Graph-based algorithms for phase-type distributions

Phase-type distributions model the time until absorption in continuous or discrete-time Markov chains on a finite state space. The multivariate phase-type distributions have diverse and important applications by modeling rewards accumulated at visited states. However, even moderately sized state spa...

Full description

Saved in:
Bibliographic Details
Published inStatistics and computing Vol. 32; no. 6
Main Authors Røikjer, Tobias, Hobolth, Asger, Munch, Kasper
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0960-3174
1573-1375
DOI10.1007/s11222-022-10174-3

Cover

Abstract Phase-type distributions model the time until absorption in continuous or discrete-time Markov chains on a finite state space. The multivariate phase-type distributions have diverse and important applications by modeling rewards accumulated at visited states. However, even moderately sized state spaces make the traditional matrix-based equations computationally infeasible. State spaces of phase-type distributions are often large but sparse, with only a few transitions from a state. This sparseness makes a graph-based representation of the phase-type distribution more natural and efficient than the traditional matrix-based representation. In this paper, we develop graph-based algorithms for analyzing phase-type distributions. In addition to algorithms for state space construction, reward transformation, and moments calculation, we give algorithms for the marginal distribution functions of multivariate phase-type distributions and for the state probability vector of the underlying Markov chains of both time-homogeneous and time-inhomogeneous phase-type distributions. The algorithms are available as a numerically stable and memory-efficient open source software package written in C named ptdalgorithms. This library exposes all methods in the programming languages C and R. We compare the running time of ptdalgorithms to the fastest tools using a traditional matrix-based formulation. This comparison includes the computation of the probability distribution, which is usually computed by exponentiation of the sub-intensity or sub-transition matrix. We also compare time spent calculating the moments of (multivariate) phase-type distributions usually defined by inversion of the same matrices. The numerical results of our graph-based and traditional matrix-based methods are identical, and our graph-based algorithms are often orders of magnitudes faster. Finally, we demonstrate with a classic problem from population genetics how ptdalgorithms serves as a much faster, simpler, and completely general modeling alternative.
AbstractList Phase-type distributions model the time until absorption in continuous or discrete-time Markov chains on a finite state space. The multivariate phase-type distributions have diverse and important applications by modeling rewards accumulated at visited states. However, even moderately sized state spaces make the traditional matrix-based equations computationally infeasible. State spaces of phase-type distributions are often large but sparse, with only a few transitions from a state. This sparseness makes a graph-based representation of the phase-type distribution more natural and efficient than the traditional matrix-based representation. In this paper, we develop graph-based algorithms for analyzing phase-type distributions. In addition to algorithms for state space construction, reward transformation, and moments calculation, we give algorithms for the marginal distribution functions of multivariate phase-type distributions and for the state probability vector of the underlying Markov chains of both time-homogeneous and time-inhomogeneous phase-type distributions. The algorithms are available as a numerically stable and memory-efficient open source software package written in C named ptdalgorithms. This library exposes all methods in the programming languages C and R. We compare the running time of ptdalgorithms to the fastest tools using a traditional matrix-based formulation. This comparison includes the computation of the probability distribution, which is usually computed by exponentiation of the sub-intensity or sub-transition matrix. We also compare time spent calculating the moments of (multivariate) phase-type distributions usually defined by inversion of the same matrices. The numerical results of our graph-based and traditional matrix-based methods are identical, and our graph-based algorithms are often orders of magnitudes faster. Finally, we demonstrate with a classic problem from population genetics how ptdalgorithms serves as a much faster, simpler, and completely general modeling alternative.
ArticleNumber 103
Author Hobolth, Asger
Røikjer, Tobias
Munch, Kasper
Author_xml – sequence: 1
  givenname: Tobias
  surname: Røikjer
  fullname: Røikjer, Tobias
  organization: Bioinformatics Research Center, Aarhus University
– sequence: 2
  givenname: Asger
  surname: Hobolth
  fullname: Hobolth, Asger
  organization: Department of Mathematics, Aarhus University
– sequence: 3
  givenname: Kasper
  orcidid: 0000-0003-2880-6252
  surname: Munch
  fullname: Munch, Kasper
  email: kaspermunch@birc.au.dk
  organization: Bioinformatics Research Center, Aarhus University
BookMark eNp9kMFOwzAMhiM0JLbBC3CqxDlgJ2mTHtEEA2kSFzhHbpdunba2JNlhb09GkZA4cLAs2f782_-MTbq-c4zdItwjgH4IiEIIDikQUCsuL9gUcy05Sp1P2BTKArhMnSs2C2EHgFhINWVy6WnY8oqCW2e03_S-jdtDyJreZ8M2VXk8DS5btyH6tjrGtu_CNbtsaB_czU-es4_np_fFC1-9LV8XjyteSywj16auNFFtkjRSYyQZ06DKS-WEWislCiO1MUC5gaowTV4YgKIsUZCmRpKcs7tx7-D7z6ML0e76o--SpBVaggaFokhTYpyqfR-Cd40dfHsgf7II9myOHc2xyRz7bY6VCTJ_oLqNdP4uemr3_6NyREPS6TbO_171D_UFhI541Q
CitedBy_id crossref_primary_10_1016_j_asoc_2024_112345
crossref_primary_10_1016_j_tpb_2024_03_001
Cites_doi 10.1016/j.cam.2018.06.010
10.1002/(SICI)1526-4025(199910/12)15:4<311::AID-ASMB395>3.0.CO;2-S
10.1017/jpr.2019.60
10.1016/0026-2714(82)90033-6
10.1007/978-1-4614-7330-5
10.1016/j.tpb.2019.02.001
10.1016/0304-4149(82)90011-4
10.1101/2022.06.16.496381
10.1016/j.insmatheco.2005.08.002
10.1016/j.peva.2003.07.003
10.1093/acprof:oso/9780198508380.001.0001
10.1534/genetics.116.194019
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11222-022-10174-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_022_10174_3
GrantInformation_xml – fundername: Novo Nordisk Fonden
  grantid: NNF19OC0058553
  funderid: http://dx.doi.org/10.13039/501100009708
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-78cb7aac89601af83a88f14594e24d4426837880a580b68f5680069912a7af3a3
IEDL.DBID U2A
ISSN 0960-3174
IngestDate Thu Oct 02 16:29:41 EDT 2025
Wed Oct 01 02:57:23 EDT 2025
Thu Apr 24 22:49:12 EDT 2025
Fri Feb 21 02:44:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Phase-type distributions
Moments
Distribution
Computational statistics
Graph-based algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-78cb7aac89601af83a88f14594e24d4426837880a580b68f5680069912a7af3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2880-6252
PQID 2730704126
PQPubID 2043829
ParticipantIDs proquest_journals_2730704126
crossref_primary_10_1007_s11222_022_10174_3
crossref_citationtrail_10_1007_s11222_022_10174_3
springer_journals_10_1007_s11222_022_10174_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References KingmanJFCThe coalescentStoch. Process. Appl.198213323524867103410.1016/0304-4149(82)90011-40491.60076
YounesHLSimmonsRGSolving generalized semi-Markov decision processes using continuous phase-type distributionsAAAI20044742
AlbrecherHBladtMInhomogeneous phase-type distributions and heavy tailsJ. Appl. Probab.201956410441064404144810.1017/jpr.2019.601428.62103
Faddy, M., McClean, S.: Analysing data on lengths of stay of hospital patients using phase-type distributions. Appli. Stoch. Models Bus. Ind. 15(4), 311–317 (1999)
Aalen, O.O.: Phase type distributions in survival analysis. Scand. J. Stat. 447–463 (1995)
Rivas-GonzálezIAndersenLNHobolthAPhasetyper: phase-type distributions in r with reward transformations and a view towards population geneticsBioRxiv202210.1101/2022.06.16.496381
HeQ-MFundamentals of Matrix-Analytical Methods2014New YorkSpringer10.1007/978-1-4614-7330-5
Goulet, V., Dutang, C., Maechler, M., Firth, D., Shapira, M., Stadelmann, M.: Expm: Matrix Exponential (2021). https://cran.r-project.org/package=expm
BobbioAHorváthATelekMThe scale factor: a new degree of freedom in phase-type approximationPerform. Eval.2004561–412114410.1016/j.peva.2003.07.003
EiseleK-TRecursions for compound phase distributionsInsur. Math. Econ.2006381149156219730810.1016/j.insmatheco.2005.08.0021101.62098
Navarro, A.C.: Order Statistics and Multivariate Discrete Phase-Type Distributions (2019)
BladtMNielsenBFMatrix-exponential Distributions in Applied Probability2017New YorkSpringer1375.60002
Frydenberg, M.: The chain graph Markov property. Scand. J. Stat. 333–353 (1990)
DuffISErismanAMReidJKDirect Methods for Sparse Matrices2017OxfordOxford University Press10.1093/acprof:oso/9780198508380.001.00011364.65067
HobolthABladtMAndersenLNMultivariate phase-type theory for the site frequency spectrumJ. Math. Biol.202183612843409561479.60183
Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. John Hopkins University Press, Baltimore (1981)
AcalCRuiz-CastroJEAguileraAMJiménez-MolinosFRoldánJBPhase-type distributions for studying variability in resistive memoriesJ. Comput. Appl. Math.20193452332385160010.1016/j.cam.2018.06.0101402.62348
CumaniAOn the canonical representation of homogeneous markov processes modelling failure-time distributionsMicroelectron. Reliab.198222358360267422210.1016/0026-2714(82)90033-6
KernADHeyJExact calculation of the joint allele frequency spectrum for isolation with migration modelsGenetics2017207124125310.1534/genetics.116.194019
HobolthASiri-JegousseABladtMPhase-type distributions in population geneticsTheor. Popul. Biol.2019127163210.1016/j.tpb.2019.02.0011415.92124
M Bladt (10174_CR4) 2017
H Albrecher (10174_CR3) 2019; 56
AD Kern (10174_CR15) 2017; 207
C Acal (10174_CR2) 2019; 345
A Bobbio (10174_CR5) 2004; 56
A Cumani (10174_CR6) 1982; 22
10174_CR18
10174_CR17
HL Younes (10174_CR20) 2004; 4
10174_CR1
10174_CR10
10174_CR11
A Hobolth (10174_CR14) 2019; 127
JFC Kingman (10174_CR16) 1982; 13
Q-M He (10174_CR12) 2014
I Rivas-González (10174_CR19) 2022
K-T Eisele (10174_CR8) 2006; 38
10174_CR9
IS Duff (10174_CR7) 2017
A Hobolth (10174_CR13) 2021; 83
References_xml – reference: CumaniAOn the canonical representation of homogeneous markov processes modelling failure-time distributionsMicroelectron. Reliab.198222358360267422210.1016/0026-2714(82)90033-6
– reference: Goulet, V., Dutang, C., Maechler, M., Firth, D., Shapira, M., Stadelmann, M.: Expm: Matrix Exponential (2021). https://cran.r-project.org/package=expm
– reference: Rivas-GonzálezIAndersenLNHobolthAPhasetyper: phase-type distributions in r with reward transformations and a view towards population geneticsBioRxiv202210.1101/2022.06.16.496381
– reference: AcalCRuiz-CastroJEAguileraAMJiménez-MolinosFRoldánJBPhase-type distributions for studying variability in resistive memoriesJ. Comput. Appl. Math.20193452332385160010.1016/j.cam.2018.06.0101402.62348
– reference: HobolthABladtMAndersenLNMultivariate phase-type theory for the site frequency spectrumJ. Math. Biol.202183612843409561479.60183
– reference: KingmanJFCThe coalescentStoch. Process. Appl.198213323524867103410.1016/0304-4149(82)90011-40491.60076
– reference: Aalen, O.O.: Phase type distributions in survival analysis. Scand. J. Stat. 447–463 (1995)
– reference: EiseleK-TRecursions for compound phase distributionsInsur. Math. Econ.2006381149156219730810.1016/j.insmatheco.2005.08.0021101.62098
– reference: Faddy, M., McClean, S.: Analysing data on lengths of stay of hospital patients using phase-type distributions. Appli. Stoch. Models Bus. Ind. 15(4), 311–317 (1999)
– reference: BobbioAHorváthATelekMThe scale factor: a new degree of freedom in phase-type approximationPerform. Eval.2004561–412114410.1016/j.peva.2003.07.003
– reference: AlbrecherHBladtMInhomogeneous phase-type distributions and heavy tailsJ. Appl. Probab.201956410441064404144810.1017/jpr.2019.601428.62103
– reference: HobolthASiri-JegousseABladtMPhase-type distributions in population geneticsTheor. Popul. Biol.2019127163210.1016/j.tpb.2019.02.0011415.92124
– reference: DuffISErismanAMReidJKDirect Methods for Sparse Matrices2017OxfordOxford University Press10.1093/acprof:oso/9780198508380.001.00011364.65067
– reference: YounesHLSimmonsRGSolving generalized semi-Markov decision processes using continuous phase-type distributionsAAAI20044742
– reference: Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. John Hopkins University Press, Baltimore (1981)
– reference: Frydenberg, M.: The chain graph Markov property. Scand. J. Stat. 333–353 (1990)
– reference: HeQ-MFundamentals of Matrix-Analytical Methods2014New YorkSpringer10.1007/978-1-4614-7330-5
– reference: KernADHeyJExact calculation of the joint allele frequency spectrum for isolation with migration modelsGenetics2017207124125310.1534/genetics.116.194019
– reference: BladtMNielsenBFMatrix-exponential Distributions in Applied Probability2017New YorkSpringer1375.60002
– reference: Navarro, A.C.: Order Statistics and Multivariate Discrete Phase-Type Distributions (2019)
– volume: 345
  start-page: 23
  year: 2019
  ident: 10174_CR2
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.06.010
– ident: 10174_CR9
  doi: 10.1002/(SICI)1526-4025(199910/12)15:4<311::AID-ASMB395>3.0.CO;2-S
– volume: 4
  start-page: 742
  year: 2004
  ident: 10174_CR20
  publication-title: AAAI
– ident: 10174_CR1
– volume: 56
  start-page: 1044
  issue: 4
  year: 2019
  ident: 10174_CR3
  publication-title: J. Appl. Probab.
  doi: 10.1017/jpr.2019.60
– ident: 10174_CR18
– volume: 22
  start-page: 583
  issue: 3
  year: 1982
  ident: 10174_CR6
  publication-title: Microelectron. Reliab.
  doi: 10.1016/0026-2714(82)90033-6
– volume: 83
  start-page: 1
  issue: 6
  year: 2021
  ident: 10174_CR13
  publication-title: J. Math. Biol.
– volume-title: Matrix-exponential Distributions in Applied Probability
  year: 2017
  ident: 10174_CR4
– volume-title: Fundamentals of Matrix-Analytical Methods
  year: 2014
  ident: 10174_CR12
  doi: 10.1007/978-1-4614-7330-5
– volume: 127
  start-page: 16
  year: 2019
  ident: 10174_CR14
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/j.tpb.2019.02.001
– ident: 10174_CR11
– ident: 10174_CR10
– volume: 13
  start-page: 235
  issue: 3
  year: 1982
  ident: 10174_CR16
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/0304-4149(82)90011-4
– year: 2022
  ident: 10174_CR19
  publication-title: BioRxiv
  doi: 10.1101/2022.06.16.496381
– ident: 10174_CR17
– volume: 38
  start-page: 149
  issue: 1
  year: 2006
  ident: 10174_CR8
  publication-title: Insur. Math. Econ.
  doi: 10.1016/j.insmatheco.2005.08.002
– volume: 56
  start-page: 121
  issue: 1–4
  year: 2004
  ident: 10174_CR5
  publication-title: Perform. Eval.
  doi: 10.1016/j.peva.2003.07.003
– volume-title: Direct Methods for Sparse Matrices
  year: 2017
  ident: 10174_CR7
  doi: 10.1093/acprof:oso/9780198508380.001.0001
– volume: 207
  start-page: 241
  issue: 1
  year: 2017
  ident: 10174_CR15
  publication-title: Genetics
  doi: 10.1534/genetics.116.194019
SSID ssj0011634
Score 2.3443666
Snippet Phase-type distributions model the time until absorption in continuous or discrete-time Markov chains on a finite state space. The multivariate phase-type...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Distribution functions
Graphical representations
Markov analysis
Markov chains
Mathematical models
Multivariate analysis
OriginalPaper
Probability and Statistics in Computer Science
Programming languages
Run time (computers)
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Title Graph-based algorithms for phase-type distributions
URI https://link.springer.com/article/10.1007/s11222-022-10174-3
https://www.proquest.com/docview/2730704126
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: AFBBN
  dateStart: 19910901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu4wDjwFiMKYeuEGktknb7DihPQQaJyaNU5VkDUMa27SW_4-TpatAgMS1eUi1Hftr7XwGuGEi0b4MEzLzs4wwxgQRkjLiU6ViTVmS2Izu-CkeTdjDNJq6S2F5We1epiStp64uuwUYy4ipPjdmxAjdh3pk6LzQiidhb5c7QIRhSaMQm6OHSZi7KvPzHl_DUYUxv6VFbbQZHMOhg4leb6vXE9jLlk04KlsweO5ENuFgvKNdzZvQMNBxy7x8CnRouKiJCVMzTyxeV5u3Yv6ee4hSvfUcnxLz-9WbGeZc1_QqP4PJoP98PyKuRQJReHYKknAlEyEUx5cNhOZUcK4DFnVZFrIZw_BrCeN9EXFfxlxHMTfcxN0gFInQVNBzqC1Xy-wCPKUFfrpoqZiImAwy3g2FryVColCoWNIWBKWkUuX4w00bi0VaMR8b6aYo3dRKN8U1t7s16y17xp-z26UCUneS8hThFXolFoRxC-5KpVTDv-92-b_pV9AIrV2YSpU21IrNR3aNeKOQHaj3hi-P_Y41s09WyMnk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAHHgPEePbADYLaxm2z44SA8RgnJsGpSrIGEDDQ2l349ThdugkESLu2SdTaSfwltj8DHKJMjK_ChPX9LGOIKJlUHJnPtY4NxyQpPbrd27jTw6v76N4lheVVtHvlkix36mmyW0C2jNnoczuNkPF5qCMdUMIa1NsXD9dnE-8BYYySNorQOe0xCbpkmd9H-W6Qpijzh2O0tDfnK9CrvnQcZvJyMirUif78QeI466-swrIDoF57PGPWYC4bNGClKu7gubXegKXuhNA1b8CiBaVjTud14BeW5ZpZA9j35Ovj-_C5eHrLPcK_3scTPWX2YtfrW05eV04r34De-dndaYe54gtM06osWCK0SqTUgoQYSCO4FMIEGLUwC7GPZNhLKnpfRsJXsTBRLCzrcSsIZSINl3wTaoP3QbYFnjaSDkVGaZQRqiATrVD6RhHYCqWOFW9CUGkg1Y6Z3BbIeE2nnMpWYCkJLC0FllKfo0mfjzEvx7-tdyvFpm6N5ikBN9rvMAjjJhxXepq-_nu07dmaH8BC5657k95c3l7vwGJYqt3Gw-xCrRiOsj1CNYXad5P4Cx-l6CA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAeuEG0tknb7DgBYzw2cWDSblWSNgxpbNNa_j9OHysgQOLaPKTaTvy1tj8DnDMRaFu6AYnsOCaMMUGEpIzYVClfUxYEWUS3P_B7Q3Y_8kafqvizbPcyJJnXNBiWpmnamke6VRW-OejXiMlENybFCF2FNWaIEtCih25nGUdAtJERSCFOx9smYEXZzM97fHVNFd78FiLNPE93B7YKyGh1ch3vwko8rcN22Y7BKk5nHTb7SwrWpA4bBkbmLMx7QG8NLzUxLiuyxORltnhNx2-JhYjVmo_xKTG_Yq3IsOgWDbCSfRh2b56veqRol0AUnqOUBFzJQAjF8WUdoTkVnGuHeW0Wuyxi6Ioz8nhbeNyWPteezw1PcdtxRSA0FfQAatPZND4ES2mBnzFaKiY8Jp2Yt11ha4nwyBXKl7QBTimpUBVc4qalxSSsWJCNdEOUbphJN8Q1F8s185xJ48_ZzVIBYXGqkhChFt5QqGe_AZelUqrh33c7-t_0M1h_uu6Gj3eDh2PYcDMTMQksTaili_f4BGFIKk8zS_sAw-bPeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-based+algorithms+for+phase-type+distributions&rft.jtitle=Statistics+and+computing&rft.au=R%C3%B8ikjer%2C+Tobias&rft.au=Hobolth%2C+Asger&rft.au=Munch%2C+Kasper&rft.date=2022-12-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=32&rft.issue=6&rft_id=info:doi/10.1007%2Fs11222-022-10174-3&rft.externalDocID=10_1007_s11222_022_10174_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon