Computer-Aided Tumor Detection Based on Multi-Scale Blob Detection Algorithm in Automated Breast Ultrasound Images
Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 32; no. 7; pp. 1191 - 1200 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.07.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2012.2230403 |
Cover
| Abstract | Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor likelihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images. |
|---|---|
| AbstractList | Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor like lihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images. Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor like lihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images.Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor like lihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images. Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor likelihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images. |
| Author | Woo Kyung Moon Yi-Wei Shen Min Sun Bae Ruey-Feng Chang Chiun-Sheng Huang Jeon-Hor Chen |
| Author_xml | – sequence: 1 givenname: Woo Kyung surname: Moon fullname: Moon, Woo Kyung email: moonwk@snu.ac.kr organization: Department of Radiology, Seoul National University Hospital, Seoul 110-744, Korea. moonwk@snu.ac.kr – sequence: 2 givenname: Yi-Wei surname: Shen fullname: Shen, Yi-Wei – sequence: 3 givenname: Min Sun surname: Bae fullname: Bae, Min Sun – sequence: 4 givenname: Chiun-Sheng surname: Huang fullname: Huang, Chiun-Sheng – sequence: 5 givenname: Jeon-Hor surname: Chen fullname: Chen, Jeon-Hor – sequence: 6 givenname: Ruey-Feng surname: Chang fullname: Chang, Ruey-Feng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23232413$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9r2zAUx8VoWZNs90Gh-LiLU_2yJR-TdOsCCT00gd2EbD93KrKVSvKh__0Ukoyxw9BBeuLzefDed4quBjcAQl8InhOCq_vddj2nmNA5pQxzzD6gCSkKmdOC_7xCE0yFzDEu6Q2ahvCKMeEFrj6iG8rS4YRNkF-5_jBG8PnCtNBmu7F3PnuACE00bsiWOqTf9NiONpr8udEWsqV19V_Mwr44b-KvPjOpGKPrdUzS0oMOMdvb6HVw49Bm616_QPiErjttA3w-3zO0__5tt_qRb54e16vFJm8YqWIuGJdd1-qOl8ALVgEQhltSVEVJWS3bmhFRcMorXTFWU-BCcy0rWgreyUYKNkNfT30P3r2NEKLqTWjAWj2AG4MiTFCBqSQyoXdndKx7aNXBm177d3XZUwLKE9B4F4KHTjUm6uP0aThjFcHqGIhKgahjIOocSBLxP-Kl93-U25NiAOAPXjJRUlGy34jblIY |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_ejrad_2017_01_006 crossref_primary_10_1016_j_eswa_2023_123095 crossref_primary_10_3390_app11199232 crossref_primary_10_1109_TMI_2016_2636281 crossref_primary_10_1002_jum_15365 crossref_primary_10_1016_j_sigpro_2020_107495 crossref_primary_10_1016_j_cmpb_2020_105360 crossref_primary_10_1016_j_eswa_2020_114410 crossref_primary_10_1109_TUFFC_2022_3193640 crossref_primary_10_1002_mp_14569 crossref_primary_10_1016_j_ultras_2022_106891 crossref_primary_10_3233_JAE_150050 crossref_primary_10_1016_j_media_2025_103466 crossref_primary_10_1109_ACCESS_2019_2944849 crossref_primary_10_1109_TMI_2015_2474119 crossref_primary_10_1002_ima_22081 crossref_primary_10_1016_j_media_2020_101753 crossref_primary_10_1109_TMI_2018_2860257 crossref_primary_10_1038_s41598_023_49794_8 crossref_primary_10_3390_en15020601 crossref_primary_10_1016_j_bspc_2021_102677 crossref_primary_10_1002_mp_12661 crossref_primary_10_1007_s11554_015_0517_3 crossref_primary_10_1016_j_ultras_2017_04_008 crossref_primary_10_1007_s10462_019_09722_7 crossref_primary_10_1016_j_neucom_2018_09_043 crossref_primary_10_1007_s11220_016_0154_3 crossref_primary_10_1049_ipr2_12777 crossref_primary_10_1364_JOSAA_32_000248 crossref_primary_10_1016_j_acra_2018_02_014 crossref_primary_10_1016_j_neucom_2016_06_082 crossref_primary_10_1002_mp_14477 crossref_primary_10_1007_s10489_023_04785_0 crossref_primary_10_1259_bjr_20210438 crossref_primary_10_1016_j_dsp_2019_102592 crossref_primary_10_3233_JIFS_179709 crossref_primary_10_1007_s13534_014_0122_6 crossref_primary_10_2139_ssrn_4072585 crossref_primary_10_1109_TMI_2013_2263389 crossref_primary_10_1007_s11042_024_18377_8 crossref_primary_10_1109_ACCESS_2019_2924207 crossref_primary_10_1109_TMI_2015_2492618 crossref_primary_10_1118_1_4837196 crossref_primary_10_1186_s40638_014_0020_5 crossref_primary_10_1109_TMI_2015_2509463 crossref_primary_10_3233_XST_190548 crossref_primary_10_1109_TMI_2014_2315206 crossref_primary_10_14366_usg_13023 crossref_primary_10_1016_j_ultras_2024_107406 crossref_primary_10_1109_TBME_2014_2360154 crossref_primary_10_1016_j_compbiomed_2023_107515 crossref_primary_10_3389_fmech_2020_00055 crossref_primary_10_1016_j_cmpb_2016_10_017 crossref_primary_10_1007_s10462_023_10511_6 crossref_primary_10_1007_s00521_017_3138_x crossref_primary_10_1007_s00521_020_05332_5 crossref_primary_10_1109_TMI_2019_2936500 crossref_primary_10_1016_j_compbiomed_2017_11_018 crossref_primary_10_1117_1_JBO_24_2_025004 |
| Cites_doi | 10.1118/1.3377775 10.1016/j.ultrasmedbio.2011.01.006 10.1118/1.1485995 10.2214/ajr.180.5.1801225 10.1118/1.2795825 10.1148/radiology.158.1.3940394 10.1016/j.ejrad.2011.01.074 10.1109/TBME.2009.2017027 10.1001/jama.299.18.2151 10.1016/S1361-8415(98)80009-1 10.1016/0734-189X(83)90047-6 10.1016/j.ics.2005.03.053 10.1016/S0004-3702(97)00043-X 10.1002/0471722146 10.1118/1.1584042 10.1080/01621459.1984.10478083 10.1118/1.3523617 10.1016/j.patcog.2007.06.029 10.1088/0031-9155/57/6/1527 10.1016/j.acra.2008.07.018 10.2307/2987742 10.1118/1.4754801 10.1109/34.56205 10.1053/j.sult.2011.02.004 10.1007/BFb0056195 10.1145/128749.128750 10.1007/s00330-009-1588-y 10.1002/jmri.20794 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TMI.2012.2230403 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 1200 |
| ExternalDocumentID | 23232413 10_1109_TMI_2012_2230403 6376276 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c319t-7348ffdaf46e4539ee130d1595623b8db31754249a933b2e47a4a892674f8c873 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Sun Sep 28 09:36:44 EDT 2025 Mon Jul 21 05:37:13 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Wed Oct 01 03:55:22 EDT 2025 Tue Aug 26 16:42:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-7348ffdaf46e4539ee130d1595623b8db31754249a933b2e47a4a892674f8c873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23232413 |
| PQID | 1372702818 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | pubmed_primary_23232413 crossref_primary_10_1109_TMI_2012_2230403 crossref_citationtrail_10_1109_TMI_2012_2230403 ieee_primary_6376276 proquest_miscellaneous_1372702818 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref15 ref30 ref11 ref10 drukker (ref12) 2003; 30 ref2 ref1 ref16 ref19 ref18 holm (ref29) 1979; 6 frangi (ref14) 1998; 1496 ref24 ye (ref17) 2009; 56 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 madjar (ref21) 2000 |
| References_xml | – ident: ref6 doi: 10.1118/1.3377775 – ident: ref8 doi: 10.1016/j.ultrasmedbio.2011.01.006 – ident: ref11 doi: 10.1118/1.1485995 – ident: ref1 doi: 10.2214/ajr.180.5.1801225 – ident: ref4 doi: 10.1118/1.2795825 – ident: ref27 doi: 10.1148/radiology.158.1.3940394 – ident: ref7 doi: 10.1016/j.ejrad.2011.01.074 – volume: 56 start-page: 1810 year: 2009 ident: ref17 article-title: Shape-based computer-aided detection of lung nodules in thoracic CT images publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2017027 – ident: ref2 doi: 10.1001/jama.299.18.2151 – ident: ref15 doi: 10.1016/S1361-8415(98)80009-1 – ident: ref18 doi: 10.1016/0734-189X(83)90047-6 – ident: ref3 doi: 10.1016/j.ics.2005.03.053 – ident: ref25 doi: 10.1016/S0004-3702(97)00043-X – ident: ref20 doi: 10.1002/0471722146 – volume: 30 start-page: 1833 year: 2003 ident: ref12 article-title: Computerized analysis of shadowing on breast ultrasound for improved lesion detection publication-title: Med Phys doi: 10.1118/1.1584042 – volume: 6 start-page: 65 year: 1979 ident: ref29 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand J Stat – ident: ref26 doi: 10.1080/01621459.1984.10478083 – ident: ref9 doi: 10.1118/1.3523617 – ident: ref24 doi: 10.1016/j.patcog.2007.06.029 – year: 2000 ident: ref21 publication-title: The Practice of Breast Ultrasound Techniques Findings Differential Diagnosis – ident: ref16 doi: 10.1088/0031-9155/57/6/1527 – ident: ref28 doi: 10.1016/j.acra.2008.07.018 – ident: ref22 doi: 10.2307/2987742 – ident: ref30 doi: 10.1118/1.4754801 – ident: ref13 doi: 10.1109/34.56205 – ident: ref10 doi: 10.1053/j.sult.2011.02.004 – volume: 1496 start-page: 130 year: 1998 ident: ref14 publication-title: Medical Image Computing and Computer-Assisted Intervention?MICCAI'98 doi: 10.1007/BFb0056195 – ident: ref19 doi: 10.1145/128749.128750 – ident: ref5 doi: 10.1007/s00330-009-1588-y – ident: ref23 doi: 10.1002/jmri.20794 |
| SSID | ssj0014509 |
| Score | 2.4306087 |
| Snippet | Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe)... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1191 |
| SubjectTerms | Algorithms Automated breast ultrasound blob detection Breast Breast - pathology Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology computer-aided detection Databases, Factual Female Hessian analysis Humans Image Interpretation, Computer-Assisted - methods Image segmentation Lesions Speckle Testing Training Ultrasonography, Mammary - methods |
| Title | Computer-Aided Tumor Detection Based on Multi-Scale Blob Detection Algorithm in Automated Breast Ultrasound Images |
| URI | https://ieeexplore.ieee.org/document/6376276 https://www.ncbi.nlm.nih.gov/pubmed/23232413 https://www.proquest.com/docview/1372702818 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t7gHBgccuj_KSkbggkdZNnNexBVa7SOVCK-0tcuIxVLTJKnUu--uZyUsLAsTNkewo0Tfj-ex5Aby1ZDOlNMrT4dx6StvQSzAtvLCwpEy2CJKCL_RXX6KLjfp8FV4dwfsxFwYR2-AznPKw9eWbqmj4qmwWkTb4cXQMx3ESdblao8dAhV04h88VY2XkDy5Jmc7Wq0uO4fKnPt-ASm6dQzwiYI_SL9aoba_yd6bZWpzzB7AavrULNPkxbVw-LW5-K-P4vz_zEO731FMsOll5BEdYnsK9WwUJT-HOqne1n0E99HvwFluDRqybfVWLj-ja2K1SLMn8GUGDNoXX-0pYo1juqvzWnMXuW1Vv3fe92NJD4yqix7RoyYHwTmx2rtYHbuskLve0rR0ew-b80_rDhdc3aPAK0lzncWUca422KkIVBikiWURDBIlJVZ6YnMmJogOeToMg91HFWukk9aNY2aRI4uAJnJRVic9ASG0U2YBwjlqrueUqalITfQolRqnV_gRmA1BZ0Vcv5yYau6w9xcg0I5QzRjnrUZ7Au3HFdVe54x9zzxigcV6PzQTeDLKQkdaxK0WXWDWHbB7EnMhHbGcCTzshGRcPsvX8zy99AXf9tqUGh_y-hBNXN_iKiI3LX7cS_RMb8_En |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFH4qRWI5sLQUQlkGiQsSThx7xssxAaoE6l5IpN6s8Sw0IrGRY1_49bznTaUCxG0szVi2vvfmfTNvA3hr0Wa6ruaOFFPrcGmFE5lYOUJZVCar_EjRhX5yESzW_POluDyA90MujDGmCT4zYxo2vnxdqJquyiYBaoMXBrfgtuCcizZba_AZcNEGdHhUM9YNvN4p6caTVbKkKC5v7NEdqEvNc5BJ-ORT-s0eNQ1W_s41G5tz9hCS_mvbUJPv47rKxurnjUKO__s7j-BBRz7ZrJWWx3Bg8iO4f60k4RHcSTpn-zGUfccHZ7bRRrNVvStK9tFUTfRWzuZoADXDQZPE63xFtA2bb4vs2pzZ9ltRbqqrHdvgQ10VSJBx0ZxC4Su23lal3FNjJ7bc4ca2fwLrs0-rDwuna9HgKNTdyqHaONZqaXlguPBjY9AmaqRIRKuySGdETzge8WTs-5lneCi5jGIvCLmNVBT6J3CYF7l5BsyVmqMVEFMjJZ9aqqPmSiRQwjVBbKU3gkkPVKq6-uXURmObNucYN04R5ZRQTjuUR_BuWPGjrd3xj7nHBNAwr8NmBG96WUhR78iZInNT1Pt06oeUyod8ZwRPWyEZFvey9fzPL30Ndxer5Dw9X158OYV7XtNggwKAX8BhVdbmJdKcKnvVSPcv5Nz0dA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+tumor+detection+based+on+multi-scale+blob+detection+algorithm+in+automated+breast+ultrasound+images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Moon%2C+Woo+Kyung&rft.au=Shen%2C+Yi-Wei&rft.au=Bae%2C+Min+Sun&rft.au=Huang%2C+Chiun-Sheng&rft.date=2013-07-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=32&rft.issue=7&rft.spage=1191&rft_id=info:doi/10.1109%2FTMI.2012.2230403&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |