Minimal Kapur cross-entropy-based image segmentation for distribution grid inspection using improved INFO optimization algorithm
Distribution grid network has problems such as long mileage, large scale, complex surrounding environment, and aging of equipment. It is the development trend of power distribution network operation and maintenance to use unmanned aerial vehicles to patrol and combine with image processing technolog...
        Saved in:
      
    
          | Published in | The Journal of supercomputing Vol. 80; no. 3; pp. 4309 - 4352 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.02.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-8542 1573-0484  | 
| DOI | 10.1007/s11227-023-05628-y | 
Cover
| Abstract | Distribution grid network has problems such as long mileage, large scale, complex surrounding environment, and aging of equipment. It is the development trend of power distribution network operation and maintenance to use unmanned aerial vehicles to patrol and combine with image processing technology for intelligent detection of equipment status. Image segmentation is well-known technique for extracting defect regions of equipment from distribution network inspection images. Therefore, this paper proposes an efficient a novel multilevel thresholding segmentation method to improve the fault diagnosis process with an improved weighted mean of vectors optimization (IINFO) algorithm. The IINFO algorithm adopts various measures to improve the optimization results, including Gaussian mutation to increase the local search ability and range of the optimal individual, Cauchy mutation to enhance the global search ability of its vector individual, reflective learning operators to strengthen self-learning and avoid local optimal solutions, and parallel operation to improve the utilization of computational resources. Moreover, two-dimensional Kapur cross-entropy is used as an objective function to solve the multilevel thresholding problem. The proposed method is evaluated using benchmark functions and distribution network inspection image datasets and is compared with 12 other metaheuristic algorithms. The results demonstrate that the proposed method has better performance and a higher ability to find optimal solutions compared to the other algorithms. These findings suggest that our method may be useful in improving the accuracy and efficiency of distribution network inspections and have significant potential for practical applications. | 
    
|---|---|
| AbstractList | Distribution grid network has problems such as long mileage, large scale, complex surrounding environment, and aging of equipment. It is the development trend of power distribution network operation and maintenance to use unmanned aerial vehicles to patrol and combine with image processing technology for intelligent detection of equipment status. Image segmentation is well-known technique for extracting defect regions of equipment from distribution network inspection images. Therefore, this paper proposes an efficient a novel multilevel thresholding segmentation method to improve the fault diagnosis process with an improved weighted mean of vectors optimization (IINFO) algorithm. The IINFO algorithm adopts various measures to improve the optimization results, including Gaussian mutation to increase the local search ability and range of the optimal individual, Cauchy mutation to enhance the global search ability of its vector individual, reflective learning operators to strengthen self-learning and avoid local optimal solutions, and parallel operation to improve the utilization of computational resources. Moreover, two-dimensional Kapur cross-entropy is used as an objective function to solve the multilevel thresholding problem. The proposed method is evaluated using benchmark functions and distribution network inspection image datasets and is compared with 12 other metaheuristic algorithms. The results demonstrate that the proposed method has better performance and a higher ability to find optimal solutions compared to the other algorithms. These findings suggest that our method may be useful in improving the accuracy and efficiency of distribution network inspections and have significant potential for practical applications. | 
    
| Author | Jiao, Junjun Zhou, Tao Chen, Zhisheng  | 
    
| Author_xml | – sequence: 1 givenname: Junjun surname: Jiao fullname: Jiao, Junjun organization: School of Electrical and Information Engineering, Changsha University of Science & Technology – sequence: 2 givenname: Zhisheng surname: Chen fullname: Chen, Zhisheng email: chenzhisheng@csust.edu.cn organization: School of Electrical and Information Engineering, Changsha University of Science & Technology – sequence: 3 givenname: Tao surname: Zhou fullname: Zhou, Tao organization: School of Electrical and Information Engineering, Changsha University of Science & Technology  | 
    
| BookMark | eNp9kLtOwzAUhi1UJNrCCzBFYjb4koszoopCRaELzJadOMFVagc7QQoTj45JkJAYOlnn-P-Oj78FmBlrFACXGF1jhLIbjzEhGUSEQpSkhMHhBMxxkoUyZvEMzFFOEGRJTM7Awvs9QiimGZ2Drydt9EE00aNoexcVznoPlemcbQcohVdlFK5rFXlVH0JfdNqaqLIuKrXvnJb92KidDkHjW1WMde-1qQPZOvsRRmye17vItp0-6M9pgmhq63T3djgHp5VovLr4PZfgdX33snqA2939ZnW7hQXFeQczoiSjSGFJK5JJIgmSaU5knLKCJZimVJaKZZVCQomyqmhcZrlErKJClpgJugRX09yw0nuvfMf3tncmPMkpSdIkj1MShxSbUqMIpype6OnPnRO64RjxH9988s2Dbz765kNAyT-0dUGdG45DdIJ8CJtaub-tjlDfS1KZjA | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3511698 crossref_primary_10_1007_s12530_024_09614_4  | 
    
| Cites_doi | 10.1016/j.patrec.2013.12.017 10.1016/j.knosys.2022.108320 10.1016/j.image.2017.11.001 10.1007/s00521-018-3822-5 10.1016/j.asoc.2020.106734 10.1016/0734-189X(85)90125-2 10.1109/ACCESS.2019.2921545 10.1016/j.knosys.2020.106510 10.3390/e19050191 10.1016/j.knosys.2021.107486 10.1016/j.compbiomed.2021.104427 10.1016/j.eswa.2021.114587 10.1016/j.infrared.2019.103051 10.1016/j.knosys.2015.07.006 10.1016/j.patcog.2019.03.011 10.1016/j.physa.2016.09.053 10.1109/TFUZZ.2017.2756827 10.1007/s11042-020-10467-7 10.1016/j.engappai.2021.104653 10.1016/j.matcom.2021.08.013 10.1016/j.knosys.2021.107468 10.1016/j.procs.2015.09.027 10.1016/j.eswa.2022.116516 10.1016/j.advengsoft.2016.01.008 10.1117/1.1455011 10.1155/2013/713536 10.1016/j.knosys.2021.107348 10.1016/j.swevo.2011.02.002 10.1016/0734-189X(89)90051-0 10.1016/j.ins.2009.03.004 10.1016/j.eswa.2022.116511 10.1007/s11042-021-11633-1 10.1109/TIP.2011.2109730 10.1016/j.knosys.2022.108610 10.1016/j.measurement.2022.110884 10.1109/TITS.2004.838222 10.1109/ACCESS.2019.2942064 10.1016/j.future.2019.02.028 10.1109/TITS.2018.2875159 10.1016/j.advengsoft.2015.01.010 10.1016/j.ins.2009.12.010 10.1109/CSSE.2008.206 10.1109/IEMBS.2006.259516 10.1109/CVPR52688.2022.00789 10.1109/ICNN.1995.488968 10.1109/TGRS.2023.3286183 10.1016/j.bspc.2021.103401 10.1109/ICCV.2019.00996 10.1109/CVPR.2005.38 10.1016/j.eswa.2021.114841 10.1109/TPAMI.2021.3059968 10.1109/FUZZY.1993.327400  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| DOI | 10.1007/s11227-023-05628-y | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-0484 | 
    
| EndPage | 4352 | 
    
| ExternalDocumentID | 10_1007_s11227_023_05628_y | 
    
| GrantInformation_xml | – fundername: the Young Teachers Program of Changsha University of Science & Technology grantid: No. 2019QJCZ041 and 2019QJCZ079 – fundername: the Hunan Provincial Natural Science Foundation of China grantid: Nos. 2021JJ30732  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS  | 
    
| ID | FETCH-LOGICAL-c319t-72eb830e1b3f27b2b20b692b468c851363bde87fe0aeadff34d79b08f3abd18a3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0920-8542 | 
    
| IngestDate | Mon Oct 06 18:32:07 EDT 2025 Thu Apr 24 22:55:00 EDT 2025 Wed Oct 01 03:43:56 EDT 2025 Fri Feb 21 02:41:38 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Improved weIghted meaN oF vectOrs (IINFO) Image segmentation Unmanned aerial vehicle (UAV) Distribution network  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-72eb830e1b3f27b2b20b692b468c851363bde87fe0aeadff34d79b08f3abd18a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3256594624 | 
    
| PQPubID | 2043774 | 
    
| PageCount | 44 | 
    
| ParticipantIDs | proquest_journals_3256594624 crossref_citationtrail_10_1007_s11227_023_05628_y crossref_primary_10_1007_s11227_023_05628_y springer_journals_10_1007_s11227_023_05628_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240200 2024-02-00 20240201  | 
    
| PublicationDateYYYYMMDD | 2024-02-01 | 
    
| PublicationDate_xml | – month: 2 year: 2024 text: 20240200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use | 
    
| PublicationTitle | The Journal of supercomputing | 
    
| PublicationTitleAbbrev | J Supercomput | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Shakeel, Baskar, Sampath, Jaber (CR13) 2019; 11 Jia, Sun, Song, Peng, Lang, Li (CR25) 2019; 7 Zaitoun, Aqel (CR23) 2015; 65 CR38 Xiao, Cao, Yuan (CR27) 2014; 40 Ray, Parai, Das, Dhal, Naskar (CR7) 2021; 81 Mousavirad, Oliva, Chakrabortty, Zabihzadeh, Hinojosa (CR5) 2022; 245 Naik, Panda, Wunnava, Jena, Abraham (CR54) 2021; 80 Xu, Liu, Fujimura (CR16) 2005; 6 Ahmadianfar, Heidari, Noshadian, Chen, Gandomi (CR35) 2022; 195 Rashedi, Nezamabadi-Pour, Saryazdi (CR50) 2009; 179 Mirjalili (CR51) 2015; 89 Houssein, Hussain, Abualigah, Elaziz, Alomoush, Dhiman, Djenouri, Cuevas (CR33) 2021; 229 Salawudeen, Mu’azu, Sha’aban, Adedokun (CR47) 2021; 232 CR4 Abutaleb (CR26) 1989; 47 CR9 Hashim, Hussien (CR48) 2022; 242 CR45 Wang, Bai (CR12) 2018; 20 Feng, Niu, Liu (CR36) 2021; 98 Zhang, Zhang, Mou, Zhang (CR39) 2011; 20 Borjigin, Sahoo (CR30) 2019; 92 Bai, Wang, Liu, Guo (CR10) 2017; 26 Kapur, Sahoo, Wong (CR43) 1985; 29 Civicioglu, Besdok, Gunen, Atasever (CR53) 2020; 32 Zhao, Wang, Heidari, Chen, Turabieh, Mafarja, Li (CR3) 2021; 134 Yu, Song, Chen, Heidari, Liu, Chen, Zaguia, Mafarja (CR1) 2022; 109 Mirjalili (CR49) 2015; 83 CR19 CR18 Chouksey, Jha (CR32) 2021; 171 Ben Ishak (CR2) 2017; 466 CR11 CR55 Ren, Heidari, Cai, Shao, Liang, Chen, Pan (CR31) 2022; 192 Reisenhofer, Bosse, Kutyniok, Wiegand (CR40) 2018; 61 Tang, Gao, Liu, Yu (CR17) 2019; 102 Yu, Qi, Lu, Hu (CR14) 2013; 2013 Chen, Wang, Heidari, Shi, Hu, Zhang, Chen, Mafarja, Turabieh (CR6) 2022; 194 Mirjalili, Lewis (CR52) 2016; 95 Bandyopadhyay, Kundu, Oliva, Sarkar (CR34) 2021; 232 CR29 Cheng, Lang, Han (CR20) 2022; 45 García, Fernández, Luengo, Herrera (CR41) 2010; 180 CR24 Bao, Jia, Lang (CR8) 2019; 7 CR22 Derrac, García, Molina, Herrera (CR42) 2011; 1 CR21 Zhao, Liu, Yu, Heidari, Wang, Liang, Muhammad, Chen (CR15) 2021; 216 Sankur (CR37) 2002; 11 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR44) 2019; 97 Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (CR46) 2022; 192 Zheng, Ye, Tang (CR28) 2017; 19 5628_CR24 5628_CR29 FA Hashim (5628_CR46) 2022; 192 JN Kapur (5628_CR43) 1985; 29 FA Hashim (5628_CR48) 2022; 242 5628_CR22 5628_CR21 SJ Mousavirad (5628_CR5) 2022; 245 Y Chen (5628_CR6) 2022; 194 A Ben Ishak (5628_CR2) 2017; 466 J Derrac (5628_CR42) 2011; 1 I Ahmadianfar (5628_CR35) 2022; 195 F Xu (5628_CR16) 2005; 6 X Bai (5628_CR10) 2017; 26 S Mirjalili (5628_CR51) 2015; 89 Z-k Feng (5628_CR36) 2021; 98 R Reisenhofer (5628_CR40) 2018; 61 X Bao (5628_CR8) 2019; 7 H Yu (5628_CR1) 2022; 109 5628_CR38 S Ray (5628_CR7) 2021; 81 EH Houssein (5628_CR33) 2021; 229 AA Heidari (5628_CR44) 2019; 97 P Civicioglu (5628_CR53) 2020; 32 G Cheng (5628_CR20) 2022; 45 S Borjigin (5628_CR30) 2019; 92 S Mirjalili (5628_CR49) 2015; 83 AS Abutaleb (5628_CR26) 1989; 47 S García (5628_CR41) 2010; 180 Y Wang (5628_CR12) 2018; 20 L Zhang (5628_CR39) 2011; 20 R Bandyopadhyay (5628_CR34) 2021; 232 S Zhao (5628_CR3) 2021; 134 M Chouksey (5628_CR32) 2021; 171 5628_CR45 PM Shakeel (5628_CR13) 2019; 11 D Zhao (5628_CR15) 2021; 216 X Zheng (5628_CR28) 2017; 19 S Mirjalili (5628_CR52) 2016; 95 H Jia (5628_CR25) 2019; 7 5628_CR4 B Sankur (5628_CR37) 2002; 11 5628_CR9 NM Zaitoun (5628_CR23) 2015; 65 L Ren (5628_CR31) 2022; 192 AT Salawudeen (5628_CR47) 2021; 232 E Rashedi (5628_CR50) 2009; 179 X Yu (5628_CR14) 2013; 2013 5628_CR19 5628_CR18 5628_CR11 5628_CR55 Y Xiao (5628_CR27) 2014; 40 Q Tang (5628_CR17) 2019; 102 MK Naik (5628_CR54) 2021; 80  | 
    
| References_xml | – ident: CR45 – ident: CR22 – volume: 40 start-page: 47 year: 2014 end-page: 55 ident: CR27 article-title: Entropic image thresholding based on GLGM histogram publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2013.12.017 – ident: CR4 – volume: 242 start-page: 1 year: 2022 ident: CR48 article-title: Snake optimizer: a novel meta-heuristic optimization algorithm publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108320 – volume: 61 start-page: 33 year: 2018 end-page: 43 ident: CR40 article-title: A Haar wavelet-based perceptual similarity index for image quality assessment publication-title: Signal Process: Image Commun doi: 10.1016/j.image.2017.11.001 – volume: 32 start-page: 3923 year: 2020 end-page: 3937 ident: CR53 article-title: Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3822-5 – ident: CR29 – volume: 98 start-page: 1 year: 2021 ident: CR36 article-title: Cooperation search algorithm: a novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106734 – volume: 29 start-page: 273 issue: 3 year: 1985 end-page: 285 ident: CR43 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Comput Vis Gr Image Process doi: 10.1016/0734-189X(85)90125-2 – volume: 7 start-page: 76529 year: 2019 end-page: 76546 ident: CR8 article-title: A novel hybrid Harris Hawks optimization for color image multilevel thresholding segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921545 – volume: 216 start-page: 1 year: 2021 ident: CR15 article-title: Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2d Kapur entropy publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106510 – volume: 19 start-page: 1 issue: 5 year: 2017 ident: CR28 article-title: Image bi-level thresholding based on gray level-local variance histogram publication-title: Entropy doi: 10.3390/e19050191 – volume: 232 start-page: 1 year: 2021 ident: CR47 article-title: A novel smell agent optimization (SAO): An extensive CEC study and engineering application publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107486 – ident: CR21 – ident: CR19 – volume: 134 year: 2021 ident: CR3 article-title: Multilevel threshold image segmentation with diffusion association slime Mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104427 – volume: 171 start-page: 1 year: 2021 ident: CR32 article-title: A multiverse optimization based colour image segmentation using variational mode decomposition publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114587 – volume: 102 year: 2019 ident: CR17 article-title: Infrared image segmentation algorithm for defect detection based on FODPSO publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2019.103051 – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: CR51 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 92 start-page: 107 year: 2019 end-page: 118 ident: CR30 article-title: Color image segmentation based on multi-level Tsallis–Havrda–Charvát entropy and 2d histogram using PSO algorithms publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.03.011 – volume: 466 start-page: 521 year: 2017 end-page: 536 ident: CR2 article-title: Choosing parameters for Rényi and Tsallis entropies within a two-dimensional multilevel image segmentation framework publication-title: Physica A doi: 10.1016/j.physa.2016.09.053 – ident: CR11 – ident: CR9 – volume: 26 start-page: 1946 issue: 4 year: 2017 end-page: 1959 ident: CR10 article-title: Symmetry information based fuzzy clustering for infrared pedestrian segmentation publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2017.2756827 – volume: 80 start-page: 35543 issue: 28–29 year: 2021 end-page: 35583 ident: CR54 article-title: A leader Harris Hawks optimization for 2-d masi entropy-based multilevel image thresholding publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10467-7 – volume: 109 start-page: 1 year: 2022 ident: CR1 article-title: Image segmentation of leaf spot diseases on maize using multi-stage Cauchy-enabled grey wolf algorithm publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104653 – volume: 192 start-page: 84 year: 2022 end-page: 110 ident: CR46 article-title: Honey badger algorithm: new metaheuristic algorithm for solving optimization problems publication-title: Math Comput Simul doi: 10.1016/j.matcom.2021.08.013 – volume: 232 start-page: 1 year: 2021 ident: CR34 article-title: Segmentation of brain MRI using an altruistic Harris Hawks’ optimization algorithm publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107468 – volume: 65 start-page: 797 year: 2015 end-page: 806 ident: CR23 article-title: Survey on image segmentation techniques publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.09.027 – volume: 195 start-page: 1 year: 2022 ident: CR35 article-title: Info: an efficient optimization algorithm based on weighted mean of vectors publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116516 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR52 article-title: The whale optimization algorithm publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 11 start-page: 1 issue: 2 year: 2002 ident: CR37 article-title: Statistical evaluation of image quality measures publication-title: J Electron Imag doi: 10.1117/1.1455011 – volume: 2013 start-page: 1 year: 2013 ident: CR14 article-title: Implicit active contours driven by local and global image fitting energy for image segmentation and target localization publication-title: J Sens doi: 10.1155/2013/713536 – ident: CR18 – volume: 11 start-page: 270 issue: 5 year: 2019 end-page: 278 ident: CR13 article-title: Echocardiography image segmentation using feed forward artificial neural network (FFANN) with fuzzy multi-scale edge detection (fmed) publication-title: Int J Signal Imag Syst Eng – volume: 229 start-page: 1 year: 2021 ident: CR33 article-title: An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107348 – volume: 1 start-page: 3 issue: 1 year: 2011 end-page: 18 ident: CR42 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – volume: 47 start-page: 22 issue: 1 year: 1989 end-page: 32 ident: CR26 article-title: Automatic thresholding of gray-level pictures using two-dimensional entropy publication-title: Comput Vis Gr Image Process doi: 10.1016/0734-189X(89)90051-0 – volume: 179 start-page: 2232 issue: 13 year: 2009 end-page: 2248 ident: CR50 article-title: Gsa: a gravitational search algorithm publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume: 194 start-page: 1 year: 2022 ident: CR6 article-title: Multi-threshold image segmentation using a multi-strategy shuffled frog leaping algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116511 – volume: 81 start-page: 4073 issue: 3 year: 2021 end-page: 4117 ident: CR7 article-title: Cuckoo search with differential evolution mutation and masi entropy for multi-level image segmentation publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11633-1 – volume: 20 start-page: 2378 issue: 8 year: 2011 end-page: 86 ident: CR39 article-title: FSIM: a feature similarity index for image quality assessment publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2109730 – volume: 245 start-page: 1 year: 2022 ident: CR5 article-title: Population-based self-adaptive generalised masi entropy for image segmentation: a novel representation publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108610 – volume: 192 start-page: 1 year: 2022 ident: CR31 article-title: Gaussian kernel probability-driven slime mould algorithm with new movement mechanism for multi-level image segmentation publication-title: Measurement doi: 10.1016/j.measurement.2022.110884 – volume: 6 start-page: 63 issue: 1 year: 2005 end-page: 71 ident: CR16 article-title: Pedestrian detection and tracking with night vision publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2004.838222 – volume: 7 start-page: 134448 year: 2019 end-page: 134474 ident: CR25 article-title: Multi-strategy emperor penguin optimizer for RGB histogram-based color satellite image segmentation using masi entropy publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942064 – ident: CR38 – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR44 article-title: Harris hawks optimization: algorithm and applications publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 20 start-page: 3361 issue: 9 year: 2018 end-page: 3374 ident: CR12 article-title: Intensity inhomogeneity suppressed fuzzy c-means for infrared pedestrian segmentation publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2875159 – ident: CR55 – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: CR49 article-title: The ant lion optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – volume: 45 start-page: 4650 issue: 4 year: 2022 end-page: 4666 ident: CR20 article-title: Holistic prototype activation for few-shot segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 180 start-page: 2044 issue: 10 year: 2010 end-page: 2064 ident: CR41 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power publication-title: Inf Sci doi: 10.1016/j.ins.2009.12.010 – ident: CR24 – volume: 229 start-page: 1 year: 2021 ident: 5628_CR33 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107348 – volume: 20 start-page: 2378 issue: 8 year: 2011 ident: 5628_CR39 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2109730 – volume: 2013 start-page: 1 year: 2013 ident: 5628_CR14 publication-title: J Sens doi: 10.1155/2013/713536 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 5628_CR43 publication-title: Comput Vis Gr Image Process doi: 10.1016/0734-189X(85)90125-2 – volume: 20 start-page: 3361 issue: 9 year: 2018 ident: 5628_CR12 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2018.2875159 – volume: 134 year: 2021 ident: 5628_CR3 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104427 – volume: 40 start-page: 47 year: 2014 ident: 5628_CR27 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2013.12.017 – volume: 32 start-page: 3923 year: 2020 ident: 5628_CR53 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3822-5 – ident: 5628_CR55 doi: 10.1109/CSSE.2008.206 – ident: 5628_CR38 doi: 10.1109/IEMBS.2006.259516 – volume: 92 start-page: 107 year: 2019 ident: 5628_CR30 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.03.011 – volume: 7 start-page: 76529 year: 2019 ident: 5628_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921545 – ident: 5628_CR21 doi: 10.1109/CVPR52688.2022.00789 – volume: 7 start-page: 134448 year: 2019 ident: 5628_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942064 – volume: 232 start-page: 1 year: 2021 ident: 5628_CR34 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107468 – volume: 97 start-page: 849 year: 2019 ident: 5628_CR44 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 45 start-page: 4650 issue: 4 year: 2022 ident: 5628_CR20 publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 89 start-page: 228 year: 2015 ident: 5628_CR51 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 216 start-page: 1 year: 2021 ident: 5628_CR15 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106510 – volume: 232 start-page: 1 year: 2021 ident: 5628_CR47 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107486 – volume: 83 start-page: 80 year: 2015 ident: 5628_CR49 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – ident: 5628_CR19 doi: 10.1109/CVPR52688.2022.00789 – volume: 194 start-page: 1 year: 2022 ident: 5628_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116511 – volume: 192 start-page: 84 year: 2022 ident: 5628_CR46 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2021.08.013 – volume: 242 start-page: 1 year: 2022 ident: 5628_CR48 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108320 – volume: 109 start-page: 1 year: 2022 ident: 5628_CR1 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104653 – volume: 47 start-page: 22 issue: 1 year: 1989 ident: 5628_CR26 publication-title: Comput Vis Gr Image Process doi: 10.1016/0734-189X(89)90051-0 – ident: 5628_CR45 doi: 10.1109/ICNN.1995.488968 – volume: 81 start-page: 4073 issue: 3 year: 2021 ident: 5628_CR7 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11633-1 – volume: 61 start-page: 33 year: 2018 ident: 5628_CR40 publication-title: Signal Process: Image Commun doi: 10.1016/j.image.2017.11.001 – volume: 102 year: 2019 ident: 5628_CR17 publication-title: Infrared Phys Technol doi: 10.1016/j.infrared.2019.103051 – ident: 5628_CR22 doi: 10.1109/TGRS.2023.3286183 – volume: 180 start-page: 2044 issue: 10 year: 2010 ident: 5628_CR41 publication-title: Inf Sci doi: 10.1016/j.ins.2009.12.010 – ident: 5628_CR24 doi: 10.1016/j.bspc.2021.103401 – ident: 5628_CR9 doi: 10.1109/ICCV.2019.00996 – ident: 5628_CR29 doi: 10.1109/CVPR.2005.38 – ident: 5628_CR4 doi: 10.1016/j.eswa.2021.114841 – volume: 19 start-page: 1 issue: 5 year: 2017 ident: 5628_CR28 publication-title: Entropy doi: 10.3390/e19050191 – volume: 80 start-page: 35543 issue: 28–29 year: 2021 ident: 5628_CR54 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10467-7 – volume: 11 start-page: 1 issue: 2 year: 2002 ident: 5628_CR37 publication-title: J Electron Imag doi: 10.1117/1.1455011 – volume: 11 start-page: 270 issue: 5 year: 2019 ident: 5628_CR13 publication-title: Int J Signal Imag Syst Eng – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 5628_CR42 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – volume: 171 start-page: 1 year: 2021 ident: 5628_CR32 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114587 – volume: 466 start-page: 521 year: 2017 ident: 5628_CR2 publication-title: Physica A doi: 10.1016/j.physa.2016.09.053 – ident: 5628_CR18 doi: 10.1109/TPAMI.2021.3059968 – volume: 95 start-page: 51 year: 2016 ident: 5628_CR52 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 5628_CR50 publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume: 26 start-page: 1946 issue: 4 year: 2017 ident: 5628_CR10 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2017.2756827 – ident: 5628_CR11 doi: 10.1109/FUZZY.1993.327400 – volume: 245 start-page: 1 year: 2022 ident: 5628_CR5 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108610 – volume: 195 start-page: 1 year: 2022 ident: 5628_CR35 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116516 – volume: 6 start-page: 63 issue: 1 year: 2005 ident: 5628_CR16 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2004.838222 – volume: 65 start-page: 797 year: 2015 ident: 5628_CR23 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.09.027 – volume: 98 start-page: 1 year: 2021 ident: 5628_CR36 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106734 – volume: 192 start-page: 1 year: 2022 ident: 5628_CR31 publication-title: Measurement doi: 10.1016/j.measurement.2022.110884  | 
    
| SSID | ssj0004373 | 
    
| Score | 2.3606327 | 
    
| Snippet | Distribution grid network has problems such as long mileage, large scale, complex surrounding environment, and aging of equipment. It is the development trend... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4309 | 
    
| SubjectTerms | Algorithms Compilers Computer Science Efficiency Entropy Entropy (Information theory) Fault diagnosis Heuristic methods Histograms Image processing Image segmentation Inspection Interpreters Learning Methods Mutation Operators (mathematics) Optimization Optimization algorithms Parallel operation Processor Architectures Programming Languages Reflective teaching Unmanned aerial vehicles  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L178FqdTcvCmgTZJv45DHFNxXhzsVpIlrYW1G1t32M0_3Zc2tSgqeColLyn0l-T9kveF0LV0NBfakyQRkhMeaUUiRROiPZOcRSvm6MpBduQPx_xx4k1sUNiq8XZvTJLVTt0Gu7mUBgR0DDFKOySbbbTjmXReMIvHtN9GQ7LarhzBwSj0OLWhMj-P8VUdtRzzm1m00jaDA7RnaSLu17geoi1dHKH9pgQDtivyGL0_Z0WWg-STWKyXuPoIMRe288WGGA2lMDSnGq90mtswowIDUcXKZMy1xa5wusxAsKjDLuHdeMOn0NNcOMAQD6PBC57D5pLbqE0sZul8mZVv-QkaD-5f74bEFlUgU1htJQmoliEg4EqW0EBSSR3pR1RyP5wC-2I-k0qHQaIdAZMsSRhXQSSdMGFCKjcU7BR1inmhzxCWPmDp0kRr4XIpDLMBlQsHLqoEPGQXuc2_jac247gpfDGL21zJBo8Y8IgrPOJNF9189lnU-Tb-lO41kMV27a1iBizOi7hPeRfdNjC2zb-Pdv4_8Qu0S4Hh1C7cPdQpl2t9CQyllFfVhPwACbDh5Q priority: 102 providerName: Springer Nature  | 
    
| Title | Minimal Kapur cross-entropy-based image segmentation for distribution grid inspection using improved INFO optimization algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s11227-023-05628-y https://www.proquest.com/docview/3256594624  | 
    
| Volume | 80 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-0484 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0484 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-C9rLLYGPTOqDyYbfNWmI7XweEWtTAhhamaZXYKbJrJ6tE01LKoTf-dJ4TZxFI42RF_ojkn-33s98XwCflGSFNoGghlaAiMZommhXUBDY4i9HcM7WBbBZeTMX36-B6B7LWF8aaVbZnYn1Q6-XMvpF_5Sibg0SETJyubqnNGmW1q20KDelSK-iTOsTYLvSZjYzVg_54kv381XlK8kbnnOClKQ4Ec240jTOdz1hEUYZRSwpiun0qqjr--UxlWkuidB9eOwpJRg3mb2DHVG9hr03PQNxuPYCHH_NqvsCWl3J1vyb1T6h9zF2uttRKL02wujTkzpQL54JUESSxRNtoui4RFinXc2xYNS6Z-G0t5UvsaR8jcIhvWXpFlnjwLJxHJ5E3JU7c5u_iHUzTye-zC-oSLtAZ7sQNjZhRMaLjK16wSDHFPBUmTIkwniEz4yFX2sRRYTyJC7AouNBRory44FJpP5b8PfSqZWU-AFEh4uyzwhjpCyUt60FxjJcxpiUWagB-O7f5zEUjt0kxbvIujrLFI0c88hqPfDuAz__6rJpYHC-2Pmohy92-vMu7VTSALy2MXfX_R_v48miH8Ioh22nMuY-gt1nfm2NkKxs1hN04PR9Cf5SOx5ktz_9cToZuYWLtlI0eAdGU7-I | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXWl5ioYAPcAKLxHZehwpR6GqXbReEWqm3YK8nYaVudtndqtobv4zfxjhxiECit56iKPYk8kxmvrHnAfDSBKg0RoYX2iiuMrQ8s6LgGLniLGhlgHWA7DgenKlP59H5Fvxqc2FcWGWrE2tFbecTt0f-VpJtjjIVC_Vu8YO7rlHudLVtoaF9awV7UJcY84kdI9xckQu3Ohh-JH6_EqJ_dPphwH2XAT4h8VvzRKBJ6ZNCIwuRGGFEYOJMGBWnE4IjMpbGYpoUGGha9aKQyiaZCdJCamPDVEuiewt2lFQZOX87h0fjL1-7zEzZnHFn5KSlkRI-badJ3guFSDjZTO5ASMo3f5vGDu_-c0RbW77-Htz1kJW9b2TsHmxhdR9223YQzGuHB_DzZFpNZzRypBeXS1a_hLvN4_liw521tIwel8hWWM58ylPFCDQz66r3-sZbrFxOaWDVpIDSvYvML2mm2_wgEsNx_zObk6Kb-QxSpi9KYtT6--whnN3I0j-C7Wpe4WNgJia5CkWBqENltENZZP7J-RNW08X0IGzXNp_46ueuCcdF3tVtdvzIiR95zY9804PXf-Ysmtof147eb1mWez2wyjup7cGblo3d4_9Te3I9tRdwe3B6cpwfD8ejp3BHENJqQsn3YXu9vMRnhJTW5rkXRwbfbvoP-A0K6ylA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVFWH7iBRWI72xEBFWvhQCVukV3boVKbViUceuPTGScOAQRInKIoY0fKszPP9rwZhA6lp7nQgSRGSE54ohVJFDVEBzY5i1bM02WAbCe87PLrp-Dpk4q_jHavjyQrTYPN0pQXJ2NlThrhm09pRMDfEOvAYzKdRfPcJkqAEd2lp40yklVnzAkskuKAUyeb-bmPr66p4ZvfjkhLz9NeQUuOMuLTCuNVNKPzNbRcl2PAbnauo7e7ft4fguWNGL9OcPkSYjdvR-Mpsd5KYXicafyis6GTHOUYSCtWNnuuK3yFs0kfDPNKggn3NjI-g5Z28wG6uOq07_EIfjRDp-DEYpCNJv3iebiBuu2Lx7NL4goskB7MvIJEVMsY0PAlMzSSVFJPhgmVPIx7wMRYyKTScWS0J2DAGcO4ihLpxYYJqfxYsE00l49yvYWwDAFXnxqthc-lsCwH3C8svqgScJEt5NffNu257OO2CMYgbfImWzxSwCMt8UinLXT00WZc5d7403q3hix18_AlZcDogoSHlLfQcQ1j8_j33rb_Z36AFh7O2-ntVedmBy1SID5VZPcumismr3oPiEsh98ux-Q7KJ-kN | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimal+Kapur+cross-entropy-based+image+segmentation+for+distribution+grid+inspection+using+improved+INFO+optimization+algorithm&rft.jtitle=The+Journal+of+supercomputing&rft.au=Jiao%2C+Junjun&rft.au=Chen%2C+Zhisheng&rft.au=Zhou%2C+Tao&rft.date=2024-02-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=3&rft.spage=4309&rft.epage=4352&rft_id=info:doi/10.1007%2Fs11227-023-05628-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_023_05628_y | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |