Chatter detection in milling process based on the combination of wavelet packet transform and PSO-SVM
Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and geometric accuracy of the workpiece. To address this obstacle and improve the quality and efficiency of products, it is significantly essential to d...
Saved in:
| Published in | International journal of advanced manufacturing technology Vol. 120; no. 1-2; pp. 1237 - 1251 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.05.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-3768 1433-3015 |
| DOI | 10.1007/s00170-022-08856-3 |
Cover
| Abstract | Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and geometric accuracy of the workpiece. To address this obstacle and improve the quality and efficiency of products, it is significantly essential to detect chatter during machining. Therefore, a multi-feature recognition system for chatter detection on the basis of the fusion technology of wavelet packet transform (WPT) and particle swarm optimization support vector machine (PSO-SVM) was proposed in this paper. Firstly, the original vibration signals collected from the acceleration sensor were processed through wavelet packet transform (WPT). The noise and the irrelevant information were remarkably decreased. In addition, the wavelet packets containing chatter-emerging information were chosen and reconstructed. The fourteen time–frequency domain characteristics of the reconstructed vibration signal were calculated and chosen as the multi-feature vectors of chatter detection. Finally, to obtain the optimal radial basis function parameter
g
and penalty parameter
C
of the SVM prediction model, the optimization algorithms of
k
-fold cross-validation (
k
-CV), genetic algorithm (GA), and particle swarm optimization (PSO) were employed in optimizing the model parameters of SVM. It was indicated that the PSO-SVM improved obviously the accuracy of chatter recognition than the others. In addition, we applied the optimized SVM prediction model by PSO for detecting chatter state in end milling machining. Chatter recognition results indicated that the model accurately predicted the slight chatter state in advance. |
|---|---|
| AbstractList | Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and geometric accuracy of the workpiece. To address this obstacle and improve the quality and efficiency of products, it is significantly essential to detect chatter during machining. Therefore, a multi-feature recognition system for chatter detection on the basis of the fusion technology of wavelet packet transform (WPT) and particle swarm optimization support vector machine (PSO-SVM) was proposed in this paper. Firstly, the original vibration signals collected from the acceleration sensor were processed through wavelet packet transform (WPT). The noise and the irrelevant information were remarkably decreased. In addition, the wavelet packets containing chatter-emerging information were chosen and reconstructed. The fourteen time–frequency domain characteristics of the reconstructed vibration signal were calculated and chosen as the multi-feature vectors of chatter detection. Finally, to obtain the optimal radial basis function parameter g and penalty parameter C of the SVM prediction model, the optimization algorithms of k-fold cross-validation (k-CV), genetic algorithm (GA), and particle swarm optimization (PSO) were employed in optimizing the model parameters of SVM. It was indicated that the PSO-SVM improved obviously the accuracy of chatter recognition than the others. In addition, we applied the optimized SVM prediction model by PSO for detecting chatter state in end milling machining. Chatter recognition results indicated that the model accurately predicted the slight chatter state in advance. Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and geometric accuracy of the workpiece. To address this obstacle and improve the quality and efficiency of products, it is significantly essential to detect chatter during machining. Therefore, a multi-feature recognition system for chatter detection on the basis of the fusion technology of wavelet packet transform (WPT) and particle swarm optimization support vector machine (PSO-SVM) was proposed in this paper. Firstly, the original vibration signals collected from the acceleration sensor were processed through wavelet packet transform (WPT). The noise and the irrelevant information were remarkably decreased. In addition, the wavelet packets containing chatter-emerging information were chosen and reconstructed. The fourteen time–frequency domain characteristics of the reconstructed vibration signal were calculated and chosen as the multi-feature vectors of chatter detection. Finally, to obtain the optimal radial basis function parameter g and penalty parameter C of the SVM prediction model, the optimization algorithms of k -fold cross-validation ( k -CV), genetic algorithm (GA), and particle swarm optimization (PSO) were employed in optimizing the model parameters of SVM. It was indicated that the PSO-SVM improved obviously the accuracy of chatter recognition than the others. In addition, we applied the optimized SVM prediction model by PSO for detecting chatter state in end milling machining. Chatter recognition results indicated that the model accurately predicted the slight chatter state in advance. |
| Author | Zheng, Qingzhen Chen, Guangsheng Jiao, Anling |
| Author_xml | – sequence: 1 givenname: Qingzhen surname: Zheng fullname: Zheng, Qingzhen organization: School of Mechanical Engineering, University of Shanghai for Science and Technology – sequence: 2 givenname: Guangsheng surname: Chen fullname: Chen, Guangsheng email: cgs-168@163.com organization: School of Mechanical Engineering, University of Shanghai for Science and Technology – sequence: 3 givenname: Anling surname: Jiao fullname: Jiao, Anling organization: School of Mechanical Engineering, University of Shanghai for Science and Technology |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxNrgR-IkS1TxkoqKVGBrOc6kTUmcYrsg_h7TICGx6GoWc47n-k7QyPYWEDpn9JJRml15SllGCeWc0DxPJRFHaMwSIYigLB2hMeUyJyKT-QmaeL-JuGQyHyOYrXUI4HAFAUxoeosbi7umbRu7wlvXG_Ael9pDheMurAGbvisbq_dsX-NP_QEtBLzV5i2O4LT1de86rG2Fn5YLsnx9PEXHtW49nP3OKXq5vXme3ZP54u5hdj0nRrAikCznBUtB6lpWPC04iALqskp5JhNdp2C4EYbxjGpWJFLqirOUMm4qbrIygmKKLoZ3Y_D3HfigNv3O2XhScZkUeZIkPI1UPlDG9d47qJVpwv4_MXzTKkbVT6lqKFXFUtW-VCWiyv-pW9d02n0dlsQg-QjbFbi_VAesb3WLi_Y |
| CitedBy_id | crossref_primary_10_1515_pjbr_2022_0096 crossref_primary_10_3390_su15108298 crossref_primary_10_1007_s00500_022_07526_6 crossref_primary_10_1108_IJSI_09_2024_0161 crossref_primary_10_1016_j_measurement_2023_113899 crossref_primary_10_1007_s00170_025_15072_2 crossref_primary_10_21595_jve_2023_23537 crossref_primary_10_1007_s11837_024_06978_5 crossref_primary_10_1007_s00170_022_10059_9 crossref_primary_10_1007_s12008_023_01716_8 crossref_primary_10_1016_j_jfca_2024_106212 crossref_primary_10_1088_2631_8695_ad6121 crossref_primary_10_1007_s42417_024_01470_5 crossref_primary_10_1016_j_advengsoft_2023_103445 crossref_primary_10_1088_1361_6501_ad1ba4 crossref_primary_10_1038_s41598_024_74889_1 crossref_primary_10_1007_s00170_024_14389_8 crossref_primary_10_3390_pr10122645 crossref_primary_10_1007_s10845_024_02356_9 crossref_primary_10_1016_j_compind_2025_104266 crossref_primary_10_1007_s00170_023_12030_8 crossref_primary_10_1007_s00170_024_14717_y crossref_primary_10_1007_s00170_023_10969_2 crossref_primary_10_1007_s42452_023_05353_4 crossref_primary_10_1007_s11629_022_7685_y crossref_primary_10_1038_s41598_024_75194_7 crossref_primary_10_1016_j_jpowsour_2024_234806 |
| Cites_doi | 10.1109/CECNET.2011.5768795 10.1016/j.asoc.2007.10.007 10.1016/j.ijmachtools.2013.02.007 10.1016/j.measurement.2018.06.028 10.1007/s00170-009-2026-7 10.1007/s00170-020-05611-4 10.1007/s00170-018-3190-4 10.1016/S0890-6955(96)00030-2 10.1016/j.cirp.2010.05.010 10.1016/j.ymssp.2012.09.015 10.1109/HIS.2013.6920452 10.3901/JME.2015.20.001 10.1007/s00170-018-2318-x 10.4028/www.scientific.net/AMR.97-101.3225 10.1007/s11431-013-5360-9 10.1023/A:1012427100071 10.14445/22315381/IJETT-V18P251 10.1007/s00170-017-0183-7 10.1016/S0007-8506(07)60436-3 10.1007/s00170-011-3797-1 10.1016/j.ymssp.2007.07.013 10.1016/j.neucom.2013.11.012 10.1016/j.eswa.2007.08.088 10.1016/j.jsv.2007.11.006 10.1109/TMECH.2016.2547481 10.1006/mssp.2002.1497 10.1023/A:1009715923555 10.1155/2020/7943807 10.1016/j.cirpj.2019.11.003 10.1016/j.ijmachtools.2009.02.003 10.1016/j.jsv.2015.06.011 10.1109/34.192463 10.1016/j.measurement.2015.03.017 10.1016/j.ymssp.2017.11.046 10.1016/j.jmatprotec.2009.11.007 10.1115/1.3670861 10.1016/j.jmatprotec.2008.10.054 10.1016/j.neucom.2012.07.019 10.1007/s00170-017-1544-y 10.1016/j.ymssp.2017.05.006 10.1016/j.ymssp.2021.107671 10.2514/6.2005-1897 10.1007/BF01179227 10.1016/j.ymssp.2016.01.003 10.1016/j.measurement.2018.06.006 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00170-022-08856-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (via ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 1251 |
| ExternalDocumentID | 10_1007_s00170_022_08856_3 |
| GrantInformation_xml | – fundername: National Science and Technology Program during the Twelfth Five-year Plan Period grantid: 2017YFB1104600 funderid: http://dx.doi.org/10.13039/501100013385 |
| GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-782915e6af6d2592e39efbd52764af5ec2c3c1270a19466ad215012cd2c7bfbd3 |
| IEDL.DBID | AGYKE |
| ISSN | 0268-3768 |
| IngestDate | Wed Aug 13 11:21:11 EDT 2025 Wed Oct 01 02:42:25 EDT 2025 Thu Apr 24 22:50:19 EDT 2025 Fri Feb 21 02:46:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Chatter detection PSO-SVM Chatter recognition Multi-feature vectors Wavelet packet transform |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-782915e6af6d2592e39efbd52764af5ec2c3c1270a19466ad215012cd2c7bfbd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2649844425 |
| PQPubID | 2044010 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2649844425 crossref_citationtrail_10_1007_s00170_022_08856_3 crossref_primary_10_1007_s00170_022_08856_3 springer_journals_10_1007_s00170_022_08856_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220500 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Lin, Ying, Chen (CR44) 2008; 35 Chen, Li, Jing (CR21) 2019; 102 CR36 CR35 Pan, Liu, Wang (CR10) 2020; 109 Teti, Jemielniak, O’donnell G (CR19) 2010; 59 CR32 Wang, Bo, Liu (CR42) 2018; 98 CR30 Lei, He, Zi (CR33) 2008; 22 Lei, Lin, He (CR15) 2013; 35 Tangjitsitcharoen (CR8) 2009; 209 Peng, Wang, Liao (CR24) 2015; 354 Vapnik (CR41) 1998 Merritt (CR1) 1965; 87 Kuljanic, Sortino, Totis (CR9) 2008; 312 CR4 Delio (CR11) 1992; 114 Bahirie, Pothar (CR31) 2014; 18 Oleaga, Pardo, Zulaika (CR47) 2018; 128 Burges (CR43) 1998; 2 Long, Xian, Li (CR45) 2014; 133 Chen, Li, Hou (CR22) 2018; 127 Sun, Xiong (CR18) 2016; 21 Huang, Dun (CR46) 2008; 8 Yao, Mei, Chen (CR17) 2010; 210 Plaza, López (CR38) 2018; 98 Liu, Zhu, Ni (CR40) 2018; 105 Mallat (CR39) 1989; 11 Liu, Cao, Chen (CR29) 2013; 99 Ye, Feng, Xu (CR7) 2018; 96 Griffin, Chen (CR6) 2009; 45 Mcy, Fak, Ao (CR23) 2020; 28 CR12 Ji, Wang, Liu (CR14) 2017; 92 CR50 Cao, Lei, He (CR16) 2013; 69 Zatarain, Munoa, Peigné (CR49) 2006; 55 Hsu, Lin (CR26) 2002; 46 Suh, Khurjekar, Yang (CR48) 2002; 16 Zhang, Liang, Zhou (CR25) 2015; 69 Yang, Yu (CR27) 2012; 62 Fu, Zhang, Zhou (CR13) 2016; 75 CR28 Li, Wong, Nee (CR3) 1997; 37 Zhu, San Wong, Hong (CR37) 2009; 49 CR20 Soliman, Ismail (CR5) 1997; 13 Qian, Sun, Xiong (CR2) 2015; 51 Jia, Wu, Hu (CR34) 2013; 56 B Long (8856_CR45) 2014; 133 C Peng (8856_CR24) 2015; 354 Z Liu (8856_CR29) 2013; 99 CJ Burges (8856_CR43) 1998; 2 8856_CR32 8856_CR35 X Li (8856_CR3) 1997; 37 8856_CR30 G Jia (8856_CR34) 2013; 56 SG Mallat (8856_CR39) 1989; 11 C-L Huang (8856_CR46) 2008; 8 I Oleaga (8856_CR47) 2018; 128 R Teti (8856_CR19) 2010; 59 8856_CR36 S Tangjitsitcharoen (8856_CR8) 2009; 209 C Suh (8856_CR48) 2002; 16 Z Yang (8856_CR27) 2012; 62 S Qian (8856_CR2) 2015; 51 K Zhu (8856_CR37) 2009; 49 C-W Hsu (8856_CR26) 2002; 46 S-W Lin (8856_CR44) 2008; 35 M Zatarain (8856_CR49) 2006; 55 JM Griffin (8856_CR6) 2009; 45 8856_CR20 8856_CR4 Y Fu (8856_CR13) 2016; 75 Y Ji (8856_CR14) 2017; 92 8856_CR28 J Ye (8856_CR7) 2018; 96 H Cao (8856_CR16) 2013; 69 Y Chen (8856_CR22) 2018; 127 T Delio (8856_CR11) 1992; 114 Y Sun (8856_CR18) 2016; 21 Y Chen (8856_CR21) 2019; 102 8856_CR12 Z Yao (8856_CR17) 2010; 210 8856_CR50 Y Lei (8856_CR33) 2008; 22 X Zhang (8856_CR25) 2015; 69 H Merritt (8856_CR1) 1965; 87 A Mcy (8856_CR23) 2020; 28 V Vapnik (8856_CR41) 1998 J Pan (8856_CR10) 2020; 109 S Bahirie (8856_CR31) 2014; 18 EG Plaza (8856_CR38) 2018; 98 Y Wang (8856_CR42) 2018; 98 E Soliman (8856_CR5) 1997; 13 Y Lei (8856_CR15) 2013; 35 E Kuljanic (8856_CR9) 2008; 312 C Liu (8856_CR40) 2018; 105 |
| References_xml | – volume: 11 start-page: 674 year: 1989 end-page: 693 ident: CR39 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Trans Pattern Anal Mach Intell – ident: CR4 – volume: 87 start-page: 447 year: 1965 end-page: 454 ident: CR1 article-title: Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research—1 publication-title: J Eng Ind – ident: CR12 – volume: 98 start-page: 634 year: 2018 end-page: 651 ident: CR38 article-title: Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning publication-title: Mech Syst Signal Pr – volume: 28 start-page: 118 year: 2020 end-page: 135 ident: CR23 article-title: On transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decomposition publication-title: CIRP J Manuf Sci Tec – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: CR43 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min Knowl Disc – ident: CR35 – volume: 18 start-page: 248 year: 2014 end-page: 251 ident: CR31 article-title: Optimization of milling conditions by using particle swarm optimization technique: a review publication-title: Int J Eng Trends and Techn – volume: 102 start-page: 1433 year: 2019 end-page: 1442 ident: CR21 article-title: Intelligent chatter detection using image features and support vector machine publication-title: Int J Adv Manuf Technol – volume: 69 start-page: 164 year: 2015 end-page: 179 ident: CR25 article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM publication-title: Measurement – volume: 62 start-page: 107 year: 2012 end-page: 121 ident: CR27 article-title: Grinding wheel wear monitoring based on wavelet analysis and support vector machine publication-title: Int J Adv Manuf Tech – volume: 312 start-page: 672 year: 2008 end-page: 693 ident: CR9 article-title: Multisensor approaches for chatter detection in milling publication-title: J Sound Vib – volume: 46 start-page: 291 year: 2002 end-page: 314 ident: CR26 article-title: A simple decomposition method for support vector machines publication-title: Mach Learn – volume: 35 start-page: 108 year: 2013 end-page: 126 ident: CR15 article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery publication-title: Mech Syst Signal Pr – volume: 49 start-page: 537 year: 2009 end-page: 553 ident: CR37 article-title: Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results publication-title: Int J Mach Tool Manu – volume: 99 start-page: 399 year: 2013 end-page: 410 ident: CR29 article-title: Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings publication-title: Neurocomputing – ident: CR50 – volume: 8 start-page: 1381 year: 2008 end-page: 1391 ident: CR46 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization publication-title: Appl Soft Comput – volume: 13 start-page: 27 year: 1997 end-page: 34 ident: CR5 article-title: Chatter detection by monitoring spindle drive current publication-title: Int J Adv Manuf Tech – ident: CR32 – volume: 51 start-page: 1 year: 2015 end-page: 8 ident: CR2 article-title: Support vector machine based online intelligent chatter detection publication-title: J Mech E – ident: CR36 – volume: 55 start-page: 365 year: 2006 end-page: 368 ident: CR49 article-title: Analysis of the influence of mill helix angle on chatter stability publication-title: CIRP Ann – volume: 127 start-page: 356 year: 2018 end-page: 365 ident: CR22 article-title: An intelligent chatter detection method based on EEMD and feature selection with multi-channel vibration signals publication-title: Measurement – ident: CR30 – volume: 75 start-page: 668 year: 2016 end-page: 688 ident: CR13 article-title: Timely online chatter detection in end milling process publication-title: Mech Syst Signal Pr – volume: 128 start-page: 34 year: 2018 end-page: 44 ident: CR47 article-title: A machine-learning based solution for chatter prediction in heavy-duty milling machines publication-title: Measurement – volume: 209 start-page: 4682 year: 2009 end-page: 4688 ident: CR8 article-title: In-process monitoring and detection of chip formation and chatter for CNC turning publication-title: J Mater Process Technol – volume: 37 start-page: 425 year: 1997 end-page: 435 ident: CR3 article-title: Tool wear and chatter detection using the coherence function of two crossed accelerations publication-title: Int J Mach Tool Manu – volume: 96 start-page: 287 year: 2018 end-page: 297 ident: CR7 article-title: A novel approach for chatter online monitoring using coefficient of variation in machining process publication-title: Int J Adv Manuf Tech – volume: 210 start-page: 713 year: 2010 end-page: 719 ident: CR17 article-title: On-line chatter detection and identification based on wavelet and support vector machine publication-title: J Mater Process Tech – volume: 22 start-page: 419 year: 2008 end-page: 435 ident: CR33 article-title: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique publication-title: Mech Syst Signal Pr – volume: 133 start-page: 237 year: 2014 end-page: 248 ident: CR45 article-title: Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance publication-title: Neurocomputing – volume: 109 start-page: 1137 year: 2020 end-page: 1151 ident: CR10 article-title: Boring chatter identification by multi-sensor feature fusion and manifold learning publication-title: Int J Adv Manuf Tech – volume: 21 start-page: 2004 year: 2016 end-page: 2014 ident: CR18 article-title: An optimal weighted wavelet packet entropy method with application to real-time chatter detection publication-title: IEEE/ASME Trans Mechatron – volume: 35 start-page: 1817 year: 2008 end-page: 1824 ident: CR44 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Syst Appl – volume: 354 start-page: 118 year: 2015 end-page: 131 ident: CR24 article-title: A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine publication-title: J Sound Vib – volume: 56 start-page: 2870 year: 2013 end-page: 2876 ident: CR34 article-title: A synthetic criterion for early recognition of cutting chatter publication-title: Sci China Technol Sc – volume: 69 start-page: 11 year: 2013 end-page: 19 ident: CR16 article-title: Chatter identification in end milling process using wavelet packets and Hilbert-Huang transform publication-title: Int J Mach Tool Manu – volume: 59 start-page: 717 year: 2010 end-page: 739 ident: CR19 article-title: Advanced monitoring of machining operations publication-title: CIRP Ann – volume: 114 start-page: 146 year: 1992 ident: CR11 article-title: Use of audio signals for chatter detection and control publication-title: J Manu Sci Eng – volume: 105 start-page: 169 year: 2018 end-page: 182 ident: CR40 article-title: Chatter detection in milling process based on VMD and energy entropy publication-title: Mech Syst Signal Pr – volume: 16 start-page: 853 year: 2002 end-page: 872 ident: CR48 article-title: Characterisation and identification of dynamic instability in milling operation publication-title: Mech Syst Signal Pr – year: 1998 ident: CR41 publication-title: Statistical learning theory – volume: 98 start-page: 1163 year: 2018 end-page: 1177 ident: CR42 article-title: Mirror milling chatter identification using Q-factor and SVM publication-title: Int J Adv Manuf Tech – volume: 45 start-page: 1152 year: 2009 end-page: 1168 ident: CR6 article-title: Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming publication-title: Int J Adv Manuf Tech – volume: 92 start-page: 1185 year: 2017 end-page: 1200 ident: CR14 article-title: EEMD-based online milling chatter detection by fractal dimension and power spectral entropy publication-title: Int J Adv Manuf Tech – ident: CR28 – ident: CR20 – ident: 8856_CR28 doi: 10.1109/CECNET.2011.5768795 – volume: 8 start-page: 1381 year: 2008 ident: 8856_CR46 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.10.007 – ident: 8856_CR50 – volume: 69 start-page: 11 year: 2013 ident: 8856_CR16 publication-title: Int J Mach Tool Manu doi: 10.1016/j.ijmachtools.2013.02.007 – volume: 128 start-page: 34 year: 2018 ident: 8856_CR47 publication-title: Measurement doi: 10.1016/j.measurement.2018.06.028 – volume: 45 start-page: 1152 year: 2009 ident: 8856_CR6 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-009-2026-7 – volume: 109 start-page: 1137 year: 2020 ident: 8856_CR10 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-020-05611-4 – volume: 102 start-page: 1433 year: 2019 ident: 8856_CR21 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-018-3190-4 – volume: 37 start-page: 425 year: 1997 ident: 8856_CR3 publication-title: Int J Mach Tool Manu doi: 10.1016/S0890-6955(96)00030-2 – volume: 59 start-page: 717 year: 2010 ident: 8856_CR19 publication-title: CIRP Ann doi: 10.1016/j.cirp.2010.05.010 – volume: 35 start-page: 108 year: 2013 ident: 8856_CR15 publication-title: Mech Syst Signal Pr doi: 10.1016/j.ymssp.2012.09.015 – ident: 8856_CR35 – ident: 8856_CR4 doi: 10.1109/HIS.2013.6920452 – volume: 51 start-page: 1 year: 2015 ident: 8856_CR2 publication-title: J Mech E doi: 10.3901/JME.2015.20.001 – volume: 98 start-page: 1163 year: 2018 ident: 8856_CR42 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-018-2318-x – ident: 8856_CR20 doi: 10.4028/www.scientific.net/AMR.97-101.3225 – volume: 56 start-page: 2870 year: 2013 ident: 8856_CR34 publication-title: Sci China Technol Sc doi: 10.1007/s11431-013-5360-9 – volume: 46 start-page: 291 year: 2002 ident: 8856_CR26 publication-title: Mach Learn doi: 10.1023/A:1012427100071 – volume: 18 start-page: 248 year: 2014 ident: 8856_CR31 publication-title: Int J Eng Trends and Techn doi: 10.14445/22315381/IJETT-V18P251 – volume: 92 start-page: 1185 year: 2017 ident: 8856_CR14 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-017-0183-7 – volume: 55 start-page: 365 year: 2006 ident: 8856_CR49 publication-title: CIRP Ann doi: 10.1016/S0007-8506(07)60436-3 – volume: 62 start-page: 107 year: 2012 ident: 8856_CR27 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-011-3797-1 – volume: 22 start-page: 419 year: 2008 ident: 8856_CR33 publication-title: Mech Syst Signal Pr doi: 10.1016/j.ymssp.2007.07.013 – ident: 8856_CR36 – volume: 133 start-page: 237 year: 2014 ident: 8856_CR45 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.11.012 – volume: 35 start-page: 1817 year: 2008 ident: 8856_CR44 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.08.088 – volume: 312 start-page: 672 year: 2008 ident: 8856_CR9 publication-title: J Sound Vib doi: 10.1016/j.jsv.2007.11.006 – volume: 21 start-page: 2004 year: 2016 ident: 8856_CR18 publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2016.2547481 – volume: 16 start-page: 853 year: 2002 ident: 8856_CR48 publication-title: Mech Syst Signal Pr doi: 10.1006/mssp.2002.1497 – volume-title: Statistical learning theory year: 1998 ident: 8856_CR41 – volume: 2 start-page: 121 year: 1998 ident: 8856_CR43 publication-title: Data Min Knowl Disc doi: 10.1023/A:1009715923555 – ident: 8856_CR32 doi: 10.1155/2020/7943807 – volume: 28 start-page: 118 year: 2020 ident: 8856_CR23 publication-title: CIRP J Manuf Sci Tec doi: 10.1016/j.cirpj.2019.11.003 – volume: 49 start-page: 537 year: 2009 ident: 8856_CR37 publication-title: Int J Mach Tool Manu doi: 10.1016/j.ijmachtools.2009.02.003 – volume: 354 start-page: 118 year: 2015 ident: 8856_CR24 publication-title: J Sound Vib doi: 10.1016/j.jsv.2015.06.011 – volume: 11 start-page: 674 year: 1989 ident: 8856_CR39 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.192463 – volume: 69 start-page: 164 year: 2015 ident: 8856_CR25 publication-title: Measurement doi: 10.1016/j.measurement.2015.03.017 – volume: 105 start-page: 169 year: 2018 ident: 8856_CR40 publication-title: Mech Syst Signal Pr doi: 10.1016/j.ymssp.2017.11.046 – volume: 114 start-page: 146 year: 1992 ident: 8856_CR11 publication-title: J Manu Sci Eng – volume: 210 start-page: 713 year: 2010 ident: 8856_CR17 publication-title: J Mater Process Tech doi: 10.1016/j.jmatprotec.2009.11.007 – volume: 87 start-page: 447 year: 1965 ident: 8856_CR1 publication-title: J Eng Ind doi: 10.1115/1.3670861 – volume: 209 start-page: 4682 year: 2009 ident: 8856_CR8 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.10.054 – volume: 99 start-page: 399 year: 2013 ident: 8856_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.019 – volume: 96 start-page: 287 year: 2018 ident: 8856_CR7 publication-title: Int J Adv Manuf Tech doi: 10.1007/s00170-017-1544-y – volume: 98 start-page: 634 year: 2018 ident: 8856_CR38 publication-title: Mech Syst Signal Pr doi: 10.1016/j.ymssp.2017.05.006 – ident: 8856_CR12 doi: 10.1016/j.ymssp.2021.107671 – ident: 8856_CR30 doi: 10.2514/6.2005-1897 – volume: 13 start-page: 27 year: 1997 ident: 8856_CR5 publication-title: Int J Adv Manuf Tech doi: 10.1007/BF01179227 – volume: 75 start-page: 668 year: 2016 ident: 8856_CR13 publication-title: Mech Syst Signal Pr doi: 10.1016/j.ymssp.2016.01.003 – volume: 127 start-page: 356 year: 2018 ident: 8856_CR22 publication-title: Measurement doi: 10.1016/j.measurement.2018.06.006 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.5079687 |
| Snippet | Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1237 |
| SubjectTerms | Acceleration CAE) and Design Chatter Computer-Aided Engineering (CAD End milling Engineering Feature recognition Genetic algorithms Geometric accuracy High speed machining Industrial and Production Engineering Machine tools Mathematical models Mechanical Engineering Media Management Optimization Original Article Parameters Particle swarm optimization Prediction models Radial basis function Signal processing Support vector machines Surface finish Vibration Wavelet transforms Workpieces |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5ze9EH8SdOp-TBNw3Spk2bBxEdG0PYHM7J3kqapChKN7Xiv-9d1m4quKc9pC3j7tL7rpf7PkJOozhUQnLJAF1AgZLGnEmhMuanCv53HFjhPub0B6I3Dm4n4aRGBtUsDB6rrN6J7kVtphq_kV9A4pZxEECIXc3eGKpGYXe1ktBQpbSCuXQUY2uk4SMzVp00bjqD4X0VYZ6MUCVzEYG-RGn6ZYTzIOTzvlfZhxCeG6aDQiXGrRiXYzdu-M5RzzA8DQ87NRSM_05tS7z6p8XqMld3i2yWkJNez2Nkm9RsvkM2fhAR7hLbfnI8m9TYwp3NyulzTlGRCJbpbD5MQDHjGQprABopWA2KaudXOs3ol0IFi4JCCf4CP0WFh6nKDR2O7tjosb9Hxt3OQ7vHSgEGpmFnFgzQg_RCC74TBsok33Jps9SEfiQClYVW-5prbF0rD2nqlQH8AAlPG19HKVzI90k9n-b2gFAc2I2kBriXghNFlnpBKFPOLTfIasabxKtsl-iSnRxFMl6TBa-ys3cC9k6cvRO452xxz2zOzbHy6lblkqTcpx_JMqqa5Lxy03L5_6cdrn7aEVn3XWTgycgWqRfvn_YY0EuRnpQh-Q0Ns-PA priority: 102 providerName: ProQuest |
| Title | Chatter detection in milling process based on the combination of wavelet packet transform and PSO-SVM |
| URI | https://link.springer.com/article/10.1007/s00170-022-08856-3 https://www.proquest.com/docview/2649844425 |
| Volume | 120 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3015 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3015 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ADMLS dateStart: 19850901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3015 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3015 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAG_GccuAGQWrStM1xwAYCBogxBKeqSVOBQAWxTkj8epy03QABEqcekr5iu_lc258BtsNIJIHkkiK6QAdFRZzKIMkoUwk-d-SbwP3M6Z4Hx33_5FbcVkVhgzrbvQ5Jui_1qNjNUb1Qm32OliECyidhyvFtNWCqdXR32q71yJOh7YU50jMmbQP6sR5zX_AyulVFGwLPlcyhOxJZg4uq4pqf7_p1Axuj0m-BVLc_deagX79ZmZbyuDcs1J5-_0b6-N9Xn4fZCrCSVqlhCzBh8kWY-URjuATm4N6xdJLUFC6zKycPObH9jHCYvJSlCMTulynBMYScBO-LLrnTCvKckbfE9r8oCDrwj3goajRNkjwll70L2rvpLkO_074-OKZV-waq0a4LithDesKg5IMUnSxmuDSZSgULAz_JhNFMc20D34lnSe6TFNEHbpc6ZTpUOJGvQCN_zs0qEFvuG0qNYFH56L9myvOFVJwbnlpONL4GXi2TWFfc5rbFxlM8YmV2SxjjEsZuCWM8Z2d0zkvJ7PHn7M1a1HFl5YMYwaSM8IGYWIPdWnLj4d-vtv6_6RswzZzwbZ7lJjSK16HZQixUqCZMRp2jJhrAYfes16wMAY_77fPLKxzts9YH_778Dg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9IOhDvPGhnFqriu048QEhnloKu6ACFbfg2I6oWmUXCEL8OX4bY6-zS5HKjVMOjq3I83keGc83AF-yPNVScUXRu8AApcw5VVJXlJUavzsXToafOd2e7JyJH-fp-QQ8tLUw_lplqxODorZ94_-Rf0fDrXIhEGIbgyvqu0b57GrbQkPH1gp2PVCMxcKOA3d_hyHczfr-Dsp7jbG93dPtDo1dBqhB-DUUTaRKUocfKC3GAsxx5arSpiyTQlepM8xw4_OzOvFc7NqikUStbiwzWYkvclz3DUwJLhQGf1Nbu73jny2iE5X5rpwjxDOFDk42PlFcpHyYZ4t5D5mE4j0MjHJ_9PNY5hOK_QLVDfW371EzpJLyf03p2D9-ltINlnJvBqaji0s2h5ichQlXf4D3T4gPP4Lbvgy8nsS6JtwFq8nvmvgOSDhMBsPiBeItrCU4hk4qQSlhEB9wRPoVudO-Y0ZDMOT_g4-m9b-Jri05PjmiJ7-6n-DsVUTxGSbrfu3mgPgC4UwZdC9LBI2sykSkquTccetZ1Pg8JO3eFSayofumHH-LEY9z2O8C97sI-13gnK-jOYMhF8iLby-1IimiXrgpxiieh2-tmMbD_19t4eXVVuFt57R7WBzu9w4W4R0LKPG3Mpdgsrm-dcvoOTXlSoQngYvXPhGP2ysg3w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB_MTp1Dz4pmE0adrmcUzH_NgczMneQtqkKEo3tOK_7yVttykq-NSHJG243HG_6-V-h9BpGHEVCCYIoAsIUOKIERGolNBYwb4j3wTuZ06vH3RH_vWYjxeq-N1t9yolWdQ0WJamLG9OddqcFb452hdib6KDlfCAsGW04luiBNDoEW1VGuWJ0HbFnGkcFbYV_Vyjmc9Zkecq8w6B54rnIDCJrOlFZZnNz9_86srm-PRbStV5qs4m2ighJm4VOrGFlky2jdYXiAd3kGk_Ol5NrE3u7mJl-CnDtgMRDONpUTyArYfTGMYAJGIQEgTR7hzxJMUfynasyDGE3M_wyCv8i1Wm8WB4R4YPvV006lzet7ukbLhAErDEnABaEB43cFaBhrCIGiZMGmtOw8BXKTcJTVhiU9XKs7T0SoPAwcElmiZhDBPZHqplk8zsI2wLdEORALyLfYg409jzuYgZM0xbFjNWR14lO5mUbOS2KcaLnPEoO3lLkLd08paw5my2Zlpwcfw5u1EdiSzt8k0C_BMRbIjyOjqvjmk-_PvbDv43_QStDi468vaqf3OI1qhTGntJsoFq-eu7OQIgk8fHTlc_Af4A4To |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chatter+detection+in+milling+process+based+on+the+combination+of+wavelet+packet+transform+and+PSO-SVM&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Zheng%2C+Qingzhen&rft.au=Chen%2C+Guangsheng&rft.au=Jiao%2C+Anling&rft.date=2022-05-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=120&rft.issue=1-2&rft.spage=1237&rft.epage=1251&rft_id=info:doi/10.1007%2Fs00170-022-08856-3&rft.externalDocID=10_1007_s00170_022_08856_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |