An Efficient Medical Assistive Diagnostic Algorithm for Visualisation of Structural and Tissue Details in CT and MRI Fusion
Clinicians often have to switch amongst radiographic scans in order to trace out patterns in various tissue striations. The conglomerated view of structural and anatomical view in medical scans can facilitate the physicians to execute precise diagnosis, intraoperative guidance, and planning preopera...
Saved in:
| Published in | Cognitive computation Vol. 13; no. 6; pp. 1471 - 1483 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1866-9956 1866-9964 |
| DOI | 10.1007/s12559-021-09958-y |
Cover
| Abstract | Clinicians often have to switch amongst radiographic scans in order to trace out patterns in various tissue striations. The conglomerated view of structural and anatomical view in medical scans can facilitate the physicians to execute precise diagnosis, intraoperative guidance, and planning preoperative procedures. Due to inherent physical limitations, source images have prevalence of noise and ambient light. This results in lower contrast and limited visual perception of striations and tissues in fused radiographic images. This paper proposes a concatenated filtering image fusion approach employing space segmentation and non-prior-based contrast enhancement. The latent row rank theory approach implements sub-space segmentation addressing the issue of noise removal, and the non-local-prior-based enhancement removes the ambient light from source images fortifying edge details and information. This complex fusion framework is designed in non-sub-sampled contourlet transform which exhibits computational efficiency. The final fused image obtained using local Laplacian energy fusion rule results in improved localisation of structural and anatomical details of brain tissue and outperforms high-performing fusion methods in literature both objectively with high fusion rate along with better quality visual results. |
|---|---|
| AbstractList | Clinicians often have to switch amongst radiographic scans in order to trace out patterns in various tissue striations. The conglomerated view of structural and anatomical view in medical scans can facilitate the physicians to execute precise diagnosis, intraoperative guidance, and planning preoperative procedures. Due to inherent physical limitations, source images have prevalence of noise and ambient light. This results in lower contrast and limited visual perception of striations and tissues in fused radiographic images. This paper proposes a concatenated filtering image fusion approach employing space segmentation and non-prior-based contrast enhancement. The latent row rank theory approach implements sub-space segmentation addressing the issue of noise removal, and the non-local-prior-based enhancement removes the ambient light from source images fortifying edge details and information. This complex fusion framework is designed in non-sub-sampled contourlet transform which exhibits computational efficiency. The final fused image obtained using local Laplacian energy fusion rule results in improved localisation of structural and anatomical details of brain tissue and outperforms high-performing fusion methods in literature both objectively with high fusion rate along with better quality visual results. |
| Author | Dogra, Ayush Khoond, Rahul Al-Turjman, Fadi Goyal, Bhawna |
| Author_xml | – sequence: 1 givenname: Bhawna orcidid: 0000-0003-0111-9612 surname: Goyal fullname: Goyal, Bhawna email: bhawnagoyal28@gmail.com organization: Department of ECE, Chandigarh University – sequence: 2 givenname: Ayush surname: Dogra fullname: Dogra, Ayush organization: Ronin Institute – sequence: 3 givenname: Rahul surname: Khoond fullname: Khoond, Rahul organization: Department of ECE, Chandigarh University – sequence: 4 givenname: Fadi surname: Al-Turjman fullname: Al-Turjman, Fadi organization: Research Institute for AI and IoT, Near East University |
| BookMark | eNp9kE1rGzEQhkVwIB_NH8hJ0PO2-tjVSkfjJm3AIZA6uQqtVusobCRXoy2Y_PnIdmigh4BAAzOP3tFzhmYhBofQJSXfKCHtd6CsaVRFGK2IUo2stkfolEohKqVEPftXN-IEnQE8EyIa1bBT9DoP-GoYvPUuZHzrem_NiOcAHrL_6_APb9Yhltri-biOyeenFzzEhB89TGb0YLKPAccB_85psnlKBTehxysPMBXeZeNHwD7gxWrfuL2_wdcTFOoLOh7MCO7i_T5HD9dXq8Wvann382YxX1aWU5WrVnLXSias4Jz3A-Ot7C3rXNfQXknJhpp0nag76mphrKnbTkjWGcEdYT1vKT9HXw_vblL8MznI-jlOKZRIzRRVtSpnN8UOUzZFgOQGvUn-xaStpkTvJOuDZF0k671kvS2Q_A-yPu-V5FT-_TnKDyiUnLB26WOrT6g3Az-Uww |
| CitedBy_id | crossref_primary_10_1088_1361_6560_ad2636 crossref_primary_10_1007_s40998_024_00788_w crossref_primary_10_3390_cells11244107 crossref_primary_10_1155_2023_1566123 |
| Cites_doi | 10.1016/j.cageo.2006.06.008 10.1016/j.inffus.2014.05.004 10.1049/iet-cvi.2015.0251 10.1007/978-3-030-59277-6_8 10.1109/TC.2017.2731770 10.1109/TIM.2018.2838778 10.1109/JSEN.2015.2478655 10.1007/s00371-012-0679-y 10.1007/s00034-019-01131-z 10.1109/JSEN.2018.2822712 10.1016/j.scs.2017.06.010 10.1109/TBME.2012.2211017 10.1109/JBHI.2018.2869096 10.1002/ima.22228 10.1049/iet-ipr.2014.0311 10.1016/j.ijleo.2018.06.123 10.1016/j.inffus.2014.05.003 10.1109/JSEN.2020.3022564 10.1049/el:20000267 10.1109/JSEN.2015.2465935 10.1016/j.inffus.2019.09.003 10.1007/s11760-013-0556-9 10.1109/LSP.2016.2618776 10.1016/j.infrared.2016.01.009 10.1109/TIP.2013.2253483 10.4304/jcp.6.12.2559-2566 10.1016/j.inffus.2009.06.008 10.1186/s40708-020-00112-2 10.1109/TMM.2013.2244870 10.1109/ACCESS.2021.3050193 10.1109/LSP.2019.2895749 10.1109/ACCESS.2019.2898111 10.1109/TNNLS.2018.2790388 10.1016/j.inffus.2017.10.007 10.1109/ACCESS.2017.2735865 10.1016/j.asoc.2016.03.028 10.1109/JSEN.2019.2913281 10.1117/1.JEI.26.6.063004 10.1109/CVPR.2016.185 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s12559-021-09958-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology Computer Science |
| EISSN | 1866-9964 |
| EndPage | 1483 |
| ExternalDocumentID | 10_1007_s12559_021_09958_y |
| GroupedDBID | -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 67N 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ K7- KOV KPH LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM PT4 QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z83 Z88 ZMTXR ZOVNA ~A9 AAFWJ AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-783e7826c6333df2378dc2beb51d9882f40bb64b1e46aca47b682ba63e02d3713 |
| IEDL.DBID | BENPR |
| ISSN | 1866-9956 |
| IngestDate | Sun Sep 07 00:40:20 EDT 2025 Wed Oct 01 02:03:14 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 Fri Feb 21 02:47:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | CT MRI Imaging Medical Diagnosis Tumour Fusion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-783e7826c6333df2378dc2beb51d9882f40bb64b1e46aca47b682ba63e02d3713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0111-9612 |
| PQID | 2919499491 |
| PQPubID | 6623279 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2919499491 crossref_primary_10_1007_s12559_021_09958_y crossref_citationtrail_10_1007_s12559_021_09958_y springer_journals_10_1007_s12559_021_09958_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20211100 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Cognitive computation |
| PublicationTitleAbbrev | Cogn Comput |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Shah, Ahmad, Masood, Shah, Pervaiz, Taylor, Imran, Abbasi (CR32) 2020; 21 Kumar (CR16) 2015; 9 Toet, Hogervorst, Nikolov, Lewis, Dixon, Bull, Canagarajah (CR31) 2010; 11 CR39 Shen, Cheng, Basu (CR3) 2013; 60 Dogra, Goyal, Agrawal (CR5) 2017; 5 Wang, Chang (CR11) 2011; 6 Bavirisetti, Xiao, Zhao, Dhuli, Liu (CR23) 2019; 38 Liang, Hu, Zhang, Sun, Yin (CR37) 2019; 19 CR34 Zhu, Zheng, Qi, Wang, Xiang (CR40) 2017; 7 Xu, Shan, Wang, Jiang (CR25) 2016; 46 Kaiser, Mahmud, Noor, Zenia, Al Mamun, Mahmud, Azad, Aradhya, Stephan, Stephan, Kannan (CR29) 2021; 9 Ruiz, Mahmud, Modasshir, Kaiser, Mahmud, Vassanelli, Kaiser, Zhong (CR30) 2020 Li, Kang, Hu (CR17) 2013; 22 Almurib, Kumar, Lombardi (CR10) 2017; 67 Bhateja, Patel, Krishn, Sahu, Lay-Ekuakille (CR14) 2015; 15 Ullah, Habib, Farhan, Khalid, Durrani, Jabbar (CR33) 2017; 34 Goyal, Dogra, Agrawal, Sohi, Sharma (CR6) 2020; 55 Mahmud, Kaiser, Hussain, Vassanelli (CR27) 2018; 29 Liu, Chen, Ward, Wang (CR2) 2016; 23 CR9 Bavirisetti, Dhuli (CR19) 2016; 76 Bavirisetti, Kollu, Gang, Dhuli (CR36) 2017; 27 Xydeas, Petrovic (CR43) 2000; 36 Yang, Wu, Huang, Fang, Lin, Que (CR38) 2018; 23 Li, Xie, Zhou, Han, Zhan (CR21) 2018; 172 Bhatnagar, Wu, Liu (CR8) 2013; 15 CR44 Liu, Chen, Wang, Wang, Ward, Wang (CR1) 2018; 42 CR20 Daniel (CR24) 2018; 18 Liu, Wang (CR26) 2015; 9 CR42 CR41 Liu, Liu, Wang (CR12) 2015; 23 Bai, Zhang, Zhou, Xue (CR13) 2015; 22 Srivastava, Prakash, Khare (CR15) 2016; 10 Dou, Chen, Li, Sui (CR28) 2007; 33 Noor, Zenia, Kaiser, Al Mamun, Mahmud (CR35) 2020; 7 Liu, Chen, Ward, Wang (CR7) 2019; 26 Yin, Liu, Liu, Chen (CR4) 2018; 68 Bavirisetti, Dhuli (CR18) 2015; 16 Xiao, Gan (CR22) 2012; 28 Y Liu (9958_CR1) 2018; 42 M Yin (9958_CR4) 2018; 68 DP Bavirisetti (9958_CR36) 2017; 27 Y Liu (9958_CR2) 2016; 23 A Dogra (9958_CR5) 2017; 5 G Bhatnagar (9958_CR8) 2013; 15 W Wang (9958_CR11) 2011; 6 X Liang (9958_CR37) 2019; 19 B Goyal (9958_CR6) 2020; 55 M Mahmud (9958_CR27) 2018; 29 Y Liu (9958_CR12) 2015; 23 CS Xydeas (9958_CR43) 2000; 36 9958_CR44 F Ullah (9958_CR33) 2017; 34 9958_CR20 9958_CR42 9958_CR41 S Li (9958_CR17) 2013; 22 Y Yang (9958_CR38) 2018; 23 DP Bavirisetti (9958_CR23) 2019; 38 BKS Kumar (9958_CR16) 2015; 9 DP Bavirisetti (9958_CR19) 2016; 76 X Xu (9958_CR25) 2016; 46 9958_CR39 R Shen (9958_CR3) 2013; 60 C Xiao (9958_CR22) 2012; 28 Y Liu (9958_CR26) 2015; 9 W Li (9958_CR21) 2018; 172 W Dou (9958_CR28) 2007; 33 X Bai (9958_CR13) 2015; 22 V Bhateja (9958_CR14) 2015; 15 Z Zhu (9958_CR40) 2017; 7 J Ruiz (9958_CR30) 2020 Y Liu (9958_CR7) 2019; 26 DP Bavirisetti (9958_CR18) 2015; 16 R Srivastava (9958_CR15) 2016; 10 HAF Almurib (9958_CR10) 2017; 67 A Toet (9958_CR31) 2010; 11 9958_CR9 SA Shah (9958_CR32) 2020; 21 MS Kaiser (9958_CR29) 2021; 9 MBT Noor (9958_CR35) 2020; 7 E Daniel (9958_CR24) 2018; 18 9958_CR34 |
| References_xml | – volume: 33 start-page: 219 issue: 2 year: 2007 end-page: 228 ident: CR28 article-title: A general framework for component substitution image fusion: an implementation using the fast image fusion method publication-title: Comput Geosci doi: 10.1016/j.cageo.2006.06.008 – volume: 23 start-page: 139 issue: 1 year: 2015 end-page: 155 ident: CR12 article-title: Multi-focus Image Fusion with Dense SIFT publication-title: Inf Fusion doi: 10.1016/j.inffus.2014.05.004 – volume: 10 start-page: 513 issue: 6 year: 2016 end-page: 527 ident: CR15 article-title: Local energy-based multimodal medical image fusion in curvelet domain publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2015.0251 – start-page: 85 year: 2020 end-page: 96 ident: CR30 article-title: 3D DenseNet Ensemble in 4-Way Classification of Alzheimer’s Disease publication-title: International Conference on Brain Informatics doi: 10.1007/978-3-030-59277-6_8 – volume: 67 start-page: 149 issue: 2 year: 2017 end-page: 159 ident: CR10 article-title: Approximate DCT image compression using inexact computing publication-title: IEEE Trans Comput doi: 10.1109/TC.2017.2731770 – volume: 68 start-page: 49 issue: 1 year: 2018 end-page: 64 ident: CR4 article-title: Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2018.2838778 – ident: CR39 – volume: 16 start-page: 203 issue: 1 year: 2015 end-page: 209 ident: CR18 article-title: Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform publication-title: IEEE Sens J. doi: 10.1109/JSEN.2015.2478655 – volume: 28 start-page: 713 issue: 6–8 year: 2012 end-page: 721 ident: CR22 article-title: Fast image dehazing using guided joint bilateral filter publication-title: Vis Comput doi: 10.1007/s00371-012-0679-y – volume: 38 start-page: 5576 issue: 12 year: 2019 end-page: 5605 ident: CR23 article-title: Multi-scale guided image and video fusion: a fast and efficient approach publication-title: Circuits Syst Signal Process doi: 10.1007/s00034-019-01131-z – volume: 18 start-page: 6804 issue: 16 year: 2018 end-page: 6811 ident: CR24 article-title: Optimum wavelet-based homomorphic medical image fusion using hybrid genetic–grey wolf optimization algorithm publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2822712 – volume: 34 start-page: 90 year: 2017 end-page: 96 ident: CR33 article-title: Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare publication-title: Sustai Cities Soc doi: 10.1016/j.scs.2017.06.010 – volume: 60 start-page: 1069 issue: 4 year: 2013 end-page: 1079 ident: CR3 article-title: Cross-scale coefficient selection for volumetric medical image fusion publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2211017 – volume: 23 start-page: 1647 issue: 4 year: 2018 end-page: 1660 ident: CR38 article-title: Multimodal medical image fusion based on fuzzy discrimination with structural patch decomposition publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2869096 – volume: 27 start-page: 227 issue: 3 year: 2017 end-page: 237 ident: CR36 article-title: Fusion of MRI and CT images using guided image filter and image statistics publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22228 – ident: CR42 – volume: 9 start-page: 347 issue: 5 year: 2015 end-page: 357 ident: CR26 article-title: Simultaneous image fusion and denoising with adaptive sparse representation publication-title: IET Image Process doi: 10.1049/iet-ipr.2014.0311 – volume: 172 start-page: 1 year: 2018 end-page: 11 ident: CR21 article-title: Structure-aware image fusion publication-title: Optik doi: 10.1016/j.ijleo.2018.06.123 – ident: CR44 – volume: 22 start-page: 105 year: 2015 end-page: 118 ident: CR13 article-title: Quadtree-based multi-focus image fusion using a weighted focus-measure publication-title: Inf Fusion doi: 10.1016/j.inffus.2014.05.003 – volume: 21 start-page: 3669 issue: 3 year: 2020 end-page: 3679 ident: CR32 article-title: Privacy-preserving wandering behavior sensing in dementia patients using modified logistic and dynamic Newton Leipnik maps publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3022564 – volume: 36 start-page: 308 issue: 4 year: 2000 end-page: 309 ident: CR43 article-title: Objective image fusion performance measure publication-title: Electron Lett doi: 10.1049/el:20000267 – volume: 15 start-page: 6783 issue: 12 year: 2015 end-page: 6790 ident: CR14 article-title: Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains publication-title: IEEE Sens J doi: 10.1109/JSEN.2015.2465935 – volume: 55 start-page: 220 year: 2020 end-page: 244 ident: CR6 article-title: Image denoising review: from classical to state-of-the-art approaches publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.09.003 – volume: 9 start-page: 1193 issue: 5 year: 2015 end-page: 1204 ident: CR16 article-title: Image fusion based on pixel significance using cross bilateral filter publication-title: Signal Image Video Process doi: 10.1007/s11760-013-0556-9 – volume: 23 start-page: 1882 issue: 12 year: 2016 end-page: 1886 ident: CR2 article-title: Image fusion with convolutional sparse representation publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2618776 – volume: 76 start-page: 52 year: 2016 end-page: 64 ident: CR19 article-title: Two-scale image fusion of visible and infrared images using saliency detection publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2016.01.009 – volume: 22 start-page: 2864 issue: 7 year: 2013 end-page: 2875 ident: CR17 article-title: Image fusion with guided filtering publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2253483 – ident: CR9 – volume: 6 start-page: 2559 issue: 12 year: 2011 end-page: 2566 ident: CR11 article-title: A multi-focus image fusion method based on Laplacian pyramid publication-title: J Comput doi: 10.4304/jcp.6.12.2559-2566 – volume: 11 start-page: 95 issue: 2 year: 2010 end-page: 113 ident: CR31 article-title: Towards cognitive image fusion publication-title: Inf Fusion doi: 10.1016/j.inffus.2009.06.008 – ident: CR34 – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 21 ident: CR35 article-title: Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease Parkinson’s disease and schizophrenia publication-title: Brain Inform doi: 10.1186/s40708-020-00112-2 – volume: 15 start-page: 1014 issue: 5 year: 2013 end-page: 1024 ident: CR8 article-title: Directive contrast based multimodal medical image fusion in NSCT domain publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2013.2244870 – volume: 9 start-page: 13814 year: 2021 end-page: 13828 ident: CR29 article-title: iWorkSafe: towards healthy workplaces during COVID-19 with an intelligent pHealth App for industrial settings publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050193 – volume: 26 start-page: 485 issue: 3 year: 2019 end-page: 489 ident: CR7 article-title: Medical image fusion via convolutional sparsity based morphological component analysis publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2019.2895749 – volume: 7 start-page: 20811 year: 2017 end-page: 20824 ident: CR40 article-title: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898111 – volume: 29 start-page: 2063 issue: 6 year: 2018 end-page: 2079 ident: CR27 article-title: Applications of deep learning and reinforcement learning to biological data publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2790388 – ident: CR41 – volume: 42 start-page: 158 year: 2018 end-page: 173 ident: CR1 article-title: Deep learning for pixel-level image fusion: recent advances and future prospects publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.10.007 – volume: 5 start-page: 16040 year: 2017 end-page: 16067 ident: CR5 article-title: From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2735865 – ident: CR20 – volume: 46 start-page: 588 year: 2016 end-page: 595 ident: CR25 article-title: Multimodal medical image fusion using PCNN optimized by the QPSO algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.03.028 – volume: 19 start-page: 7107 issue: 16 year: 2019 end-page: 7119 ident: CR37 article-title: MCFNet: multi-layer concatenation fusion network for medical images fusion publication-title: IEEE Sens J doi: 10.1109/JSEN.2019.2913281 – volume: 34 start-page: 90 year: 2017 ident: 9958_CR33 publication-title: Sustai Cities Soc doi: 10.1016/j.scs.2017.06.010 – volume: 11 start-page: 95 issue: 2 year: 2010 ident: 9958_CR31 publication-title: Inf Fusion doi: 10.1016/j.inffus.2009.06.008 – ident: 9958_CR20 doi: 10.1117/1.JEI.26.6.063004 – volume: 9 start-page: 347 issue: 5 year: 2015 ident: 9958_CR26 publication-title: IET Image Process doi: 10.1049/iet-ipr.2014.0311 – volume: 21 start-page: 3669 issue: 3 year: 2020 ident: 9958_CR32 publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3022564 – volume: 172 start-page: 1 year: 2018 ident: 9958_CR21 publication-title: Optik doi: 10.1016/j.ijleo.2018.06.123 – volume: 26 start-page: 485 issue: 3 year: 2019 ident: 9958_CR7 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2019.2895749 – volume: 15 start-page: 1014 issue: 5 year: 2013 ident: 9958_CR8 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2013.2244870 – volume: 76 start-page: 52 year: 2016 ident: 9958_CR19 publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2016.01.009 – ident: 9958_CR41 – start-page: 85 volume-title: International Conference on Brain Informatics year: 2020 ident: 9958_CR30 doi: 10.1007/978-3-030-59277-6_8 – volume: 23 start-page: 1882 issue: 12 year: 2016 ident: 9958_CR2 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2618776 – volume: 18 start-page: 6804 issue: 16 year: 2018 ident: 9958_CR24 publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2822712 – volume: 22 start-page: 2864 issue: 7 year: 2013 ident: 9958_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2253483 – volume: 46 start-page: 588 year: 2016 ident: 9958_CR25 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.03.028 – volume: 10 start-page: 513 issue: 6 year: 2016 ident: 9958_CR15 publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2015.0251 – volume: 27 start-page: 227 issue: 3 year: 2017 ident: 9958_CR36 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22228 – ident: 9958_CR39 – volume: 9 start-page: 13814 year: 2021 ident: 9958_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050193 – volume: 23 start-page: 1647 issue: 4 year: 2018 ident: 9958_CR38 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2869096 – volume: 60 start-page: 1069 issue: 4 year: 2013 ident: 9958_CR3 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2211017 – ident: 9958_CR9 – volume: 23 start-page: 139 issue: 1 year: 2015 ident: 9958_CR12 publication-title: Inf Fusion doi: 10.1016/j.inffus.2014.05.004 – ident: 9958_CR42 doi: 10.1109/CVPR.2016.185 – volume: 36 start-page: 308 issue: 4 year: 2000 ident: 9958_CR43 publication-title: Electron Lett doi: 10.1049/el:20000267 – volume: 6 start-page: 2559 issue: 12 year: 2011 ident: 9958_CR11 publication-title: J Comput doi: 10.4304/jcp.6.12.2559-2566 – volume: 15 start-page: 6783 issue: 12 year: 2015 ident: 9958_CR14 publication-title: IEEE Sens J doi: 10.1109/JSEN.2015.2465935 – volume: 28 start-page: 713 issue: 6–8 year: 2012 ident: 9958_CR22 publication-title: Vis Comput doi: 10.1007/s00371-012-0679-y – volume: 38 start-page: 5576 issue: 12 year: 2019 ident: 9958_CR23 publication-title: Circuits Syst Signal Process doi: 10.1007/s00034-019-01131-z – volume: 19 start-page: 7107 issue: 16 year: 2019 ident: 9958_CR37 publication-title: IEEE Sens J doi: 10.1109/JSEN.2019.2913281 – volume: 55 start-page: 220 year: 2020 ident: 9958_CR6 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.09.003 – volume: 16 start-page: 203 issue: 1 year: 2015 ident: 9958_CR18 publication-title: IEEE Sens J. doi: 10.1109/JSEN.2015.2478655 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 9958_CR35 publication-title: Brain Inform doi: 10.1186/s40708-020-00112-2 – volume: 22 start-page: 105 year: 2015 ident: 9958_CR13 publication-title: Inf Fusion doi: 10.1016/j.inffus.2014.05.003 – volume: 9 start-page: 1193 issue: 5 year: 2015 ident: 9958_CR16 publication-title: Signal Image Video Process doi: 10.1007/s11760-013-0556-9 – ident: 9958_CR44 – volume: 42 start-page: 158 year: 2018 ident: 9958_CR1 publication-title: Inf Fusion doi: 10.1016/j.inffus.2017.10.007 – volume: 67 start-page: 149 issue: 2 year: 2017 ident: 9958_CR10 publication-title: IEEE Trans Comput doi: 10.1109/TC.2017.2731770 – volume: 29 start-page: 2063 issue: 6 year: 2018 ident: 9958_CR27 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2790388 – volume: 7 start-page: 20811 year: 2017 ident: 9958_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898111 – volume: 33 start-page: 219 issue: 2 year: 2007 ident: 9958_CR28 publication-title: Comput Geosci doi: 10.1016/j.cageo.2006.06.008 – ident: 9958_CR34 – volume: 68 start-page: 49 issue: 1 year: 2018 ident: 9958_CR4 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2018.2838778 – volume: 5 start-page: 16040 year: 2017 ident: 9958_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2735865 |
| SSID | ssj0065952 |
| Score | 2.2484477 |
| Snippet | Clinicians often have to switch amongst radiographic scans in order to trace out patterns in various tissue striations. The conglomerated view of structural... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1471 |
| SubjectTerms | Algorithms Artificial Intelligence Computation by Abstract Devices Computational Biology/Bioinformatics Computer Science Computer vision Decomposition Image contrast Image enhancement Image filters Image segmentation Localization Magnetic resonance imaging Medical diagnosis Medical imaging Methods Sensors Striations Tomography Visual perception Wavelet transforms |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5BeeEFNsY0oJvugTdm1MSOmz5WpR0DwQNrJ3iKbMeBCkgRLUjd_vzOjkM1BEg8x7Ec3_nuc-7uO4BdLQryi0IzAg8FEx3FmdJJwlpKOb5z1-PYFQqfnMrDkTg6T85DUdi0znavQ5LeUi-K3Rz6ZS6lgFBNkrL5Mqx4vq0GrHR_XBz3awvsKPJ8lDOVkrnKzVAs8_Is_zukBcp8Fhj1_mawDqN6pVWayfX-w0zvmz_PSBzf-ykfYC0AUOxWGvMRlmy5Aet1cwcMZ30DVp9M4_wT_O2W2PdkE-SjMAR3kETrLMSjxYMqYY-mxO7N5eR-PLu6RYLD-Hs8dVWbVcoQTgr85flqHdcHqjLHoZc7HvhE1imOS-wN_YOTs584eHC_8jZhNOgPe4cstG1ghs7zjLVTbgl3SCM553kR83aam1hbnUR5hwB9IVpaS6EjK6QySrS1TGOtJLetOOd0af4MjXJS2i-AtmgZshK6LaShm6fSzkKZJLKcxkV5tAVRLbvMBE5z11rjJluwMbutzmirM7_V2XwL9p7euasYPd4c3axVIgune5rFnchx-ogOLeB7LeHF49dn237f8B1YjZ2S-NLHJjRIQvYrYaCZ_hZU_h_R-Pxv priority: 102 providerName: Springer Nature |
| Title | An Efficient Medical Assistive Diagnostic Algorithm for Visualisation of Structural and Tissue Details in CT and MRI Fusion |
| URI | https://link.springer.com/article/10.1007/s12559-021-09958-y https://www.proquest.com/docview/2919499491 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AFBBN dateStart: 20090301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1866-9964 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065952 issn: 1866-9956 databaseCode: U2A dateStart: 20090301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t7cteEOOHKGzVPewNLJrYcdOHCYWt3QCtQqNF4ymyHQcmjXRTy6Rq_zx3TrKKSew1ji0ln33-7Lv7DuDAqpL2RWUFkYdSqJGRwtgkEQNjWO-caxxzovDZVJ_O1eeL5GILpm0uDIdVtjYxGOpi4fiO_H08ilhHRY2iD9c3gqtGsXe1LaFhmtIKxWGQGNuGbszKWB3ofhxPv563tpnF84L_M9VacE5nk0ZTJ9MxuxYcskCsKUnF-t-tasM_H7hMw040eQpPGgqJWY35Lmz56hns3Fuy9XO4yyocB20I2lKw8cUgIcEL-tbjcR1fR_0xu_pJX7n69RuJveL3yyUnWdYRPrgo8VuQl2VpDjRVgbMAEx6HuNMlXlZ4NAsNZ-efcPKHb95ewHwynh2diqbKgnC0_FZimEpPNEE7LaUsylgO08LF1tskKkbEv0s1sFYrG3mljTNqaHUaW6OlH8SFpDPuS-hUi8q_AvTlwNGitkOlHR0UjWWD4pLIS3ovKqIeRO0PzV0jQc6VMK7yjXgyg5ATCHkAIV_34O19n-tagOPRt_danPJmMS7zzdTpwbsWu03z_0d7_fhob2An5ukSMhP3oEOI-H2iKCvbh-10ctKHbnby48u438xCejqPs7_G-OVC |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9kAviKcIFJgDnGBF7F1v7EOFQpMooU2ESop6M7v2GioVpygBFPHf-G3MrNeNQKK3nne9h53xPHbm-wbguVUV-UVlBQUPlVCZkcLYJBFdY5jvnGccM1B4OtPjE_XuNDndgt8tFobbKlub6A11uSj4jfx1nEXMo6Ky6M3FN8FTo7i62o7QMGG0QrnvKcYCsOPQrX9SCrfcnwxI3i_ieDScH4xFmDIgClK_leil0pGb1IWWUpZVLHtpWcTW2SQqM4o_K9W1VisbOaVNYVTP6jS2RkvXjUtJOR6dewN2lFQZJX87b4ez98etL2CyPl9vTbUWjCENsJ0GvMfRvOAWCYrSklSs_3aNm3j3nxKt93yj23ArhKzYb3TsDmy5-i7sXlrO9T341a9x6LkoyIVhqP0gSZ4NyA-Hg6afj77H_vlnutXVl69I0TJ-PFsyqLPpKMJFhR88nS1TgaCpS5x7tcCB73Nd4lmNB3O_MD2e4Og7v_Tdh5Nrue8HsF0vavcQ0FXdgoyI7SldUGJqLBuwIomcpH1RGXUgai80LwLlOU_eOM83ZM0shJyEkHsh5OsOvLz85qIh_Lhy914rpzz8_Mt8o6odeNXKbrP8_9MeXX3aM7g5nk-P8qPJ7PAx7MasOh4VuQfbJB33hMKjlX0adBDh03Wr_R9_jx5K |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eQHzxLl6mngffNLg2adY9js3hHdFNfCtJm-pAO3FTGP55z0lbp6KCz01D2y8n-dJzvi-M7RqZ4rooDUfykHJZ14JrEwS8qjX5ndMZxyQUPr9QR115chvcflLxu2r3MiWZaxrIpSkbHjwl6cFY-EZMmFN5ATKcIOSjSTYtySgBR3TXb5RzMZnluXxnqBQnDWchm_m5j69L05hvfkuRupWnvcDmCsoIjRzjRTZhsyU2Xx7HAEV0LrHZj8lstMzeGhkcOnsIfCso0jGAYFBMv1po5SV22CU0Hu76z73h_SMggYWb3oB0lnmRD_RTuHYOs-TOATpLoOOQgpYrPR1AL4Nmx104vzqG9gv9fFth3fZhp3nEi4MWeIwROOS1UFhkCipWQogk9UUtTGLfWBN4SR0peCqrxihpPCuVjrWsGRX6Rithq34icJu7yqayfmbXGNi0GmNcm5pUMe4VtaE5JQ48K7Cdl3jrzCu_cRQXLuR0GMZDNPZPJlwixCVyuESjdbb3cc9T7sHxZ-tKCV1UxOMg8useufDIOj7Afgnn-PLvvW38r_kOm7lstaOz44vTTTbr0-ByusUKm0Kw7BYSmKHZdmP0HY5P5kE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Medical+Assistive+Diagnostic+Algorithm+for+Visualisation+of+Structural+and+Tissue+Details+in+CT+and+MRI+Fusion&rft.jtitle=Cognitive+computation&rft.au=Goyal%2C+Bhawna&rft.au=Dogra%2C+Ayush&rft.au=Khoond%2C+Rahul&rft.au=Al-Turjman%2C+Fadi&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=13&rft.issue=6&rft.spage=1471&rft.epage=1483&rft_id=info:doi/10.1007%2Fs12559-021-09958-y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon |