Chatter detection in milling process based on the combination of wavelet packet transform and PSO-SVM

Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and geometric accuracy of the workpiece. To address this obstacle and improve the quality and efficiency of products, it is significantly essential to d...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 120; no. 1-2; pp. 1237 - 1251
Main Authors Zheng, Qingzhen, Chen, Guangsheng, Jiao, Anling
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-022-08856-3

Cover

Abstract Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and geometric accuracy of the workpiece. To address this obstacle and improve the quality and efficiency of products, it is significantly essential to detect chatter during machining. Therefore, a multi-feature recognition system for chatter detection on the basis of the fusion technology of wavelet packet transform (WPT) and particle swarm optimization support vector machine (PSO-SVM) was proposed in this paper. Firstly, the original vibration signals collected from the acceleration sensor were processed through wavelet packet transform (WPT). The noise and the irrelevant information were remarkably decreased. In addition, the wavelet packets containing chatter-emerging information were chosen and reconstructed. The fourteen time–frequency domain characteristics of the reconstructed vibration signal were calculated and chosen as the multi-feature vectors of chatter detection. Finally, to obtain the optimal radial basis function parameter g and penalty parameter C of the SVM prediction model, the optimization algorithms of k -fold cross-validation ( k -CV), genetic algorithm (GA), and particle swarm optimization (PSO) were employed in optimizing the model parameters of SVM. It was indicated that the PSO-SVM improved obviously the accuracy of chatter recognition than the others. In addition, we applied the optimized SVM prediction model by PSO for detecting chatter state in end milling machining. Chatter recognition results indicated that the model accurately predicted the slight chatter state in advance.
AbstractList Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and geometric accuracy of the workpiece. To address this obstacle and improve the quality and efficiency of products, it is significantly essential to detect chatter during machining. Therefore, a multi-feature recognition system for chatter detection on the basis of the fusion technology of wavelet packet transform (WPT) and particle swarm optimization support vector machine (PSO-SVM) was proposed in this paper. Firstly, the original vibration signals collected from the acceleration sensor were processed through wavelet packet transform (WPT). The noise and the irrelevant information were remarkably decreased. In addition, the wavelet packets containing chatter-emerging information were chosen and reconstructed. The fourteen time–frequency domain characteristics of the reconstructed vibration signal were calculated and chosen as the multi-feature vectors of chatter detection. Finally, to obtain the optimal radial basis function parameter g and penalty parameter C of the SVM prediction model, the optimization algorithms of k-fold cross-validation (k-CV), genetic algorithm (GA), and particle swarm optimization (PSO) were employed in optimizing the model parameters of SVM. It was indicated that the PSO-SVM improved obviously the accuracy of chatter recognition than the others. In addition, we applied the optimized SVM prediction model by PSO for detecting chatter state in end milling machining. Chatter recognition results indicated that the model accurately predicted the slight chatter state in advance.
Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and geometric accuracy of the workpiece. To address this obstacle and improve the quality and efficiency of products, it is significantly essential to detect chatter during machining. Therefore, a multi-feature recognition system for chatter detection on the basis of the fusion technology of wavelet packet transform (WPT) and particle swarm optimization support vector machine (PSO-SVM) was proposed in this paper. Firstly, the original vibration signals collected from the acceleration sensor were processed through wavelet packet transform (WPT). The noise and the irrelevant information were remarkably decreased. In addition, the wavelet packets containing chatter-emerging information were chosen and reconstructed. The fourteen time–frequency domain characteristics of the reconstructed vibration signal were calculated and chosen as the multi-feature vectors of chatter detection. Finally, to obtain the optimal radial basis function parameter g and penalty parameter C of the SVM prediction model, the optimization algorithms of k -fold cross-validation ( k -CV), genetic algorithm (GA), and particle swarm optimization (PSO) were employed in optimizing the model parameters of SVM. It was indicated that the PSO-SVM improved obviously the accuracy of chatter recognition than the others. In addition, we applied the optimized SVM prediction model by PSO for detecting chatter state in end milling machining. Chatter recognition results indicated that the model accurately predicted the slight chatter state in advance.
Author Zheng, Qingzhen
Chen, Guangsheng
Jiao, Anling
Author_xml – sequence: 1
  givenname: Qingzhen
  surname: Zheng
  fullname: Zheng, Qingzhen
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology
– sequence: 2
  givenname: Guangsheng
  surname: Chen
  fullname: Chen, Guangsheng
  email: cgs-168@163.com
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology
– sequence: 3
  givenname: Anling
  surname: Jiao
  fullname: Jiao, Anling
  organization: School of Mechanical Engineering, University of Shanghai for Science and Technology
BookMark eNp9kMtOwzAQRS1UJNrCD7CyxNrgR-IkS1TxkoqKVGBrOc6kTUmcYrsg_h7TICGx6GoWc47n-k7QyPYWEDpn9JJRml15SllGCeWc0DxPJRFHaMwSIYigLB2hMeUyJyKT-QmaeL-JuGQyHyOYrXUI4HAFAUxoeosbi7umbRu7wlvXG_Ael9pDheMurAGbvisbq_dsX-NP_QEtBLzV5i2O4LT1de86rG2Fn5YLsnx9PEXHtW49nP3OKXq5vXme3ZP54u5hdj0nRrAikCznBUtB6lpWPC04iALqskp5JhNdp2C4EYbxjGpWJFLqirOUMm4qbrIygmKKLoZ3Y_D3HfigNv3O2XhScZkUeZIkPI1UPlDG9d47qJVpwv4_MXzTKkbVT6lqKFXFUtW-VCWiyv-pW9d02n0dlsQg-QjbFbi_VAesb3WLi_Y
CitedBy_id crossref_primary_10_1515_pjbr_2022_0096
crossref_primary_10_3390_su15108298
crossref_primary_10_1007_s00500_022_07526_6
crossref_primary_10_1108_IJSI_09_2024_0161
crossref_primary_10_1016_j_measurement_2023_113899
crossref_primary_10_1007_s00170_025_15072_2
crossref_primary_10_21595_jve_2023_23537
crossref_primary_10_1007_s11837_024_06978_5
crossref_primary_10_1007_s00170_022_10059_9
crossref_primary_10_1007_s12008_023_01716_8
crossref_primary_10_1016_j_jfca_2024_106212
crossref_primary_10_1088_2631_8695_ad6121
crossref_primary_10_1007_s42417_024_01470_5
crossref_primary_10_1016_j_advengsoft_2023_103445
crossref_primary_10_1088_1361_6501_ad1ba4
crossref_primary_10_1038_s41598_024_74889_1
crossref_primary_10_1007_s00170_024_14389_8
crossref_primary_10_3390_pr10122645
crossref_primary_10_1007_s10845_024_02356_9
crossref_primary_10_1016_j_compind_2025_104266
crossref_primary_10_1007_s00170_023_12030_8
crossref_primary_10_1007_s00170_024_14717_y
crossref_primary_10_1007_s00170_023_10969_2
crossref_primary_10_1007_s42452_023_05353_4
crossref_primary_10_1007_s11629_022_7685_y
crossref_primary_10_1038_s41598_024_75194_7
crossref_primary_10_1016_j_jpowsour_2024_234806
Cites_doi 10.1109/CECNET.2011.5768795
10.1016/j.asoc.2007.10.007
10.1016/j.ijmachtools.2013.02.007
10.1016/j.measurement.2018.06.028
10.1007/s00170-009-2026-7
10.1007/s00170-020-05611-4
10.1007/s00170-018-3190-4
10.1016/S0890-6955(96)00030-2
10.1016/j.cirp.2010.05.010
10.1016/j.ymssp.2012.09.015
10.1109/HIS.2013.6920452
10.3901/JME.2015.20.001
10.1007/s00170-018-2318-x
10.4028/www.scientific.net/AMR.97-101.3225
10.1007/s11431-013-5360-9
10.1023/A:1012427100071
10.14445/22315381/IJETT-V18P251
10.1007/s00170-017-0183-7
10.1016/S0007-8506(07)60436-3
10.1007/s00170-011-3797-1
10.1016/j.ymssp.2007.07.013
10.1016/j.neucom.2013.11.012
10.1016/j.eswa.2007.08.088
10.1016/j.jsv.2007.11.006
10.1109/TMECH.2016.2547481
10.1006/mssp.2002.1497
10.1023/A:1009715923555
10.1155/2020/7943807
10.1016/j.cirpj.2019.11.003
10.1016/j.ijmachtools.2009.02.003
10.1016/j.jsv.2015.06.011
10.1109/34.192463
10.1016/j.measurement.2015.03.017
10.1016/j.ymssp.2017.11.046
10.1016/j.jmatprotec.2009.11.007
10.1115/1.3670861
10.1016/j.jmatprotec.2008.10.054
10.1016/j.neucom.2012.07.019
10.1007/s00170-017-1544-y
10.1016/j.ymssp.2017.05.006
10.1016/j.ymssp.2021.107671
10.2514/6.2005-1897
10.1007/BF01179227
10.1016/j.ymssp.2016.01.003
10.1016/j.measurement.2018.06.006
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-022-08856-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (via ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1251
ExternalDocumentID 10_1007_s00170_022_08856_3
GrantInformation_xml – fundername: National Science and Technology Program during the Twelfth Five-year Plan Period
  grantid: 2017YFB1104600
  funderid: http://dx.doi.org/10.13039/501100013385
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-782915e6af6d2592e39efbd52764af5ec2c3c1270a19466ad215012cd2c7bfbd3
IEDL.DBID AGYKE
ISSN 0268-3768
IngestDate Wed Aug 13 11:21:11 EDT 2025
Wed Oct 01 02:42:25 EDT 2025
Thu Apr 24 22:50:19 EDT 2025
Fri Feb 21 02:46:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Chatter detection
PSO-SVM
Chatter recognition
Multi-feature vectors
Wavelet packet transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-782915e6af6d2592e39efbd52764af5ec2c3c1270a19466ad215012cd2c7bfbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2649844425
PQPubID 2044010
PageCount 15
ParticipantIDs proquest_journals_2649844425
crossref_citationtrail_10_1007_s00170_022_08856_3
crossref_primary_10_1007_s00170_022_08856_3
springer_journals_10_1007_s00170_022_08856_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Lin, Ying, Chen (CR44) 2008; 35
Chen, Li, Jing (CR21) 2019; 102
CR36
CR35
Pan, Liu, Wang (CR10) 2020; 109
Teti, Jemielniak, O’donnell G (CR19) 2010; 59
CR32
Wang, Bo, Liu (CR42) 2018; 98
CR30
Lei, He, Zi (CR33) 2008; 22
Lei, Lin, He (CR15) 2013; 35
Tangjitsitcharoen (CR8) 2009; 209
Peng, Wang, Liao (CR24) 2015; 354
Vapnik (CR41) 1998
Merritt (CR1) 1965; 87
Kuljanic, Sortino, Totis (CR9) 2008; 312
CR4
Delio (CR11) 1992; 114
Bahirie, Pothar (CR31) 2014; 18
Oleaga, Pardo, Zulaika (CR47) 2018; 128
Burges (CR43) 1998; 2
Long, Xian, Li (CR45) 2014; 133
Chen, Li, Hou (CR22) 2018; 127
Sun, Xiong (CR18) 2016; 21
Huang, Dun (CR46) 2008; 8
Yao, Mei, Chen (CR17) 2010; 210
Plaza, López (CR38) 2018; 98
Liu, Zhu, Ni (CR40) 2018; 105
Mallat (CR39) 1989; 11
Liu, Cao, Chen (CR29) 2013; 99
Ye, Feng, Xu (CR7) 2018; 96
Griffin, Chen (CR6) 2009; 45
Mcy, Fak, Ao (CR23) 2020; 28
CR12
Ji, Wang, Liu (CR14) 2017; 92
CR50
Cao, Lei, He (CR16) 2013; 69
Zatarain, Munoa, Peigné (CR49) 2006; 55
Hsu, Lin (CR26) 2002; 46
Suh, Khurjekar, Yang (CR48) 2002; 16
Zhang, Liang, Zhou (CR25) 2015; 69
Yang, Yu (CR27) 2012; 62
Fu, Zhang, Zhou (CR13) 2016; 75
CR28
Li, Wong, Nee (CR3) 1997; 37
Zhu, San Wong, Hong (CR37) 2009; 49
CR20
Soliman, Ismail (CR5) 1997; 13
Qian, Sun, Xiong (CR2) 2015; 51
Jia, Wu, Hu (CR34) 2013; 56
B Long (8856_CR45) 2014; 133
C Peng (8856_CR24) 2015; 354
Z Liu (8856_CR29) 2013; 99
CJ Burges (8856_CR43) 1998; 2
8856_CR32
8856_CR35
X Li (8856_CR3) 1997; 37
8856_CR30
G Jia (8856_CR34) 2013; 56
SG Mallat (8856_CR39) 1989; 11
C-L Huang (8856_CR46) 2008; 8
I Oleaga (8856_CR47) 2018; 128
R Teti (8856_CR19) 2010; 59
8856_CR36
S Tangjitsitcharoen (8856_CR8) 2009; 209
C Suh (8856_CR48) 2002; 16
Z Yang (8856_CR27) 2012; 62
S Qian (8856_CR2) 2015; 51
K Zhu (8856_CR37) 2009; 49
C-W Hsu (8856_CR26) 2002; 46
S-W Lin (8856_CR44) 2008; 35
M Zatarain (8856_CR49) 2006; 55
JM Griffin (8856_CR6) 2009; 45
8856_CR20
8856_CR4
Y Fu (8856_CR13) 2016; 75
Y Ji (8856_CR14) 2017; 92
8856_CR28
J Ye (8856_CR7) 2018; 96
H Cao (8856_CR16) 2013; 69
Y Chen (8856_CR22) 2018; 127
T Delio (8856_CR11) 1992; 114
Y Sun (8856_CR18) 2016; 21
Y Chen (8856_CR21) 2019; 102
8856_CR12
Z Yao (8856_CR17) 2010; 210
8856_CR50
Y Lei (8856_CR33) 2008; 22
X Zhang (8856_CR25) 2015; 69
H Merritt (8856_CR1) 1965; 87
A Mcy (8856_CR23) 2020; 28
V Vapnik (8856_CR41) 1998
J Pan (8856_CR10) 2020; 109
S Bahirie (8856_CR31) 2014; 18
EG Plaza (8856_CR38) 2018; 98
Y Wang (8856_CR42) 2018; 98
E Soliman (8856_CR5) 1997; 13
Y Lei (8856_CR15) 2013; 35
E Kuljanic (8856_CR9) 2008; 312
C Liu (8856_CR40) 2018; 105
References_xml – volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: CR39
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: CR4
– volume: 87
  start-page: 447
  year: 1965
  end-page: 454
  ident: CR1
  article-title: Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research—1
  publication-title: J Eng Ind
– ident: CR12
– volume: 98
  start-page: 634
  year: 2018
  end-page: 651
  ident: CR38
  article-title: Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning
  publication-title: Mech Syst Signal Pr
– volume: 28
  start-page: 118
  year: 2020
  end-page: 135
  ident: CR23
  article-title: On transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decomposition
  publication-title: CIRP J Manuf Sci Tec
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: CR43
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Disc
– ident: CR35
– volume: 18
  start-page: 248
  year: 2014
  end-page: 251
  ident: CR31
  article-title: Optimization of milling conditions by using particle swarm optimization technique: a review
  publication-title: Int J Eng Trends and Techn
– volume: 102
  start-page: 1433
  year: 2019
  end-page: 1442
  ident: CR21
  article-title: Intelligent chatter detection using image features and support vector machine
  publication-title: Int J Adv Manuf Technol
– volume: 69
  start-page: 164
  year: 2015
  end-page: 179
  ident: CR25
  article-title: A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
  publication-title: Measurement
– volume: 62
  start-page: 107
  year: 2012
  end-page: 121
  ident: CR27
  article-title: Grinding wheel wear monitoring based on wavelet analysis and support vector machine
  publication-title: Int J Adv Manuf Tech
– volume: 312
  start-page: 672
  year: 2008
  end-page: 693
  ident: CR9
  article-title: Multisensor approaches for chatter detection in milling
  publication-title: J Sound Vib
– volume: 46
  start-page: 291
  year: 2002
  end-page: 314
  ident: CR26
  article-title: A simple decomposition method for support vector machines
  publication-title: Mach Learn
– volume: 35
  start-page: 108
  year: 2013
  end-page: 126
  ident: CR15
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech Syst Signal Pr
– volume: 49
  start-page: 537
  year: 2009
  end-page: 553
  ident: CR37
  article-title: Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results
  publication-title: Int J Mach Tool Manu
– volume: 99
  start-page: 399
  year: 2013
  end-page: 410
  ident: CR29
  article-title: Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings
  publication-title: Neurocomputing
– ident: CR50
– volume: 8
  start-page: 1381
  year: 2008
  end-page: 1391
  ident: CR46
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization
  publication-title: Appl Soft Comput
– volume: 13
  start-page: 27
  year: 1997
  end-page: 34
  ident: CR5
  article-title: Chatter detection by monitoring spindle drive current
  publication-title: Int J Adv Manuf Tech
– ident: CR32
– volume: 51
  start-page: 1
  year: 2015
  end-page: 8
  ident: CR2
  article-title: Support vector machine based online intelligent chatter detection
  publication-title: J Mech E
– ident: CR36
– volume: 55
  start-page: 365
  year: 2006
  end-page: 368
  ident: CR49
  article-title: Analysis of the influence of mill helix angle on chatter stability
  publication-title: CIRP Ann
– volume: 127
  start-page: 356
  year: 2018
  end-page: 365
  ident: CR22
  article-title: An intelligent chatter detection method based on EEMD and feature selection with multi-channel vibration signals
  publication-title: Measurement
– ident: CR30
– volume: 75
  start-page: 668
  year: 2016
  end-page: 688
  ident: CR13
  article-title: Timely online chatter detection in end milling process
  publication-title: Mech Syst Signal Pr
– volume: 128
  start-page: 34
  year: 2018
  end-page: 44
  ident: CR47
  article-title: A machine-learning based solution for chatter prediction in heavy-duty milling machines
  publication-title: Measurement
– volume: 209
  start-page: 4682
  year: 2009
  end-page: 4688
  ident: CR8
  article-title: In-process monitoring and detection of chip formation and chatter for CNC turning
  publication-title: J Mater Process Technol
– volume: 37
  start-page: 425
  year: 1997
  end-page: 435
  ident: CR3
  article-title: Tool wear and chatter detection using the coherence function of two crossed accelerations
  publication-title: Int J Mach Tool Manu
– volume: 96
  start-page: 287
  year: 2018
  end-page: 297
  ident: CR7
  article-title: A novel approach for chatter online monitoring using coefficient of variation in machining process
  publication-title: Int J Adv Manuf Tech
– volume: 210
  start-page: 713
  year: 2010
  end-page: 719
  ident: CR17
  article-title: On-line chatter detection and identification based on wavelet and support vector machine
  publication-title: J Mater Process Tech
– volume: 22
  start-page: 419
  year: 2008
  end-page: 435
  ident: CR33
  article-title: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
  publication-title: Mech Syst Signal Pr
– volume: 133
  start-page: 237
  year: 2014
  end-page: 248
  ident: CR45
  article-title: Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance
  publication-title: Neurocomputing
– volume: 109
  start-page: 1137
  year: 2020
  end-page: 1151
  ident: CR10
  article-title: Boring chatter identification by multi-sensor feature fusion and manifold learning
  publication-title: Int J Adv Manuf Tech
– volume: 21
  start-page: 2004
  year: 2016
  end-page: 2014
  ident: CR18
  article-title: An optimal weighted wavelet packet entropy method with application to real-time chatter detection
  publication-title: IEEE/ASME Trans Mechatron
– volume: 35
  start-page: 1817
  year: 2008
  end-page: 1824
  ident: CR44
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Syst Appl
– volume: 354
  start-page: 118
  year: 2015
  end-page: 131
  ident: CR24
  article-title: A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine
  publication-title: J Sound Vib
– volume: 56
  start-page: 2870
  year: 2013
  end-page: 2876
  ident: CR34
  article-title: A synthetic criterion for early recognition of cutting chatter
  publication-title: Sci China Technol Sc
– volume: 69
  start-page: 11
  year: 2013
  end-page: 19
  ident: CR16
  article-title: Chatter identification in end milling process using wavelet packets and Hilbert-Huang transform
  publication-title: Int J Mach Tool Manu
– volume: 59
  start-page: 717
  year: 2010
  end-page: 739
  ident: CR19
  article-title: Advanced monitoring of machining operations
  publication-title: CIRP Ann
– volume: 114
  start-page: 146
  year: 1992
  ident: CR11
  article-title: Use of audio signals for chatter detection and control
  publication-title: J Manu Sci Eng
– volume: 105
  start-page: 169
  year: 2018
  end-page: 182
  ident: CR40
  article-title: Chatter detection in milling process based on VMD and energy entropy
  publication-title: Mech Syst Signal Pr
– volume: 16
  start-page: 853
  year: 2002
  end-page: 872
  ident: CR48
  article-title: Characterisation and identification of dynamic instability in milling operation
  publication-title: Mech Syst Signal Pr
– year: 1998
  ident: CR41
  publication-title: Statistical learning theory
– volume: 98
  start-page: 1163
  year: 2018
  end-page: 1177
  ident: CR42
  article-title: Mirror milling chatter identification using Q-factor and SVM
  publication-title: Int J Adv Manuf Tech
– volume: 45
  start-page: 1152
  year: 2009
  end-page: 1168
  ident: CR6
  article-title: Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming
  publication-title: Int J Adv Manuf Tech
– volume: 92
  start-page: 1185
  year: 2017
  end-page: 1200
  ident: CR14
  article-title: EEMD-based online milling chatter detection by fractal dimension and power spectral entropy
  publication-title: Int J Adv Manuf Tech
– ident: CR28
– ident: CR20
– ident: 8856_CR28
  doi: 10.1109/CECNET.2011.5768795
– volume: 8
  start-page: 1381
  year: 2008
  ident: 8856_CR46
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.10.007
– ident: 8856_CR50
– volume: 69
  start-page: 11
  year: 2013
  ident: 8856_CR16
  publication-title: Int J Mach Tool Manu
  doi: 10.1016/j.ijmachtools.2013.02.007
– volume: 128
  start-page: 34
  year: 2018
  ident: 8856_CR47
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.06.028
– volume: 45
  start-page: 1152
  year: 2009
  ident: 8856_CR6
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-009-2026-7
– volume: 109
  start-page: 1137
  year: 2020
  ident: 8856_CR10
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-020-05611-4
– volume: 102
  start-page: 1433
  year: 2019
  ident: 8856_CR21
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-3190-4
– volume: 37
  start-page: 425
  year: 1997
  ident: 8856_CR3
  publication-title: Int J Mach Tool Manu
  doi: 10.1016/S0890-6955(96)00030-2
– volume: 59
  start-page: 717
  year: 2010
  ident: 8856_CR19
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2010.05.010
– volume: 35
  start-page: 108
  year: 2013
  ident: 8856_CR15
  publication-title: Mech Syst Signal Pr
  doi: 10.1016/j.ymssp.2012.09.015
– ident: 8856_CR35
– ident: 8856_CR4
  doi: 10.1109/HIS.2013.6920452
– volume: 51
  start-page: 1
  year: 2015
  ident: 8856_CR2
  publication-title: J Mech E
  doi: 10.3901/JME.2015.20.001
– volume: 98
  start-page: 1163
  year: 2018
  ident: 8856_CR42
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-018-2318-x
– ident: 8856_CR20
  doi: 10.4028/www.scientific.net/AMR.97-101.3225
– volume: 56
  start-page: 2870
  year: 2013
  ident: 8856_CR34
  publication-title: Sci China Technol Sc
  doi: 10.1007/s11431-013-5360-9
– volume: 46
  start-page: 291
  year: 2002
  ident: 8856_CR26
  publication-title: Mach Learn
  doi: 10.1023/A:1012427100071
– volume: 18
  start-page: 248
  year: 2014
  ident: 8856_CR31
  publication-title: Int J Eng Trends and Techn
  doi: 10.14445/22315381/IJETT-V18P251
– volume: 92
  start-page: 1185
  year: 2017
  ident: 8856_CR14
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-017-0183-7
– volume: 55
  start-page: 365
  year: 2006
  ident: 8856_CR49
  publication-title: CIRP Ann
  doi: 10.1016/S0007-8506(07)60436-3
– volume: 62
  start-page: 107
  year: 2012
  ident: 8856_CR27
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-011-3797-1
– volume: 22
  start-page: 419
  year: 2008
  ident: 8856_CR33
  publication-title: Mech Syst Signal Pr
  doi: 10.1016/j.ymssp.2007.07.013
– ident: 8856_CR36
– volume: 133
  start-page: 237
  year: 2014
  ident: 8856_CR45
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.11.012
– volume: 35
  start-page: 1817
  year: 2008
  ident: 8856_CR44
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.08.088
– volume: 312
  start-page: 672
  year: 2008
  ident: 8856_CR9
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2007.11.006
– volume: 21
  start-page: 2004
  year: 2016
  ident: 8856_CR18
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2016.2547481
– volume: 16
  start-page: 853
  year: 2002
  ident: 8856_CR48
  publication-title: Mech Syst Signal Pr
  doi: 10.1006/mssp.2002.1497
– volume-title: Statistical learning theory
  year: 1998
  ident: 8856_CR41
– volume: 2
  start-page: 121
  year: 1998
  ident: 8856_CR43
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009715923555
– ident: 8856_CR32
  doi: 10.1155/2020/7943807
– volume: 28
  start-page: 118
  year: 2020
  ident: 8856_CR23
  publication-title: CIRP J Manuf Sci Tec
  doi: 10.1016/j.cirpj.2019.11.003
– volume: 49
  start-page: 537
  year: 2009
  ident: 8856_CR37
  publication-title: Int J Mach Tool Manu
  doi: 10.1016/j.ijmachtools.2009.02.003
– volume: 354
  start-page: 118
  year: 2015
  ident: 8856_CR24
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2015.06.011
– volume: 11
  start-page: 674
  year: 1989
  ident: 8856_CR39
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.192463
– volume: 69
  start-page: 164
  year: 2015
  ident: 8856_CR25
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.017
– volume: 105
  start-page: 169
  year: 2018
  ident: 8856_CR40
  publication-title: Mech Syst Signal Pr
  doi: 10.1016/j.ymssp.2017.11.046
– volume: 114
  start-page: 146
  year: 1992
  ident: 8856_CR11
  publication-title: J Manu Sci Eng
– volume: 210
  start-page: 713
  year: 2010
  ident: 8856_CR17
  publication-title: J Mater Process Tech
  doi: 10.1016/j.jmatprotec.2009.11.007
– volume: 87
  start-page: 447
  year: 1965
  ident: 8856_CR1
  publication-title: J Eng Ind
  doi: 10.1115/1.3670861
– volume: 209
  start-page: 4682
  year: 2009
  ident: 8856_CR8
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.10.054
– volume: 99
  start-page: 399
  year: 2013
  ident: 8856_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.019
– volume: 96
  start-page: 287
  year: 2018
  ident: 8856_CR7
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/s00170-017-1544-y
– volume: 98
  start-page: 634
  year: 2018
  ident: 8856_CR38
  publication-title: Mech Syst Signal Pr
  doi: 10.1016/j.ymssp.2017.05.006
– ident: 8856_CR12
  doi: 10.1016/j.ymssp.2021.107671
– ident: 8856_CR30
  doi: 10.2514/6.2005-1897
– volume: 13
  start-page: 27
  year: 1997
  ident: 8856_CR5
  publication-title: Int J Adv Manuf Tech
  doi: 10.1007/BF01179227
– volume: 75
  start-page: 668
  year: 2016
  ident: 8856_CR13
  publication-title: Mech Syst Signal Pr
  doi: 10.1016/j.ymssp.2016.01.003
– volume: 127
  start-page: 356
  year: 2018
  ident: 8856_CR22
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.06.006
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.5079687
Snippet Chatter is one of the biggest unfavorable factors during the high speed machining process of a machine tool. It severely affects the surface finish and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1237
SubjectTerms Acceleration
CAE) and Design
Chatter
Computer-Aided Engineering (CAD
End milling
Engineering
Feature recognition
Genetic algorithms
Geometric accuracy
High speed machining
Industrial and Production Engineering
Machine tools
Mathematical models
Mechanical Engineering
Media Management
Optimization
Original Article
Parameters
Particle swarm optimization
Prediction models
Radial basis function
Signal processing
Support vector machines
Surface finish
Vibration
Wavelet transforms
Workpieces
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5ze9EH8SdOp-TBNw3Spk2bBxEdG0PYHM7J3kqapChKN7Xiv-9d1m4quKc9pC3j7tL7rpf7PkJOozhUQnLJAF1AgZLGnEmhMuanCv53HFjhPub0B6I3Dm4n4aRGBtUsDB6rrN6J7kVtphq_kV9A4pZxEECIXc3eGKpGYXe1ktBQpbSCuXQUY2uk4SMzVp00bjqD4X0VYZ6MUCVzEYG-RGn6ZYTzIOTzvlfZhxCeG6aDQiXGrRiXYzdu-M5RzzA8DQ87NRSM_05tS7z6p8XqMld3i2yWkJNez2Nkm9RsvkM2fhAR7hLbfnI8m9TYwp3NyulzTlGRCJbpbD5MQDHjGQprABopWA2KaudXOs3ol0IFi4JCCf4CP0WFh6nKDR2O7tjosb9Hxt3OQ7vHSgEGpmFnFgzQg_RCC74TBsok33Jps9SEfiQClYVW-5prbF0rD2nqlQH8AAlPG19HKVzI90k9n-b2gFAc2I2kBriXghNFlnpBKFPOLTfIasabxKtsl-iSnRxFMl6TBa-ys3cC9k6cvRO452xxz2zOzbHy6lblkqTcpx_JMqqa5Lxy03L5_6cdrn7aEVn3XWTgycgWqRfvn_YY0EuRnpQh-Q0Ns-PA
  priority: 102
  providerName: ProQuest
Title Chatter detection in milling process based on the combination of wavelet packet transform and PSO-SVM
URI https://link.springer.com/article/10.1007/s00170-022-08856-3
https://www.proquest.com/docview/2649844425
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ADMLS
  dateStart: 19850901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAG_GccuAGQWrStM1xwAYCBogxBKeqSVOBQAWxTkj8epy03QABEqcekr5iu_lc258BtsNIJIHkkiK6QAdFRZzKIMkoUwk-d-SbwP3M6Z4Hx33_5FbcVkVhgzrbvQ5Jui_1qNjNUb1Qm32OliECyidhyvFtNWCqdXR32q71yJOh7YU50jMmbQP6sR5zX_AyulVFGwLPlcyhOxJZg4uq4pqf7_p1Axuj0m-BVLc_deagX79ZmZbyuDcs1J5-_0b6-N9Xn4fZCrCSVqlhCzBh8kWY-URjuATm4N6xdJLUFC6zKycPObH9jHCYvJSlCMTulynBMYScBO-LLrnTCvKckbfE9r8oCDrwj3goajRNkjwll70L2rvpLkO_074-OKZV-waq0a4LithDesKg5IMUnSxmuDSZSgULAz_JhNFMc20D34lnSe6TFNEHbpc6ZTpUOJGvQCN_zs0qEFvuG0qNYFH56L9myvOFVJwbnlpONL4GXi2TWFfc5rbFxlM8YmV2SxjjEsZuCWM8Z2d0zkvJ7PHn7M1a1HFl5YMYwaSM8IGYWIPdWnLj4d-vtv6_6RswzZzwbZ7lJjSK16HZQixUqCZMRp2jJhrAYfes16wMAY_77fPLKxzts9YH_778Dg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9IOhDvPGhnFqriu048QEhnloKu6ACFbfg2I6oWmUXCEL8OX4bY6-zS5HKjVMOjq3I83keGc83AF-yPNVScUXRu8AApcw5VVJXlJUavzsXToafOd2e7JyJH-fp-QQ8tLUw_lplqxODorZ94_-Rf0fDrXIhEGIbgyvqu0b57GrbQkPH1gp2PVCMxcKOA3d_hyHczfr-Dsp7jbG93dPtDo1dBqhB-DUUTaRKUocfKC3GAsxx5arSpiyTQlepM8xw4_OzOvFc7NqikUStbiwzWYkvclz3DUwJLhQGf1Nbu73jny2iE5X5rpwjxDOFDk42PlFcpHyYZ4t5D5mE4j0MjHJ_9PNY5hOK_QLVDfW371EzpJLyf03p2D9-ltINlnJvBqaji0s2h5ichQlXf4D3T4gPP4Lbvgy8nsS6JtwFq8nvmvgOSDhMBsPiBeItrCU4hk4qQSlhEB9wRPoVudO-Y0ZDMOT_g4-m9b-Jri05PjmiJ7-6n-DsVUTxGSbrfu3mgPgC4UwZdC9LBI2sykSkquTccetZ1Pg8JO3eFSayofumHH-LEY9z2O8C97sI-13gnK-jOYMhF8iLby-1IimiXrgpxiieh2-tmMbD_19t4eXVVuFt57R7WBzu9w4W4R0LKPG3Mpdgsrm-dcvoOTXlSoQngYvXPhGP2ysg3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB_MTp1Dz4pmE0adrmcUzH_NgczMneQtqkKEo3tOK_7yVttykq-NSHJG243HG_6-V-h9BpGHEVCCYIoAsIUOKIERGolNBYwb4j3wTuZ06vH3RH_vWYjxeq-N1t9yolWdQ0WJamLG9OddqcFb452hdib6KDlfCAsGW04luiBNDoEW1VGuWJ0HbFnGkcFbYV_Vyjmc9Zkecq8w6B54rnIDCJrOlFZZnNz9_86srm-PRbStV5qs4m2ighJm4VOrGFlky2jdYXiAd3kGk_Ol5NrE3u7mJl-CnDtgMRDONpUTyArYfTGMYAJGIQEgTR7hzxJMUfynasyDGE3M_wyCv8i1Wm8WB4R4YPvV006lzet7ukbLhAErDEnABaEB43cFaBhrCIGiZMGmtOw8BXKTcJTVhiU9XKs7T0SoPAwcElmiZhDBPZHqplk8zsI2wLdEORALyLfYg409jzuYgZM0xbFjNWR14lO5mUbOS2KcaLnPEoO3lLkLd08paw5my2Zlpwcfw5u1EdiSzt8k0C_BMRbIjyOjqvjmk-_PvbDv43_QStDi468vaqf3OI1qhTGntJsoFq-eu7OQIgk8fHTlc_Af4A4To
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chatter+detection+in+milling+process+based+on+the+combination+of+wavelet+packet+transform+and+PSO-SVM&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Zheng%2C+Qingzhen&rft.au=Chen%2C+Guangsheng&rft.au=Jiao%2C+Anling&rft.date=2022-05-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=120&rft.issue=1-2&rft.spage=1237&rft.epage=1251&rft_id=info:doi/10.1007%2Fs00170-022-08856-3&rft.externalDocID=10_1007_s00170_022_08856_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon