Graph-based algorithms for phase-type distributions
Phase-type distributions model the time until absorption in continuous or discrete-time Markov chains on a finite state space. The multivariate phase-type distributions have diverse and important applications by modeling rewards accumulated at visited states. However, even moderately sized state spa...
Saved in:
| Published in | Statistics and computing Vol. 32; no. 6 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.12.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-3174 1573-1375 |
| DOI | 10.1007/s11222-022-10174-3 |
Cover
| Abstract | Phase-type distributions model the time until absorption in continuous or discrete-time Markov chains on a finite state space. The multivariate phase-type distributions have diverse and important applications by modeling rewards accumulated at visited states. However, even moderately sized state spaces make the traditional matrix-based equations computationally infeasible. State spaces of phase-type distributions are often large but sparse, with only a few transitions from a state. This sparseness makes a graph-based representation of the phase-type distribution more natural and efficient than the traditional matrix-based representation. In this paper, we develop graph-based algorithms for analyzing phase-type distributions. In addition to algorithms for state space construction, reward transformation, and moments calculation, we give algorithms for the marginal distribution functions of multivariate phase-type distributions and for the state probability vector of the underlying Markov chains of both time-homogeneous and time-inhomogeneous phase-type distributions. The algorithms are available as a numerically stable and memory-efficient open source software package written in C named ptdalgorithms. This library exposes all methods in the programming languages C and R. We compare the running time of ptdalgorithms to the fastest tools using a traditional matrix-based formulation. This comparison includes the computation of the probability distribution, which is usually computed by exponentiation of the sub-intensity or sub-transition matrix. We also compare time spent calculating the moments of (multivariate) phase-type distributions usually defined by inversion of the same matrices. The numerical results of our graph-based and traditional matrix-based methods are identical, and our graph-based algorithms are often orders of magnitudes faster. Finally, we demonstrate with a classic problem from population genetics how ptdalgorithms serves as a much faster, simpler, and completely general modeling alternative. |
|---|---|
| AbstractList | Phase-type distributions model the time until absorption in continuous or discrete-time Markov chains on a finite state space. The multivariate phase-type distributions have diverse and important applications by modeling rewards accumulated at visited states. However, even moderately sized state spaces make the traditional matrix-based equations computationally infeasible. State spaces of phase-type distributions are often large but sparse, with only a few transitions from a state. This sparseness makes a graph-based representation of the phase-type distribution more natural and efficient than the traditional matrix-based representation. In this paper, we develop graph-based algorithms for analyzing phase-type distributions. In addition to algorithms for state space construction, reward transformation, and moments calculation, we give algorithms for the marginal distribution functions of multivariate phase-type distributions and for the state probability vector of the underlying Markov chains of both time-homogeneous and time-inhomogeneous phase-type distributions. The algorithms are available as a numerically stable and memory-efficient open source software package written in C named ptdalgorithms. This library exposes all methods in the programming languages C and R. We compare the running time of ptdalgorithms to the fastest tools using a traditional matrix-based formulation. This comparison includes the computation of the probability distribution, which is usually computed by exponentiation of the sub-intensity or sub-transition matrix. We also compare time spent calculating the moments of (multivariate) phase-type distributions usually defined by inversion of the same matrices. The numerical results of our graph-based and traditional matrix-based methods are identical, and our graph-based algorithms are often orders of magnitudes faster. Finally, we demonstrate with a classic problem from population genetics how ptdalgorithms serves as a much faster, simpler, and completely general modeling alternative. |
| ArticleNumber | 103 |
| Author | Hobolth, Asger Røikjer, Tobias Munch, Kasper |
| Author_xml | – sequence: 1 givenname: Tobias surname: Røikjer fullname: Røikjer, Tobias organization: Bioinformatics Research Center, Aarhus University – sequence: 2 givenname: Asger surname: Hobolth fullname: Hobolth, Asger organization: Department of Mathematics, Aarhus University – sequence: 3 givenname: Kasper orcidid: 0000-0003-2880-6252 surname: Munch fullname: Munch, Kasper email: kaspermunch@birc.au.dk organization: Bioinformatics Research Center, Aarhus University |
| BookMark | eNp9kMFOwzAMhiM0JLbBC3CqxDlgJ2mTHtEEA2kSFzhHbpdunba2JNlhb09GkZA4cLAs2f782_-MTbq-c4zdItwjgH4IiEIIDikQUCsuL9gUcy05Sp1P2BTKArhMnSs2C2EHgFhINWVy6WnY8oqCW2e03_S-jdtDyJreZ8M2VXk8DS5btyH6tjrGtu_CNbtsaB_czU-es4_np_fFC1-9LV8XjyteSywj16auNFFtkjRSYyQZ06DKS-WEWislCiO1MUC5gaowTV4YgKIsUZCmRpKcs7tx7-D7z6ML0e76o--SpBVaggaFokhTYpyqfR-Cd40dfHsgf7II9myOHc2xyRz7bY6VCTJ_oLqNdP4uemr3_6NyREPS6TbO_171D_UFhI541Q |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2024_112345 crossref_primary_10_1016_j_tpb_2024_03_001 |
| Cites_doi | 10.1016/j.cam.2018.06.010 10.1002/(SICI)1526-4025(199910/12)15:4<311::AID-ASMB395>3.0.CO;2-S 10.1017/jpr.2019.60 10.1016/0026-2714(82)90033-6 10.1007/978-1-4614-7330-5 10.1016/j.tpb.2019.02.001 10.1016/0304-4149(82)90011-4 10.1101/2022.06.16.496381 10.1016/j.insmatheco.2005.08.002 10.1016/j.peva.2003.07.003 10.1093/acprof:oso/9780198508380.001.0001 10.1534/genetics.116.194019 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11222-022-10174-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1573-1375 |
| ExternalDocumentID | 10_1007_s11222_022_10174_3 |
| GrantInformation_xml | – fundername: Novo Nordisk Fonden grantid: NNF19OC0058553 funderid: http://dx.doi.org/10.13039/501100009708 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-78cb7aac89601af83a88f14594e24d4426837880a580b68f5680069912a7af3a3 |
| IEDL.DBID | U2A |
| ISSN | 0960-3174 |
| IngestDate | Thu Oct 02 16:29:41 EDT 2025 Wed Oct 01 02:57:23 EDT 2025 Thu Apr 24 22:49:12 EDT 2025 Fri Feb 21 02:44:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Phase-type distributions Moments Distribution Computational statistics Graph-based algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-78cb7aac89601af83a88f14594e24d4426837880a580b68f5680069912a7af3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2880-6252 |
| PQID | 2730704126 |
| PQPubID | 2043829 |
| ParticipantIDs | proquest_journals_2730704126 crossref_primary_10_1007_s11222_022_10174_3 crossref_citationtrail_10_1007_s11222_022_10174_3 springer_journals_10_1007_s11222_022_10174_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Statistics and computing |
| PublicationTitleAbbrev | Stat Comput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | KingmanJFCThe coalescentStoch. Process. Appl.198213323524867103410.1016/0304-4149(82)90011-40491.60076 YounesHLSimmonsRGSolving generalized semi-Markov decision processes using continuous phase-type distributionsAAAI20044742 AlbrecherHBladtMInhomogeneous phase-type distributions and heavy tailsJ. Appl. Probab.201956410441064404144810.1017/jpr.2019.601428.62103 Faddy, M., McClean, S.: Analysing data on lengths of stay of hospital patients using phase-type distributions. Appli. Stoch. Models Bus. Ind. 15(4), 311–317 (1999) Aalen, O.O.: Phase type distributions in survival analysis. Scand. J. Stat. 447–463 (1995) Rivas-GonzálezIAndersenLNHobolthAPhasetyper: phase-type distributions in r with reward transformations and a view towards population geneticsBioRxiv202210.1101/2022.06.16.496381 HeQ-MFundamentals of Matrix-Analytical Methods2014New YorkSpringer10.1007/978-1-4614-7330-5 Goulet, V., Dutang, C., Maechler, M., Firth, D., Shapira, M., Stadelmann, M.: Expm: Matrix Exponential (2021). https://cran.r-project.org/package=expm BobbioAHorváthATelekMThe scale factor: a new degree of freedom in phase-type approximationPerform. Eval.2004561–412114410.1016/j.peva.2003.07.003 EiseleK-TRecursions for compound phase distributionsInsur. Math. Econ.2006381149156219730810.1016/j.insmatheco.2005.08.0021101.62098 Navarro, A.C.: Order Statistics and Multivariate Discrete Phase-Type Distributions (2019) BladtMNielsenBFMatrix-exponential Distributions in Applied Probability2017New YorkSpringer1375.60002 Frydenberg, M.: The chain graph Markov property. Scand. J. Stat. 333–353 (1990) DuffISErismanAMReidJKDirect Methods for Sparse Matrices2017OxfordOxford University Press10.1093/acprof:oso/9780198508380.001.00011364.65067 HobolthABladtMAndersenLNMultivariate phase-type theory for the site frequency spectrumJ. Math. Biol.202183612843409561479.60183 Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. John Hopkins University Press, Baltimore (1981) AcalCRuiz-CastroJEAguileraAMJiménez-MolinosFRoldánJBPhase-type distributions for studying variability in resistive memoriesJ. Comput. Appl. Math.20193452332385160010.1016/j.cam.2018.06.0101402.62348 CumaniAOn the canonical representation of homogeneous markov processes modelling failure-time distributionsMicroelectron. Reliab.198222358360267422210.1016/0026-2714(82)90033-6 KernADHeyJExact calculation of the joint allele frequency spectrum for isolation with migration modelsGenetics2017207124125310.1534/genetics.116.194019 HobolthASiri-JegousseABladtMPhase-type distributions in population geneticsTheor. Popul. Biol.2019127163210.1016/j.tpb.2019.02.0011415.92124 M Bladt (10174_CR4) 2017 H Albrecher (10174_CR3) 2019; 56 AD Kern (10174_CR15) 2017; 207 C Acal (10174_CR2) 2019; 345 A Bobbio (10174_CR5) 2004; 56 A Cumani (10174_CR6) 1982; 22 10174_CR18 10174_CR17 HL Younes (10174_CR20) 2004; 4 10174_CR1 10174_CR10 10174_CR11 A Hobolth (10174_CR14) 2019; 127 JFC Kingman (10174_CR16) 1982; 13 Q-M He (10174_CR12) 2014 I Rivas-González (10174_CR19) 2022 K-T Eisele (10174_CR8) 2006; 38 10174_CR9 IS Duff (10174_CR7) 2017 A Hobolth (10174_CR13) 2021; 83 |
| References_xml | – reference: CumaniAOn the canonical representation of homogeneous markov processes modelling failure-time distributionsMicroelectron. Reliab.198222358360267422210.1016/0026-2714(82)90033-6 – reference: Goulet, V., Dutang, C., Maechler, M., Firth, D., Shapira, M., Stadelmann, M.: Expm: Matrix Exponential (2021). https://cran.r-project.org/package=expm – reference: Rivas-GonzálezIAndersenLNHobolthAPhasetyper: phase-type distributions in r with reward transformations and a view towards population geneticsBioRxiv202210.1101/2022.06.16.496381 – reference: AcalCRuiz-CastroJEAguileraAMJiménez-MolinosFRoldánJBPhase-type distributions for studying variability in resistive memoriesJ. Comput. Appl. Math.20193452332385160010.1016/j.cam.2018.06.0101402.62348 – reference: HobolthABladtMAndersenLNMultivariate phase-type theory for the site frequency spectrumJ. Math. Biol.202183612843409561479.60183 – reference: KingmanJFCThe coalescentStoch. Process. Appl.198213323524867103410.1016/0304-4149(82)90011-40491.60076 – reference: Aalen, O.O.: Phase type distributions in survival analysis. Scand. J. Stat. 447–463 (1995) – reference: EiseleK-TRecursions for compound phase distributionsInsur. Math. Econ.2006381149156219730810.1016/j.insmatheco.2005.08.0021101.62098 – reference: Faddy, M., McClean, S.: Analysing data on lengths of stay of hospital patients using phase-type distributions. Appli. Stoch. Models Bus. Ind. 15(4), 311–317 (1999) – reference: BobbioAHorváthATelekMThe scale factor: a new degree of freedom in phase-type approximationPerform. Eval.2004561–412114410.1016/j.peva.2003.07.003 – reference: AlbrecherHBladtMInhomogeneous phase-type distributions and heavy tailsJ. Appl. Probab.201956410441064404144810.1017/jpr.2019.601428.62103 – reference: HobolthASiri-JegousseABladtMPhase-type distributions in population geneticsTheor. Popul. Biol.2019127163210.1016/j.tpb.2019.02.0011415.92124 – reference: DuffISErismanAMReidJKDirect Methods for Sparse Matrices2017OxfordOxford University Press10.1093/acprof:oso/9780198508380.001.00011364.65067 – reference: YounesHLSimmonsRGSolving generalized semi-Markov decision processes using continuous phase-type distributionsAAAI20044742 – reference: Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. John Hopkins University Press, Baltimore (1981) – reference: Frydenberg, M.: The chain graph Markov property. Scand. J. Stat. 333–353 (1990) – reference: HeQ-MFundamentals of Matrix-Analytical Methods2014New YorkSpringer10.1007/978-1-4614-7330-5 – reference: KernADHeyJExact calculation of the joint allele frequency spectrum for isolation with migration modelsGenetics2017207124125310.1534/genetics.116.194019 – reference: BladtMNielsenBFMatrix-exponential Distributions in Applied Probability2017New YorkSpringer1375.60002 – reference: Navarro, A.C.: Order Statistics and Multivariate Discrete Phase-Type Distributions (2019) – volume: 345 start-page: 23 year: 2019 ident: 10174_CR2 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.06.010 – ident: 10174_CR9 doi: 10.1002/(SICI)1526-4025(199910/12)15:4<311::AID-ASMB395>3.0.CO;2-S – volume: 4 start-page: 742 year: 2004 ident: 10174_CR20 publication-title: AAAI – ident: 10174_CR1 – volume: 56 start-page: 1044 issue: 4 year: 2019 ident: 10174_CR3 publication-title: J. Appl. Probab. doi: 10.1017/jpr.2019.60 – ident: 10174_CR18 – volume: 22 start-page: 583 issue: 3 year: 1982 ident: 10174_CR6 publication-title: Microelectron. Reliab. doi: 10.1016/0026-2714(82)90033-6 – volume: 83 start-page: 1 issue: 6 year: 2021 ident: 10174_CR13 publication-title: J. Math. Biol. – volume-title: Matrix-exponential Distributions in Applied Probability year: 2017 ident: 10174_CR4 – volume-title: Fundamentals of Matrix-Analytical Methods year: 2014 ident: 10174_CR12 doi: 10.1007/978-1-4614-7330-5 – volume: 127 start-page: 16 year: 2019 ident: 10174_CR14 publication-title: Theor. Popul. Biol. doi: 10.1016/j.tpb.2019.02.001 – ident: 10174_CR11 – ident: 10174_CR10 – volume: 13 start-page: 235 issue: 3 year: 1982 ident: 10174_CR16 publication-title: Stoch. Process. Appl. doi: 10.1016/0304-4149(82)90011-4 – year: 2022 ident: 10174_CR19 publication-title: BioRxiv doi: 10.1101/2022.06.16.496381 – ident: 10174_CR17 – volume: 38 start-page: 149 issue: 1 year: 2006 ident: 10174_CR8 publication-title: Insur. Math. Econ. doi: 10.1016/j.insmatheco.2005.08.002 – volume: 56 start-page: 121 issue: 1–4 year: 2004 ident: 10174_CR5 publication-title: Perform. Eval. doi: 10.1016/j.peva.2003.07.003 – volume-title: Direct Methods for Sparse Matrices year: 2017 ident: 10174_CR7 doi: 10.1093/acprof:oso/9780198508380.001.0001 – volume: 207 start-page: 241 issue: 1 year: 2017 ident: 10174_CR15 publication-title: Genetics doi: 10.1534/genetics.116.194019 |
| SSID | ssj0011634 |
| Score | 2.3443666 |
| Snippet | Phase-type distributions model the time until absorption in continuous or discrete-time Markov chains on a finite state space. The multivariate phase-type... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Distribution functions Graphical representations Markov analysis Markov chains Mathematical models Multivariate analysis OriginalPaper Probability and Statistics in Computer Science Programming languages Run time (computers) Statistical Theory and Methods Statistics and Computing/Statistics Programs |
| Title | Graph-based algorithms for phase-type distributions |
| URI | https://link.springer.com/article/10.1007/s11222-022-10174-3 https://www.proquest.com/docview/2730704126 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: AFBBN dateStart: 19910901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011634 issn: 0960-3174 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu4wDjwFiMKYeuEGktknb7DihPQQaJyaNU5VkDUMa27SW_4-TpatAgMS1eUi1Hftr7XwGuGEi0b4MEzLzs4wwxgQRkjLiU6ViTVmS2Izu-CkeTdjDNJq6S2F5We1epiStp64uuwUYy4ipPjdmxAjdh3pk6LzQiidhb5c7QIRhSaMQm6OHSZi7KvPzHl_DUYUxv6VFbbQZHMOhg4leb6vXE9jLlk04KlsweO5ENuFgvKNdzZvQMNBxy7x8CnRouKiJCVMzTyxeV5u3Yv6ee4hSvfUcnxLz-9WbGeZc1_QqP4PJoP98PyKuRQJReHYKknAlEyEUx5cNhOZUcK4DFnVZFrIZw_BrCeN9EXFfxlxHMTfcxN0gFInQVNBzqC1Xy-wCPKUFfrpoqZiImAwy3g2FryVColCoWNIWBKWkUuX4w00bi0VaMR8b6aYo3dRKN8U1t7s16y17xp-z26UCUneS8hThFXolFoRxC-5KpVTDv-92-b_pV9AIrV2YSpU21IrNR3aNeKOQHaj3hi-P_Y41s09WyMnk |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAHHgPEePbADYLaxm2z44SA8RgnJsGpSrIGEDDQ2l349ThdugkESLu2SdTaSfwltj8DHKJMjK_ChPX9LGOIKJlUHJnPtY4NxyQpPbrd27jTw6v76N4lheVVtHvlkix36mmyW0C2jNnoczuNkPF5qCMdUMIa1NsXD9dnE-8BYYySNorQOe0xCbpkmd9H-W6Qpijzh2O0tDfnK9CrvnQcZvJyMirUif78QeI466-swrIDoF57PGPWYC4bNGClKu7gubXegKXuhNA1b8CiBaVjTud14BeW5ZpZA9j35Ovj-_C5eHrLPcK_3scTPWX2YtfrW05eV04r34De-dndaYe54gtM06osWCK0SqTUgoQYSCO4FMIEGLUwC7GPZNhLKnpfRsJXsTBRLCzrcSsIZSINl3wTaoP3QbYFnjaSDkVGaZQRqiATrVD6RhHYCqWOFW9CUGkg1Y6Z3BbIeE2nnMpWYCkJLC0FllKfo0mfjzEvx7-tdyvFpm6N5ikBN9rvMAjjJhxXepq-_nu07dmaH8BC5657k95c3l7vwGJYqt3Gw-xCrRiOsj1CNYXad5P4Cx-l6CA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAeuEG0tknb7DgBYzw2cWDSblWSNgxpbNNa_j9OHysgQOLaPKTaTvy1tj8DnDMRaFu6AYnsOCaMMUGEpIzYVClfUxYEWUS3P_B7Q3Y_8kafqvizbPcyJJnXNBiWpmnamke6VRW-OejXiMlENybFCF2FNWaIEtCih25nGUdAtJERSCFOx9smYEXZzM97fHVNFd78FiLNPE93B7YKyGh1ch3vwko8rcN22Y7BKk5nHTb7SwrWpA4bBkbmLMx7QG8NLzUxLiuyxORltnhNx2-JhYjVmo_xKTG_Yq3IsOgWDbCSfRh2b56veqRol0AUnqOUBFzJQAjF8WUdoTkVnGuHeW0Wuyxi6Ioz8nhbeNyWPteezw1PcdtxRSA0FfQAatPZND4ES2mBnzFaKiY8Jp2Yt11ha4nwyBXKl7QBTimpUBVc4qalxSSsWJCNdEOUbphJN8Q1F8s185xJ48_ZzVIBYXGqkhChFt5QqGe_AZelUqrh33c7-t_0M1h_uu6Gj3eDh2PYcDMTMQksTaili_f4BGFIKk8zS_sAw-bPeA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-based+algorithms+for+phase-type+distributions&rft.jtitle=Statistics+and+computing&rft.au=R%C3%B8ikjer%2C+Tobias&rft.au=Hobolth%2C+Asger&rft.au=Munch%2C+Kasper&rft.date=2022-12-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=32&rft.issue=6&rft_id=info:doi/10.1007%2Fs11222-022-10174-3&rft.externalDocID=10_1007_s11222_022_10174_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |