Comparative analyses of plasma probe diagnostics techniques

The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe c...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 118; no. 23
Main Authors Godyak, V. A., Alexandrovich, B. M.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.12.2015
American Institute of Physics (AIP)
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
1520-8850
1089-7550
DOI10.1063/1.4937446

Cover

Abstract The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.
AbstractList The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.
Here, the subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.
Author Alexandrovich, B. M.
Godyak, V. A.
Author_xml – sequence: 1
  givenname: V. A.
  orcidid: 0000-0001-8611-0005
  surname: Godyak
  fullname: Godyak, V. A.
– sequence: 2
  givenname: B. M.
  surname: Alexandrovich
  fullname: Alexandrovich, B. M.
BackLink https://www.osti.gov/servlets/purl/1468473$$D View this record in Osti.gov
BookMark eNp1kD1PwzAQhi0EEm1h4B9EMIGU1hc7diImVPElVWKB2bo4DqRK7WCnoP57HLUTgumW5957n5uSY-usIeQC6ByoYAuY85JJzsURmQAtylTmOT0mE0ozSItSlqdkGsKaUoCClRNyu3SbHj0O7ZdJ0GK3CyYkrkn6DsMGk967yiR1i-_WhaHVIRmM_rDt59aEM3LSYBfM-WHOyNvD_evyKV29PD4v71apZlAOqWQZq4BqaHTGZKMLmVNmmKx5XmFNa2AoGG9yXTaGVTozdSY41DnmlGsUgs3IzT53a3vcfWPXqd63G_Q7BVSN2grUQTvCl3t4rKuCbse-2llr9KCAi4JLFqGrPRT1RpNBrd3WR_ugMoglhYRCRmqxp7R3IXjTqJgWP-Xs4LHt_jx-_Wvj_6I_uJ6AIQ
CitedBy_id crossref_primary_10_1063_1_4998735
crossref_primary_10_1088_1361_6595_aadb64
crossref_primary_10_1088_1361_6595_ac3054
crossref_primary_10_1007_s44205_022_00007_w
crossref_primary_10_1063_1_5011065
crossref_primary_10_1088_1361_6595_ac4d03
crossref_primary_10_1063_5_0082889
crossref_primary_10_33889_IJMEMS_2020_5_6_095
crossref_primary_10_1088_1361_6463_adb592
crossref_primary_10_1007_s12043_021_02223_9
crossref_primary_10_1080_10420150_2023_2195653
crossref_primary_10_1109_TPS_2023_3304058
crossref_primary_10_1134_S0020441222010195
crossref_primary_10_1088_1361_6463_ad32ed
crossref_primary_10_1063_1_4960123
crossref_primary_10_1088_1361_6501_acf77a
crossref_primary_10_1088_1361_6595_ab6073
crossref_primary_10_1139_cjp_2017_0478
crossref_primary_10_1088_1361_6595_abd61d
crossref_primary_10_1088_1361_6595_aca560
crossref_primary_10_1029_2020EA001344
crossref_primary_10_1134_S1063780X22601043
crossref_primary_10_1016_j_vacuum_2024_113279
crossref_primary_10_1063_1_5048292
crossref_primary_10_1088_1361_6587_acb3f9
crossref_primary_10_3390_pr12091858
crossref_primary_10_1016_j_asr_2019_05_025
crossref_primary_10_1088_1361_6501_abf804
crossref_primary_10_1016_j_vacuum_2020_109616
crossref_primary_10_1063_1_5093892
crossref_primary_10_1088_1361_6595_ad0921
crossref_primary_10_1088_1402_4896_ab687f
crossref_primary_10_1134_S0018143923070378
crossref_primary_10_1007_s11090_025_10552_5
crossref_primary_10_1063_1_5053677
crossref_primary_10_1088_1361_6595_ac8288
crossref_primary_10_1088_1361_6595_aca9f5
crossref_primary_10_1088_1757_899X_871_1_012059
crossref_primary_10_1063_1_5006892
crossref_primary_10_1116_1_5133978
crossref_primary_10_1116_6_0001461
crossref_primary_10_1016_j_vacuum_2018_06_061
crossref_primary_10_1016_j_ijhydene_2022_05_007
crossref_primary_10_1134_S0018143924701303
crossref_primary_10_3390_molecules27186066
crossref_primary_10_1007_s11090_023_10378_z
crossref_primary_10_1109_TPS_2023_3341445
crossref_primary_10_1134_S1063778821090039
crossref_primary_10_1016_j_physleta_2021_127910
crossref_primary_10_1109_TPS_2019_2892053
crossref_primary_10_1088_1361_6595_ac8830
crossref_primary_10_3390_plasma7020022
crossref_primary_10_1063_1_5125423
crossref_primary_10_1088_1361_6595_abe4bf
crossref_primary_10_1063_1_4972090
crossref_primary_10_1109_TPS_2020_3020977
crossref_primary_10_1007_s42452_020_04019_9
crossref_primary_10_1103_PhysRevResearch_2_033500
crossref_primary_10_1088_2058_6272_ac125d
crossref_primary_10_1016_j_cjph_2020_09_012
crossref_primary_10_1063_6_0002313
crossref_primary_10_1088_1361_6595_aa5300
crossref_primary_10_1088_1361_6595_ac9750
crossref_primary_10_1134_S1064226920030183
crossref_primary_10_1017_S0022377823000703
crossref_primary_10_1063_1_5018335
crossref_primary_10_1063_5_0092091
crossref_primary_10_1088_2058_6272_aa68db
crossref_primary_10_1134_S1063778817110175
crossref_primary_10_1063_1_5054670
crossref_primary_10_1063_1_4971980
crossref_primary_10_1088_1361_6595_aaa237
crossref_primary_10_1119_10_0001318
crossref_primary_10_3390_s23229170
crossref_primary_10_35848_1347_4065_ac88ac
crossref_primary_10_3390_instruments6020017
crossref_primary_10_1088_1367_2630_aa6927
crossref_primary_10_1088_1361_6595_aa72c9
crossref_primary_10_1615_HighTempMatProc_2022046504
crossref_primary_10_1016_j_vacuum_2022_111570
crossref_primary_10_1109_TPS_2020_3045366
crossref_primary_10_1088_1361_6595_ad3847
crossref_primary_10_1088_1361_6595_ab2401
crossref_primary_10_1063_5_0019527
crossref_primary_10_1016_j_ijleo_2017_05_093
crossref_primary_10_1063_5_0213213
crossref_primary_10_1063_1_5088706
crossref_primary_10_1088_1361_6595_ab69e5
crossref_primary_10_1063_5_0071172
crossref_primary_10_1007_s11090_025_10550_7
crossref_primary_10_3390_gels10060395
crossref_primary_10_1063_5_0097089
crossref_primary_10_1038_s41598_023_45656_5
crossref_primary_10_1063_5_0043266
crossref_primary_10_1016_j_ijleo_2019_163165
crossref_primary_10_1016_j_vacuum_2019_04_051
crossref_primary_10_1088_1361_6595_ac91a1
crossref_primary_10_1007_s11090_020_10137_4
crossref_primary_10_1063_1_5121807
crossref_primary_10_1063_1_5118762
crossref_primary_10_1063_5_0012442
crossref_primary_10_1109_TPS_2022_3190426
crossref_primary_10_3390_ma16072762
crossref_primary_10_1016_j_vacuum_2025_114162
crossref_primary_10_1103_PhysRevE_104_055204
crossref_primary_10_1063_5_0130982
crossref_primary_10_1017_S0022377824000552
crossref_primary_10_1063_5_0024258
crossref_primary_10_1016_j_vacuum_2024_113338
crossref_primary_10_1063_5_0204161
crossref_primary_10_1088_1361_6595_ad05f6
crossref_primary_10_3390_app14083470
crossref_primary_10_1017_S0263034618000198
crossref_primary_10_1063_5_0154803
crossref_primary_10_1002_ctpp_201800029
crossref_primary_10_1016_j_vacuum_2022_111514
crossref_primary_10_1134_S1063784220020048
crossref_primary_10_1088_2516_1067_aaf24d
crossref_primary_10_1088_1361_6595_ac915a
crossref_primary_10_1063_1_5026214
crossref_primary_10_1016_j_measurement_2018_04_075
Cites_doi 10.1103/PhysRevLett.65.996
10.1103/PhysRev.28.727
10.1063/1.352924
10.1007/BF01773007
10.1063/1.1705900
10.1063/1.1587889
10.1088/0963-0252/4/2/004
10.1088/0963-0252/1/1/006
10.1063/1.357280
10.1103/PhysRevLett.68.40
10.1109/27.700878
10.1088/0963-0252/5/1/001
10.1088/0022-3727/44/23/233001
10.1088/0963-0252/17/1/015019
10.1103/PhysRevLett.81.369
10.1088/0370-1301/70/3/303
10.1116/1.2187991
10.1002/ctpp.2150340108
10.1109/TPS.2006.875847
10.1103/PhysRevE.64.026406
10.1088/0963-0252/17/3/035026
10.3367/UFNe.0180.201002b.0139
10.1007/BF00633129
10.1116/1.4867158
10.1088/0963-0252/18/3/035012
10.1088/0963-0252/11/4/320
10.1109/27.467971
10.2514/3.49973
10.1088/0022-3727/46/48/485202
10.1063/1.1505099
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Copyright_xml – notice: 2015 AIP Publishing LLC.
CorporateAuthor Univ. of Michigan, Ann Arbor, MI (United States)
CorporateAuthor_xml – name: Univ. of Michigan, Ann Arbor, MI (United States)
DBID AAYXX
CITATION
8FD
H8D
L7M
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1063/1.4937446
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID oai:osti.gov:1229790
1468473
10_1063_1_4937446
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYXX
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
8FD
H8D
L7M
0ZJ
AAEUA
ABFTF
ABPTK
AGIHO
ESX
OIOZB
OTOTI
TAF
UCJ
UE8
.GJ
186
2WC
3O-
41~
6TJ
AAYJJ
ABDPE
ACKIV
ADTOC
ADXHL
AETEA
AFFNX
AI.
FA8
MVM
NEJ
NEUPN
NHB
OHT
P0-
RDFOP
ROL
UKR
UNPAY
VH1
VOH
XJT
XOL
XXG
YYP
ZCG
ZY4
ID FETCH-LOGICAL-c319t-7323b10c1fc237fc87503e37d45bad0d13a634f5c9fe3bc2ed2641d5a504ca663
IEDL.DBID UNPAY
ISSN 0021-8979
1089-7550
1520-8850
IngestDate Sun Oct 26 04:02:13 EDT 2025
Thu May 18 22:38:21 EDT 2023
Sun Sep 07 03:43:47 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Wed Oct 01 04:29:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7323b10c1fc237fc87503e37d45bad0d13a634f5c9fe3bc2ed2641d5a504ca663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0001939
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
ORCID 0000-0001-8611-0005
0000000186110005
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1229790
PQID 2123767187
PQPubID 2050677
ParticipantIDs unpaywall_primary_10_1063_1_4937446
osti_scitechconnect_1468473
proquest_journals_2123767187
crossref_citationtrail_10_1063_1_4937446
crossref_primary_10_1063_1_4937446
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-21
PublicationDateYYYYMMDD 2015-12-21
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-21
  day: 21
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Journal of applied physics
PublicationYear 2015
Publisher American Institute of Physics
American Institute of Physics (AIP)
Publisher_xml – name: American Institute of Physics
– name: American Institute of Physics (AIP)
References (2023062422245739800_c14) 1985
(2023062422245739800_c49) 2005; 12
(2023062422245739800_c4) 1975
Lochte-Holtgreven (2023062422245739800_c11) 1968
(2023062422245739800_c42) 2011
(2023062422245739800_c19) 2006; 24
(2023062422245739800_c48) 1998; 26
(2023062422245739800_c21) 2006; 40
(2023062422245739800_c8) 2002; 73
(2023062422245739800_c23) 2003; 94
(2023062422245739800_c5) 1982; 2
(2023062422245739800_c6) 1989
(2023062422245739800_c15) 1926; 28
(2023062422245739800_c44) 2014; 32
(2023062422245739800_c3) 1970
2023062422245739800_c38
(2023062422245739800_c41) 2014
(2023062422245739800_c45) 1995; 23
(2023062422245739800_c39) 2008; 17
2023062422245739800_c35
2023062422245739800_c36
2023062422245739800_c37
(2023062422245739800_c9) 2011; 44
(2023062422245739800_c28) 1930; 64
(2023062422245739800_c10) 1993; 73
(2023062422245739800_c25) 1990; 65
(2023062422245739800_c1) 1924; 27
(2023062422245739800_c12) 2009; 18
(2023062422245739800_c43) 2013; 46
Kortshagen (2023062422245739800_c31) 1998
(2023062422245739800_c22) 1971; 9
(2023062422245739800_c24) 2008; 17
(2023062422245739800_c46) 1995; 4
(2023062422245739800_c13) 1957; 70
(2023062422245739800_c26) 1998; 81
(2023062422245739800_c34) 2001; 64
(2023062422245739800_c40) 2014
Huddlestone (2023062422245739800_c2) 1965
(2023062422245739800_c29) 1992; 1
Bergman (2023062422245739800_c33) 2001
(2023062422245739800_c20) 1994; 34
(2023062422245739800_c50) 2006; 34
2023062422245739800_c17
(2023062422245739800_c47) 1996; 5
(2023062422245739800_c51) 2010; 53
(2023062422245739800_c16) 1959; 2
(2023062422245739800_c7) 1990
(2023062422245739800_c18) 1994; 76
(2023062422245739800_c27) 1974; 12
(2023062422245739800_c30) 2002; 11
(2023062422245739800_c32) 1992; 68
References_xml – volume: 65
  start-page: 996
  year: 1990
  ident: 2023062422245739800_c25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.996
– volume: 28
  start-page: 727
  year: 1926
  ident: 2023062422245739800_c15
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.28.727
– volume: 73
  start-page: 3657
  year: 1993
  ident: 2023062422245739800_c10
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.352924
– volume: 64
  start-page: 781
  year: 1930
  ident: 2023062422245739800_c28
  publication-title: Z. Phys.
  doi: 10.1007/BF01773007
– volume: 2
  start-page: 112
  year: 1959
  ident: 2023062422245739800_c16
  publication-title: Phys. Fluids
  doi: 10.1063/1.1705900
– year: 2014
  ident: 2023062422245739800_c41
– volume: 94
  start-page: 1374
  year: 2003
  ident: 2023062422245739800_c23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1587889
– volume: 4
  start-page: 200
  year: 1995
  ident: 2023062422245739800_c46
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/4/2/004
– volume-title: Plasma Diagnostic Techniques
  year: 1965
  ident: 2023062422245739800_c2
– volume: 1
  start-page: 36
  year: 1992
  ident: 2023062422245739800_c29
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/1/1/006
– ident: 2023062422245739800_c37
– volume: 76
  start-page: 4488
  year: 1994
  ident: 2023062422245739800_c18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.357280
– volume: 68
  start-page: 40
  year: 1992
  ident: 2023062422245739800_c32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.40
– volume: 12
  start-page: 3553
  year: 2005
  ident: 2023062422245739800_c49
  publication-title: Phys. Plasmas
– volume-title: Modern Uses of Langmuir Probes
  year: 1985
  ident: 2023062422245739800_c14
– volume-title: Proceedings of the 9th International Symposium on the Science and Technology of Light Sources
  year: 2001
  ident: 2023062422245739800_c33
– volume-title: Plasma–Surface Interaction and Processing of Materials
  year: 1990
  ident: 2023062422245739800_c7
– volume: 26
  start-page: 955
  year: 1998
  ident: 2023062422245739800_c48
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/27.700878
– volume: 5
  start-page: 1
  year: 1996
  ident: 2023062422245739800_c47
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/5/1/001
– volume-title: Electric Probes in Stationary and Flowing Plasmas: Theory and Application
  year: 1975
  ident: 2023062422245739800_c4
– volume: 44
  start-page: 233001
  year: 2011
  ident: 2023062422245739800_c9
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/23/233001
– volume: 17
  start-page: 015019
  year: 2008
  ident: 2023062422245739800_c24
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/17/1/015019
– volume: 12
  start-page: 409
  year: 1974
  ident: 2023062422245739800_c27
  publication-title: High Temp.
– ident: 2023062422245739800_c36
– volume: 81
  start-page: 369
  year: 1998
  ident: 2023062422245739800_c26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.369
– volume: 70
  start-page: 297
  year: 1957
  ident: 2023062422245739800_c13
  publication-title: Proc. Phys. Soc. B
  doi: 10.1088/0370-1301/70/3/303
– volume: 24
  start-page: 1366
  year: 2006
  ident: 2023062422245739800_c19
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/1.2187991
– volume: 34
  start-page: 59
  year: 1994
  ident: 2023062422245739800_c20
  publication-title: Contrib. Plasma Phys.
  doi: 10.1002/ctpp.2150340108
– volume: 34
  start-page: 755
  year: 2006
  ident: 2023062422245739800_c50
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2006.875847
– volume: 64
  start-page: 026406
  year: 2001
  ident: 2023062422245739800_c34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.026406
– volume: 17
  start-page: 035026
  year: 2008
  ident: 2023062422245739800_c39
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/17/3/035026
– volume: 53
  start-page: 133
  issue: 2
  year: 2010
  ident: 2023062422245739800_c51
  publication-title: Phys. - Usp.
  doi: 10.3367/UFNe.0180.201002b.0139
– ident: 2023062422245739800_c35
– year: 2011
  ident: 2023062422245739800_c42
– volume-title: Electrical Probes for Plasma Diagnostics
  year: 1970
  ident: 2023062422245739800_c3
– volume: 2
  start-page: 113
  year: 1982
  ident: 2023062422245739800_c5
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/BF00633129
– year: 2014
  ident: 2023062422245739800_c40
– volume: 32
  start-page: 030601
  year: 2014
  ident: 2023062422245739800_c44
  publication-title: J. Vac. Sci Technol., A
  doi: 10.1116/1.4867158
– volume: 18
  start-page: 035012
  year: 2009
  ident: 2023062422245739800_c12
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/18/3/035012
– volume: 27
  start-page: 810
  year: 1924
  ident: 2023062422245739800_c1
  publication-title: Gen. Electr. Rev.
– volume: 11
  start-page: 525
  year: 2002
  ident: 2023062422245739800_c30
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/11/4/320
– volume: 23
  start-page: 503
  year: 1995
  ident: 2023062422245739800_c45
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/27.467971
– volume: 9
  start-page: 1673
  year: 1971
  ident: 2023062422245739800_c22
  publication-title: AIAA J.
  doi: 10.2514/3.49973
– volume: 46
  start-page: 485202
  year: 2013
  ident: 2023062422245739800_c43
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/48/485202
– ident: 2023062422245739800_c17
– volume-title: Plasma Diagnostics
  year: 1968
  ident: 2023062422245739800_c11
– volume: 73
  start-page: 3409
  year: 2002
  ident: 2023062422245739800_c8
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1505099
– start-page: 241
  volume-title: Electron Kinetics and Application of Glow Discharges
  year: 1998
  ident: 2023062422245739800_c31
– ident: 2023062422245739800_c38
– volume-title: Plasma Diagnostics
  year: 1989
  ident: 2023062422245739800_c6
– volume: 40
  start-page: 1687
  year: 2006
  ident: 2023062422245739800_c21
  publication-title: J. Korean Phys. Soc.
SSID ssj0011839
Score 2.532518
Snippet The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of...
Here, the subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different...
SourceID unpaywall
osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Applied physics
Atomic collisions
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Deformation
Distribution functions
Electron energy
Electron energy distribution
Energy measurement
Energy resolution
Gas discharges
Industrial applications
Ion currents
Mathematical analysis
Parameters
Plasma
Plasma probes
Plasmas (physics)
Uncertainty
Title Comparative analyses of plasma probe diagnostics techniques
URI https://www.proquest.com/docview/2123767187
https://www.osti.gov/servlets/purl/1468473
https://www.osti.gov/biblio/1229790
UnpaywallVersion submittedVersion
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011839
  issn: 1520-8850
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dSxtBFL2EhFJ90NYqRqMs2oe-TNz53F18Cn4gRaXQBuzTMjszC2JMgtkg-uu9sx8xlRb7ftmZ2TvDOcOcey7AV-1Mbi1NiGO5JMJoS2LJFEHsdsYJplVZKHx1rS6G4vuNvGnBYVML42WVE9zcpaYyu81Gt5MjylgSJXgv7yiJhLsNneH1j8HvSrxBSZyUjno0jBMSybInK4JSSOJYho2XkOJHtC8QioVnuksI1PaD_cEuP87HU_30qEejJaA5X4fTZoqVvuSuPy-yvnl-4974zho-wVpNNINBtTM-Q8uNN2B1yX5wAz6U8k8z-wLHJ68m4IEufUrcLJjkwRTJ9b0OfNsZF9hKlueNnYOF9-tsE4bnZ79OLkjdVoEYPG8FiTjjGQ0NzQ3jUW5i_5TpeGSFzLQNLeVacZFLk-SOZ4Y5i6SJWqlliLlEhrIF7fFk7LYhiJ2JFJJC_z1fHh0LLqRLhM1dmGhmuvCt-dWpqT3HfeuLUVq-fSue0rTOShcOFqHTymjjb0G7fpUpsgO_TOO1QKbw1xcEWd6FXpPGtD6Js9RDc6QQgaMuHC5S--8hdv4rahdWkDlJr2thtAft4mHu9pCdFNk-dAanV5c_9-td-gI6i99T
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dSxtBFL1IpNQ-WI1KY6Is2oe-TNz53F18Em0IBcUHA-nTMjszC2JMgtlQ6q_3zn7EWFrs-2VnZu8M5wxz7rkAX7UzubU0IY7lkgijLYklUwSx2xknmFZlofD1jRqOxI-xHG_AaVML42WVM9zcpaYyu88m97MzylgSJXgv31QSCXcLNkc3txc_K_EGJXFSOurRME5IJMuerAhKIYljGTZeQoqf0b5AKBae6a4hUMsP9oZdflxO5_r3Lz2ZrAHN4DNcNVOs9CUP_WWR9c3zH-6N76xhB7ZrohlcVDtjFzbctA2f1uwH2_ChlH-axR6cX76agAe69Clxi2CWB3Mk14868G1nXGArWZ43dg5W3q-LfRgNvt9dDkndVoEYPG8FiTjjGQ0NzQ3jUW5i_5TpeGSFzLQNLeVacZFLk-SOZ4Y5i6SJWqlliLlEhnIArels6r5AEDsTKSSF_nu-PDoWXEiXCJu7MNHMdOBb86tTU3uO-9YXk7R8-1Y8pWmdlQ6crELnldHG34K6fpUpsgO_TOO1QKbw1xcEWd6BXpPGtD6Ji9RDc6QQgaMOnK5S--8hDv8rqgtbyJyk17Uw2oNW8bR0R8hOiuy43p0vR9Xdvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analyses+of+plasma+probe+diagnostics+techniques&rft.jtitle=Journal+of+applied+physics&rft.au=Godyak%2C+V+A&rft.au=Alexandrovich%2C+B+M&rft.date=2015-12-21&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=118&rft.issue=23&rft_id=info:doi/10.1063%2F1.4937446&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon