An Efficient Medical Assistive Diagnostic Algorithm for Visualisation of Structural and Tissue Details in CT and MRI Fusion

Clinicians often have to switch amongst radiographic scans in order to trace out patterns in various tissue striations. The conglomerated view of structural and anatomical view in medical scans can facilitate the physicians to execute precise diagnosis, intraoperative guidance, and planning preopera...

Full description

Saved in:
Bibliographic Details
Published inCognitive computation Vol. 13; no. 6; pp. 1471 - 1483
Main Authors Goyal, Bhawna, Dogra, Ayush, Khoond, Rahul, Al-Turjman, Fadi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-9956
1866-9964
DOI10.1007/s12559-021-09958-y

Cover

Abstract Clinicians often have to switch amongst radiographic scans in order to trace out patterns in various tissue striations. The conglomerated view of structural and anatomical view in medical scans can facilitate the physicians to execute precise diagnosis, intraoperative guidance, and planning preoperative procedures. Due to inherent physical limitations, source images have prevalence of noise and ambient light. This results in lower contrast and limited visual perception of striations and tissues in fused radiographic images. This paper proposes a concatenated filtering image fusion approach employing space segmentation and non-prior-based contrast enhancement. The latent row rank theory approach implements sub-space segmentation addressing the issue of noise removal, and the non-local-prior-based enhancement removes the ambient light from source images fortifying edge details and information. This complex fusion framework is designed in non-sub-sampled contourlet transform which exhibits computational efficiency. The final fused image obtained using local Laplacian energy fusion rule results in improved localisation of structural and anatomical details of brain tissue and outperforms high-performing fusion methods in literature both objectively with high fusion rate along with better quality visual results.
AbstractList Clinicians often have to switch amongst radiographic scans in order to trace out patterns in various tissue striations. The conglomerated view of structural and anatomical view in medical scans can facilitate the physicians to execute precise diagnosis, intraoperative guidance, and planning preoperative procedures. Due to inherent physical limitations, source images have prevalence of noise and ambient light. This results in lower contrast and limited visual perception of striations and tissues in fused radiographic images. This paper proposes a concatenated filtering image fusion approach employing space segmentation and non-prior-based contrast enhancement. The latent row rank theory approach implements sub-space segmentation addressing the issue of noise removal, and the non-local-prior-based enhancement removes the ambient light from source images fortifying edge details and information. This complex fusion framework is designed in non-sub-sampled contourlet transform which exhibits computational efficiency. The final fused image obtained using local Laplacian energy fusion rule results in improved localisation of structural and anatomical details of brain tissue and outperforms high-performing fusion methods in literature both objectively with high fusion rate along with better quality visual results.
Author Dogra, Ayush
Khoond, Rahul
Al-Turjman, Fadi
Goyal, Bhawna
Author_xml – sequence: 1
  givenname: Bhawna
  orcidid: 0000-0003-0111-9612
  surname: Goyal
  fullname: Goyal, Bhawna
  email: bhawnagoyal28@gmail.com
  organization: Department of ECE, Chandigarh University
– sequence: 2
  givenname: Ayush
  surname: Dogra
  fullname: Dogra, Ayush
  organization: Ronin Institute
– sequence: 3
  givenname: Rahul
  surname: Khoond
  fullname: Khoond, Rahul
  organization: Department of ECE, Chandigarh University
– sequence: 4
  givenname: Fadi
  surname: Al-Turjman
  fullname: Al-Turjman, Fadi
  organization: Research Institute for AI and IoT, Near East University
BookMark eNp9kE1rGzEQhkVwIB_NH8hJ0PO2-tjVSkfjJm3AIZA6uQqtVusobCRXoy2Y_PnIdmigh4BAAzOP3tFzhmYhBofQJSXfKCHtd6CsaVRFGK2IUo2stkfolEohKqVEPftXN-IEnQE8EyIa1bBT9DoP-GoYvPUuZHzrem_NiOcAHrL_6_APb9Yhltri-biOyeenFzzEhB89TGb0YLKPAccB_85psnlKBTehxysPMBXeZeNHwD7gxWrfuL2_wdcTFOoLOh7MCO7i_T5HD9dXq8Wvann382YxX1aWU5WrVnLXSias4Jz3A-Ot7C3rXNfQXknJhpp0nag76mphrKnbTkjWGcEdYT1vKT9HXw_vblL8MznI-jlOKZRIzRRVtSpnN8UOUzZFgOQGvUn-xaStpkTvJOuDZF0k671kvS2Q_A-yPu-V5FT-_TnKDyiUnLB26WOrT6g3Az-Uww
CitedBy_id crossref_primary_10_1088_1361_6560_ad2636
crossref_primary_10_1007_s40998_024_00788_w
crossref_primary_10_3390_cells11244107
crossref_primary_10_1155_2023_1566123
Cites_doi 10.1016/j.cageo.2006.06.008
10.1016/j.inffus.2014.05.004
10.1049/iet-cvi.2015.0251
10.1007/978-3-030-59277-6_8
10.1109/TC.2017.2731770
10.1109/TIM.2018.2838778
10.1109/JSEN.2015.2478655
10.1007/s00371-012-0679-y
10.1007/s00034-019-01131-z
10.1109/JSEN.2018.2822712
10.1016/j.scs.2017.06.010
10.1109/TBME.2012.2211017
10.1109/JBHI.2018.2869096
10.1002/ima.22228
10.1049/iet-ipr.2014.0311
10.1016/j.ijleo.2018.06.123
10.1016/j.inffus.2014.05.003
10.1109/JSEN.2020.3022564
10.1049/el:20000267
10.1109/JSEN.2015.2465935
10.1016/j.inffus.2019.09.003
10.1007/s11760-013-0556-9
10.1109/LSP.2016.2618776
10.1016/j.infrared.2016.01.009
10.1109/TIP.2013.2253483
10.4304/jcp.6.12.2559-2566
10.1016/j.inffus.2009.06.008
10.1186/s40708-020-00112-2
10.1109/TMM.2013.2244870
10.1109/ACCESS.2021.3050193
10.1109/LSP.2019.2895749
10.1109/ACCESS.2019.2898111
10.1109/TNNLS.2018.2790388
10.1016/j.inffus.2017.10.007
10.1109/ACCESS.2017.2735865
10.1016/j.asoc.2016.03.028
10.1109/JSEN.2019.2913281
10.1117/1.JEI.26.6.063004
10.1109/CVPR.2016.185
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12559-021-09958-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1866-9964
EndPage 1483
ExternalDocumentID 10_1007_s12559_021_09958_y
GroupedDBID -56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
203
29F
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
67N
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
KPH
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
ZOVNA
~A9
AAFWJ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-783e7826c6333df2378dc2beb51d9882f40bb64b1e46aca47b682ba63e02d3713
IEDL.DBID BENPR
ISSN 1866-9956
IngestDate Sun Sep 07 00:40:20 EDT 2025
Wed Oct 01 02:03:14 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Fri Feb 21 02:47:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords CT
MRI
Imaging
Medical
Diagnosis
Tumour
Fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-783e7826c6333df2378dc2beb51d9882f40bb64b1e46aca47b682ba63e02d3713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0111-9612
PQID 2919499491
PQPubID 6623279
PageCount 13
ParticipantIDs proquest_journals_2919499491
crossref_primary_10_1007_s12559_021_09958_y
crossref_citationtrail_10_1007_s12559_021_09958_y
springer_journals_10_1007_s12559_021_09958_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211100
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cognitive computation
PublicationTitleAbbrev Cogn Comput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Shah, Ahmad, Masood, Shah, Pervaiz, Taylor, Imran, Abbasi (CR32) 2020; 21
Kumar (CR16) 2015; 9
Toet, Hogervorst, Nikolov, Lewis, Dixon, Bull, Canagarajah (CR31) 2010; 11
CR39
Shen, Cheng, Basu (CR3) 2013; 60
Dogra, Goyal, Agrawal (CR5) 2017; 5
Wang, Chang (CR11) 2011; 6
Bavirisetti, Xiao, Zhao, Dhuli, Liu (CR23) 2019; 38
Liang, Hu, Zhang, Sun, Yin (CR37) 2019; 19
CR34
Zhu, Zheng, Qi, Wang, Xiang (CR40) 2017; 7
Xu, Shan, Wang, Jiang (CR25) 2016; 46
Kaiser, Mahmud, Noor, Zenia, Al Mamun, Mahmud, Azad, Aradhya, Stephan, Stephan, Kannan (CR29) 2021; 9
Ruiz, Mahmud, Modasshir, Kaiser, Mahmud, Vassanelli, Kaiser, Zhong (CR30) 2020
Li, Kang, Hu (CR17) 2013; 22
Almurib, Kumar, Lombardi (CR10) 2017; 67
Bhateja, Patel, Krishn, Sahu, Lay-Ekuakille (CR14) 2015; 15
Ullah, Habib, Farhan, Khalid, Durrani, Jabbar (CR33) 2017; 34
Goyal, Dogra, Agrawal, Sohi, Sharma (CR6) 2020; 55
Mahmud, Kaiser, Hussain, Vassanelli (CR27) 2018; 29
Liu, Chen, Ward, Wang (CR2) 2016; 23
CR9
Bavirisetti, Dhuli (CR19) 2016; 76
Bavirisetti, Kollu, Gang, Dhuli (CR36) 2017; 27
Xydeas, Petrovic (CR43) 2000; 36
Yang, Wu, Huang, Fang, Lin, Que (CR38) 2018; 23
Li, Xie, Zhou, Han, Zhan (CR21) 2018; 172
Bhatnagar, Wu, Liu (CR8) 2013; 15
CR44
Liu, Chen, Wang, Wang, Ward, Wang (CR1) 2018; 42
CR20
Daniel (CR24) 2018; 18
Liu, Wang (CR26) 2015; 9
CR42
CR41
Liu, Liu, Wang (CR12) 2015; 23
Bai, Zhang, Zhou, Xue (CR13) 2015; 22
Srivastava, Prakash, Khare (CR15) 2016; 10
Dou, Chen, Li, Sui (CR28) 2007; 33
Noor, Zenia, Kaiser, Al Mamun, Mahmud (CR35) 2020; 7
Liu, Chen, Ward, Wang (CR7) 2019; 26
Yin, Liu, Liu, Chen (CR4) 2018; 68
Bavirisetti, Dhuli (CR18) 2015; 16
Xiao, Gan (CR22) 2012; 28
Y Liu (9958_CR1) 2018; 42
M Yin (9958_CR4) 2018; 68
DP Bavirisetti (9958_CR36) 2017; 27
Y Liu (9958_CR2) 2016; 23
A Dogra (9958_CR5) 2017; 5
G Bhatnagar (9958_CR8) 2013; 15
W Wang (9958_CR11) 2011; 6
X Liang (9958_CR37) 2019; 19
B Goyal (9958_CR6) 2020; 55
M Mahmud (9958_CR27) 2018; 29
Y Liu (9958_CR12) 2015; 23
CS Xydeas (9958_CR43) 2000; 36
9958_CR44
F Ullah (9958_CR33) 2017; 34
9958_CR20
9958_CR42
9958_CR41
S Li (9958_CR17) 2013; 22
Y Yang (9958_CR38) 2018; 23
DP Bavirisetti (9958_CR23) 2019; 38
BKS Kumar (9958_CR16) 2015; 9
DP Bavirisetti (9958_CR19) 2016; 76
X Xu (9958_CR25) 2016; 46
9958_CR39
R Shen (9958_CR3) 2013; 60
C Xiao (9958_CR22) 2012; 28
Y Liu (9958_CR26) 2015; 9
W Li (9958_CR21) 2018; 172
W Dou (9958_CR28) 2007; 33
X Bai (9958_CR13) 2015; 22
V Bhateja (9958_CR14) 2015; 15
Z Zhu (9958_CR40) 2017; 7
J Ruiz (9958_CR30) 2020
Y Liu (9958_CR7) 2019; 26
DP Bavirisetti (9958_CR18) 2015; 16
R Srivastava (9958_CR15) 2016; 10
HAF Almurib (9958_CR10) 2017; 67
A Toet (9958_CR31) 2010; 11
9958_CR9
SA Shah (9958_CR32) 2020; 21
MS Kaiser (9958_CR29) 2021; 9
MBT Noor (9958_CR35) 2020; 7
E Daniel (9958_CR24) 2018; 18
9958_CR34
References_xml – volume: 33
  start-page: 219
  issue: 2
  year: 2007
  end-page: 228
  ident: CR28
  article-title: A general framework for component substitution image fusion: an implementation using the fast image fusion method
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2006.06.008
– volume: 23
  start-page: 139
  issue: 1
  year: 2015
  end-page: 155
  ident: CR12
  article-title: Multi-focus Image Fusion with Dense SIFT
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2014.05.004
– volume: 10
  start-page: 513
  issue: 6
  year: 2016
  end-page: 527
  ident: CR15
  article-title: Local energy-based multimodal medical image fusion in curvelet domain
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2015.0251
– start-page: 85
  year: 2020
  end-page: 96
  ident: CR30
  article-title: 3D DenseNet Ensemble in 4-Way Classification of Alzheimer’s Disease
  publication-title: International Conference on Brain Informatics
  doi: 10.1007/978-3-030-59277-6_8
– volume: 67
  start-page: 149
  issue: 2
  year: 2017
  end-page: 159
  ident: CR10
  article-title: Approximate DCT image compression using inexact computing
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2017.2731770
– volume: 68
  start-page: 49
  issue: 1
  year: 2018
  end-page: 64
  ident: CR4
  article-title: Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2838778
– ident: CR39
– volume: 16
  start-page: 203
  issue: 1
  year: 2015
  end-page: 209
  ident: CR18
  article-title: Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform
  publication-title: IEEE Sens J.
  doi: 10.1109/JSEN.2015.2478655
– volume: 28
  start-page: 713
  issue: 6–8
  year: 2012
  end-page: 721
  ident: CR22
  article-title: Fast image dehazing using guided joint bilateral filter
  publication-title: Vis Comput
  doi: 10.1007/s00371-012-0679-y
– volume: 38
  start-page: 5576
  issue: 12
  year: 2019
  end-page: 5605
  ident: CR23
  article-title: Multi-scale guided image and video fusion: a fast and efficient approach
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-019-01131-z
– volume: 18
  start-page: 6804
  issue: 16
  year: 2018
  end-page: 6811
  ident: CR24
  article-title: Optimum wavelet-based homomorphic medical image fusion using hybrid genetic–grey wolf optimization algorithm
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2822712
– volume: 34
  start-page: 90
  year: 2017
  end-page: 96
  ident: CR33
  article-title: Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare
  publication-title: Sustai Cities Soc
  doi: 10.1016/j.scs.2017.06.010
– volume: 60
  start-page: 1069
  issue: 4
  year: 2013
  end-page: 1079
  ident: CR3
  article-title: Cross-scale coefficient selection for volumetric medical image fusion
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2211017
– volume: 23
  start-page: 1647
  issue: 4
  year: 2018
  end-page: 1660
  ident: CR38
  article-title: Multimodal medical image fusion based on fuzzy discrimination with structural patch decomposition
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2869096
– volume: 27
  start-page: 227
  issue: 3
  year: 2017
  end-page: 237
  ident: CR36
  article-title: Fusion of MRI and CT images using guided image filter and image statistics
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22228
– ident: CR42
– volume: 9
  start-page: 347
  issue: 5
  year: 2015
  end-page: 357
  ident: CR26
  article-title: Simultaneous image fusion and denoising with adaptive sparse representation
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2014.0311
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR21
  article-title: Structure-aware image fusion
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.06.123
– ident: CR44
– volume: 22
  start-page: 105
  year: 2015
  end-page: 118
  ident: CR13
  article-title: Quadtree-based multi-focus image fusion using a weighted focus-measure
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2014.05.003
– volume: 21
  start-page: 3669
  issue: 3
  year: 2020
  end-page: 3679
  ident: CR32
  article-title: Privacy-preserving wandering behavior sensing in dementia patients using modified logistic and dynamic Newton Leipnik maps
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3022564
– volume: 36
  start-page: 308
  issue: 4
  year: 2000
  end-page: 309
  ident: CR43
  article-title: Objective image fusion performance measure
  publication-title: Electron Lett
  doi: 10.1049/el:20000267
– volume: 15
  start-page: 6783
  issue: 12
  year: 2015
  end-page: 6790
  ident: CR14
  article-title: Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2015.2465935
– volume: 55
  start-page: 220
  year: 2020
  end-page: 244
  ident: CR6
  article-title: Image denoising review: from classical to state-of-the-art approaches
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.09.003
– volume: 9
  start-page: 1193
  issue: 5
  year: 2015
  end-page: 1204
  ident: CR16
  article-title: Image fusion based on pixel significance using cross bilateral filter
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-013-0556-9
– volume: 23
  start-page: 1882
  issue: 12
  year: 2016
  end-page: 1886
  ident: CR2
  article-title: Image fusion with convolutional sparse representation
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2618776
– volume: 76
  start-page: 52
  year: 2016
  end-page: 64
  ident: CR19
  article-title: Two-scale image fusion of visible and infrared images using saliency detection
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2016.01.009
– volume: 22
  start-page: 2864
  issue: 7
  year: 2013
  end-page: 2875
  ident: CR17
  article-title: Image fusion with guided filtering
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2253483
– ident: CR9
– volume: 6
  start-page: 2559
  issue: 12
  year: 2011
  end-page: 2566
  ident: CR11
  article-title: A multi-focus image fusion method based on Laplacian pyramid
  publication-title: J Comput
  doi: 10.4304/jcp.6.12.2559-2566
– volume: 11
  start-page: 95
  issue: 2
  year: 2010
  end-page: 113
  ident: CR31
  article-title: Towards cognitive image fusion
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2009.06.008
– ident: CR34
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 21
  ident: CR35
  article-title: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease Parkinson’s disease and schizophrenia
  publication-title: Brain Inform
  doi: 10.1186/s40708-020-00112-2
– volume: 15
  start-page: 1014
  issue: 5
  year: 2013
  end-page: 1024
  ident: CR8
  article-title: Directive contrast based multimodal medical image fusion in NSCT domain
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2013.2244870
– volume: 9
  start-page: 13814
  year: 2021
  end-page: 13828
  ident: CR29
  article-title: iWorkSafe: towards healthy workplaces during COVID-19 with an intelligent pHealth App for industrial settings
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050193
– volume: 26
  start-page: 485
  issue: 3
  year: 2019
  end-page: 489
  ident: CR7
  article-title: Medical image fusion via convolutional sparsity based morphological component analysis
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2019.2895749
– volume: 7
  start-page: 20811
  year: 2017
  end-page: 20824
  ident: CR40
  article-title: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898111
– volume: 29
  start-page: 2063
  issue: 6
  year: 2018
  end-page: 2079
  ident: CR27
  article-title: Applications of deep learning and reinforcement learning to biological data
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2790388
– ident: CR41
– volume: 42
  start-page: 158
  year: 2018
  end-page: 173
  ident: CR1
  article-title: Deep learning for pixel-level image fusion: recent advances and future prospects
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.10.007
– volume: 5
  start-page: 16040
  year: 2017
  end-page: 16067
  ident: CR5
  article-title: From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2735865
– ident: CR20
– volume: 46
  start-page: 588
  year: 2016
  end-page: 595
  ident: CR25
  article-title: Multimodal medical image fusion using PCNN optimized by the QPSO algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.03.028
– volume: 19
  start-page: 7107
  issue: 16
  year: 2019
  end-page: 7119
  ident: CR37
  article-title: MCFNet: multi-layer concatenation fusion network for medical images fusion
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2913281
– volume: 34
  start-page: 90
  year: 2017
  ident: 9958_CR33
  publication-title: Sustai Cities Soc
  doi: 10.1016/j.scs.2017.06.010
– volume: 11
  start-page: 95
  issue: 2
  year: 2010
  ident: 9958_CR31
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2009.06.008
– ident: 9958_CR20
  doi: 10.1117/1.JEI.26.6.063004
– volume: 9
  start-page: 347
  issue: 5
  year: 2015
  ident: 9958_CR26
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2014.0311
– volume: 21
  start-page: 3669
  issue: 3
  year: 2020
  ident: 9958_CR32
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3022564
– volume: 172
  start-page: 1
  year: 2018
  ident: 9958_CR21
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.06.123
– volume: 26
  start-page: 485
  issue: 3
  year: 2019
  ident: 9958_CR7
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2019.2895749
– volume: 15
  start-page: 1014
  issue: 5
  year: 2013
  ident: 9958_CR8
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2013.2244870
– volume: 76
  start-page: 52
  year: 2016
  ident: 9958_CR19
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2016.01.009
– ident: 9958_CR41
– start-page: 85
  volume-title: International Conference on Brain Informatics
  year: 2020
  ident: 9958_CR30
  doi: 10.1007/978-3-030-59277-6_8
– volume: 23
  start-page: 1882
  issue: 12
  year: 2016
  ident: 9958_CR2
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2618776
– volume: 18
  start-page: 6804
  issue: 16
  year: 2018
  ident: 9958_CR24
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2822712
– volume: 22
  start-page: 2864
  issue: 7
  year: 2013
  ident: 9958_CR17
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2253483
– volume: 46
  start-page: 588
  year: 2016
  ident: 9958_CR25
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.03.028
– volume: 10
  start-page: 513
  issue: 6
  year: 2016
  ident: 9958_CR15
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2015.0251
– volume: 27
  start-page: 227
  issue: 3
  year: 2017
  ident: 9958_CR36
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22228
– ident: 9958_CR39
– volume: 9
  start-page: 13814
  year: 2021
  ident: 9958_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050193
– volume: 23
  start-page: 1647
  issue: 4
  year: 2018
  ident: 9958_CR38
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2869096
– volume: 60
  start-page: 1069
  issue: 4
  year: 2013
  ident: 9958_CR3
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2211017
– ident: 9958_CR9
– volume: 23
  start-page: 139
  issue: 1
  year: 2015
  ident: 9958_CR12
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2014.05.004
– ident: 9958_CR42
  doi: 10.1109/CVPR.2016.185
– volume: 36
  start-page: 308
  issue: 4
  year: 2000
  ident: 9958_CR43
  publication-title: Electron Lett
  doi: 10.1049/el:20000267
– volume: 6
  start-page: 2559
  issue: 12
  year: 2011
  ident: 9958_CR11
  publication-title: J Comput
  doi: 10.4304/jcp.6.12.2559-2566
– volume: 15
  start-page: 6783
  issue: 12
  year: 2015
  ident: 9958_CR14
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2015.2465935
– volume: 28
  start-page: 713
  issue: 6–8
  year: 2012
  ident: 9958_CR22
  publication-title: Vis Comput
  doi: 10.1007/s00371-012-0679-y
– volume: 38
  start-page: 5576
  issue: 12
  year: 2019
  ident: 9958_CR23
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-019-01131-z
– volume: 19
  start-page: 7107
  issue: 16
  year: 2019
  ident: 9958_CR37
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2913281
– volume: 55
  start-page: 220
  year: 2020
  ident: 9958_CR6
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.09.003
– volume: 16
  start-page: 203
  issue: 1
  year: 2015
  ident: 9958_CR18
  publication-title: IEEE Sens J.
  doi: 10.1109/JSEN.2015.2478655
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 9958_CR35
  publication-title: Brain Inform
  doi: 10.1186/s40708-020-00112-2
– volume: 22
  start-page: 105
  year: 2015
  ident: 9958_CR13
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2014.05.003
– volume: 9
  start-page: 1193
  issue: 5
  year: 2015
  ident: 9958_CR16
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-013-0556-9
– ident: 9958_CR44
– volume: 42
  start-page: 158
  year: 2018
  ident: 9958_CR1
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2017.10.007
– volume: 67
  start-page: 149
  issue: 2
  year: 2017
  ident: 9958_CR10
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2017.2731770
– volume: 29
  start-page: 2063
  issue: 6
  year: 2018
  ident: 9958_CR27
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2790388
– volume: 7
  start-page: 20811
  year: 2017
  ident: 9958_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898111
– volume: 33
  start-page: 219
  issue: 2
  year: 2007
  ident: 9958_CR28
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2006.06.008
– ident: 9958_CR34
– volume: 68
  start-page: 49
  issue: 1
  year: 2018
  ident: 9958_CR4
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2838778
– volume: 5
  start-page: 16040
  year: 2017
  ident: 9958_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2735865
SSID ssj0065952
Score 2.2484477
Snippet Clinicians often have to switch amongst radiographic scans in order to trace out patterns in various tissue striations. The conglomerated view of structural...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1471
SubjectTerms Algorithms
Artificial Intelligence
Computation by Abstract Devices
Computational Biology/Bioinformatics
Computer Science
Computer vision
Decomposition
Image contrast
Image enhancement
Image filters
Image segmentation
Localization
Magnetic resonance imaging
Medical diagnosis
Medical imaging
Methods
Sensors
Striations
Tomography
Visual perception
Wavelet transforms
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5BeeEFNsY0oJvugTdm1MSOmz5WpR0DwQNrJ3iKbMeBCkgRLUjd_vzOjkM1BEg8x7Ec3_nuc-7uO4BdLQryi0IzAg8FEx3FmdJJwlpKOb5z1-PYFQqfnMrDkTg6T85DUdi0znavQ5LeUi-K3Rz6ZS6lgFBNkrL5Mqx4vq0GrHR_XBz3awvsKPJ8lDOVkrnKzVAs8_Is_zukBcp8Fhj1_mawDqN6pVWayfX-w0zvmz_PSBzf-ykfYC0AUOxWGvMRlmy5Aet1cwcMZ30DVp9M4_wT_O2W2PdkE-SjMAR3kETrLMSjxYMqYY-mxO7N5eR-PLu6RYLD-Hs8dVWbVcoQTgr85flqHdcHqjLHoZc7HvhE1imOS-wN_YOTs584eHC_8jZhNOgPe4cstG1ghs7zjLVTbgl3SCM553kR83aam1hbnUR5hwB9IVpaS6EjK6QySrS1TGOtJLetOOd0af4MjXJS2i-AtmgZshK6LaShm6fSzkKZJLKcxkV5tAVRLbvMBE5z11rjJluwMbutzmirM7_V2XwL9p7euasYPd4c3axVIgune5rFnchx-ogOLeB7LeHF49dn237f8B1YjZ2S-NLHJjRIQvYrYaCZ_hZU_h_R-Pxv
  priority: 102
  providerName: Springer Nature
Title An Efficient Medical Assistive Diagnostic Algorithm for Visualisation of Structural and Tissue Details in CT and MRI Fusion
URI https://link.springer.com/article/10.1007/s12559-021-09958-y
https://www.proquest.com/docview/2919499491
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: AFBBN
  dateStart: 20090301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1866-9964
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065952
  issn: 1866-9956
  databaseCode: U2A
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t7cteEOOHKGzVPewNLJrYcdOHCYWt3QCtQqNF4ymyHQcmjXRTy6Rq_zx3TrKKSew1ji0ln33-7Lv7DuDAqpL2RWUFkYdSqJGRwtgkEQNjWO-caxxzovDZVJ_O1eeL5GILpm0uDIdVtjYxGOpi4fiO_H08ilhHRY2iD9c3gqtGsXe1LaFhmtIKxWGQGNuGbszKWB3ofhxPv563tpnF84L_M9VacE5nk0ZTJ9MxuxYcskCsKUnF-t-tasM_H7hMw040eQpPGgqJWY35Lmz56hns3Fuy9XO4yyocB20I2lKw8cUgIcEL-tbjcR1fR_0xu_pJX7n69RuJveL3yyUnWdYRPrgo8VuQl2VpDjRVgbMAEx6HuNMlXlZ4NAsNZ-efcPKHb95ewHwynh2diqbKgnC0_FZimEpPNEE7LaUsylgO08LF1tskKkbEv0s1sFYrG3mljTNqaHUaW6OlH8SFpDPuS-hUi8q_AvTlwNGitkOlHR0UjWWD4pLIS3ovKqIeRO0PzV0jQc6VMK7yjXgyg5ATCHkAIV_34O19n-tagOPRt_danPJmMS7zzdTpwbsWu03z_0d7_fhob2An5ukSMhP3oEOI-H2iKCvbh-10ctKHbnby48u438xCejqPs7_G-OVC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9kAviKcIFJgDnGBF7F1v7EOFQpMooU2ESop6M7v2GioVpygBFPHf-G3MrNeNQKK3nne9h53xPHbm-wbguVUV-UVlBQUPlVCZkcLYJBFdY5jvnGccM1B4OtPjE_XuNDndgt8tFobbKlub6A11uSj4jfx1nEXMo6Ky6M3FN8FTo7i62o7QMGG0QrnvKcYCsOPQrX9SCrfcnwxI3i_ieDScH4xFmDIgClK_leil0pGb1IWWUpZVLHtpWcTW2SQqM4o_K9W1VisbOaVNYVTP6jS2RkvXjUtJOR6dewN2lFQZJX87b4ez98etL2CyPl9vTbUWjCENsJ0GvMfRvOAWCYrSklSs_3aNm3j3nxKt93yj23ArhKzYb3TsDmy5-i7sXlrO9T341a9x6LkoyIVhqP0gSZ4NyA-Hg6afj77H_vlnutXVl69I0TJ-PFsyqLPpKMJFhR88nS1TgaCpS5x7tcCB73Nd4lmNB3O_MD2e4Og7v_Tdh5Nrue8HsF0vavcQ0FXdgoyI7SldUGJqLBuwIomcpH1RGXUgai80LwLlOU_eOM83ZM0shJyEkHsh5OsOvLz85qIh_Lhy914rpzz8_Mt8o6odeNXKbrP8_9MeXX3aM7g5nk-P8qPJ7PAx7MasOh4VuQfbJB33hMKjlX0adBDh03Wr_R9_jx5K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eQHzxLl6mngffNLg2adY9js3hHdFNfCtJm-pAO3FTGP55z0lbp6KCz01D2y8n-dJzvi-M7RqZ4rooDUfykHJZ14JrEwS8qjX5ndMZxyQUPr9QR115chvcflLxu2r3MiWZaxrIpSkbHjwl6cFY-EZMmFN5ATKcIOSjSTYtySgBR3TXb5RzMZnluXxnqBQnDWchm_m5j69L05hvfkuRupWnvcDmCsoIjRzjRTZhsyU2Xx7HAEV0LrHZj8lstMzeGhkcOnsIfCso0jGAYFBMv1po5SV22CU0Hu76z73h_SMggYWb3oB0lnmRD_RTuHYOs-TOATpLoOOQgpYrPR1AL4Nmx104vzqG9gv9fFth3fZhp3nEi4MWeIwROOS1UFhkCipWQogk9UUtTGLfWBN4SR0peCqrxihpPCuVjrWsGRX6Rithq34icJu7yqayfmbXGNi0GmNcm5pUMe4VtaE5JQ48K7Cdl3jrzCu_cRQXLuR0GMZDNPZPJlwixCVyuESjdbb3cc9T7sHxZ-tKCV1UxOMg8useufDIOj7Afgnn-PLvvW38r_kOm7lstaOz44vTTTbr0-ByusUKm0Kw7BYSmKHZdmP0HY5P5kE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Medical+Assistive+Diagnostic+Algorithm+for+Visualisation+of+Structural+and+Tissue+Details+in+CT+and+MRI+Fusion&rft.jtitle=Cognitive+computation&rft.au=Goyal%2C+Bhawna&rft.au=Dogra%2C+Ayush&rft.au=Khoond%2C+Rahul&rft.au=Al-Turjman%2C+Fadi&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=13&rft.issue=6&rft.spage=1471&rft.epage=1483&rft_id=info:doi/10.1007%2Fs12559-021-09958-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon