-007-9100-9 – volume: 140 start-page: 256 year: 2001 ident: 9841_CR244 publication-title: Surf Coat Technol doi: 10.1016/S0257-8972(01)01128-8 – volume: 28 start-page: 946 year: 2019 ident: 9841_CR268 publication-title: J Therm Spray Technol doi: 10.1007/s11666-019-00874-0 – volume: 126 start-page: 187 year: 2003 ident: 9841_CR136 publication-title: Adv Chem Phys doi: 10.1002/0471428019.ch5 – volume: 6 start-page: 25 year: 2012 ident: 9841_CR159 publication-title: Tribology doi: 10.1179/1751584X12Y.0000000002 – volume: 133 start-page: 21 year: 2019 ident: 9841_CR235 publication-title: Tribol Int doi: 10.1016/j.triboint.2018.12.041 – volume: 2009 start-page: 693 year: 2009 ident: 9841_CR78 publication-title: Int Conf Mach Learn Appl doi: 10.1109/ICMLA.2009.25 – volume: 31 start-page: 32 year: 2011 ident: 9841_CR128 publication-title: Int J Model Simul doi: 10.2316/Journal.205.2011.1.205-5285 – volume: 142 start-page: 1 year: 2020 ident: 9841_CR121 publication-title: J Tribol doi: 10.1115/1.4045013 – volume: 47 start-page: 211 year: 2012 ident: 9841_CR127 publication-title: Tribol Lett doi: 10.1007/s11249-012-9975-y – volume: 5 start-page: 24124 year: 2018 ident: 9841_CR143 publication-title: Mater Today doi: 10.1016/j.matpr.2018.10.206 – year: 2019 ident: 9841_CR237 publication-title: Lubricants doi: 10.3390/lubricants7040032 – volume: 25 start-page: 101615 year: 2020 ident: 9841_CR144 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2020.101615 – ident: 9841_CR62 doi: 10.1109/IJCNN.2000.857892 – volume: 32 start-page: e12189 year: 2018 ident: 9841_CR67 publication-title: Nat Resour Model doi: 10.1111/nrm.12189 – volume: 426–427 start-page: 1761 year: 2019 ident: 9841_CR142 publication-title: Wear doi: 10.1016/j.wear.2018.12.087 – volume: 138 start-page: 211 year: 2019 ident: 9841_CR178 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.05.040 – volume: 260 start-page: 9 year: 2018 ident: 9841_CR284 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2018.05.013 – volume: 38 start-page: 887 year: 2005 ident: 9841_CR152 publication-title: Tribol Int doi: 10.1016/j.triboint.2005.03.008 – ident: 9841_CR81 doi: 10.1007/s10115-007-0114-2 – volume: 156 start-page: 106829 year: 2021 ident: 9841_CR327 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106829 – year: 2021 ident: 9841_CR10 publication-title: Eur Financ Manag doi: 10.1111/eufm.12326 – volume: 25 start-page: 1043 year: 2012 ident: 9841_CR110 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.03.018 – volume: 43 start-page: 267 year: 2011 ident: 9841_CR158 publication-title: Tribol Lett doi: 10.1007/s11249-011-9805-7 – volume: 138 start-page: 1 year: 2016 ident: 9841_CR222 publication-title: J Tribol doi: 10.1115/1.4032304 – volume: 377 start-page: 16 year: 2020 ident: 9841_CR125 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.006 – volume: 7 start-page: 1 year: 2021 ident: 9841_CR234 publication-title: J Bio- Tribo-Corros doi: 10.1007/s40735-021-00550-3 – volume: 66 start-page: 149 year: 2018 ident: 9841_CR14 publication-title: Clin Infect Dis doi: 10.1093/cid/cix731 – volume: 87 start-page: 235 year: 2018 ident: 9841_CR47 publication-title: Autom Constr doi: 10.1016/j.autcon.2017.12.002 – volume: 679 start-page: 11 year: 2017 ident: 9841_CR85 publication-title: Stud Comput Intell doi: 10.1007/978-3-319-52156-5_2 – volume: 235 start-page: 2211 year: 2021 ident: 9841_CR329 publication-title: Proc Inst Mech Eng Part J doi: 10.1177/1350650121992895 – year: 2021 ident: 9841_CR203 publication-title: Friction doi: 10.1007/s40544-021-0516-2 – volume: 378 start-page: 124988 year: 2019 ident: 9841_CR267 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2019.124988 – volume: 39 start-page: 257 year: 2010 ident: 9841_CR137 publication-title: Tribol Lett doi: 10.1007/s11249-010-9635-z – volume: 40 start-page: 1705 year: 2007 ident: 9841_CR156 publication-title: Tribol Int doi: 10.1016/j.triboint.2007.01.008 – volume-title: An introduction to statistical learning year: 2000 ident: 9841_CR8 doi: 10.1007/978-1-4614-7138-7 – volume: 252 start-page: 668 year: 2002 ident: 9841_CR102 publication-title: Wear doi: 10.1016/S0043-1648(02)00023-6 – volume: 139 start-page: 1 year: 2017 ident: 9841_CR210 publication-title: J Tribol doi: 10.1115/1.4032971 – volume: 43 start-page: 1417 year: 2010 ident: 9841_CR100 publication-title: Tribol Int doi: 10.1016/j.triboint.2010.01.013 – volume: 222 start-page: 1201 year: 2008 ident: 9841_CR33 publication-title: Proc Inst Mech Eng Part D doi: 10.1243/09544070JAUTO583 – volume: 19 start-page: 428 year: 1951 ident: 9841_CR91 publication-title: Am J Phys doi: 10.1119/1.1933017 – volume: 33 start-page: 731 year: 2000 ident: 9841_CR149 publication-title: Tribol Int doi: 10.1016/S0301-679X(00)00115-8 – volume: 56 start-page: 930 year: 1986 ident: 9841_CR135 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.56.930 – year: 2013 ident: 9841_CR310 publication-title: J Tribol doi: 10.1115/1.4024638 – volume: 5 start-page: 115 year: 1943 ident: 9841_CR60 publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – volume: 151 start-page: 7398 year: 2021 ident: 9841_CR66 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.107398 – year: 2014 ident: 9841_CR322 publication-title: Adv Mech Eng doi: 10.1155/2014/213548 – year: 2021 ident: 9841_CR55 publication-title: Mach Learn doi: 10.7551/mitpress/13811.003.0007 – volume: 27 start-page: 1094 year: 2016 ident: 9841_CR83 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2437901 – ident: 9841_CR90 doi: 10.1115/1.3261896 – volume: 33 start-page: 1510 year: 2021 ident: 9841_CR132 publication-title: Structures doi: 10.1016/j.istruc.2021.04.100 – volume: 4 start-page: 3763 year: 2010 ident: 9841_CR141 publication-title: ACS Nano doi: 10.1021/nn100246g – volume: 143 start-page: 1 year: 2021 ident: 9841_CR92 publication-title: J Tribol doi: 10.1115/1.4050140 – volume: 21 start-page: 1440 year: 2013 ident: 9841_CR114 publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-1108-19 – volume: 30 start-page: 739 year: 1997 ident: 9841_CR306 publication-title: Tribol Int doi: 10.1016/S0301-679X(97)00056-X – year: 2021 ident: 9841_CR145 publication-title: Int J Refract Metal Hard Mater doi: 10.1016/j.ijrmhm.2021.105530 – volume: 57 start-page: 455 year: 2014 ident: 9841_CR162 publication-title: Tribol Trans doi: 10.1080/10402004.2014.880979 – volume: 37 start-page: 308 year: 2016 ident: 9841_CR35 publication-title: J Friction Wear doi: 10.3103/S1068366616040115 – year: 2018 ident: 9841_CR175 publication-title: Mater Res Express doi: 10.1088/2053-1591/aabec8 – year: 2021 ident: 9841_CR303 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106811 – volume: 104 start-page: 359 year: 2019 ident: 9841_CR228 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03701-6 – volume: 159 start-page: 1 year: 2021 ident: 9841_CR283 publication-title: Tribol Int doi: 10.1016/j.triboint.2021.106946 – volume: 32 start-page: 13453 year: 2020 ident: 9841_CR191 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04753-6 – volume: 30 start-page: 4012 year: 2021 ident: 9841_CR195 publication-title: J Mater Eng Perform doi: 10.1007/s11665-021-05802-4 – volume: 26 start-page: 141 year: 2014 ident: 9841_CR217 publication-title: Lubr Sci doi: 10.1002/ls.1238 – volume: 22 start-page: 151 year: 2006 ident: 9841_CR307 publication-title: Tribol Lett doi: 10.1007/s11249-006-9067-y – volume: 27 start-page: 30001 year: 2020 ident: 9841_CR63 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-08792-3 – volume: 30 start-page: 1929 year: 2021 ident: 9841_CR15 publication-title: Heart Lung Circ doi: 10.1016/j.hlc.2021.05.101 – volume: 104 start-page: 333 year: 2019 ident: 9841_CR43 publication-title: J Bus Res doi: 10.1016/j.jbusres.2019.07.039 – volume: 409 start-page: 408 year: 2020 ident: 9841_CR72 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.095 – volume: 18 start-page: 432 year: 2004 ident: 9841_CR317 publication-title: KSME Int J doi: 10.1007/BF02996108 – volume: 10 start-page: 121 year: 1998 ident: 9841_CR211 publication-title: Lubr Sci doi: 10.1002/ls.3010100203 – volume: 9 start-page: 86 year: 2021 ident: 9841_CR38 publication-title: Lubricants doi: 10.3390/LUBRICANTS9090086 – ident: 9841_CR52 – year: 2019 ident: 9841_CR88 publication-title: NPJ Comput Mater doi: 10.1038/s41524-019-0221-0 – year: 2021 ident: 9841_CR330 publication-title: Tribol Trans doi: 10.1080/10402004.2021.1934618 – year: 2021 ident: 9841_CR188 publication-title: J Bio- Tribo-Corros doi: 10.1007/s40735-020-00444-w – volume: 144 start-page: 1 year: 2022 ident: 9841_CR95 publication-title: J Tribol doi: 10.1115/1.4050525 – volume: 17 start-page: 887 year: 2004 ident: 9841_CR313 publication-title: Tribol Lett doi: 10.1007/s11249-004-8097-6 – year: 2020 ident: 9841_CR41 publication-title: Materials doi: 10.3390/MA13163489 – volume: 9 start-page: 67 year: 2021 ident: 9841_CR328 publication-title: Lubricants doi: 10.3390/lubricants9070067 – volume: 28 start-page: 1745 year: 2015 ident: 9841_CR165 publication-title: J Intell Fuzzy Syst doi: 10.3233/IFS-141461 – volume: 58 start-page: 654 year: 2004 ident: 9841_CR245 publication-title: Mater Lett doi: 10.1016/j.matlet.2003.06.010 – ident: 9841_CR219 doi: 10.1109/ICMTMA.2014.201 – volume: 140 start-page: 105813 year: 2019 ident: 9841_CR240 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.06.006 – volume: 53 start-page: 533 year: 2010 ident: 9841_CR251 publication-title: Tribol Trans doi: 10.1080/10402000903491317 – volume: 9 start-page: 530 year: 2020 ident: 9841_CR181 publication-title: J Market Res doi: 10.1016/j.jmrt.2019.10.082 – volume: 67 start-page: 42 year: 2011 ident: 9841_CR2 publication-title: Tribol Lubr Technol doi: 10.1080/10402009908982281 – volume: 50 start-page: 289 year: 2010 ident: 9841_CR308 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2476-y – volume: 69 start-page: 610 year: 2018 ident: 9841_CR93 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2018.04.048 – volume: 26 start-page: 153 year: 2012 ident: 9841_CR115 publication-title: J Mech Sci Technol doi: 10.1007/s12206-011-1020-9 – volume: 2 start-page: 236 year: 2017 ident: 9841_CR13 publication-title: Proceedings doi: 10.1109/COMPSAC.2017.164 – volume: 35 start-page: 1699 year: 2021 ident: 9841_CR194 publication-title: J Mech Sci Technol doi: 10.1007/s12206-021-0333-6 – volume: 241 start-page: 733 year: 2019 ident: 9841_CR208 publication-title: Fuel doi: 10.1016/j.fuel.2018.12.094 – year: 2014 ident: 9841_CR255 publication-title: Adv Tribol doi: 10.1155/2014/763601 – volume: 12 start-page: 101211 year: 2021 ident: 9841_CR23 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2021.101211 – volume: 23 start-page: 2730 year: 2009 ident: 9841_CR285 publication-title: J Mech Sci Technol doi: 10.1007/s12206-009-0802-9 – volume: 25 start-page: 21 year: 2016 ident: 9841_CR256 publication-title: J Therm Spray Technol doi: 10.1007/s11666-015-0341-0 – volume: 147 start-page: 106280 year: 2020 ident: 9841_CR302 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106280 – year: 2012 ident: 9841_CR6 publication-title: Bayesian Reason Mach Learn doi: 10.1017/cbo9780511804779.026 – volume: 266 start-page: 184 year: 2009 ident: 9841_CR249 publication-title: Wear doi: 10.1016/j.wear.2008.06.008 – volume: 6 start-page: 15 year: 2012 ident: 9841_CR117 publication-title: Tribology doi: 10.1179/1751584X11Y.0000000025 – volume: 33 start-page: 153 year: 2021 ident: 9841_CR326 publication-title: Lubr Sci doi: 10.1002/ls.1535 – volume: 41 start-page: 135 year: 2019 ident: 9841_CR226 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2019.03.024 – volume: 137 start-page: 1 year: 2015 ident: 9841_CR220 publication-title: J Tribol doi: 10.1115/1.4029332 – volume: 144 start-page: 390 year: 2016 ident: 9841_CR294 publication-title: Procedia Eng doi: 10.1016/j.proeng.2016.05.148 – volume: 9 start-page: 250 year: 2021 ident: 9841_CR183 publication-title: Friction doi: 10.1007/s40544-019-0332-0 – volume: 67 start-page: 168 year: 2007 ident: 9841_CR155 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2006.07.026 – volume: 72 start-page: 1233 year: 2020 ident: 9841_CR232 publication-title: Ind Lubr Tribol doi: 10.1108/ILT-03-2020-0109 – year: 2021 ident: 9841_CR238 publication-title: J Tribol doi: 10.1115/1.4049257 – year: 2021 ident: 9841_CR276 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2021.127370 – volume: 29 start-page: 82 year: 2012 ident: 9841_CR71 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – volume: 392–393 start-page: 152 year: 2017 ident: 9841_CR168 publication-title: Wear doi: 10.1016/j.wear.2017.09.022 – volume: 2 start-page: 100008 year: 2020 ident: 9841_CR22 publication-title: Mach Learn Appl doi: 10.1016/j.mlwa.2020.100008 – volume: 235 start-page: 748 year: 2021 ident: 9841_CR189 publication-title: Proc Inst Mech Eng Part J doi: 10.1177/1350650120925582 – volume: 474–475 start-page: 203715 year: 2021 ident: 9841_CR202 publication-title: Wear doi: 10.1016/j.wear.2021.203715 – year: 2012 ident: 9841_CR87 publication-title: Mach Learn doi: 10.1007/978-1-4419-9326-7_1 – volume: 5 start-page: 1 year: 2019 ident: 9841_CR40 publication-title: Front Mech Eng doi: 10.3389/fmech.2019.00030 – volume: 102 start-page: 27 year: 2021 ident: 9841_CR193 publication-title: J Inst Eng doi: 10.1007/s40033-021-00250-9 – volume: 138 start-page: 166 year: 2019 ident: 9841_CR180 publication-title: Tribol Int doi: 10.1016/j.triboint.2019.05.029 – volume: 241 start-page: 171 year: 2017 ident: 9841_CR84 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.039 – volume: 349 start-page: 1130 year: 2018 ident: 9841_CR263 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2018.06.065 – volume: 83 start-page: 378 year: 1995 ident: 9841_CR73 publication-title: Proc IEEE doi: 10.1109/5.364486 – volume: 226 start-page: 46 year: 2012 ident: 9841_CR309 publication-title: Proc Inst Mech Eng Part J doi: 10.1177/1350650111424237 – volume: 385 start-page: 125365 year: 2020 ident: 9841_CR243 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2020.125365 – volume: 7 start-page: 100147 year: 2020 ident: 9841_CR17 publication-title: Oper Res Perspect doi: 10.1016/j.orp.2020.100147 – volume: 153 start-page: 106630 year: 2021 ident: 9841_CR31 publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106630 |
| SSID | ssj0054992 |
| Score | 2.5436742 |
| SecondaryResourceType | review_article |
| Snippet | The machine learning (ML) approach, motivated by artificial intelligence (AI), is an inspiring mathematical algorithm that accurately simulates many... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1345 |
| SubjectTerms | Algorithms Artificial intelligence Design Energy consumption Engineering Fault diagnosis Friction Fuzzy logic Interdisciplinary aspects Interdisciplinary studies Journal bearings Lubricants & lubrication Machine learning Mathematical and Computational Engineering Neural networks Process parameters Resource conservation Resource utilization Review Article Support vector machines Tribology Useful life |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOhBFDWiaHrwpiPt1nXUgwkxINHgQSXB07KurTGSYWRc_Ovtto4pURPP65rt9b2-798DOGVU6i7r-g7RMXeMJAaOYDpwXFdQoqUwPJMF9Ed3bDimNxN_YpvC5mW1e5mSzG_qqtnNcJ9xfY3zhHmXEsdfh3qOt1WDeu_66bZf3sCZy5NnOYmXRf0Zts0yP-_yXSFVVuZKYjTXN4MGjMsvLcpMXjuLVHTijxUQx__-yjZsWQMU9QqO2YE1lTShYY1RZEV93oTNL0iFu3Bp2Andz6YKzTQa5QWYClls1mf0kqAMgSSP0F-gHnpYwkOjIvewB-NB__Fq6NjRC05sZDJ1AhlJP_I0DwgJtNdVWGESERVhgaXAUcR8ormLGZckdhVRXGU4QIFPBBMejrx9qCWzRB0AiomULtWUa0mpEpExkDVXVEvfUyTmcQtISf8wtrjk2XiMaVghKmfkCg25wpxcod-Cs-U7bwUqx5-r2-WxhlZC56FnbD2jqLHLW3BenlL1-PfdDv-3_Ag2sgn1RdlaG2rp-0IdGzsmFSeWbT8BV0vlPw priority: 102 providerName: Springer Nature |
| Title | The Role of Machine Learning in Tribology: A Systematic Review |
| URI | https://link.springer.com/article/10.1007/s11831-022-09841-5 https://www.proquest.com/docview/3256678029 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1886-1784 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: ADMLS dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1886-1784 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vXjxLdZHycGbBpPd7COCStU-UFvEWqinJdkkIkjro_5_k92sRUFPe8gmh8k8MzPfABzETJk0TiNMTc6xlcQEy9gkOAgko0ZJyzPuQb8_iHsjdj2OxgswqHphXFllpRMLRa2muXsjPw6tbbaKlQT8_PUNu6lRLrtajdAQfrSCOi0gxhahHjhkrBrUL9qDu_tKN7tgqMh_0tDlA2Li22jKZjrL3Ta0tsEZ4SmjOPppqub-56-UaWGJOquw7F1I1CrvfA0W9GQdVrw7ibywfmzAmWUBdD990WhqUL8omtTI46k-oecJcqghxav6CWqh4TekMyrzBZsw6rQfLnvYj0vAuZWjGU6UUJEIDU8oTUyYaqIJFVQLIomSRIg4ooYHJOaK5oGmmmuH3ZNEVMYyJCLcgtpkOtHbgHKqVMAM40YxpqWwTq3hmhkVhZrmPG8ArSiT5R5L3I20eMnmKMiOmpmlZlZQM4sacPi957VE0vj3772K4JmXqo9szgMNOKouYb7892k7_5-2C0tuinxZWrYHtdn7p963vsZMNmEx7XSbUG9d9W-H7tt9vGk3PVvZ1VHQ-gL9HdJT |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOMCFHVFWH-AEFnbiJDUSIFYVugixSNyCHdsICbVAixA_x7dhJ04rkODGOY4P4zebx_MGYCNmytTiWoSpyTi2mphgGZsEB4Fk1ChpMeMu9FvtuH7LLu6iuwp8lr0w7lllaRNzQ626mbsj3wmtb7aGlQT84PkFu6lRrrpajtAQfrSC2sspxnxjR0N_vNsUrrd3fmLPezMIzk5vjuvYTxnAmYVfHydKqEiEhieUJiasaaIJFVQLIomSRIg4ooYHJOaKZoGmmmtHeZNEVMYyJCK0-47AGAsZt8nf2NFp-_Kq9AUu-crrrTR09YeY-LadonnPapNN5W0ySHiNURx9d43DePdHiTb3fGfTMOlDVnRYYGwGKrozC1M-fEXeOPTmYN9CDl11nzTqGtTKH2lq5PlbH9BjBzmWkvwWfxcdousBhTQq6hPzcPsvgluA0U63oxcBZVSpgBnGjWJMS2GDaMM1MyoKNc14VgVaSibNPHe5G6HxlA5Zl500UyvNNJdmGlVha_DPc8Hc8efqlVLgqdfiXjrEXBW2y0MYfv59t6W_d1uH8fpNq5k2z9uNZZhwE-yLZ20rMNp_fdOrNs7pyzUPJgT3_43fL--0CkU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAcuEG1pE3ThgPSBEzjsQkBk3armiZBSFM3sfL_SfrYBgIkzk1zcOz4sx1_BjhlVOqQhb5DdMIdY4mBI5gOHNcVlGgpjM7YhH6vz7oDejf0hwtd_Plr96okWfQ0WJamNGtNpG7NG9-MJpow2ARSmIeUOP4yrFBLlGA0euC2q7vYBj95vZN4Nv_PcNk28_MeX13THG9-K5HmnqezBRslZETt4oy3YUmlddgs4SMqjXNah_UFbsEduDQKgJ7GI4XGGvXyJ5MKlWyqr-gtRZYzJM-pX6A2ep4ROqOiWrALg87Ny1XXKYclOImxoswJZCz92NM8ICTQXqiwwiQmKsYCS4HjmPlEcxczLkniKqK4ssw9gU8EEx6OvT2opeNU7QNKiJQu1ZRrSakSsYG0miuqpe8pkvCkAaSSU5SUTOJ2oMUomnMgW9lGRrZRLtvIb8DZ7J9JwaPx5-pmJf6otKlp5Bl0ZlwrdnkDzqsjmX_-fbeD_y0_gdXH6070cNu_P4Q1O16-eHPWhFr2_qGODAjJxHGuZ5_NEM9l |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Machine+Learning+in+Tribology%3A+A+Systematic+Review&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Paturi%2C+Uma+Maheshwera+Reddy&rft.au=Palakurthy%2C+Sai+Teja&rft.au=Reddy%2C+N.+S&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=30&rft.issue=2&rft.spage=1345&rft.epage=1397&rft_id=info:doi/10.1007%2Fs11831-022-09841-5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |