Comparative analyses of plasma probe diagnostics techniques
The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe c...
Saved in:
| Published in | Journal of applied physics Vol. 118; no. 23 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Melville
American Institute of Physics
21.12.2015
American Institute of Physics (AIP) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-8979 1089-7550 1520-8850 1089-7550 |
| DOI | 10.1063/1.4937446 |
Cover
| Abstract | The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range. |
|---|---|
| AbstractList | The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range. Here, the subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range. |
| Author | Alexandrovich, B. M. Godyak, V. A. |
| Author_xml | – sequence: 1 givenname: V. A. orcidid: 0000-0001-8611-0005 surname: Godyak fullname: Godyak, V. A. – sequence: 2 givenname: B. M. surname: Alexandrovich fullname: Alexandrovich, B. M. |
| BackLink | https://www.osti.gov/servlets/purl/1468473$$D View this record in Osti.gov |
| BookMark | eNp1kD1PwzAQhi0EEm1h4B9EMIGU1hc7diImVPElVWKB2bo4DqRK7WCnoP57HLUTgumW5957n5uSY-usIeQC6ByoYAuY85JJzsURmQAtylTmOT0mE0ozSItSlqdkGsKaUoCClRNyu3SbHj0O7ZdJ0GK3CyYkrkn6DsMGk967yiR1i-_WhaHVIRmM_rDt59aEM3LSYBfM-WHOyNvD_evyKV29PD4v71apZlAOqWQZq4BqaHTGZKMLmVNmmKx5XmFNa2AoGG9yXTaGVTozdSY41DnmlGsUgs3IzT53a3vcfWPXqd63G_Q7BVSN2grUQTvCl3t4rKuCbse-2llr9KCAi4JLFqGrPRT1RpNBrd3WR_ugMoglhYRCRmqxp7R3IXjTqJgWP-Xs4LHt_jx-_Wvj_6I_uJ6AIQ |
| CitedBy_id | crossref_primary_10_1063_1_4998735 crossref_primary_10_1088_1361_6595_aadb64 crossref_primary_10_1088_1361_6595_ac3054 crossref_primary_10_1007_s44205_022_00007_w crossref_primary_10_1063_1_5011065 crossref_primary_10_1088_1361_6595_ac4d03 crossref_primary_10_1063_5_0082889 crossref_primary_10_33889_IJMEMS_2020_5_6_095 crossref_primary_10_1088_1361_6463_adb592 crossref_primary_10_1007_s12043_021_02223_9 crossref_primary_10_1080_10420150_2023_2195653 crossref_primary_10_1109_TPS_2023_3304058 crossref_primary_10_1134_S0020441222010195 crossref_primary_10_1088_1361_6463_ad32ed crossref_primary_10_1063_1_4960123 crossref_primary_10_1088_1361_6501_acf77a crossref_primary_10_1088_1361_6595_ab6073 crossref_primary_10_1139_cjp_2017_0478 crossref_primary_10_1088_1361_6595_abd61d crossref_primary_10_1088_1361_6595_aca560 crossref_primary_10_1029_2020EA001344 crossref_primary_10_1134_S1063780X22601043 crossref_primary_10_1016_j_vacuum_2024_113279 crossref_primary_10_1063_1_5048292 crossref_primary_10_1088_1361_6587_acb3f9 crossref_primary_10_3390_pr12091858 crossref_primary_10_1016_j_asr_2019_05_025 crossref_primary_10_1088_1361_6501_abf804 crossref_primary_10_1016_j_vacuum_2020_109616 crossref_primary_10_1063_1_5093892 crossref_primary_10_1088_1361_6595_ad0921 crossref_primary_10_1088_1402_4896_ab687f crossref_primary_10_1134_S0018143923070378 crossref_primary_10_1007_s11090_025_10552_5 crossref_primary_10_1063_1_5053677 crossref_primary_10_1088_1361_6595_ac8288 crossref_primary_10_1088_1361_6595_aca9f5 crossref_primary_10_1088_1757_899X_871_1_012059 crossref_primary_10_1063_1_5006892 crossref_primary_10_1116_1_5133978 crossref_primary_10_1116_6_0001461 crossref_primary_10_1016_j_vacuum_2018_06_061 crossref_primary_10_1016_j_ijhydene_2022_05_007 crossref_primary_10_1134_S0018143924701303 crossref_primary_10_3390_molecules27186066 crossref_primary_10_1007_s11090_023_10378_z crossref_primary_10_1109_TPS_2023_3341445 crossref_primary_10_1134_S1063778821090039 crossref_primary_10_1016_j_physleta_2021_127910 crossref_primary_10_1109_TPS_2019_2892053 crossref_primary_10_1088_1361_6595_ac8830 crossref_primary_10_3390_plasma7020022 crossref_primary_10_1063_1_5125423 crossref_primary_10_1088_1361_6595_abe4bf crossref_primary_10_1063_1_4972090 crossref_primary_10_1109_TPS_2020_3020977 crossref_primary_10_1007_s42452_020_04019_9 crossref_primary_10_1103_PhysRevResearch_2_033500 crossref_primary_10_1088_2058_6272_ac125d crossref_primary_10_1016_j_cjph_2020_09_012 crossref_primary_10_1063_6_0002313 crossref_primary_10_1088_1361_6595_aa5300 crossref_primary_10_1088_1361_6595_ac9750 crossref_primary_10_1134_S1064226920030183 crossref_primary_10_1017_S0022377823000703 crossref_primary_10_1063_1_5018335 crossref_primary_10_1063_5_0092091 crossref_primary_10_1088_2058_6272_aa68db crossref_primary_10_1134_S1063778817110175 crossref_primary_10_1063_1_5054670 crossref_primary_10_1063_1_4971980 crossref_primary_10_1088_1361_6595_aaa237 crossref_primary_10_1119_10_0001318 crossref_primary_10_3390_s23229170 crossref_primary_10_35848_1347_4065_ac88ac crossref_primary_10_3390_instruments6020017 crossref_primary_10_1088_1367_2630_aa6927 crossref_primary_10_1088_1361_6595_aa72c9 crossref_primary_10_1615_HighTempMatProc_2022046504 crossref_primary_10_1016_j_vacuum_2022_111570 crossref_primary_10_1109_TPS_2020_3045366 crossref_primary_10_1088_1361_6595_ad3847 crossref_primary_10_1088_1361_6595_ab2401 crossref_primary_10_1063_5_0019527 crossref_primary_10_1016_j_ijleo_2017_05_093 crossref_primary_10_1063_5_0213213 crossref_primary_10_1063_1_5088706 crossref_primary_10_1088_1361_6595_ab69e5 crossref_primary_10_1063_5_0071172 crossref_primary_10_1007_s11090_025_10550_7 crossref_primary_10_3390_gels10060395 crossref_primary_10_1063_5_0097089 crossref_primary_10_1038_s41598_023_45656_5 crossref_primary_10_1063_5_0043266 crossref_primary_10_1016_j_ijleo_2019_163165 crossref_primary_10_1016_j_vacuum_2019_04_051 crossref_primary_10_1088_1361_6595_ac91a1 crossref_primary_10_1007_s11090_020_10137_4 crossref_primary_10_1063_1_5121807 crossref_primary_10_1063_1_5118762 crossref_primary_10_1063_5_0012442 crossref_primary_10_1109_TPS_2022_3190426 crossref_primary_10_3390_ma16072762 crossref_primary_10_1016_j_vacuum_2025_114162 crossref_primary_10_1103_PhysRevE_104_055204 crossref_primary_10_1063_5_0130982 crossref_primary_10_1017_S0022377824000552 crossref_primary_10_1063_5_0024258 crossref_primary_10_1016_j_vacuum_2024_113338 crossref_primary_10_1063_5_0204161 crossref_primary_10_1088_1361_6595_ad05f6 crossref_primary_10_3390_app14083470 crossref_primary_10_1017_S0263034618000198 crossref_primary_10_1063_5_0154803 crossref_primary_10_1002_ctpp_201800029 crossref_primary_10_1016_j_vacuum_2022_111514 crossref_primary_10_1134_S1063784220020048 crossref_primary_10_1088_2516_1067_aaf24d crossref_primary_10_1088_1361_6595_ac915a crossref_primary_10_1063_1_5026214 crossref_primary_10_1016_j_measurement_2018_04_075 |
| Cites_doi | 10.1103/PhysRevLett.65.996 10.1103/PhysRev.28.727 10.1063/1.352924 10.1007/BF01773007 10.1063/1.1705900 10.1063/1.1587889 10.1088/0963-0252/4/2/004 10.1088/0963-0252/1/1/006 10.1063/1.357280 10.1103/PhysRevLett.68.40 10.1109/27.700878 10.1088/0963-0252/5/1/001 10.1088/0022-3727/44/23/233001 10.1088/0963-0252/17/1/015019 10.1103/PhysRevLett.81.369 10.1088/0370-1301/70/3/303 10.1116/1.2187991 10.1002/ctpp.2150340108 10.1109/TPS.2006.875847 10.1103/PhysRevE.64.026406 10.1088/0963-0252/17/3/035026 10.3367/UFNe.0180.201002b.0139 10.1007/BF00633129 10.1116/1.4867158 10.1088/0963-0252/18/3/035012 10.1088/0963-0252/11/4/320 10.1109/27.467971 10.2514/3.49973 10.1088/0022-3727/46/48/485202 10.1063/1.1505099 |
| ContentType | Journal Article |
| Copyright | 2015 AIP Publishing LLC. |
| Copyright_xml | – notice: 2015 AIP Publishing LLC. |
| CorporateAuthor | Univ. of Michigan, Ann Arbor, MI (United States) |
| CorporateAuthor_xml | – name: Univ. of Michigan, Ann Arbor, MI (United States) |
| DBID | AAYXX CITATION 8FD H8D L7M OIOZB OTOTI ADTOC UNPAY |
| DOI | 10.1063/1.4937446 |
| DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef Technology Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1089-7550 |
| ExternalDocumentID | oai:osti.gov:1229790 1468473 10_1063_1_4937446 |
| GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYXX ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UHB UPT WH7 XSW YQT YZZ ZCA ~02 8FD H8D L7M 0ZJ AAEUA ABFTF ABPTK AGIHO ESX OIOZB OTOTI TAF UCJ UE8 .GJ 186 2WC 3O- 41~ 6TJ AAYJJ ABDPE ACKIV ADTOC ADXHL AETEA AFFNX AI. FA8 MVM NEJ NEUPN NHB OHT P0- RDFOP ROL UKR UNPAY VH1 VOH XJT XOL XXG YYP ZCG ZY4 |
| ID | FETCH-LOGICAL-c319t-7323b10c1fc237fc87503e37d45bad0d13a634f5c9fe3bc2ed2641d5a504ca663 |
| IEDL.DBID | UNPAY |
| ISSN | 0021-8979 1089-7550 1520-8850 |
| IngestDate | Sun Oct 26 04:02:13 EDT 2025 Thu May 18 22:38:21 EDT 2023 Sun Sep 07 03:43:47 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Wed Oct 01 04:29:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-7323b10c1fc237fc87503e37d45bad0d13a634f5c9fe3bc2ed2641d5a504ca663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0001939 USDOE Office of Science (SC), Fusion Energy Sciences (FES) |
| ORCID | 0000-0001-8611-0005 0000000186110005 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1229790 |
| PQID | 2123767187 |
| PQPubID | 2050677 |
| ParticipantIDs | unpaywall_primary_10_1063_1_4937446 osti_scitechconnect_1468473 proquest_journals_2123767187 crossref_citationtrail_10_1063_1_4937446 crossref_primary_10_1063_1_4937446 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-12-21 |
| PublicationDateYYYYMMDD | 2015-12-21 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | Melville |
| PublicationPlace_xml | – name: Melville – name: United States |
| PublicationTitle | Journal of applied physics |
| PublicationYear | 2015 |
| Publisher | American Institute of Physics American Institute of Physics (AIP) |
| Publisher_xml | – name: American Institute of Physics – name: American Institute of Physics (AIP) |
| References | (2023062422245739800_c14) 1985 (2023062422245739800_c49) 2005; 12 (2023062422245739800_c4) 1975 Lochte-Holtgreven (2023062422245739800_c11) 1968 (2023062422245739800_c42) 2011 (2023062422245739800_c19) 2006; 24 (2023062422245739800_c48) 1998; 26 (2023062422245739800_c21) 2006; 40 (2023062422245739800_c8) 2002; 73 (2023062422245739800_c23) 2003; 94 (2023062422245739800_c5) 1982; 2 (2023062422245739800_c6) 1989 (2023062422245739800_c15) 1926; 28 (2023062422245739800_c44) 2014; 32 (2023062422245739800_c3) 1970 2023062422245739800_c38 (2023062422245739800_c41) 2014 (2023062422245739800_c45) 1995; 23 (2023062422245739800_c39) 2008; 17 2023062422245739800_c35 2023062422245739800_c36 2023062422245739800_c37 (2023062422245739800_c9) 2011; 44 (2023062422245739800_c28) 1930; 64 (2023062422245739800_c10) 1993; 73 (2023062422245739800_c25) 1990; 65 (2023062422245739800_c1) 1924; 27 (2023062422245739800_c12) 2009; 18 (2023062422245739800_c43) 2013; 46 Kortshagen (2023062422245739800_c31) 1998 (2023062422245739800_c22) 1971; 9 (2023062422245739800_c24) 2008; 17 (2023062422245739800_c46) 1995; 4 (2023062422245739800_c13) 1957; 70 (2023062422245739800_c26) 1998; 81 (2023062422245739800_c34) 2001; 64 (2023062422245739800_c40) 2014 Huddlestone (2023062422245739800_c2) 1965 (2023062422245739800_c29) 1992; 1 Bergman (2023062422245739800_c33) 2001 (2023062422245739800_c20) 1994; 34 (2023062422245739800_c50) 2006; 34 2023062422245739800_c17 (2023062422245739800_c47) 1996; 5 (2023062422245739800_c51) 2010; 53 (2023062422245739800_c16) 1959; 2 (2023062422245739800_c7) 1990 (2023062422245739800_c18) 1994; 76 (2023062422245739800_c27) 1974; 12 (2023062422245739800_c30) 2002; 11 (2023062422245739800_c32) 1992; 68 |
| References_xml | – volume: 65 start-page: 996 year: 1990 ident: 2023062422245739800_c25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.996 – volume: 28 start-page: 727 year: 1926 ident: 2023062422245739800_c15 publication-title: Phys. Rev. doi: 10.1103/PhysRev.28.727 – volume: 73 start-page: 3657 year: 1993 ident: 2023062422245739800_c10 publication-title: J. Appl. Phys. doi: 10.1063/1.352924 – volume: 64 start-page: 781 year: 1930 ident: 2023062422245739800_c28 publication-title: Z. Phys. doi: 10.1007/BF01773007 – volume: 2 start-page: 112 year: 1959 ident: 2023062422245739800_c16 publication-title: Phys. Fluids doi: 10.1063/1.1705900 – year: 2014 ident: 2023062422245739800_c41 – volume: 94 start-page: 1374 year: 2003 ident: 2023062422245739800_c23 publication-title: J. Appl. Phys. doi: 10.1063/1.1587889 – volume: 4 start-page: 200 year: 1995 ident: 2023062422245739800_c46 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/4/2/004 – volume-title: Plasma Diagnostic Techniques year: 1965 ident: 2023062422245739800_c2 – volume: 1 start-page: 36 year: 1992 ident: 2023062422245739800_c29 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/1/1/006 – ident: 2023062422245739800_c37 – volume: 76 start-page: 4488 year: 1994 ident: 2023062422245739800_c18 publication-title: J. Appl. Phys. doi: 10.1063/1.357280 – volume: 68 start-page: 40 year: 1992 ident: 2023062422245739800_c32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.40 – volume: 12 start-page: 3553 year: 2005 ident: 2023062422245739800_c49 publication-title: Phys. Plasmas – volume-title: Modern Uses of Langmuir Probes year: 1985 ident: 2023062422245739800_c14 – volume-title: Proceedings of the 9th International Symposium on the Science and Technology of Light Sources year: 2001 ident: 2023062422245739800_c33 – volume-title: Plasma–Surface Interaction and Processing of Materials year: 1990 ident: 2023062422245739800_c7 – volume: 26 start-page: 955 year: 1998 ident: 2023062422245739800_c48 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.700878 – volume: 5 start-page: 1 year: 1996 ident: 2023062422245739800_c47 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/5/1/001 – volume-title: Electric Probes in Stationary and Flowing Plasmas: Theory and Application year: 1975 ident: 2023062422245739800_c4 – volume: 44 start-page: 233001 year: 2011 ident: 2023062422245739800_c9 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/23/233001 – volume: 17 start-page: 015019 year: 2008 ident: 2023062422245739800_c24 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/17/1/015019 – volume: 12 start-page: 409 year: 1974 ident: 2023062422245739800_c27 publication-title: High Temp. – ident: 2023062422245739800_c36 – volume: 81 start-page: 369 year: 1998 ident: 2023062422245739800_c26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.369 – volume: 70 start-page: 297 year: 1957 ident: 2023062422245739800_c13 publication-title: Proc. Phys. Soc. B doi: 10.1088/0370-1301/70/3/303 – volume: 24 start-page: 1366 year: 2006 ident: 2023062422245739800_c19 publication-title: J. Vac. Sci. Technol., A doi: 10.1116/1.2187991 – volume: 34 start-page: 59 year: 1994 ident: 2023062422245739800_c20 publication-title: Contrib. Plasma Phys. doi: 10.1002/ctpp.2150340108 – volume: 34 start-page: 755 year: 2006 ident: 2023062422245739800_c50 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2006.875847 – volume: 64 start-page: 026406 year: 2001 ident: 2023062422245739800_c34 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.026406 – volume: 17 start-page: 035026 year: 2008 ident: 2023062422245739800_c39 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/17/3/035026 – volume: 53 start-page: 133 issue: 2 year: 2010 ident: 2023062422245739800_c51 publication-title: Phys. - Usp. doi: 10.3367/UFNe.0180.201002b.0139 – ident: 2023062422245739800_c35 – year: 2011 ident: 2023062422245739800_c42 – volume-title: Electrical Probes for Plasma Diagnostics year: 1970 ident: 2023062422245739800_c3 – volume: 2 start-page: 113 year: 1982 ident: 2023062422245739800_c5 publication-title: Plasma Chem. Plasma Process. doi: 10.1007/BF00633129 – year: 2014 ident: 2023062422245739800_c40 – volume: 32 start-page: 030601 year: 2014 ident: 2023062422245739800_c44 publication-title: J. Vac. Sci Technol., A doi: 10.1116/1.4867158 – volume: 18 start-page: 035012 year: 2009 ident: 2023062422245739800_c12 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/18/3/035012 – volume: 27 start-page: 810 year: 1924 ident: 2023062422245739800_c1 publication-title: Gen. Electr. Rev. – volume: 11 start-page: 525 year: 2002 ident: 2023062422245739800_c30 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/11/4/320 – volume: 23 start-page: 503 year: 1995 ident: 2023062422245739800_c45 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.467971 – volume: 9 start-page: 1673 year: 1971 ident: 2023062422245739800_c22 publication-title: AIAA J. doi: 10.2514/3.49973 – volume: 46 start-page: 485202 year: 2013 ident: 2023062422245739800_c43 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/46/48/485202 – ident: 2023062422245739800_c17 – volume-title: Plasma Diagnostics year: 1968 ident: 2023062422245739800_c11 – volume: 73 start-page: 3409 year: 2002 ident: 2023062422245739800_c8 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1505099 – start-page: 241 volume-title: Electron Kinetics and Application of Glow Discharges year: 1998 ident: 2023062422245739800_c31 – ident: 2023062422245739800_c38 – volume-title: Plasma Diagnostics year: 1989 ident: 2023062422245739800_c6 – volume: 40 start-page: 1687 year: 2006 ident: 2023062422245739800_c21 publication-title: J. Korean Phys. Soc. |
| SSID | ssj0011839 |
| Score | 2.532518 |
| Snippet | The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of... Here, the subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different... |
| SourceID | unpaywall osti proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Applied physics Atomic collisions CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Deformation Distribution functions Electron energy Electron energy distribution Energy measurement Energy resolution Gas discharges Industrial applications Ion currents Mathematical analysis Parameters Plasma Plasma probes Plasmas (physics) Uncertainty |
| Title | Comparative analyses of plasma probe diagnostics techniques |
| URI | https://www.proquest.com/docview/2123767187 https://www.osti.gov/servlets/purl/1468473 https://www.osti.gov/biblio/1229790 |
| UnpaywallVersion | submittedVersion |
| Volume | 118 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011839 issn: 1520-8850 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dSxtBFL2EhFJ90NYqRqMs2oe-TNz53F18Cn4gRaXQBuzTMjszC2JMgtkg-uu9sx8xlRb7ftmZ2TvDOcOcey7AV-1Mbi1NiGO5JMJoS2LJFEHsdsYJplVZKHx1rS6G4vuNvGnBYVML42WVE9zcpaYyu81Gt5MjylgSJXgv7yiJhLsNneH1j8HvSrxBSZyUjno0jBMSybInK4JSSOJYho2XkOJHtC8QioVnuksI1PaD_cEuP87HU_30qEejJaA5X4fTZoqVvuSuPy-yvnl-4974zho-wVpNNINBtTM-Q8uNN2B1yX5wAz6U8k8z-wLHJ68m4IEufUrcLJjkwRTJ9b0OfNsZF9hKlueNnYOF9-tsE4bnZ79OLkjdVoEYPG8FiTjjGQ0NzQ3jUW5i_5TpeGSFzLQNLeVacZFLk-SOZ4Y5i6SJWqlliLlEhrIF7fFk7LYhiJ2JFJJC_z1fHh0LLqRLhM1dmGhmuvCt-dWpqT3HfeuLUVq-fSue0rTOShcOFqHTymjjb0G7fpUpsgO_TOO1QKbw1xcEWd6FXpPGtD6Js9RDc6QQgaMuHC5S--8hdv4rahdWkDlJr2thtAft4mHu9pCdFNk-dAanV5c_9-td-gI6i99T |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dSxtBFL1IpNQ-WI1KY6Is2oe-TNz53F18Em0IBcUHA-nTMjszC2JMgtlQ6q_3zn7EWFrs-2VnZu8M5wxz7rkAX7UzubU0IY7lkgijLYklUwSx2xknmFZlofD1jRqOxI-xHG_AaVML42WVM9zcpaYyu88m97MzylgSJXgv31QSCXcLNkc3txc_K_EGJXFSOurRME5IJMuerAhKIYljGTZeQoqf0b5AKBae6a4hUMsP9oZdflxO5_r3Lz2ZrAHN4DNcNVOs9CUP_WWR9c3zH-6N76xhB7ZrohlcVDtjFzbctA2f1uwH2_ChlH-axR6cX76agAe69Clxi2CWB3Mk14868G1nXGArWZ43dg5W3q-LfRgNvt9dDkndVoEYPG8FiTjjGQ0NzQ3jUW5i_5TpeGSFzLQNLeVacZFLk-SOZ4Y5i6SJWqlliLlEhnIArels6r5AEDsTKSSF_nu-PDoWXEiXCJu7MNHMdOBb86tTU3uO-9YXk7R8-1Y8pWmdlQ6crELnldHG34K6fpUpsgO_TOO1QKbw1xcEWd6BXpPGtD6Ji9RDc6QQgaMOnK5S--8hDv8rqgtbyJyk17Uw2oNW8bR0R8hOiuy43p0vR9Xdvw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analyses+of+plasma+probe+diagnostics+techniques&rft.jtitle=Journal+of+applied+physics&rft.au=Godyak%2C+V+A&rft.au=Alexandrovich%2C+B+M&rft.date=2015-12-21&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=118&rft.issue=23&rft_id=info:doi/10.1063%2F1.4937446&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |