Extinction Coefficient of Plasmonic Nickel Sulfide Nanocrystals and Gold-Nickel Sulfide Core-Shell Nanoparticles
In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni ) nanoparticles and Au-Ni core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves corre...
Saved in:
| Published in | Zeitschrift für physikalische Chemie (Neue Folge) Vol. 233; no. 1; pp. 3 - 14 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Munich
De Gruyter
01.01.2019
Walter de Gruyter GmbH |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0942-9352 2196-7156 |
| DOI | 10.1515/zpch-2018-1165 |
Cover
| Abstract | In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni
) nanoparticles and Au-Ni
core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves correlate very well with existing literature on the subject. The measured extinction coefficients at the localized surface plasmon resonance (LSPR) maximum wavelength of nickel sulfide particles are similar to the values of equally sized Au NCs. Therefore, considering the lower cost of the heazlewoodite material, it could be a reasonable alternative for optical applications of nanoparticles showing a LSPR in the visible regime of the electromagnetic spectrum. Furthermore, this study shows, that by growing a Ni
shell onto a pure Au nanocrystal a highly tuneable optical material with variable LSPR frequency and molar extinction coefficient is obtained. |
|---|---|
| AbstractList | In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni
) nanoparticles and Au-Ni
core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves correlate very well with existing literature on the subject. The measured extinction coefficients at the localized surface plasmon resonance (LSPR) maximum wavelength of nickel sulfide particles are similar to the values of equally sized Au NCs. Therefore, considering the lower cost of the heazlewoodite material, it could be a reasonable alternative for optical applications of nanoparticles showing a LSPR in the visible regime of the electromagnetic spectrum. Furthermore, this study shows, that by growing a Ni
shell onto a pure Au nanocrystal a highly tuneable optical material with variable LSPR frequency and molar extinction coefficient is obtained. In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni3S2) nanoparticles and Au-Ni3S2 core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves correlate very well with existing literature on the subject. The measured extinction coefficients at the localized surface plasmon resonance (LSPR) maximum wavelength of nickel sulfide particles are similar to the values of equally sized Au NCs. Therefore, considering the lower cost of the heazlewoodite material, it could be a reasonable alternative for optical applications of nanoparticles showing a LSPR in the visible regime of the electromagnetic spectrum. Furthermore, this study shows, that by growing a Ni3S2 shell onto a pure Au nanocrystal a highly tuneable optical material with variable LSPR frequency and molar extinction coefficient is obtained. In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni 3 S 2 ) nanoparticles and Au-Ni 3 S 2 core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves correlate very well with existing literature on the subject. The measured extinction coefficients at the localized surface plasmon resonance (LSPR) maximum wavelength of nickel sulfide particles are similar to the values of equally sized Au NCs. Therefore, considering the lower cost of the heazlewoodite material, it could be a reasonable alternative for optical applications of nanoparticles showing a LSPR in the visible regime of the electromagnetic spectrum. Furthermore, this study shows, that by growing a Ni 3 S 2 shell onto a pure Au nanocrystal a highly tuneable optical material with variable LSPR frequency and molar extinction coefficient is obtained. |
| Author | Dorfs, Dirk Himstedt, Rasmus Hinrichs, Dominik |
| Author_xml | – sequence: 1 givenname: Rasmus surname: Himstedt fullname: Himstedt, Rasmus organization: Institute for Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. A, 30167 Hannover, Germany – sequence: 2 givenname: Dominik surname: Hinrichs fullname: Hinrichs, Dominik organization: Institute for Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. A, 30167 Hannover, Germany – sequence: 3 givenname: Dirk surname: Dorfs fullname: Dorfs, Dirk email: dirk.dorfs@pci.uni-hannover.de organization: Institute for Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. A, 30167 Hannover, Germany |
| BookMark | eNp1kE1rFTEUhoNU8La6dT3gOjUfk8wEV3KpVShVqK6H3JMTm5omY5JLvf56Z7yCUHR1zuJ9znl5TslJygkJecnZOVdcvf45wy0VjI-Uc62ekI3gRtOBK31CNsz0ghqpxDNyWusdY0LLQW7IfPGjhQQt5NRtM3ofIGBqXfbdp2jrfU4BuusA3zB2N_vog8Pu2qYM5VCbjbWzyXWXOTr6KLTNBenNLcb4Oz_b0gJErM_JU79w-OLPPCNf3l183r6nVx8vP2zfXlGQ3DSqcRjGUQoPS3HU4HYGnRJgHXDovQYFoxkcE9Jb2e_AGOGk2-neKcVQgTwjr45355K_77G26S7vS1peTqIfDZOa9_2SOj-moORaC_ppLuHelsPE2bRanVar02p1Wq0uQP8IgNDsqq8VG-L_sTdH7MHGhsXh17I_LMvfUv8GhZRcyl9GoZQS |
| CitedBy_id | crossref_primary_10_1021_acsami_9b08789 crossref_primary_10_1515_zpch_2020_1733 crossref_primary_10_1515_zpch_2018_5003 crossref_primary_10_1039_C9NR04187G crossref_primary_10_1021_acs_jpcc_1c08412 crossref_primary_10_1515_zpch_2017_1082 crossref_primary_10_1016_j_jclepro_2022_135385 |
| Cites_doi | 10.1021/ja2016284 10.1134/S1061933X17050052 10.1021/jacs.5b08186 10.1016/j.colsurfb.2006.08.005 10.1038/nmat865 10.1039/C4RA15607B 10.1038/nmat3004 10.1016/S0003-2670(03)00986-3 10.1039/C1CS15237H 10.1021/acs.chemmater.7b02259 10.1021/acs.chemrev.5b00100 10.1021/jp062536y 10.1126/science.1111886 10.1021/ja9064415 10.1021/ja409445p 10.1002/andp.18521620505 10.1021/acs.chemrev.5b00193 10.1021/acs.chemrev.5b00265 10.1007/s12274-008-8026-3 10.1080/01442350050034180 10.1021/nn400894d 10.1016/j.cplett.2008.06.010 10.1146/annurev.physchem.58.032806.104607 10.1021/jacs.5b03426 10.1002/smll.201403772 |
| ContentType | Journal Article |
| Copyright | 2019 Walter de Gruyter GmbH, Berlin/Boston |
| Copyright_xml | – notice: 2019 Walter de Gruyter GmbH, Berlin/Boston |
| DBID | AAYXX CITATION |
| DOI | 10.1515/zpch-2018-1165 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2196-7156 |
| EndPage | 14 |
| ExternalDocumentID | 10_1515_zpch_2018_1165 10_1515_zpch_2018_116523313 |
| GroupedDBID | -~X 0R~ 123 4.4 6FP 8FE 8FG 9-L AAAEU AAFPC AAGVJ AAILP AAKRG AALGR AAOWA AAPJK AASQH AAWFC AAXCG AAXMT ABABW ABAQN ABDRH ABFKT ABJCF ABLVI ABMIY ABPLS ABRDF ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFS ACIWK ACMKP ACNCT ACPMA ACUND ACYCL ADEQT ADGQD ADGYE ADMLS ADNPR ADOZN AECWL AEDGQ AEGVQ AEICA AEKEB AEQDQ AERZL AEXIE AFBAA AFBDD AFBQV AFKRA AFYRI AGBEV AGWTP AHVWV AHXUK AIERV AIKXB AIWOI AJPIC AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF ASYPN BAKPI BBCWN BBDJO BCIFA BENPR BGLVJ CCPQU D1I DARCH DSRVY FSTRU HCIFZ HZ~ IPNFZ IY9 KB. O9- P0W P2P PDBOC PHGZM PHGZT PQGLB QD8 RIG SLJYH UK5 WTRAM AAYXX CITATION PUEGO |
| ID | FETCH-LOGICAL-c319t-6e778832fc942e6cdb9ed52cadc1c4f6c5c897d023fa34bc992d3db64d550e5c3 |
| ISSN | 0942-9352 |
| IngestDate | Wed Aug 13 04:53:39 EDT 2025 Wed Oct 01 04:55:43 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Tue Oct 21 12:51:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c319t-6e778832fc942e6cdb9ed52cadc1c4f6c5c897d023fa34bc992d3db64d550e5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2489036144 |
| PQPubID | 2039840 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2489036144 crossref_primary_10_1515_zpch_2018_1165 crossref_citationtrail_10_1515_zpch_2018_1165 walterdegruyter_journals_10_1515_zpch_2018_116523313 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Munich |
| PublicationPlace_xml | – name: Munich |
| PublicationTitle | Zeitschrift für physikalische Chemie (Neue Folge) |
| PublicationYear | 2019 |
| Publisher | De Gruyter Walter de Gruyter GmbH |
| Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
| References | 2023011705104815845_j_zpch-2018-1165_ref_006_w2aab3b7d127b1b6b1ab2b1b6Aa 2023011705104815845_j_zpch-2018-1165_ref_018_w2aab3b7d127b1b6b1ab2b1c18Aa 2023011705104815845_j_zpch-2018-1165_ref_001_w2aab3b7d127b1b6b1ab2b1b1Aa 2023011705104815845_j_zpch-2018-1165_ref_013_w2aab3b7d127b1b6b1ab2b1c13Aa 2023011705104815845_j_zpch-2018-1165_ref_023_w2aab3b7d127b1b6b1ab2b1c23Aa 2023011705104815845_j_zpch-2018-1165_ref_014_w2aab3b7d127b1b6b1ab2b1c14Aa 2023011705104815845_j_zpch-2018-1165_ref_019_w2aab3b7d127b1b6b1ab2b1c19Aa 2023011705104815845_j_zpch-2018-1165_ref_005_w2aab3b7d127b1b6b1ab2b1b5Aa 2023011705104815845_j_zpch-2018-1165_ref_024_w2aab3b7d127b1b6b1ab2b1c24Aa 2023011705104815845_j_zpch-2018-1165_ref_015_w2aab3b7d127b1b6b1ab2b1c15Aa 2023011705104815845_j_zpch-2018-1165_ref_010_w2aab3b7d127b1b6b1ab2b1c10Aa 2023011705104815845_j_zpch-2018-1165_ref_008_w2aab3b7d127b1b6b1ab2b1b8Aa 2023011705104815845_j_zpch-2018-1165_ref_025_w2aab3b7d127b1b6b1ab2b1c25Aa 2023011705104815845_j_zpch-2018-1165_ref_004_w2aab3b7d127b1b6b1ab2b1b4Aa 2023011705104815845_j_zpch-2018-1165_ref_020_w2aab3b7d127b1b6b1ab2b1c20Aa 2023011705104815845_j_zpch-2018-1165_ref_011_w2aab3b7d127b1b6b1ab2b1c11Aa 2023011705104815845_j_zpch-2018-1165_ref_016_w2aab3b7d127b1b6b1ab2b1c16Aa 2023011705104815845_j_zpch-2018-1165_ref_009_w2aab3b7d127b1b6b1ab2b1b9Aa 2023011705104815845_j_zpch-2018-1165_ref_007_w2aab3b7d127b1b6b1ab2b1b7Aa 2023011705104815845_j_zpch-2018-1165_ref_021_w2aab3b7d127b1b6b1ab2b1c21Aa 2023011705104815845_j_zpch-2018-1165_ref_002_w2aab3b7d127b1b6b1ab2b1b2Aa 2023011705104815845_j_zpch-2018-1165_ref_017_w2aab3b7d127b1b6b1ab2b1c17Aa 2023011705104815845_j_zpch-2018-1165_ref_012_w2aab3b7d127b1b6b1ab2b1c12Aa 2023011705104815845_j_zpch-2018-1165_ref_003_w2aab3b7d127b1b6b1ab2b1b3Aa 2023011705104815845_j_zpch-2018-1165_ref_022_w2aab3b7d127b1b6b1ab2b1c22Aa |
| References_xml | – ident: 2023011705104815845_j_zpch-2018-1165_ref_011_w2aab3b7d127b1b6b1ab2b1c11Aa doi: 10.1021/ja2016284 – ident: 2023011705104815845_j_zpch-2018-1165_ref_024_w2aab3b7d127b1b6b1ab2b1c24Aa doi: 10.1134/S1061933X17050052 – ident: 2023011705104815845_j_zpch-2018-1165_ref_014_w2aab3b7d127b1b6b1ab2b1c14Aa doi: 10.1021/jacs.5b08186 – ident: 2023011705104815845_j_zpch-2018-1165_ref_019_w2aab3b7d127b1b6b1ab2b1c19Aa doi: 10.1016/j.colsurfb.2006.08.005 – ident: 2023011705104815845_j_zpch-2018-1165_ref_007_w2aab3b7d127b1b6b1ab2b1b7Aa doi: 10.1038/nmat865 – ident: 2023011705104815845_j_zpch-2018-1165_ref_016_w2aab3b7d127b1b6b1ab2b1c16Aa doi: 10.1039/C4RA15607B – ident: 2023011705104815845_j_zpch-2018-1165_ref_010_w2aab3b7d127b1b6b1ab2b1c10Aa doi: 10.1038/nmat3004 – ident: 2023011705104815845_j_zpch-2018-1165_ref_025_w2aab3b7d127b1b6b1ab2b1c25Aa doi: 10.1016/S0003-2670(03)00986-3 – ident: 2023011705104815845_j_zpch-2018-1165_ref_003_w2aab3b7d127b1b6b1ab2b1b3Aa doi: 10.1039/C1CS15237H – ident: 2023011705104815845_j_zpch-2018-1165_ref_013_w2aab3b7d127b1b6b1ab2b1c13Aa doi: 10.1021/acs.chemmater.7b02259 – ident: 2023011705104815845_j_zpch-2018-1165_ref_004_w2aab3b7d127b1b6b1ab2b1b4Aa doi: 10.1021/acs.chemrev.5b00100 – ident: 2023011705104815845_j_zpch-2018-1165_ref_018_w2aab3b7d127b1b6b1ab2b1c18Aa doi: 10.1021/jp062536y – ident: 2023011705104815845_j_zpch-2018-1165_ref_008_w2aab3b7d127b1b6b1ab2b1b8Aa doi: 10.1126/science.1111886 – ident: 2023011705104815845_j_zpch-2018-1165_ref_009_w2aab3b7d127b1b6b1ab2b1b9Aa doi: 10.1021/ja9064415 – ident: 2023011705104815845_j_zpch-2018-1165_ref_022_w2aab3b7d127b1b6b1ab2b1c22Aa doi: 10.1021/ja409445p – ident: 2023011705104815845_j_zpch-2018-1165_ref_023_w2aab3b7d127b1b6b1ab2b1c23Aa doi: 10.1002/andp.18521620505 – ident: 2023011705104815845_j_zpch-2018-1165_ref_005_w2aab3b7d127b1b6b1ab2b1b5Aa doi: 10.1021/acs.chemrev.5b00193 – ident: 2023011705104815845_j_zpch-2018-1165_ref_006_w2aab3b7d127b1b6b1ab2b1b6Aa doi: 10.1021/acs.chemrev.5b00265 – ident: 2023011705104815845_j_zpch-2018-1165_ref_021_w2aab3b7d127b1b6b1ab2b1c21Aa doi: 10.1007/s12274-008-8026-3 – ident: 2023011705104815845_j_zpch-2018-1165_ref_001_w2aab3b7d127b1b6b1ab2b1b1Aa doi: 10.1080/01442350050034180 – ident: 2023011705104815845_j_zpch-2018-1165_ref_012_w2aab3b7d127b1b6b1ab2b1c12Aa doi: 10.1021/nn400894d – ident: 2023011705104815845_j_zpch-2018-1165_ref_020_w2aab3b7d127b1b6b1ab2b1c20Aa doi: 10.1016/j.cplett.2008.06.010 – ident: 2023011705104815845_j_zpch-2018-1165_ref_002_w2aab3b7d127b1b6b1ab2b1b2Aa doi: 10.1146/annurev.physchem.58.032806.104607 – ident: 2023011705104815845_j_zpch-2018-1165_ref_015_w2aab3b7d127b1b6b1ab2b1c15Aa doi: 10.1021/jacs.5b03426 – ident: 2023011705104815845_j_zpch-2018-1165_ref_017_w2aab3b7d127b1b6b1ab2b1c17Aa doi: 10.1002/smll.201403772 |
| SSID | ssj0026373 |
| Score | 2.2047126 |
| Snippet | In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni
) nanoparticles and Au-Ni
core-shell nanoparticles is determined for the... In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni 3 S 2 ) nanoparticles and Au-Ni 3 S 2 core-shell nanoparticles is... In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni3S2) nanoparticles and Au-Ni3S2 core-shell nanoparticles is determined... |
| SourceID | proquest crossref walterdegruyter |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3 |
| SubjectTerms | Coefficients colloidal nanocrystals core-shell nanoparticles Core-shell particles extinction coefficient Gold localized surface plasmon resonance Nanocrystals Nanoparticles Nickel Nickel sulfide Optical materials Plasmonics |
| Title | Extinction Coefficient of Plasmonic Nickel Sulfide Nanocrystals and Gold-Nickel Sulfide Core-Shell Nanoparticles |
| URI | https://www.degruyter.com/doi/10.1515/zpch-2018-1165 https://www.proquest.com/docview/2489036144 |
| Volume | 233 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2196-7156 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0026373 issn: 0942-9352 databaseCode: ADMLS dateStart: 20131101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2196-7156 dateEnd: 20190831 omitProxy: true ssIdentifier: ssj0026373 issn: 0942-9352 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2196-7156 dateEnd: 20250505 omitProxy: true ssIdentifier: ssj0026373 issn: 0942-9352 databaseCode: 8FG dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAZK databaseName: De Gruyter Complete Journal Package customDbUrl: eissn: 2196-7156 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026373 issn: 0942-9352 databaseCode: AGBEV dateStart: 19960115 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6FcGgvqE81LUV7qNQDWort9esIJiGqCkI8JNSL5ewDrBg7MrZa-EP9m531-pU0lWgvTrRZrx3P59mZ3ZlvEPpEaRRJ2zeJE7mMUF_6JHKpQ1xTGq7KRbekyh0-OXWmV_TrtX09GPzqRS2VxWyPPa7NK_kfqUIbyFVlyf6DZNtBoQG-g3zhCBKG45NkPP5ZxKmu9R1koiKDqLf2z8AovquK24Co5yIBBZHImAulTTOWP4BNmGh25uMs4WSlU5DlglyoENGq_6KJnutbst9FXIBnnMey2JVqu_0wyPU6yVxxKjJVD0-REQhd76cUu5MsuRG9lYdpfKfWWqtZ4Bxut7zvfklBPd_WFr5iP2nziY6yXAc6gq6e95csVJZUu2RRrz1Sk_iWpq7dE1UbaE5AiKFZxhvVbGqSjCUMakVr9WZsnYX6x1xgV7QZjwt2C6AxwFc2dFWKZdLtlcmwDVFUzhGMEKrzQ3V-qM7fQJsmTB_7Q7R5cHTy7aL17R1LBzM0_6zmB4URvizfwbL90zk1Wz-q8AgubvLyoWi24ysr5_IF2qrdE3ygBf4SDUT6Cj0LmqqAr9GiwxzuYQ5nEreYwxpOuIYT7mMOA-ZwD3Ntpw5zeAlzb9DVZHwZTEldtYMwUOcFcYTrejBPSAbPQjiMz3zBbZNFnBmMSofZzPNdDraijCw6Y75vcovPHMrBWRY2s96iYZql4h3CnDNw8KXnCldS2-WRTyMpwKI0mPTs_WiESPMsQ1ZT2qvKKkm4Xnoj9Lntv9BkLn_tud2IJqxf-PvQpJ4PBp9B6QjRFXF1vdYPCEg2rPdPvv4H9Lx7cbbRsMhL8RGs32K2gza8yfFOjT_4PByfnp3_BsYjt2k |
| linkProvider | EBSCOhost |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELVaONALpV_qFmh9qNST2SZ27PWRrhaWFlAloOIWOWMbECFZLYko_PqON8lCl_bSnjOxnPE4fs-eeSbkoxDG-ETHTBoFTGivmVFCMhX7SIVadO5D7fDBoRyfiK-nyemDWpiQVmnd2bS-rRqF1L4toQ4bZXOtAVyB-3cTOMcBjpABRTLpn1dX-VOyjGRF4ORc3t79Mvoxp12SN-fMWsRMI95opRsfN_P70nSPN1dvZifX8249WIB2nhPout7knVxu1VW2BXcLqo7_921rZLXFp3S7CagX5IkrXpKVYXct3CsyGf2sLopZNQQdlm6mQIFt09LT74jEr4LULsX4unQ5Papzf2EdxV94CdNbBKL5NTWFpbtlbtmC0bCcOnYU8lJn9pMuZe81OdkZHQ_HrL22gQHO54pJp5BX89gDetxJsJl2NonBWIhAeAkJDLSyCBa84SIDrWPLbSaFRbbkEuBvyFJRFu4todYCMjw_UE55kShrtDDeIaSIwA-Sz6ZHWDdiKbSa5uFqjTwN3AadmQZnpsGZaXBmj3ya208aNY-_Wm50AZC2s_o6jcVA44qPHLRHxEJQ3Fv9ucGY84i_-7fXPpCV8fHBfrq_d_htnTzDh7rZBdogS9W0dpuIi6rsfRv4vwC88A0Z |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVgKwGXlk-xUMAHJE7uktix18d2u9vyVVUqRdwiZ2xD1ZBEu4mg_fUdb5ItLHCBcyaWMx5n3rPHz4S8FMIYn-iYSaOACe01M0pIpmIfqXAWnftwdvjDkTw8FW8_J3014aIrq7Tuy7y5qFuF1JEtoQkLZSutAczAo8sKvuIAR8iAIpmMKutvkg3M9VIMyMbuwd7004p1Sd5uM2sRM41wo1Nu_L2VXzPTNdzc_L7cuF716qf8M9siWd_ztuzkfKepsx24XBN1_K9Pu0s2O3RKd9twukduuOI-uT3pL4V7QKrpj_qsWJ6FoJPSLfUnsGlaenqMOPxbENqlGF3nLqcnTe7PrKP4Ay9hfoEwNF9QU1h6UOaWrRlNyrljJ6EqdWlf9QV7D8npbPpxcsi6SxsY4GyumXQKWTWPPaDDnQSbaWeTGIyFCISXkMBYK4tQwRsuMtA6ttxmUljkSi4B_ogMirJwjwm1FpDf-bFyyotEWaOF8Q4BRQR-nLw2Q8L6AUuhUzQPF2vkaWA26Ms0-DINvkyDL4fk1cq-arU8_mq53Y9_2s3pRRqLscZ8jwx0SMRaTFxb_bnBmPOIP_m3116QW8f7s_T9m6N3T8kdfKbbJaBtMqjnjXuGoKjOnndhfwXIeAvS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extinction+Coefficient+of+Plasmonic+Nickel+Sulfide+Nanocrystals+and+Gold-Nickel+Sulfide+Core-Shell+Nanoparticles&rft.jtitle=Zeitschrift+f%C3%BCr+physikalische+Chemie+%28Neue+Folge%29&rft.au=Himstedt%2C+Rasmus&rft.au=Hinrichs%2C+Dominik&rft.au=Dorfs%2C+Dirk&rft.date=2019-01-01&rft.issn=0942-9352&rft.eissn=2196-7156&rft.volume=233&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1515%2Fzpch-2018-1165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_zpch_2018_1165 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-9352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-9352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-9352&client=summon |