Computer-Aided Tumor Detection Based on Multi-Scale Blob Detection Algorithm in Automated Breast Ultrasound Images

Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 32; no. 7; pp. 1191 - 1200
Main Authors Moon, Woo Kyung, Shen, Yi-Wei, Bae, Min Sun, Huang, Chiun-Sheng, Chen, Jeon-Hor, Chang, Ruey-Feng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2013
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2012.2230403

Cover

Abstract Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor likelihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images.
AbstractList Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor like lihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images.
Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor like lihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images.Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor like lihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images.
Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor likelihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images.
Author Woo Kyung Moon
Yi-Wei Shen
Min Sun Bae
Ruey-Feng Chang
Chiun-Sheng Huang
Jeon-Hor Chen
Author_xml – sequence: 1
  givenname: Woo Kyung
  surname: Moon
  fullname: Moon, Woo Kyung
  email: moonwk@snu.ac.kr
  organization: Department of Radiology, Seoul National University Hospital, Seoul 110-744, Korea. moonwk@snu.ac.kr
– sequence: 2
  givenname: Yi-Wei
  surname: Shen
  fullname: Shen, Yi-Wei
– sequence: 3
  givenname: Min Sun
  surname: Bae
  fullname: Bae, Min Sun
– sequence: 4
  givenname: Chiun-Sheng
  surname: Huang
  fullname: Huang, Chiun-Sheng
– sequence: 5
  givenname: Jeon-Hor
  surname: Chen
  fullname: Chen, Jeon-Hor
– sequence: 6
  givenname: Ruey-Feng
  surname: Chang
  fullname: Chang, Ruey-Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23232413$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9r2zAUx8VoWZNs90Gh-LiLU_2yJR-TdOsCCT00gd2EbD93KrKVSvKh__0Ukoyxw9BBeuLzefDed4quBjcAQl8InhOCq_vddj2nmNA5pQxzzD6gCSkKmdOC_7xCE0yFzDEu6Q2ahvCKMeEFrj6iG8rS4YRNkF-5_jBG8PnCtNBmu7F3PnuACE00bsiWOqTf9NiONpr8udEWsqV19V_Mwr44b-KvPjOpGKPrdUzS0oMOMdvb6HVw49Bm616_QPiErjttA3w-3zO0__5tt_qRb54e16vFJm8YqWIuGJdd1-qOl8ALVgEQhltSVEVJWS3bmhFRcMorXTFWU-BCcy0rWgreyUYKNkNfT30P3r2NEKLqTWjAWj2AG4MiTFCBqSQyoXdndKx7aNXBm177d3XZUwLKE9B4F4KHTjUm6uP0aThjFcHqGIhKgahjIOocSBLxP-Kl93-U25NiAOAPXjJRUlGy34jblIY
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_ejrad_2017_01_006
crossref_primary_10_1016_j_eswa_2023_123095
crossref_primary_10_3390_app11199232
crossref_primary_10_1109_TMI_2016_2636281
crossref_primary_10_1002_jum_15365
crossref_primary_10_1016_j_sigpro_2020_107495
crossref_primary_10_1016_j_cmpb_2020_105360
crossref_primary_10_1016_j_eswa_2020_114410
crossref_primary_10_1109_TUFFC_2022_3193640
crossref_primary_10_1002_mp_14569
crossref_primary_10_1016_j_ultras_2022_106891
crossref_primary_10_3233_JAE_150050
crossref_primary_10_1016_j_media_2025_103466
crossref_primary_10_1109_ACCESS_2019_2944849
crossref_primary_10_1109_TMI_2015_2474119
crossref_primary_10_1002_ima_22081
crossref_primary_10_1016_j_media_2020_101753
crossref_primary_10_1109_TMI_2018_2860257
crossref_primary_10_1038_s41598_023_49794_8
crossref_primary_10_3390_en15020601
crossref_primary_10_1016_j_bspc_2021_102677
crossref_primary_10_1002_mp_12661
crossref_primary_10_1007_s11554_015_0517_3
crossref_primary_10_1016_j_ultras_2017_04_008
crossref_primary_10_1007_s10462_019_09722_7
crossref_primary_10_1016_j_neucom_2018_09_043
crossref_primary_10_1007_s11220_016_0154_3
crossref_primary_10_1049_ipr2_12777
crossref_primary_10_1364_JOSAA_32_000248
crossref_primary_10_1016_j_acra_2018_02_014
crossref_primary_10_1016_j_neucom_2016_06_082
crossref_primary_10_1002_mp_14477
crossref_primary_10_1007_s10489_023_04785_0
crossref_primary_10_1259_bjr_20210438
crossref_primary_10_1016_j_dsp_2019_102592
crossref_primary_10_3233_JIFS_179709
crossref_primary_10_1007_s13534_014_0122_6
crossref_primary_10_2139_ssrn_4072585
crossref_primary_10_1109_TMI_2013_2263389
crossref_primary_10_1007_s11042_024_18377_8
crossref_primary_10_1109_ACCESS_2019_2924207
crossref_primary_10_1109_TMI_2015_2492618
crossref_primary_10_1118_1_4837196
crossref_primary_10_1186_s40638_014_0020_5
crossref_primary_10_1109_TMI_2015_2509463
crossref_primary_10_3233_XST_190548
crossref_primary_10_1109_TMI_2014_2315206
crossref_primary_10_14366_usg_13023
crossref_primary_10_1016_j_ultras_2024_107406
crossref_primary_10_1109_TBME_2014_2360154
crossref_primary_10_1016_j_compbiomed_2023_107515
crossref_primary_10_3389_fmech_2020_00055
crossref_primary_10_1016_j_cmpb_2016_10_017
crossref_primary_10_1007_s10462_023_10511_6
crossref_primary_10_1007_s00521_017_3138_x
crossref_primary_10_1007_s00521_020_05332_5
crossref_primary_10_1109_TMI_2019_2936500
crossref_primary_10_1016_j_compbiomed_2017_11_018
crossref_primary_10_1117_1_JBO_24_2_025004
Cites_doi 10.1118/1.3377775
10.1016/j.ultrasmedbio.2011.01.006
10.1118/1.1485995
10.2214/ajr.180.5.1801225
10.1118/1.2795825
10.1148/radiology.158.1.3940394
10.1016/j.ejrad.2011.01.074
10.1109/TBME.2009.2017027
10.1001/jama.299.18.2151
10.1016/S1361-8415(98)80009-1
10.1016/0734-189X(83)90047-6
10.1016/j.ics.2005.03.053
10.1016/S0004-3702(97)00043-X
10.1002/0471722146
10.1118/1.1584042
10.1080/01621459.1984.10478083
10.1118/1.3523617
10.1016/j.patcog.2007.06.029
10.1088/0031-9155/57/6/1527
10.1016/j.acra.2008.07.018
10.2307/2987742
10.1118/1.4754801
10.1109/34.56205
10.1053/j.sult.2011.02.004
10.1007/BFb0056195
10.1145/128749.128750
10.1007/s00330-009-1588-y
10.1002/jmri.20794
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TMI.2012.2230403
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1200
ExternalDocumentID 23232413
10_1109_TMI_2012_2230403
6376276
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c319t-7348ffdaf46e4539ee130d1595623b8db31754249a933b2e47a4a892674f8c873
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sun Sep 28 09:36:44 EDT 2025
Mon Jul 21 05:37:13 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Wed Oct 01 03:55:22 EDT 2025
Tue Aug 26 16:42:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7348ffdaf46e4539ee130d1595623b8db31754249a933b2e47a4a892674f8c873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23232413
PQID 1372702818
PQPubID 23479
PageCount 10
ParticipantIDs pubmed_primary_23232413
crossref_primary_10_1109_TMI_2012_2230403
crossref_citationtrail_10_1109_TMI_2012_2230403
ieee_primary_6376276
proquest_miscellaneous_1372702818
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
ref30
ref11
ref10
drukker (ref12) 2003; 30
ref2
ref1
ref16
ref19
ref18
holm (ref29) 1979; 6
frangi (ref14) 1998; 1496
ref24
ye (ref17) 2009; 56
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
madjar (ref21) 2000
References_xml – ident: ref6
  doi: 10.1118/1.3377775
– ident: ref8
  doi: 10.1016/j.ultrasmedbio.2011.01.006
– ident: ref11
  doi: 10.1118/1.1485995
– ident: ref1
  doi: 10.2214/ajr.180.5.1801225
– ident: ref4
  doi: 10.1118/1.2795825
– ident: ref27
  doi: 10.1148/radiology.158.1.3940394
– ident: ref7
  doi: 10.1016/j.ejrad.2011.01.074
– volume: 56
  start-page: 1810
  year: 2009
  ident: ref17
  article-title: Shape-based computer-aided detection of lung nodules in thoracic CT images
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2017027
– ident: ref2
  doi: 10.1001/jama.299.18.2151
– ident: ref15
  doi: 10.1016/S1361-8415(98)80009-1
– ident: ref18
  doi: 10.1016/0734-189X(83)90047-6
– ident: ref3
  doi: 10.1016/j.ics.2005.03.053
– ident: ref25
  doi: 10.1016/S0004-3702(97)00043-X
– ident: ref20
  doi: 10.1002/0471722146
– volume: 30
  start-page: 1833
  year: 2003
  ident: ref12
  article-title: Computerized analysis of shadowing on breast ultrasound for improved lesion detection
  publication-title: Med Phys
  doi: 10.1118/1.1584042
– volume: 6
  start-page: 65
  year: 1979
  ident: ref29
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Stat
– ident: ref26
  doi: 10.1080/01621459.1984.10478083
– ident: ref9
  doi: 10.1118/1.3523617
– ident: ref24
  doi: 10.1016/j.patcog.2007.06.029
– year: 2000
  ident: ref21
  publication-title: The Practice of Breast Ultrasound Techniques Findings Differential Diagnosis
– ident: ref16
  doi: 10.1088/0031-9155/57/6/1527
– ident: ref28
  doi: 10.1016/j.acra.2008.07.018
– ident: ref22
  doi: 10.2307/2987742
– ident: ref30
  doi: 10.1118/1.4754801
– ident: ref13
  doi: 10.1109/34.56205
– ident: ref10
  doi: 10.1053/j.sult.2011.02.004
– volume: 1496
  start-page: 130
  year: 1998
  ident: ref14
  publication-title: Medical Image Computing and Computer-Assisted Intervention?MICCAI'98
  doi: 10.1007/BFb0056195
– ident: ref19
  doi: 10.1145/128749.128750
– ident: ref5
  doi: 10.1007/s00330-009-1588-y
– ident: ref23
  doi: 10.1002/jmri.20794
SSID ssj0014509
Score 2.4306087
Snippet Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1191
SubjectTerms Algorithms
Automated breast ultrasound
blob detection
Breast
Breast - pathology
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
computer-aided detection
Databases, Factual
Female
Hessian analysis
Humans
Image Interpretation, Computer-Assisted - methods
Image segmentation
Lesions
Speckle
Testing
Training
Ultrasonography, Mammary - methods
Title Computer-Aided Tumor Detection Based on Multi-Scale Blob Detection Algorithm in Automated Breast Ultrasound Images
URI https://ieeexplore.ieee.org/document/6376276
https://www.ncbi.nlm.nih.gov/pubmed/23232413
https://www.proquest.com/docview/1372702818
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t7gHBgccuj_KSkbggkdZNnNexBVa7SOVCK-0tcuIxVLTJKnUu--uZyUsLAsTNkewo0Tfj-ex5Aby1ZDOlNMrT4dx6StvQSzAtvLCwpEy2CJKCL_RXX6KLjfp8FV4dwfsxFwYR2-AznPKw9eWbqmj4qmwWkTb4cXQMx3ESdblao8dAhV04h88VY2XkDy5Jmc7Wq0uO4fKnPt-ASm6dQzwiYI_SL9aoba_yd6bZWpzzB7AavrULNPkxbVw-LW5-K-P4vz_zEO731FMsOll5BEdYnsK9WwUJT-HOqne1n0E99HvwFluDRqybfVWLj-ja2K1SLMn8GUGDNoXX-0pYo1juqvzWnMXuW1Vv3fe92NJD4yqix7RoyYHwTmx2rtYHbuskLve0rR0ew-b80_rDhdc3aPAK0lzncWUca422KkIVBikiWURDBIlJVZ6YnMmJogOeToMg91HFWukk9aNY2aRI4uAJnJRVic9ASG0U2YBwjlqrueUqalITfQolRqnV_gRmA1BZ0Vcv5yYau6w9xcg0I5QzRjnrUZ7Au3HFdVe54x9zzxigcV6PzQTeDLKQkdaxK0WXWDWHbB7EnMhHbGcCTzshGRcPsvX8zy99AXf9tqUGh_y-hBNXN_iKiI3LX7cS_RMb8_En
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFH4qRWI5sLQUQlkGiQsSThx7xssxAaoE6l5IpN6s8Sw0IrGRY1_49bznTaUCxG0szVi2vvfmfTNvA3hr0Wa6ruaOFFPrcGmFE5lYOUJZVCar_EjRhX5yESzW_POluDyA90MujDGmCT4zYxo2vnxdqJquyiYBaoMXBrfgtuCcizZba_AZcNEGdHhUM9YNvN4p6caTVbKkKC5v7NEdqEvNc5BJ-ORT-s0eNQ1W_s41G5tz9hCS_mvbUJPv47rKxurnjUKO__s7j-BBRz7ZrJWWx3Bg8iO4f60k4RHcSTpn-zGUfccHZ7bRRrNVvStK9tFUTfRWzuZoADXDQZPE63xFtA2bb4vs2pzZ9ltRbqqrHdvgQ10VSJBx0ZxC4Su23lal3FNjJ7bc4ca2fwLrs0-rDwuna9HgKNTdyqHaONZqaXlguPBjY9AmaqRIRKuySGdETzge8WTs-5lneCi5jGIvCLmNVBT6J3CYF7l5BsyVmqMVEFMjJZ9aqqPmSiRQwjVBbKU3gkkPVKq6-uXURmObNucYN04R5ZRQTjuUR_BuWPGjrd3xj7nHBNAwr8NmBG96WUhR78iZInNT1Pt06oeUyod8ZwRPWyEZFvey9fzPL30Ndxer5Dw9X158OYV7XtNggwKAX8BhVdbmJdKcKnvVSPcv5Nz0dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+tumor+detection+based+on+multi-scale+blob+detection+algorithm+in+automated+breast+ultrasound+images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Moon%2C+Woo+Kyung&rft.au=Shen%2C+Yi-Wei&rft.au=Bae%2C+Min+Sun&rft.au=Huang%2C+Chiun-Sheng&rft.date=2013-07-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=32&rft.issue=7&rft.spage=1191&rft_id=info:doi/10.1109%2FTMI.2012.2230403&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon