Real-time defect detection of TFT-LCD displays using a lightweight network architecture

The mura defects of thin film transistor-liquid crystal display (TFT-LCD) panels have low contrast and random locations, which makes it impossible for us to correctly evaluate the number and type of mura defects on the image in the field inspection. In response to the above problems, this paper prop...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent manufacturing Vol. 35; no. 3; pp. 1337 - 1352
Main Authors Chen, Ping, Chen, Mingfang, Wang, Sen, Song, Yanjin, Cui, Yu, Chen, Zhongping, Zhang, Yongxia, Chen, Songlin, Mo, Xiang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0956-5515
1572-8145
DOI10.1007/s10845-023-02110-7

Cover

Abstract The mura defects of thin film transistor-liquid crystal display (TFT-LCD) panels have low contrast and random locations, which makes it impossible for us to correctly evaluate the number and type of mura defects on the image in the field inspection. In response to the above problems, this paper proposes a lightweight YOLO-ADPAM detection method based on an attention mechanism. First, we designed a K-means-ciou++ clustering algorithm using the Complete-Intersection-Over-Union loss function to cluster the anchor box size of the display defect dataset, making the bounding box regression more accurate and stable and improving the recognition and positioning accuracy of the algorithm. Second, we design a parallel attention module, combining the advantages of the channel and spatial attention mechanisms to effectively extract helpful information from feature maps. The channel attention branch can compensate for the defect information lost by global average pooling to a certain extent, and selecting a larger convolution kernel in the spatial attention branch is beneficial to retain crucial spatial information. Third, using atrous spatial pyramid pooling and depthwise separable convolution in the Neck network can further improve the receptive field of the feature map and improve the detection accuracy of the network. The experimental results show that the mAP of our proposed YOLO-ADPAM algorithm in TFT-LCD defect detection reaches 98.20%, and the detection speed reaches 83.23 FPS, which meets the detection accuracy and real-time requirements of TFT-LCD defect detection tasks.
AbstractList The mura defects of thin film transistor-liquid crystal display (TFT-LCD) panels have low contrast and random locations, which makes it impossible for us to correctly evaluate the number and type of mura defects on the image in the field inspection. In response to the above problems, this paper proposes a lightweight YOLO-ADPAM detection method based on an attention mechanism. First, we designed a K-means-ciou++ clustering algorithm using the Complete-Intersection-Over-Union loss function to cluster the anchor box size of the display defect dataset, making the bounding box regression more accurate and stable and improving the recognition and positioning accuracy of the algorithm. Second, we design a parallel attention module, combining the advantages of the channel and spatial attention mechanisms to effectively extract helpful information from feature maps. The channel attention branch can compensate for the defect information lost by global average pooling to a certain extent, and selecting a larger convolution kernel in the spatial attention branch is beneficial to retain crucial spatial information. Third, using atrous spatial pyramid pooling and depthwise separable convolution in the Neck network can further improve the receptive field of the feature map and improve the detection accuracy of the network. The experimental results show that the mAP of our proposed YOLO-ADPAM algorithm in TFT-LCD defect detection reaches 98.20%, and the detection speed reaches 83.23 FPS, which meets the detection accuracy and real-time requirements of TFT-LCD defect detection tasks.
Author Zhang, Yongxia
Chen, Ping
Cui, Yu
Wang, Sen
Chen, Zhongping
Chen, Mingfang
Song, Yanjin
Mo, Xiang
Chen, Songlin
Author_xml – sequence: 1
  givenname: Ping
  surname: Chen
  fullname: Chen, Ping
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology
– sequence: 2
  givenname: Mingfang
  orcidid: 0000-0002-3323-8168
  surname: Chen
  fullname: Chen, Mingfang
  email: mfchen111@sina.com
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology
– sequence: 3
  givenname: Sen
  surname: Wang
  fullname: Wang, Sen
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology
– sequence: 4
  givenname: Yanjin
  surname: Song
  fullname: Song, Yanjin
  organization: Si Chuan Xsped Intelligent Technology Co., Ltd
– sequence: 5
  givenname: Yu
  surname: Cui
  fullname: Cui, Yu
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology
– sequence: 6
  givenname: Zhongping
  surname: Chen
  fullname: Chen, Zhongping
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology
– sequence: 7
  givenname: Yongxia
  surname: Zhang
  fullname: Zhang, Yongxia
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology
– sequence: 8
  givenname: Songlin
  surname: Chen
  fullname: Chen, Songlin
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology
– sequence: 9
  givenname: Xiang
  surname: Mo
  fullname: Mo, Xiang
  organization: Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology
BookMark eNp9kM1KAzEURoNUsK2-gKuA62h-ZyZLqVaFgiAVlyHN3GlTpzM1SSl9e2esILjo4ubbfOfecEZo0LQNIHTN6C2jNL-LjBZSEcpFN4xRkp-hIVM5JwWTaoCGVKuMKMXUBRrFuKaU6iJjQ_TxBrYmyW8Al1CBS12kLnzb4LbC8-mczCYPuPRxW9tDxLvomyW2uPbLVdpD_-IG0r4Nn9gGt_I9vAtwic4rW0e4-s0xep8-zifPZPb69DK5nxEnmE4k1-AyYTNgQlU6K3gFHGDBF0oWciEtc07BosxKnjkJJReFlpIJ0TU5SKXFGN0c925D-7WDmMy63YWmO2m4Fjxnhc7yrsWPLRfaGANUZhv8xoaDYdT0As1RoOkEmh-BpoeKf5DzyfZmUrC-Po2KIxq7O80Swt-vTlDfMfeGlg
CitedBy_id crossref_primary_10_1007_s10845_023_02317_8
crossref_primary_10_3390_mi14091737
crossref_primary_10_1007_s10845_024_02387_2
crossref_primary_10_3390_photonics12030243
crossref_primary_10_1109_ACCESS_2025_3544578
crossref_primary_10_1016_j_displa_2024_102913
Cites_doi 10.1109/CVPRW50498.2020.00203
10.1109/ICCVW54120.2021.00312
10.1109/TASE.2020.3039115
10.1007/s10845-022-01962-9
10.1007/s10845-021-01906-9
10.1109/ACCESS.2019.2931194
10.1609/aaai.v34i07.6999
10.48550/arXiv.1911.09070
10.1002/jsid.1171
10.1109/CVPR42600.2020.01155
10.1002/jsid.743
10.1109/TII.2019.2958826
10.1007/s11554-019-00927-1
10.1007/978-3-030-01234-2_1
10.1109/TPAMI.2015.2389824
10.1007/s10845-017-1304-8
10.1109/CVPR46437.2021.01283
10.1109/ICCV.2017.324
10.1109/CVPR.2018.00745
10.1109/ACCESS.2020.2982250
10.1109/tpami.2016.2577031
10.1109/TPAMI.2017.2699184
10.3390/cryst11121444
10.1002/jsid.997
10.1007/s10845-021-01905-w
10.1109/TASE.2018.2886031
10.1007/s10845-019-01502-y
10.1109/TII.2020.3015765
10.1007/s10845-020-01704-9
10.1109/JSEN.2021.3131908
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88E
8AL
8AO
8FD
8FE
8FG
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M0S
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10845-023-02110-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection‎ (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni Edition)
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1572-8145
EndPage 1352
ExternalDocumentID 10_1007_s10845_023_02110_7
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 52065035
– fundername: Natural Science Foundation of China
  grantid: 51965029
  funderid: http://dx.doi.org/10.13039/501100011002
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-79ec63a6e135f9682fe2eeb2b5484b4a1cc5ebd6d26c4ed2389441336822e4593
IEDL.DBID BENPR
ISSN 0956-5515
IngestDate Tue Sep 30 07:35:32 EDT 2025
Wed Oct 01 03:41:02 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Fri Feb 21 02:41:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords K-means-ciou
ASPP
TFT-LCD defect detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-79ec63a6e135f9682fe2eeb2b5484b4a1cc5ebd6d26c4ed2389441336822e4593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3323-8168
PQID 2932718967
PQPubID 32407
PageCount 16
ParticipantIDs proquest_journals_2932718967
crossref_primary_10_1007_s10845_023_02110_7
crossref_citationtrail_10_1007_s10845_023_02110_7
springer_journals_10_1007_s10845_023_02110_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yang, H., Zhou, Q., Song, K., et al. (2020). An anomaly feature-editing-based adversarial network for texture defect visual inspection. IEEE Transactions on Industrial Informatics,17(3), 2220–2230. https://doi.org/10.1109/TII.2020.3015765
SunYLiXXiaoJA cascaded mura defect detection method based on mean shift and level set algorithm for active-matrix OLED display panelJournal of the Society for Information Display2019271132010.1002/jsid.743
LeNTWangJWShihMHNovel framework for optical film defect detection and classificationIEEE Access2020860,96460,97810.1109/ACCESS.2020.2982250
Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv:1904.07850
Wang, C. Y., Liao, H. Y. M., Wu, Y. H., et al. (2020a). CSPNET: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp 390–391). https://doi.org/10.1109/CVPRW50498.2020.00203
DongXTaylorCJCootesTFA random forest-based automatic inspection system for aerospace welds in X-ray imagesIEEE Transactions on Automation Science and Engineering20201842128214110.1109/TASE.2020.3039115
Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10781–10790). https://doi.org/10.48550/arXiv.1911.09070
Zhi, Z., Jiang, H., Yang, D., et al. (2022). An end-to-end welding defect detection approach based on titanium alloy time-of-flight diffraction images. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01905-w
CuiYWangSWuHLiquid crystal display defects in multiple backgrounds with visual real-time detectionJournal of the Society for Information Display202129754756010.1002/jsid.997
Lin, T. Y., Goyal, P., Girshick, R., et al. (2017). Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, (pp. 2980–2988)
PanYLuRZhangTFPGA-accelerated textured surface defect segmentation based on complete period Fourier reconstructionJournal of Real-Time Image Processing20201751659167310.1007/s11554-019-00927-1
Ge, Z., Liu, S., Wang, F., et al. (2021) Yolox: Exceeding yolo series in 2021. arXiv:2107.08430.
HeKZhangXRenSSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence20153791904191610.1109/TPAMI.2015.238982426353135
KimMLeeMAnMEffective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panelJournal of Intelligent Manufacturing20203151165117410.1007/s10845-019-01502-y
LuoRChenRJiaFRBD-NET: Robust breakage detection algorithm for industrial leatherJournal of Intelligent Manufacturing202210.1007/s10845-022-01962-9
Wang, C.Y., Bochkovskiy, A., & Liao, H. Y. M. (2021). Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition (pp. 13029–13038). https://doi.org/10.1109/CVPR46437.2021.01283
RenSHeKGirshickRFaster R-CNN: Towards real-time object detection with region proposal networksAdvances in neural information processing systems201510.1109/tpami.2016.2577031
MingWZhangSLiuXSurvey of mura defect detection in liquid crystal displays based on machine visionCrystals2021111214441:CAS:528:DC%2BB38XovV2juw%3D%3D10.3390/cryst11121444
Woo, S., Park, J., Lee, J. Y., et al. (2018). CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV) (pp. 3–19) https://doi.org/10.1007/978-3-030-01234-2_1
Zheng, Z., Wang, P., Liu W., et al. (2020). Distance-IOU loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI conference on artificial intelligence (pp. 12993–13000) https://doi.org/10.1609/aaai.v34i07.6999
Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, (pp 7132–7141)
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv:1804.02767
Wang, Q., Wu, B., Zhu, P., et al. (2020b). Supplementary material for ECA-NET: Efficient channel attention for deep convolutional neural networks. In Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition, IEEE, Seattle, WA, USA (pp. 13–19) https://doi.org/10.1109/CVPR42600.2020.01155
ChenMChenPWangSTFT-LCD mura defect visual inspection method in multiple backgroundsJournal of the Society for Information Display202210.1002/jsid.1171
DengYPanXWangXVison-based 3D shape measurement system for transparent microdefect characterizationIEEE Access2019710572110573310.1109/ACCESS.2019.2931194
MeiSChengJHeXA novel weakly supervised ensemble learning framework for automated pixel-wise industry anomaly detectionIEEE Sensors Journal2021222156015702022ISenJ..22.1560M10.1109/JSEN.2021.3131908
Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv:2004.10934
ChenLCPapandreouGKokkinosIDeeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFSIEEE Transactions on Pattern Analysis and Machine Intelligence201740483484810.1109/TPAMI.2017.269918428463186
DongHSongKHeYPga-net: Pyramid feature fusion and global context attention network for automated surface defect detectionIEEE Transactions on Industrial Informatics201916127448745810.1109/TII.2019.2958826
SchlosserTFriedrichMBeuthFImproving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networksJournal of Intelligent Manufacturing20223341099112310.1007/s10845-021-01906-9
Zhu, .X, Lyu, S., Wang, X., et al. (2021). Tph-yolov5: Improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF international conference on computer vision (pp. 2778–2788) https://doi.org/10.1109/ICCVW54120.2021.00312
ÇelikAKüçükmanisaASümerAA real-time defective pixel detection system for LCDS using deep learning based object detectorsJournal of Intelligent Manufacturing202010.1007/s10845-020-01704-9
KwakJLeeKBJangJAutomatic inspection of salt-and-pepper defects in OLED panels using image processing and control chart techniquesJournal of Intelligent Manufacturing20193031047105510.1007/s10845-017-1304-8
YangHChenYSongKMultiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defectsIEEE Transactions on Automation Science and Engineering20191631450146710.1109/TASE.2018.2886031
NT Le (2110_CR14) 2020; 8
2110_CR32
2110_CR31
S Mei (2110_CR17) 2021; 22
2110_CR30
H Dong (2110_CR7) 2019; 16
Y Cui (2110_CR5) 2021; 29
2110_CR34
2110_CR11
2110_CR33
Y Sun (2110_CR23) 2019; 27
X Dong (2110_CR8) 2020; 18
2110_CR15
R Luo (2110_CR16) 2022
M Kim (2110_CR12) 2020; 31
S Ren (2110_CR21) 2015
LC Chen (2110_CR4) 2017; 40
K He (2110_CR10) 2015; 37
2110_CR20
J Kwak (2110_CR13) 2019; 30
A Çelik (2110_CR2) 2020
Y Deng (2110_CR6) 2019; 7
Y Pan (2110_CR19) 2020; 17
W Ming (2110_CR18) 2021; 11
H Yang (2110_CR29) 2019; 16
T Schlosser (2110_CR22) 2022; 33
2110_CR9
2110_CR25
2110_CR24
M Chen (2110_CR3) 2022
2110_CR1
2110_CR28
2110_CR27
2110_CR26
References_xml – reference: CuiYWangSWuHLiquid crystal display defects in multiple backgrounds with visual real-time detectionJournal of the Society for Information Display202129754756010.1002/jsid.997
– reference: PanYLuRZhangTFPGA-accelerated textured surface defect segmentation based on complete period Fourier reconstructionJournal of Real-Time Image Processing20201751659167310.1007/s11554-019-00927-1
– reference: Wang, Q., Wu, B., Zhu, P., et al. (2020b). Supplementary material for ECA-NET: Efficient channel attention for deep convolutional neural networks. In Proceedings of the 2020 IEEE/CVF conference on computer vision and pattern recognition, IEEE, Seattle, WA, USA (pp. 13–19) https://doi.org/10.1109/CVPR42600.2020.01155
– reference: DongHSongKHeYPga-net: Pyramid feature fusion and global context attention network for automated surface defect detectionIEEE Transactions on Industrial Informatics201916127448745810.1109/TII.2019.2958826
– reference: Lin, T. Y., Goyal, P., Girshick, R., et al. (2017). Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, (pp. 2980–2988)
– reference: Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, (pp 7132–7141)
– reference: SunYLiXXiaoJA cascaded mura defect detection method based on mean shift and level set algorithm for active-matrix OLED display panelJournal of the Society for Information Display2019271132010.1002/jsid.743
– reference: Yang, H., Zhou, Q., Song, K., et al. (2020). An anomaly feature-editing-based adversarial network for texture defect visual inspection. IEEE Transactions on Industrial Informatics,17(3), 2220–2230. https://doi.org/10.1109/TII.2020.3015765
– reference: ChenMChenPWangSTFT-LCD mura defect visual inspection method in multiple backgroundsJournal of the Society for Information Display202210.1002/jsid.1171
– reference: YangHChenYSongKMultiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defectsIEEE Transactions on Automation Science and Engineering20191631450146710.1109/TASE.2018.2886031
– reference: Zheng, Z., Wang, P., Liu W., et al. (2020). Distance-IOU loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI conference on artificial intelligence (pp. 12993–13000) https://doi.org/10.1609/aaai.v34i07.6999
– reference: Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv:1804.02767
– reference: Zhi, Z., Jiang, H., Yang, D., et al. (2022). An end-to-end welding defect detection approach based on titanium alloy time-of-flight diffraction images. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01905-w
– reference: Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv:1904.07850
– reference: MingWZhangSLiuXSurvey of mura defect detection in liquid crystal displays based on machine visionCrystals2021111214441:CAS:528:DC%2BB38XovV2juw%3D%3D10.3390/cryst11121444
– reference: Zhu, .X, Lyu, S., Wang, X., et al. (2021). Tph-yolov5: Improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF international conference on computer vision (pp. 2778–2788) https://doi.org/10.1109/ICCVW54120.2021.00312
– reference: Ge, Z., Liu, S., Wang, F., et al. (2021) Yolox: Exceeding yolo series in 2021. arXiv:2107.08430.
– reference: KimMLeeMAnMEffective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panelJournal of Intelligent Manufacturing20203151165117410.1007/s10845-019-01502-y
– reference: Woo, S., Park, J., Lee, J. Y., et al. (2018). CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV) (pp. 3–19) https://doi.org/10.1007/978-3-030-01234-2_1
– reference: HeKZhangXRenSSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence20153791904191610.1109/TPAMI.2015.238982426353135
– reference: LeNTWangJWShihMHNovel framework for optical film defect detection and classificationIEEE Access2020860,96460,97810.1109/ACCESS.2020.2982250
– reference: Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10781–10790). https://doi.org/10.48550/arXiv.1911.09070
– reference: SchlosserTFriedrichMBeuthFImproving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networksJournal of Intelligent Manufacturing20223341099112310.1007/s10845-021-01906-9
– reference: ÇelikAKüçükmanisaASümerAA real-time defective pixel detection system for LCDS using deep learning based object detectorsJournal of Intelligent Manufacturing202010.1007/s10845-020-01704-9
– reference: RenSHeKGirshickRFaster R-CNN: Towards real-time object detection with region proposal networksAdvances in neural information processing systems201510.1109/tpami.2016.2577031
– reference: Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv:2004.10934
– reference: ChenLCPapandreouGKokkinosIDeeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFSIEEE Transactions on Pattern Analysis and Machine Intelligence201740483484810.1109/TPAMI.2017.269918428463186
– reference: MeiSChengJHeXA novel weakly supervised ensemble learning framework for automated pixel-wise industry anomaly detectionIEEE Sensors Journal2021222156015702022ISenJ..22.1560M10.1109/JSEN.2021.3131908
– reference: LuoRChenRJiaFRBD-NET: Robust breakage detection algorithm for industrial leatherJournal of Intelligent Manufacturing202210.1007/s10845-022-01962-9
– reference: Wang, C.Y., Bochkovskiy, A., & Liao, H. Y. M. (2021). Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition (pp. 13029–13038). https://doi.org/10.1109/CVPR46437.2021.01283
– reference: KwakJLeeKBJangJAutomatic inspection of salt-and-pepper defects in OLED panels using image processing and control chart techniquesJournal of Intelligent Manufacturing20193031047105510.1007/s10845-017-1304-8
– reference: DengYPanXWangXVison-based 3D shape measurement system for transparent microdefect characterizationIEEE Access2019710572110573310.1109/ACCESS.2019.2931194
– reference: Wang, C. Y., Liao, H. Y. M., Wu, Y. H., et al. (2020a). CSPNET: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp 390–391). https://doi.org/10.1109/CVPRW50498.2020.00203
– reference: DongXTaylorCJCootesTFA random forest-based automatic inspection system for aerospace welds in X-ray imagesIEEE Transactions on Automation Science and Engineering20201842128214110.1109/TASE.2020.3039115
– ident: 2110_CR26
  doi: 10.1109/CVPRW50498.2020.00203
– ident: 2110_CR34
  doi: 10.1109/ICCVW54120.2021.00312
– volume: 18
  start-page: 2128
  issue: 4
  year: 2020
  ident: 2110_CR8
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2020.3039115
– year: 2022
  ident: 2110_CR16
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-022-01962-9
– volume: 33
  start-page: 1099
  issue: 4
  year: 2022
  ident: 2110_CR22
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-021-01906-9
– volume: 7
  start-page: 105721
  year: 2019
  ident: 2110_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931194
– ident: 2110_CR31
  doi: 10.1609/aaai.v34i07.6999
– ident: 2110_CR24
  doi: 10.48550/arXiv.1911.09070
– year: 2022
  ident: 2110_CR3
  publication-title: Journal of the Society for Information Display
  doi: 10.1002/jsid.1171
– ident: 2110_CR27
  doi: 10.1109/CVPR42600.2020.01155
– volume: 27
  start-page: 13
  issue: 1
  year: 2019
  ident: 2110_CR23
  publication-title: Journal of the Society for Information Display
  doi: 10.1002/jsid.743
– volume: 16
  start-page: 7448
  issue: 12
  year: 2019
  ident: 2110_CR7
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2958826
– volume: 17
  start-page: 1659
  issue: 5
  year: 2020
  ident: 2110_CR19
  publication-title: Journal of Real-Time Image Processing
  doi: 10.1007/s11554-019-00927-1
– ident: 2110_CR28
  doi: 10.1007/978-3-030-01234-2_1
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 2110_CR10
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2389824
– volume: 30
  start-page: 1047
  issue: 3
  year: 2019
  ident: 2110_CR13
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-017-1304-8
– ident: 2110_CR33
– ident: 2110_CR25
  doi: 10.1109/CVPR46437.2021.01283
– ident: 2110_CR15
  doi: 10.1109/ICCV.2017.324
– ident: 2110_CR11
  doi: 10.1109/CVPR.2018.00745
– volume: 8
  start-page: 60,964
  year: 2020
  ident: 2110_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982250
– year: 2015
  ident: 2110_CR21
  publication-title: Advances in neural information processing systems
  doi: 10.1109/tpami.2016.2577031
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  ident: 2110_CR4
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2699184
– ident: 2110_CR20
– volume: 11
  start-page: 1444
  issue: 12
  year: 2021
  ident: 2110_CR18
  publication-title: Crystals
  doi: 10.3390/cryst11121444
– volume: 29
  start-page: 547
  issue: 7
  year: 2021
  ident: 2110_CR5
  publication-title: Journal of the Society for Information Display
  doi: 10.1002/jsid.997
– ident: 2110_CR32
  doi: 10.1007/s10845-021-01905-w
– ident: 2110_CR1
– volume: 16
  start-page: 1450
  issue: 3
  year: 2019
  ident: 2110_CR29
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2018.2886031
– volume: 31
  start-page: 1165
  issue: 5
  year: 2020
  ident: 2110_CR12
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-019-01502-y
– ident: 2110_CR9
– ident: 2110_CR30
  doi: 10.1109/TII.2020.3015765
– year: 2020
  ident: 2110_CR2
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01704-9
– volume: 22
  start-page: 1560
  issue: 2
  year: 2021
  ident: 2110_CR17
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3131908
SSID ssj0009861
Score 2.4739637
Snippet The mura defects of thin film transistor-liquid crystal display (TFT-LCD) panels have low contrast and random locations, which makes it impossible for us to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1337
SubjectTerms Accuracy
Advanced manufacturing technologies
Algorithms
Business and Management
Clustering
Control
Convolution
Crystal defects
Feature maps
LCDs
Liquid crystal displays
Machines
Manufacturing
Mechatronics
Object recognition
Processes
Production
Real time
Robotics
Semiconductor devices
Spatial data
Thin film transistors
Thin films
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50vuiDP6bidEoefNOATdO0fRzTIaI-yIZ7K2mSijC6YSvif-8lbe0UFXzqQ9IU7pLcd7277wBOAy19y8FCtQhjyjN9QWUk0FVB66LRYmoW2kLhu3txPeE302BaF4UVTbZ7E5J0N_VSsVvEbTWxjTui0aLhKqwFls4Ld_GEDVqq3cixpDqGPcQDQV0q8_MaX81RizG_hUWdtRltw2YNE8mg0usOrJi8C1tNCwZSn8gubCzxCe7C4wPCPmrbxRNtbJ4GPkqXa5WTeUbGozG9HV4S_VwsZvK9IDbp_YlIMrMe-pv7SUryKi-cLEcY9mAyuhoPr2ndOYEqPFIlDWOjhC-F8fwgi0XEMsMM-tAp-ic85dJTKjCpFpoJxY1Gsx0jLPJ9nMkMD2J_Hzr5PDcHQPyQyVDG3EOdcrwR0ixKleL4gcxECE564DUCTFRNK267W8ySlhDZCj1BoSdO6EnYg7PPdxYVqcafs_uNXpL6gBUJohSGZjUWOHze6Kod_n21w_9NP4J1hjCmyjrrQ6d8eTXHCEPK9MTtug-ywdDH
  priority: 102
  providerName: Springer Nature
Title Real-time defect detection of TFT-LCD displays using a lightweight network architecture
URI https://link.springer.com/article/10.1007/s10845-023-02110-7
https://www.proquest.com/docview/2932718967
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: ADMLS
  dateStart: 20080201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central (via ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1572-8145
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m9qIPfovzY-TBNw26NE3bB5Gpm8OPIbKhPpU0SUUY3XQT8b_30qVWBX0qtEkKd8l95O5-B7Dna-lZDBaqRRBRnuojKkOBrgpqF40aU7PAFgrf9ER3wC8f_IcK9IpaGJtWWcjEXFDrkbJ35IeolhjK0UgEJ-MXartG2ehq0UJDutYK-jiHGJuDGrPIWFWonbZ7t3clDG-YI6jm6Hs40HdlNK6YLuS2WtnGNVEp0uCnqirtz18h01wTdZZh0ZmQpDXj-QpUTLYKS0V7BuJO6yosfMMaXIP7OzQJqW0lT7SxORz4mOZ5WBkZpaTf6dPrs3OinyfjofyYEJsQ_0QkGVrv_T2_QCXZLGecfI8-rMOg0-6fdanrqkAVHrcpDSKjhCeFaXp-GomQpYYZ9K8T9F14wmVTKd8kWmgmFDcaVXqEJpPn4UhmuB95G1DNRpnZBOIFTAYy4k3kN0dpkaRhohTHH6QmRMOlDs2CgLFykOO288UwLsGSLdFjJHqcEz0O6rD_NWc8A9z4d_ROwZfYHb5JXG6VOhwUvCo__73a1v-rbcM8Q5NmloG2A9Xp65vZRZNkmjRgLuxcNKDWuni8ajfcrsO3A9b6BAWq3fQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYQHIADb8R45gAniGBpmraHCfGaBowJoSG4lTRJEdLUDTaE9uf4bThdSgEJbpx6aJpWjmt_TuzPANu-lp7lYKFaBBHlqT6gMhQYqqB30egxNQtsofBVSzRu-cW9fz8G70UtjE2rLGxibqh1V9k98n10SwztaCSCw94ztV2j7Olq0UJDutYKupZTjLnCjkszfMMQrl87P8X13mGsftY-aVDXZYAqVL8BDSKjhCeFqXp-GomQpYYZjDcTxPI84bKqlG8SLTQTihuNLi5CCOF5OJIZ7lsyJnQBE9zjEQZ_E8dnreubkvY3zBlbc7Y__DDfle244r2Q2-poe46KTpgG311jiXd_HNHmnq8-BzMOspKjkY7Nw5jJFmC2aAdBnHVYgOkv3IaLcHeDEJTa1vVEG5szgpdBnveVkW5K2vU2bZ6cEv3U73XksE9sAv4jkaRjdwve8g1bko1y1MnX044luP0X-S7DeNbNzAoQL2AykBGvon5xtE5JGiZKcXxBakIEShWoFgKMlaM4t502OnFJzmyFHqPQ41zocVCB3c9neiOCjz9HrxfrErufvR-XqlmBvWKtytu_z7b692xbMNloXzXj5nnrcg2mGMKpUfbbOowPXl7NBsKhQbLpdI7Aw3-r-Qd9shcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKlVwoJSH2HYBH8qJWrCOYycHVFW7pLvlIVQtgltIbAchrbLb7iLEX-PXMZMHAaRy45RDEkcaf5n5bM98A_DNt4lHGizcKh1ymdl9ngQKlyoYXSxGTCs0FQqfnKr-ufx96V_OwUNdC0NplbVPLBy1HRvaI9_DsCTQj4ZK72VVWsRZL_ox-cupgxSdtNbtNEqIHLn7O1y-TQ8GPZzrHSGiw2G3z6sOA9wg9GZch84oL1Gu4_lZqAKROeFwrZkij5epTDrG-C61ygplpLMY3kKkD56HTwonfRJiQvf_QZOKO1WpR78awd-g0GotdP6QlfhVwU5VthdIqoumE1QMv1y_DIoN0311OFvEvGgZliqyyn6W6PoMcy5fgU91IwhW-YUVWHymargKF3-QfHJqWs-so2wRvMyKjK-cjTM2jIb8uNtj9mY6GSX3U0ap99csYSPaJ7grtmpZXmans-fnHGtw_i7WXYf5fJy7DWCeFolOQtlBZEn0S2kWpMZI_EDmAqRILejUBoxNJW5OPTZGcSPLTEaP0ehxYfRYt2D36Z1JKe3x5tPtel7i6jefxg0oW_C9nqvm9v9H-_L2aNvwEcEdHw9Oj77CgkAeVaa9tWF-9u_WbSIPmqVbBeAYXL03wh8Bx6cUug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+defect+detection+of+TFT-LCD+displays+using+a+lightweight+network+architecture&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Chen%2C+Ping&rft.au=Chen%2C+Mingfang&rft.au=Wang%2C+Sen&rft.au=Song%2C+Yanjin&rft.date=2024-03-01&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=35&rft.issue=3&rft.spage=1337&rft.epage=1352&rft_id=info:doi/10.1007%2Fs10845-023-02110-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10845_023_02110_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon