Real-time defect detection of TFT-LCD displays using a lightweight network architecture
The mura defects of thin film transistor-liquid crystal display (TFT-LCD) panels have low contrast and random locations, which makes it impossible for us to correctly evaluate the number and type of mura defects on the image in the field inspection. In response to the above problems, this paper prop...
        Saved in:
      
    
          | Published in | Journal of intelligent manufacturing Vol. 35; no. 3; pp. 1337 - 1352 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.03.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0956-5515 1572-8145  | 
| DOI | 10.1007/s10845-023-02110-7 | 
Cover
| Abstract | The mura defects of thin film transistor-liquid crystal display (TFT-LCD) panels have low contrast and random locations, which makes it impossible for us to correctly evaluate the number and type of mura defects on the image in the field inspection. In response to the above problems, this paper proposes a lightweight YOLO-ADPAM detection method based on an attention mechanism. First, we designed a K-means-ciou++ clustering algorithm using the Complete-Intersection-Over-Union loss function to cluster the anchor box size of the display defect dataset, making the bounding box regression more accurate and stable and improving the recognition and positioning accuracy of the algorithm. Second, we design a parallel attention module, combining the advantages of the channel and spatial attention mechanisms to effectively extract helpful information from feature maps. The channel attention branch can compensate for the defect information lost by global average pooling to a certain extent, and selecting a larger convolution kernel in the spatial attention branch is beneficial to retain crucial spatial information. Third, using atrous spatial pyramid pooling and depthwise separable convolution in the Neck network can further improve the receptive field of the feature map and improve the detection accuracy of the network. The experimental results show that the mAP of our proposed YOLO-ADPAM algorithm in TFT-LCD defect detection reaches 98.20%, and the detection speed reaches 83.23 FPS, which meets the detection accuracy and real-time requirements of TFT-LCD defect detection tasks. | 
    
|---|---|
| AbstractList | The mura defects of thin film transistor-liquid crystal display (TFT-LCD) panels have low contrast and random locations, which makes it impossible for us to correctly evaluate the number and type of mura defects on the image in the field inspection. In response to the above problems, this paper proposes a lightweight YOLO-ADPAM detection method based on an attention mechanism. First, we designed a K-means-ciou++ clustering algorithm using the Complete-Intersection-Over-Union loss function to cluster the anchor box size of the display defect dataset, making the bounding box regression more accurate and stable and improving the recognition and positioning accuracy of the algorithm. Second, we design a parallel attention module, combining the advantages of the channel and spatial attention mechanisms to effectively extract helpful information from feature maps. The channel attention branch can compensate for the defect information lost by global average pooling to a certain extent, and selecting a larger convolution kernel in the spatial attention branch is beneficial to retain crucial spatial information. Third, using atrous spatial pyramid pooling and depthwise separable convolution in the Neck network can further improve the receptive field of the feature map and improve the detection accuracy of the network. The experimental results show that the mAP of our proposed YOLO-ADPAM algorithm in TFT-LCD defect detection reaches 98.20%, and the detection speed reaches 83.23 FPS, which meets the detection accuracy and real-time requirements of TFT-LCD defect detection tasks. | 
    
| Author | Zhang, Yongxia Chen, Ping Cui, Yu Wang, Sen Chen, Zhongping Chen, Mingfang Song, Yanjin Mo, Xiang Chen, Songlin  | 
    
| Author_xml | – sequence: 1 givenname: Ping surname: Chen fullname: Chen, Ping organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology – sequence: 2 givenname: Mingfang orcidid: 0000-0002-3323-8168 surname: Chen fullname: Chen, Mingfang email: mfchen111@sina.com organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology – sequence: 3 givenname: Sen surname: Wang fullname: Wang, Sen organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology – sequence: 4 givenname: Yanjin surname: Song fullname: Song, Yanjin organization: Si Chuan Xsped Intelligent Technology Co., Ltd – sequence: 5 givenname: Yu surname: Cui fullname: Cui, Yu organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology – sequence: 6 givenname: Zhongping surname: Chen fullname: Chen, Zhongping organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology – sequence: 7 givenname: Yongxia surname: Zhang fullname: Zhang, Yongxia organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology – sequence: 8 givenname: Songlin surname: Chen fullname: Chen, Songlin organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology – sequence: 9 givenname: Xiang surname: Mo fullname: Mo, Xiang organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology  | 
    
| BookMark | eNp9kM1KAzEURoNUsK2-gKuA62h-ZyZLqVaFgiAVlyHN3GlTpzM1SSl9e2esILjo4ubbfOfecEZo0LQNIHTN6C2jNL-LjBZSEcpFN4xRkp-hIVM5JwWTaoCGVKuMKMXUBRrFuKaU6iJjQ_TxBrYmyW8Al1CBS12kLnzb4LbC8-mczCYPuPRxW9tDxLvomyW2uPbLVdpD_-IG0r4Nn9gGt_I9vAtwic4rW0e4-s0xep8-zifPZPb69DK5nxEnmE4k1-AyYTNgQlU6K3gFHGDBF0oWciEtc07BosxKnjkJJReFlpIJ0TU5SKXFGN0c925D-7WDmMy63YWmO2m4Fjxnhc7yrsWPLRfaGANUZhv8xoaDYdT0As1RoOkEmh-BpoeKf5DzyfZmUrC-Po2KIxq7O80Swt-vTlDfMfeGlg | 
    
| CitedBy_id | crossref_primary_10_1007_s10845_023_02317_8 crossref_primary_10_3390_mi14091737 crossref_primary_10_1007_s10845_024_02387_2 crossref_primary_10_3390_photonics12030243 crossref_primary_10_1109_ACCESS_2025_3544578 crossref_primary_10_1016_j_displa_2024_102913  | 
    
| Cites_doi | 10.1109/CVPRW50498.2020.00203 10.1109/ICCVW54120.2021.00312 10.1109/TASE.2020.3039115 10.1007/s10845-022-01962-9 10.1007/s10845-021-01906-9 10.1109/ACCESS.2019.2931194 10.1609/aaai.v34i07.6999 10.48550/arXiv.1911.09070 10.1002/jsid.1171 10.1109/CVPR42600.2020.01155 10.1002/jsid.743 10.1109/TII.2019.2958826 10.1007/s11554-019-00927-1 10.1007/978-3-030-01234-2_1 10.1109/TPAMI.2015.2389824 10.1007/s10845-017-1304-8 10.1109/CVPR46437.2021.01283 10.1109/ICCV.2017.324 10.1109/CVPR.2018.00745 10.1109/ACCESS.2020.2982250 10.1109/tpami.2016.2577031 10.1109/TPAMI.2017.2699184 10.3390/cryst11121444 10.1002/jsid.997 10.1007/s10845-021-01905-w 10.1109/TASE.2018.2886031 10.1007/s10845-019-01502-y 10.1109/TII.2020.3015765 10.1007/s10845-020-01704-9 10.1109/JSEN.2021.3131908  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88E 8AL 8AO 8FD 8FE 8FG 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. L.- L6V L7M L~C L~D M0C M0N M0S M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| DOI | 10.1007/s10845-023-02110-7 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Health & Medical Collection (Alumni Edition) Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1572-8145 | 
    
| EndPage | 1352 | 
    
| ExternalDocumentID | 10_1007_s10845_023_02110_7 | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation of China grantid: 52065035 – fundername: Natural Science Foundation of China grantid: 51965029 funderid: http://dx.doi.org/10.13039/501100011002  | 
    
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FE 8FG 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z88 Z8N Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-79ec63a6e135f9682fe2eeb2b5484b4a1cc5ebd6d26c4ed2389441336822e4593 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0956-5515 | 
    
| IngestDate | Tue Sep 30 07:35:32 EDT 2025 Wed Oct 01 03:41:02 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Fri Feb 21 02:41:16 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | K-means-ciou ASPP TFT-LCD defect detection  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-79ec63a6e135f9682fe2eeb2b5484b4a1cc5ebd6d26c4ed2389441336822e4593 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3323-8168 | 
    
| PQID | 2932718967 | 
    
| PQPubID | 32407 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_2932718967 crossref_primary_10_1007_s10845_023_02110_7 crossref_citationtrail_10_1007_s10845_023_02110_7 springer_journals_10_1007_s10845_023_02110_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240300 2024-03-00 20240301  | 
    
| PublicationDateYYYYMMDD | 2024-03-01 | 
    
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: London  | 
    
| PublicationTitle | Journal of intelligent manufacturing | 
    
| PublicationTitleAbbrev | J Intell Manuf | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Yang, H., Zhou, Q., Song, K., et al. (2020). An anomaly feature-editing-based adversarial network for texture defect visual inspection. IEEE Transactions on Industrial Informatics,17(3), 2220–2230. https://doi.org/10.1109/TII.2020.3015765 SunYLiXXiaoJA cascaded mura defect detection method based on mean shift and level set algorithm for active-matrix OLED display panelJournal of the Society for Information Display2019271132010.1002/jsid.743 LeNTWangJWShihMHNovel framework for optical film defect detection and classificationIEEE Access2020860,96460,97810.1109/ACCESS.2020.2982250 Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv:1904.07850 Wang, C. Y., Liao, H. Y. M., Wu, Y. H., et al. (2020a). CSPNET: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp 390–391). https://doi.org/10.1109/CVPRW50498.2020.00203 DongXTaylorCJCootesTFA random forest-based automatic inspection system for aerospace welds in X-ray imagesIEEE Transactions on Automation Science and Engineering20201842128214110.1109/TASE.2020.3039115 Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10781–10790). https://doi.org/10.48550/arXiv.1911.09070 Zhi, Z., Jiang, H., Yang, D., et al. (2022). An end-to-end welding defect detection approach based on titanium alloy time-of-flight diffraction images. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01905-w CuiYWangSWuHLiquid crystal display defects in multiple backgrounds with visual real-time detectionJournal of the Society for Information Display202129754756010.1002/jsid.997 Lin, T. Y., Goyal, P., Girshick, R., et al. (2017). Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, (pp. 2980–2988) PanYLuRZhangTFPGA-accelerated textured surface defect segmentation based on complete period Fourier reconstructionJournal of Real-Time Image Processing20201751659167310.1007/s11554-019-00927-1 Ge, Z., Liu, S., Wang, F., et al. (2021) Yolox: Exceeding yolo series in 2021. arXiv:2107.08430. HeKZhangXRenSSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence20153791904191610.1109/TPAMI.2015.238982426353135 KimMLeeMAnMEffective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panelJournal of Intelligent Manufacturing20203151165117410.1007/s10845-019-01502-y LuoRChenRJiaFRBD-NET: Robust breakage detection algorithm for industrial leatherJournal of Intelligent Manufacturing202210.1007/s10845-022-01962-9 Wang, C.Y., Bochkovskiy, A., & Liao, H. Y. M. (2021). Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition (pp. 13029–13038). https://doi.org/10.1109/CVPR46437.2021.01283 RenSHeKGirshickRFaster R-CNN: Towards real-time object detection with region proposal networksAdvances in neural information processing systems201510.1109/tpami.2016.2577031 MingWZhangSLiuXSurvey of mura defect detection in liquid crystal displays based on machine visionCrystals2021111214441:CAS:528:DC%2BB38XovV2juw%3D%3D10.3390/cryst11121444 Woo, S., Park, J., Lee, J. Y., et al. (2018). CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV) (pp. 3–19) https://doi.org/10.1007/978-3-030-01234-2_1 Zheng, Z., Wang, P., Liu W., et al. (2020). Distance-IOU loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI conference on artificial intelligence (pp. 12993–13000) https://doi.org/10.1609/aaai.v34i07.6999 Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, (pp 7132–7141) Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv:1804.02767 Wang, Q., Wu, B., Zhu, P., et al. (2020b). Supplementary material for ECA-NET: Efficient channel attention for deep convolutional neural networks. In Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition, IEEE, Seattle, WA, USA (pp. 13–19) https://doi.org/10.1109/CVPR42600.2020.01155 ChenMChenPWangSTFT-LCD mura defect visual inspection method in multiple backgroundsJournal of the Society for Information Display202210.1002/jsid.1171 DengYPanXWangXVison-based 3D shape measurement system for transparent microdefect characterizationIEEE Access2019710572110573310.1109/ACCESS.2019.2931194 MeiSChengJHeXA novel weakly supervised ensemble learning framework for automated pixel-wise industry anomaly detectionIEEE Sensors Journal2021222156015702022ISenJ..22.1560M10.1109/JSEN.2021.3131908 Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv:2004.10934 ChenLCPapandreouGKokkinosIDeeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFSIEEE Transactions on Pattern Analysis and Machine Intelligence201740483484810.1109/TPAMI.2017.269918428463186 DongHSongKHeYPga-net: Pyramid feature fusion and global context attention network for automated surface defect detectionIEEE Transactions on Industrial Informatics201916127448745810.1109/TII.2019.2958826 SchlosserTFriedrichMBeuthFImproving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networksJournal of Intelligent Manufacturing20223341099112310.1007/s10845-021-01906-9 Zhu, .X, Lyu, S., Wang, X., et al. (2021). Tph-yolov5: Improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF international conference on computer vision (pp. 2778–2788) https://doi.org/10.1109/ICCVW54120.2021.00312 ÇelikAKüçükmanisaASümerAA real-time defective pixel detection system for LCDS using deep learning based object detectorsJournal of Intelligent Manufacturing202010.1007/s10845-020-01704-9 KwakJLeeKBJangJAutomatic inspection of salt-and-pepper defects in OLED panels using image processing and control chart techniquesJournal of Intelligent Manufacturing20193031047105510.1007/s10845-017-1304-8 YangHChenYSongKMultiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defectsIEEE Transactions on Automation Science and Engineering20191631450146710.1109/TASE.2018.2886031 NT Le (2110_CR14) 2020; 8 2110_CR32 2110_CR31 S Mei (2110_CR17) 2021; 22 2110_CR30 H Dong (2110_CR7) 2019; 16 Y Cui (2110_CR5) 2021; 29 2110_CR34 2110_CR11 2110_CR33 Y Sun (2110_CR23) 2019; 27 X Dong (2110_CR8) 2020; 18 2110_CR15 R Luo (2110_CR16) 2022 M Kim (2110_CR12) 2020; 31 S Ren (2110_CR21) 2015 LC Chen (2110_CR4) 2017; 40 K He (2110_CR10) 2015; 37 2110_CR20 J Kwak (2110_CR13) 2019; 30 A Çelik (2110_CR2) 2020 Y Deng (2110_CR6) 2019; 7 Y Pan (2110_CR19) 2020; 17 W Ming (2110_CR18) 2021; 11 H Yang (2110_CR29) 2019; 16 T Schlosser (2110_CR22) 2022; 33 2110_CR9 2110_CR25 2110_CR24 M Chen (2110_CR3) 2022 2110_CR1 2110_CR28 2110_CR27 2110_CR26  | 
    
| References_xml | – reference: CuiYWangSWuHLiquid crystal display defects in multiple backgrounds with visual real-time detectionJournal of the Society for Information Display202129754756010.1002/jsid.997 – reference: PanYLuRZhangTFPGA-accelerated textured surface defect segmentation based on complete period Fourier reconstructionJournal of Real-Time Image Processing20201751659167310.1007/s11554-019-00927-1 – reference: Wang, Q., Wu, B., Zhu, P., et al. (2020b). Supplementary material for ECA-NET: Efficient channel attention for deep convolutional neural networks. In Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition, IEEE, Seattle, WA, USA (pp. 13–19) https://doi.org/10.1109/CVPR42600.2020.01155 – reference: DongHSongKHeYPga-net: Pyramid feature fusion and global context attention network for automated surface defect detectionIEEE Transactions on Industrial Informatics201916127448745810.1109/TII.2019.2958826 – reference: Lin, T. Y., Goyal, P., Girshick, R., et al. (2017). Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, (pp. 2980–2988) – reference: Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, (pp 7132–7141) – reference: SunYLiXXiaoJA cascaded mura defect detection method based on mean shift and level set algorithm for active-matrix OLED display panelJournal of the Society for Information Display2019271132010.1002/jsid.743 – reference: Yang, H., Zhou, Q., Song, K., et al. (2020). An anomaly feature-editing-based adversarial network for texture defect visual inspection. IEEE Transactions on Industrial Informatics,17(3), 2220–2230. https://doi.org/10.1109/TII.2020.3015765 – reference: ChenMChenPWangSTFT-LCD mura defect visual inspection method in multiple backgroundsJournal of the Society for Information Display202210.1002/jsid.1171 – reference: YangHChenYSongKMultiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defectsIEEE Transactions on Automation Science and Engineering20191631450146710.1109/TASE.2018.2886031 – reference: Zheng, Z., Wang, P., Liu W., et al. (2020). Distance-IOU loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI conference on artificial intelligence (pp. 12993–13000) https://doi.org/10.1609/aaai.v34i07.6999 – reference: Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv:1804.02767 – reference: Zhi, Z., Jiang, H., Yang, D., et al. (2022). An end-to-end welding defect detection approach based on titanium alloy time-of-flight diffraction images. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01905-w – reference: Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv:1904.07850 – reference: MingWZhangSLiuXSurvey of mura defect detection in liquid crystal displays based on machine visionCrystals2021111214441:CAS:528:DC%2BB38XovV2juw%3D%3D10.3390/cryst11121444 – reference: Zhu, .X, Lyu, S., Wang, X., et al. (2021). Tph-yolov5: Improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF international conference on computer vision (pp. 2778–2788) https://doi.org/10.1109/ICCVW54120.2021.00312 – reference: Ge, Z., Liu, S., Wang, F., et al. (2021) Yolox: Exceeding yolo series in 2021. arXiv:2107.08430. – reference: KimMLeeMAnMEffective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panelJournal of Intelligent Manufacturing20203151165117410.1007/s10845-019-01502-y – reference: Woo, S., Park, J., Lee, J. Y., et al. (2018). CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV) (pp. 3–19) https://doi.org/10.1007/978-3-030-01234-2_1 – reference: HeKZhangXRenSSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence20153791904191610.1109/TPAMI.2015.238982426353135 – reference: LeNTWangJWShihMHNovel framework for optical film defect detection and classificationIEEE Access2020860,96460,97810.1109/ACCESS.2020.2982250 – reference: Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10781–10790). https://doi.org/10.48550/arXiv.1911.09070 – reference: SchlosserTFriedrichMBeuthFImproving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networksJournal of Intelligent Manufacturing20223341099112310.1007/s10845-021-01906-9 – reference: ÇelikAKüçükmanisaASümerAA real-time defective pixel detection system for LCDS using deep learning based object detectorsJournal of Intelligent Manufacturing202010.1007/s10845-020-01704-9 – reference: RenSHeKGirshickRFaster R-CNN: Towards real-time object detection with region proposal networksAdvances in neural information processing systems201510.1109/tpami.2016.2577031 – reference: Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv:2004.10934 – reference: ChenLCPapandreouGKokkinosIDeeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFSIEEE Transactions on Pattern Analysis and Machine Intelligence201740483484810.1109/TPAMI.2017.269918428463186 – reference: MeiSChengJHeXA novel weakly supervised ensemble learning framework for automated pixel-wise industry anomaly detectionIEEE Sensors Journal2021222156015702022ISenJ..22.1560M10.1109/JSEN.2021.3131908 – reference: LuoRChenRJiaFRBD-NET: Robust breakage detection algorithm for industrial leatherJournal of Intelligent Manufacturing202210.1007/s10845-022-01962-9 – reference: Wang, C.Y., Bochkovskiy, A., & Liao, H. Y. M. (2021). Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition (pp. 13029–13038). https://doi.org/10.1109/CVPR46437.2021.01283 – reference: KwakJLeeKBJangJAutomatic inspection of salt-and-pepper defects in OLED panels using image processing and control chart techniquesJournal of Intelligent Manufacturing20193031047105510.1007/s10845-017-1304-8 – reference: DengYPanXWangXVison-based 3D shape measurement system for transparent microdefect characterizationIEEE Access2019710572110573310.1109/ACCESS.2019.2931194 – reference: Wang, C. Y., Liao, H. Y. M., Wu, Y. H., et al. (2020a). CSPNET: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp 390–391). https://doi.org/10.1109/CVPRW50498.2020.00203 – reference: DongXTaylorCJCootesTFA random forest-based automatic inspection system for aerospace welds in X-ray imagesIEEE Transactions on Automation Science and Engineering20201842128214110.1109/TASE.2020.3039115 – ident: 2110_CR26 doi: 10.1109/CVPRW50498.2020.00203 – ident: 2110_CR34 doi: 10.1109/ICCVW54120.2021.00312 – volume: 18 start-page: 2128 issue: 4 year: 2020 ident: 2110_CR8 publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2020.3039115 – year: 2022 ident: 2110_CR16 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-022-01962-9 – volume: 33 start-page: 1099 issue: 4 year: 2022 ident: 2110_CR22 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-021-01906-9 – volume: 7 start-page: 105721 year: 2019 ident: 2110_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931194 – ident: 2110_CR31 doi: 10.1609/aaai.v34i07.6999 – ident: 2110_CR24 doi: 10.48550/arXiv.1911.09070 – year: 2022 ident: 2110_CR3 publication-title: Journal of the Society for Information Display doi: 10.1002/jsid.1171 – ident: 2110_CR27 doi: 10.1109/CVPR42600.2020.01155 – volume: 27 start-page: 13 issue: 1 year: 2019 ident: 2110_CR23 publication-title: Journal of the Society for Information Display doi: 10.1002/jsid.743 – volume: 16 start-page: 7448 issue: 12 year: 2019 ident: 2110_CR7 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2958826 – volume: 17 start-page: 1659 issue: 5 year: 2020 ident: 2110_CR19 publication-title: Journal of Real-Time Image Processing doi: 10.1007/s11554-019-00927-1 – ident: 2110_CR28 doi: 10.1007/978-3-030-01234-2_1 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 2110_CR10 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2389824 – volume: 30 start-page: 1047 issue: 3 year: 2019 ident: 2110_CR13 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-017-1304-8 – ident: 2110_CR33 – ident: 2110_CR25 doi: 10.1109/CVPR46437.2021.01283 – ident: 2110_CR15 doi: 10.1109/ICCV.2017.324 – ident: 2110_CR11 doi: 10.1109/CVPR.2018.00745 – volume: 8 start-page: 60,964 year: 2020 ident: 2110_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982250 – year: 2015 ident: 2110_CR21 publication-title: Advances in neural information processing systems doi: 10.1109/tpami.2016.2577031 – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 2110_CR4 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2699184 – ident: 2110_CR20 – volume: 11 start-page: 1444 issue: 12 year: 2021 ident: 2110_CR18 publication-title: Crystals doi: 10.3390/cryst11121444 – volume: 29 start-page: 547 issue: 7 year: 2021 ident: 2110_CR5 publication-title: Journal of the Society for Information Display doi: 10.1002/jsid.997 – ident: 2110_CR32 doi: 10.1007/s10845-021-01905-w – ident: 2110_CR1 – volume: 16 start-page: 1450 issue: 3 year: 2019 ident: 2110_CR29 publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2018.2886031 – volume: 31 start-page: 1165 issue: 5 year: 2020 ident: 2110_CR12 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-019-01502-y – ident: 2110_CR9 – ident: 2110_CR30 doi: 10.1109/TII.2020.3015765 – year: 2020 ident: 2110_CR2 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01704-9 – volume: 22 start-page: 1560 issue: 2 year: 2021 ident: 2110_CR17 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3131908  | 
    
| SSID | ssj0009861 | 
    
| Score | 2.4739637 | 
    
| Snippet | The mura defects of thin film transistor-liquid crystal display (TFT-LCD) panels have low contrast and random locations, which makes it impossible for us to... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1337 | 
    
| SubjectTerms | Accuracy Advanced manufacturing technologies Algorithms Business and Management Clustering Control Convolution Crystal defects Feature maps LCDs Liquid crystal displays Machines Manufacturing Mechatronics Object recognition Processes Production Real time Robotics Semiconductor devices Spatial data Thin film transistors Thin films  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50vuiDP6bidEoefNOATdO0fRzTIaI-yIZ7K2mSijC6YSvif-8lbe0UFXzqQ9IU7pLcd7277wBOAy19y8FCtQhjyjN9QWUk0FVB66LRYmoW2kLhu3txPeE302BaF4UVTbZ7E5J0N_VSsVvEbTWxjTui0aLhKqwFls4Ld_GEDVqq3cixpDqGPcQDQV0q8_MaX81RizG_hUWdtRltw2YNE8mg0usOrJi8C1tNCwZSn8gubCzxCe7C4wPCPmrbxRNtbJ4GPkqXa5WTeUbGozG9HV4S_VwsZvK9IDbp_YlIMrMe-pv7SUryKi-cLEcY9mAyuhoPr2ndOYEqPFIlDWOjhC-F8fwgi0XEMsMM-tAp-ic85dJTKjCpFpoJxY1Gsx0jLPJ9nMkMD2J_Hzr5PDcHQPyQyVDG3EOdcrwR0ixKleL4gcxECE564DUCTFRNK267W8ySlhDZCj1BoSdO6EnYg7PPdxYVqcafs_uNXpL6gBUJohSGZjUWOHze6Kod_n21w_9NP4J1hjCmyjrrQ6d8eTXHCEPK9MTtug-ywdDH priority: 102 providerName: Springer Nature  | 
    
| Title | Real-time defect detection of TFT-LCD displays using a lightweight network architecture | 
    
| URI | https://link.springer.com/article/10.1007/s10845-023-02110-7 https://www.proquest.com/docview/2932718967  | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1572-8145 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: ADMLS dateStart: 20080201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central (via ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1572-8145 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1572-8145 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m9qIPfovzY-TBNw26NE3bB5Gpm8OPIbKhPpU0SUUY3XQT8b_30qVWBX0qtEkKd8l95O5-B7Dna-lZDBaqRRBRnuojKkOBrgpqF40aU7PAFgrf9ER3wC8f_IcK9IpaGJtWWcjEXFDrkbJ35IeolhjK0UgEJ-MXartG2ehq0UJDutYK-jiHGJuDGrPIWFWonbZ7t3clDG-YI6jm6Hs40HdlNK6YLuS2WtnGNVEp0uCnqirtz18h01wTdZZh0ZmQpDXj-QpUTLYKS0V7BuJO6yosfMMaXIP7OzQJqW0lT7SxORz4mOZ5WBkZpaTf6dPrs3OinyfjofyYEJsQ_0QkGVrv_T2_QCXZLGecfI8-rMOg0-6fdanrqkAVHrcpDSKjhCeFaXp-GomQpYYZ9K8T9F14wmVTKd8kWmgmFDcaVXqEJpPn4UhmuB95G1DNRpnZBOIFTAYy4k3kN0dpkaRhohTHH6QmRMOlDs2CgLFykOO288UwLsGSLdFjJHqcEz0O6rD_NWc8A9z4d_ROwZfYHb5JXG6VOhwUvCo__73a1v-rbcM8Q5NmloG2A9Xp65vZRZNkmjRgLuxcNKDWuni8ajfcrsO3A9b6BAWq3fQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQHIADb8R45gAniGBpmraHCfGaBowJoSG4lTRJEdLUDTaE9uf4bThdSgEJbpx6aJpWjmt_TuzPANu-lp7lYKFaBBHlqT6gMhQYqqB30egxNQtsofBVSzRu-cW9fz8G70UtjE2rLGxibqh1V9k98n10SwztaCSCw94ztV2j7Olq0UJDutYKupZTjLnCjkszfMMQrl87P8X13mGsftY-aVDXZYAqVL8BDSKjhCeFqXp-GomQpYYZjDcTxPI84bKqlG8SLTQTihuNLi5CCOF5OJIZ7lsyJnQBE9zjEQZ_E8dnreubkvY3zBlbc7Y__DDfle244r2Q2-poe46KTpgG311jiXd_HNHmnq8-BzMOspKjkY7Nw5jJFmC2aAdBnHVYgOkv3IaLcHeDEJTa1vVEG5szgpdBnveVkW5K2vU2bZ6cEv3U73XksE9sAv4jkaRjdwve8g1bko1y1MnX044luP0X-S7DeNbNzAoQL2AykBGvon5xtE5JGiZKcXxBakIEShWoFgKMlaM4t502OnFJzmyFHqPQ41zocVCB3c9neiOCjz9HrxfrErufvR-XqlmBvWKtytu_z7b692xbMNloXzXj5nnrcg2mGMKpUfbbOowPXl7NBsKhQbLpdI7Aw3-r-Qd9shcg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKlVwoJSH2HYBH8qJWrCOYycHVFW7pLvlIVQtgltIbAchrbLb7iLEX-PXMZMHAaRy45RDEkcaf5n5bM98A_DNt4lHGizcKh1ymdl9ngQKlyoYXSxGTCs0FQqfnKr-ufx96V_OwUNdC0NplbVPLBy1HRvaI9_DsCTQj4ZK72VVWsRZL_ox-cupgxSdtNbtNEqIHLn7O1y-TQ8GPZzrHSGiw2G3z6sOA9wg9GZch84oL1Gu4_lZqAKROeFwrZkij5epTDrG-C61ygplpLMY3kKkD56HTwonfRJiQvf_QZOKO1WpR78awd-g0GotdP6QlfhVwU5VthdIqoumE1QMv1y_DIoN0311OFvEvGgZliqyyn6W6PoMcy5fgU91IwhW-YUVWHymargKF3-QfHJqWs-so2wRvMyKjK-cjTM2jIb8uNtj9mY6GSX3U0ap99csYSPaJ7grtmpZXmans-fnHGtw_i7WXYf5fJy7DWCeFolOQtlBZEn0S2kWpMZI_EDmAqRILejUBoxNJW5OPTZGcSPLTEaP0ehxYfRYt2D36Z1JKe3x5tPtel7i6jefxg0oW_C9nqvm9v9H-_L2aNvwEcEdHw9Oj77CgkAeVaa9tWF-9u_WbSIPmqVbBeAYXL03wh8Bx6cUug | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+defect+detection+of+TFT-LCD+displays+using+a+lightweight+network+architecture&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Chen%2C+Ping&rft.au=Chen%2C+Mingfang&rft.au=Wang%2C+Sen&rft.au=Song%2C+Yanjin&rft.date=2024-03-01&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=35&rft.issue=3&rft.spage=1337&rft.epage=1352&rft_id=info:doi/10.1007%2Fs10845-023-02110-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10845_023_02110_7 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon |