Extinction Coefficient of Plasmonic Nickel Sulfide Nanocrystals and Gold-Nickel Sulfide Core-Shell Nanoparticles

In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni ) nanoparticles and Au-Ni core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves corre...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für physikalische Chemie (Neue Folge) Vol. 233; no. 1; pp. 3 - 14
Main Authors Himstedt, Rasmus, Hinrichs, Dominik, Dorfs, Dirk
Format Journal Article
LanguageEnglish
Published Munich De Gruyter 01.01.2019
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN0942-9352
2196-7156
DOI10.1515/zpch-2018-1165

Cover

Abstract In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni ) nanoparticles and Au-Ni core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves correlate very well with existing literature on the subject. The measured extinction coefficients at the localized surface plasmon resonance (LSPR) maximum wavelength of nickel sulfide particles are similar to the values of equally sized Au NCs. Therefore, considering the lower cost of the heazlewoodite material, it could be a reasonable alternative for optical applications of nanoparticles showing a LSPR in the visible regime of the electromagnetic spectrum. Furthermore, this study shows, that by growing a Ni shell onto a pure Au nanocrystal a highly tuneable optical material with variable LSPR frequency and molar extinction coefficient is obtained.
AbstractList In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni ) nanoparticles and Au-Ni core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves correlate very well with existing literature on the subject. The measured extinction coefficients at the localized surface plasmon resonance (LSPR) maximum wavelength of nickel sulfide particles are similar to the values of equally sized Au NCs. Therefore, considering the lower cost of the heazlewoodite material, it could be a reasonable alternative for optical applications of nanoparticles showing a LSPR in the visible regime of the electromagnetic spectrum. Furthermore, this study shows, that by growing a Ni shell onto a pure Au nanocrystal a highly tuneable optical material with variable LSPR frequency and molar extinction coefficient is obtained.
In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni3S2) nanoparticles and Au-Ni3S2 core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves correlate very well with existing literature on the subject. The measured extinction coefficients at the localized surface plasmon resonance (LSPR) maximum wavelength of nickel sulfide particles are similar to the values of equally sized Au NCs. Therefore, considering the lower cost of the heazlewoodite material, it could be a reasonable alternative for optical applications of nanoparticles showing a LSPR in the visible regime of the electromagnetic spectrum. Furthermore, this study shows, that by growing a Ni3S2 shell onto a pure Au nanocrystal a highly tuneable optical material with variable LSPR frequency and molar extinction coefficient is obtained.
In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni 3 S 2 ) nanoparticles and Au-Ni 3 S 2 core-shell nanoparticles is determined for the first time. The results are compared to analogously determined extinction coefficients of pure Au nanocrystals (NCs), which themselves correlate very well with existing literature on the subject. The measured extinction coefficients at the localized surface plasmon resonance (LSPR) maximum wavelength of nickel sulfide particles are similar to the values of equally sized Au NCs. Therefore, considering the lower cost of the heazlewoodite material, it could be a reasonable alternative for optical applications of nanoparticles showing a LSPR in the visible regime of the electromagnetic spectrum. Furthermore, this study shows, that by growing a Ni 3 S 2 shell onto a pure Au nanocrystal a highly tuneable optical material with variable LSPR frequency and molar extinction coefficient is obtained.
Author Dorfs, Dirk
Himstedt, Rasmus
Hinrichs, Dominik
Author_xml – sequence: 1
  givenname: Rasmus
  surname: Himstedt
  fullname: Himstedt, Rasmus
  organization: Institute for Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. A, 30167 Hannover, Germany
– sequence: 2
  givenname: Dominik
  surname: Hinrichs
  fullname: Hinrichs, Dominik
  organization: Institute for Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. A, 30167 Hannover, Germany
– sequence: 3
  givenname: Dirk
  surname: Dorfs
  fullname: Dorfs, Dirk
  email: dirk.dorfs@pci.uni-hannover.de
  organization: Institute for Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. A, 30167 Hannover, Germany
BookMark eNp1kE1rFTEUhoNU8La6dT3gOjUfk8wEV3KpVShVqK6H3JMTm5omY5JLvf56Z7yCUHR1zuJ9znl5TslJygkJecnZOVdcvf45wy0VjI-Uc62ekI3gRtOBK31CNsz0ghqpxDNyWusdY0LLQW7IfPGjhQQt5NRtM3ofIGBqXfbdp2jrfU4BuusA3zB2N_vog8Pu2qYM5VCbjbWzyXWXOTr6KLTNBenNLcb4Oz_b0gJErM_JU79w-OLPPCNf3l183r6nVx8vP2zfXlGQ3DSqcRjGUQoPS3HU4HYGnRJgHXDovQYFoxkcE9Jb2e_AGOGk2-neKcVQgTwjr45355K_77G26S7vS1peTqIfDZOa9_2SOj-moORaC_ppLuHelsPE2bRanVar02p1Wq0uQP8IgNDsqq8VG-L_sTdH7MHGhsXh17I_LMvfUv8GhZRcyl9GoZQS
CitedBy_id crossref_primary_10_1021_acsami_9b08789
crossref_primary_10_1515_zpch_2020_1733
crossref_primary_10_1515_zpch_2018_5003
crossref_primary_10_1039_C9NR04187G
crossref_primary_10_1021_acs_jpcc_1c08412
crossref_primary_10_1515_zpch_2017_1082
crossref_primary_10_1016_j_jclepro_2022_135385
Cites_doi 10.1021/ja2016284
10.1134/S1061933X17050052
10.1021/jacs.5b08186
10.1016/j.colsurfb.2006.08.005
10.1038/nmat865
10.1039/C4RA15607B
10.1038/nmat3004
10.1016/S0003-2670(03)00986-3
10.1039/C1CS15237H
10.1021/acs.chemmater.7b02259
10.1021/acs.chemrev.5b00100
10.1021/jp062536y
10.1126/science.1111886
10.1021/ja9064415
10.1021/ja409445p
10.1002/andp.18521620505
10.1021/acs.chemrev.5b00193
10.1021/acs.chemrev.5b00265
10.1007/s12274-008-8026-3
10.1080/01442350050034180
10.1021/nn400894d
10.1016/j.cplett.2008.06.010
10.1146/annurev.physchem.58.032806.104607
10.1021/jacs.5b03426
10.1002/smll.201403772
ContentType Journal Article
Copyright 2019 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2019 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
DOI 10.1515/zpch-2018-1165
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-7156
EndPage 14
ExternalDocumentID 10_1515_zpch_2018_1165
10_1515_zpch_2018_116523313
GroupedDBID -~X
0R~
123
4.4
6FP
8FE
8FG
9-L
AAAEU
AAFPC
AAGVJ
AAILP
AAKRG
AALGR
AAOWA
AAPJK
AASQH
AAWFC
AAXCG
AAXMT
ABABW
ABAQN
ABDRH
ABFKT
ABJCF
ABLVI
ABMIY
ABPLS
ABRDF
ABUVI
ABWLS
ABXMZ
ABYBW
ACDEB
ACEFL
ACGFS
ACIWK
ACMKP
ACNCT
ACPMA
ACUND
ACYCL
ADEQT
ADGQD
ADGYE
ADMLS
ADNPR
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEKEB
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFBQV
AFKRA
AFYRI
AGBEV
AGWTP
AHVWV
AHXUK
AIERV
AIKXB
AIWOI
AJPIC
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ASYPN
BAKPI
BBCWN
BBDJO
BCIFA
BENPR
BGLVJ
CCPQU
D1I
DARCH
DSRVY
FSTRU
HCIFZ
HZ~
IPNFZ
IY9
KB.
O9-
P0W
P2P
PDBOC
PHGZM
PHGZT
PQGLB
QD8
RIG
SLJYH
UK5
WTRAM
AAYXX
CITATION
PUEGO
ID FETCH-LOGICAL-c319t-6e778832fc942e6cdb9ed52cadc1c4f6c5c897d023fa34bc992d3db64d550e5c3
ISSN 0942-9352
IngestDate Wed Aug 13 04:53:39 EDT 2025
Wed Oct 01 04:55:43 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Tue Oct 21 12:51:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-6e778832fc942e6cdb9ed52cadc1c4f6c5c897d023fa34bc992d3db64d550e5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2489036144
PQPubID 2039840
PageCount 12
ParticipantIDs proquest_journals_2489036144
crossref_primary_10_1515_zpch_2018_1165
crossref_citationtrail_10_1515_zpch_2018_1165
walterdegruyter_journals_10_1515_zpch_2018_116523313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Munich
PublicationPlace_xml – name: Munich
PublicationTitle Zeitschrift für physikalische Chemie (Neue Folge)
PublicationYear 2019
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023011705104815845_j_zpch-2018-1165_ref_006_w2aab3b7d127b1b6b1ab2b1b6Aa
2023011705104815845_j_zpch-2018-1165_ref_018_w2aab3b7d127b1b6b1ab2b1c18Aa
2023011705104815845_j_zpch-2018-1165_ref_001_w2aab3b7d127b1b6b1ab2b1b1Aa
2023011705104815845_j_zpch-2018-1165_ref_013_w2aab3b7d127b1b6b1ab2b1c13Aa
2023011705104815845_j_zpch-2018-1165_ref_023_w2aab3b7d127b1b6b1ab2b1c23Aa
2023011705104815845_j_zpch-2018-1165_ref_014_w2aab3b7d127b1b6b1ab2b1c14Aa
2023011705104815845_j_zpch-2018-1165_ref_019_w2aab3b7d127b1b6b1ab2b1c19Aa
2023011705104815845_j_zpch-2018-1165_ref_005_w2aab3b7d127b1b6b1ab2b1b5Aa
2023011705104815845_j_zpch-2018-1165_ref_024_w2aab3b7d127b1b6b1ab2b1c24Aa
2023011705104815845_j_zpch-2018-1165_ref_015_w2aab3b7d127b1b6b1ab2b1c15Aa
2023011705104815845_j_zpch-2018-1165_ref_010_w2aab3b7d127b1b6b1ab2b1c10Aa
2023011705104815845_j_zpch-2018-1165_ref_008_w2aab3b7d127b1b6b1ab2b1b8Aa
2023011705104815845_j_zpch-2018-1165_ref_025_w2aab3b7d127b1b6b1ab2b1c25Aa
2023011705104815845_j_zpch-2018-1165_ref_004_w2aab3b7d127b1b6b1ab2b1b4Aa
2023011705104815845_j_zpch-2018-1165_ref_020_w2aab3b7d127b1b6b1ab2b1c20Aa
2023011705104815845_j_zpch-2018-1165_ref_011_w2aab3b7d127b1b6b1ab2b1c11Aa
2023011705104815845_j_zpch-2018-1165_ref_016_w2aab3b7d127b1b6b1ab2b1c16Aa
2023011705104815845_j_zpch-2018-1165_ref_009_w2aab3b7d127b1b6b1ab2b1b9Aa
2023011705104815845_j_zpch-2018-1165_ref_007_w2aab3b7d127b1b6b1ab2b1b7Aa
2023011705104815845_j_zpch-2018-1165_ref_021_w2aab3b7d127b1b6b1ab2b1c21Aa
2023011705104815845_j_zpch-2018-1165_ref_002_w2aab3b7d127b1b6b1ab2b1b2Aa
2023011705104815845_j_zpch-2018-1165_ref_017_w2aab3b7d127b1b6b1ab2b1c17Aa
2023011705104815845_j_zpch-2018-1165_ref_012_w2aab3b7d127b1b6b1ab2b1c12Aa
2023011705104815845_j_zpch-2018-1165_ref_003_w2aab3b7d127b1b6b1ab2b1b3Aa
2023011705104815845_j_zpch-2018-1165_ref_022_w2aab3b7d127b1b6b1ab2b1c22Aa
References_xml – ident: 2023011705104815845_j_zpch-2018-1165_ref_011_w2aab3b7d127b1b6b1ab2b1c11Aa
  doi: 10.1021/ja2016284
– ident: 2023011705104815845_j_zpch-2018-1165_ref_024_w2aab3b7d127b1b6b1ab2b1c24Aa
  doi: 10.1134/S1061933X17050052
– ident: 2023011705104815845_j_zpch-2018-1165_ref_014_w2aab3b7d127b1b6b1ab2b1c14Aa
  doi: 10.1021/jacs.5b08186
– ident: 2023011705104815845_j_zpch-2018-1165_ref_019_w2aab3b7d127b1b6b1ab2b1c19Aa
  doi: 10.1016/j.colsurfb.2006.08.005
– ident: 2023011705104815845_j_zpch-2018-1165_ref_007_w2aab3b7d127b1b6b1ab2b1b7Aa
  doi: 10.1038/nmat865
– ident: 2023011705104815845_j_zpch-2018-1165_ref_016_w2aab3b7d127b1b6b1ab2b1c16Aa
  doi: 10.1039/C4RA15607B
– ident: 2023011705104815845_j_zpch-2018-1165_ref_010_w2aab3b7d127b1b6b1ab2b1c10Aa
  doi: 10.1038/nmat3004
– ident: 2023011705104815845_j_zpch-2018-1165_ref_025_w2aab3b7d127b1b6b1ab2b1c25Aa
  doi: 10.1016/S0003-2670(03)00986-3
– ident: 2023011705104815845_j_zpch-2018-1165_ref_003_w2aab3b7d127b1b6b1ab2b1b3Aa
  doi: 10.1039/C1CS15237H
– ident: 2023011705104815845_j_zpch-2018-1165_ref_013_w2aab3b7d127b1b6b1ab2b1c13Aa
  doi: 10.1021/acs.chemmater.7b02259
– ident: 2023011705104815845_j_zpch-2018-1165_ref_004_w2aab3b7d127b1b6b1ab2b1b4Aa
  doi: 10.1021/acs.chemrev.5b00100
– ident: 2023011705104815845_j_zpch-2018-1165_ref_018_w2aab3b7d127b1b6b1ab2b1c18Aa
  doi: 10.1021/jp062536y
– ident: 2023011705104815845_j_zpch-2018-1165_ref_008_w2aab3b7d127b1b6b1ab2b1b8Aa
  doi: 10.1126/science.1111886
– ident: 2023011705104815845_j_zpch-2018-1165_ref_009_w2aab3b7d127b1b6b1ab2b1b9Aa
  doi: 10.1021/ja9064415
– ident: 2023011705104815845_j_zpch-2018-1165_ref_022_w2aab3b7d127b1b6b1ab2b1c22Aa
  doi: 10.1021/ja409445p
– ident: 2023011705104815845_j_zpch-2018-1165_ref_023_w2aab3b7d127b1b6b1ab2b1c23Aa
  doi: 10.1002/andp.18521620505
– ident: 2023011705104815845_j_zpch-2018-1165_ref_005_w2aab3b7d127b1b6b1ab2b1b5Aa
  doi: 10.1021/acs.chemrev.5b00193
– ident: 2023011705104815845_j_zpch-2018-1165_ref_006_w2aab3b7d127b1b6b1ab2b1b6Aa
  doi: 10.1021/acs.chemrev.5b00265
– ident: 2023011705104815845_j_zpch-2018-1165_ref_021_w2aab3b7d127b1b6b1ab2b1c21Aa
  doi: 10.1007/s12274-008-8026-3
– ident: 2023011705104815845_j_zpch-2018-1165_ref_001_w2aab3b7d127b1b6b1ab2b1b1Aa
  doi: 10.1080/01442350050034180
– ident: 2023011705104815845_j_zpch-2018-1165_ref_012_w2aab3b7d127b1b6b1ab2b1c12Aa
  doi: 10.1021/nn400894d
– ident: 2023011705104815845_j_zpch-2018-1165_ref_020_w2aab3b7d127b1b6b1ab2b1c20Aa
  doi: 10.1016/j.cplett.2008.06.010
– ident: 2023011705104815845_j_zpch-2018-1165_ref_002_w2aab3b7d127b1b6b1ab2b1b2Aa
  doi: 10.1146/annurev.physchem.58.032806.104607
– ident: 2023011705104815845_j_zpch-2018-1165_ref_015_w2aab3b7d127b1b6b1ab2b1c15Aa
  doi: 10.1021/jacs.5b03426
– ident: 2023011705104815845_j_zpch-2018-1165_ref_017_w2aab3b7d127b1b6b1ab2b1c17Aa
  doi: 10.1002/smll.201403772
SSID ssj0026373
Score 2.2047126
Snippet In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni ) nanoparticles and Au-Ni core-shell nanoparticles is determined for the...
In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni 3 S 2 ) nanoparticles and Au-Ni 3 S 2 core-shell nanoparticles is...
In the presented work, the molar extinction coefficient of plasmonic heazlewoodite (Ni3S2) nanoparticles and Au-Ni3S2 core-shell nanoparticles is determined...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Coefficients
colloidal nanocrystals
core-shell nanoparticles
Core-shell particles
extinction coefficient
Gold
localized surface plasmon resonance
Nanocrystals
Nanoparticles
Nickel
Nickel sulfide
Optical materials
Plasmonics
Title Extinction Coefficient of Plasmonic Nickel Sulfide Nanocrystals and Gold-Nickel Sulfide Core-Shell Nanoparticles
URI https://www.degruyter.com/doi/10.1515/zpch-2018-1165
https://www.proquest.com/docview/2489036144
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2196-7156
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0026373
  issn: 0942-9352
  databaseCode: ADMLS
  dateStart: 20131101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2196-7156
  dateEnd: 20190831
  omitProxy: true
  ssIdentifier: ssj0026373
  issn: 0942-9352
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2196-7156
  dateEnd: 20250505
  omitProxy: true
  ssIdentifier: ssj0026373
  issn: 0942-9352
  databaseCode: 8FG
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAZK
  databaseName: De Gruyter Complete Journal Package
  customDbUrl:
  eissn: 2196-7156
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026373
  issn: 0942-9352
  databaseCode: AGBEV
  dateStart: 19960115
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6FcGgvqE81LUV7qNQDWort9esIJiGqCkI8JNSL5ewDrBg7MrZa-EP9m531-pU0lWgvTrRZrx3P59mZ3ZlvEPpEaRRJ2zeJE7mMUF_6JHKpQ1xTGq7KRbekyh0-OXWmV_TrtX09GPzqRS2VxWyPPa7NK_kfqUIbyFVlyf6DZNtBoQG-g3zhCBKG45NkPP5ZxKmu9R1koiKDqLf2z8AovquK24Co5yIBBZHImAulTTOWP4BNmGh25uMs4WSlU5DlglyoENGq_6KJnutbst9FXIBnnMey2JVqu_0wyPU6yVxxKjJVD0-REQhd76cUu5MsuRG9lYdpfKfWWqtZ4Bxut7zvfklBPd_WFr5iP2nziY6yXAc6gq6e95csVJZUu2RRrz1Sk_iWpq7dE1UbaE5AiKFZxhvVbGqSjCUMakVr9WZsnYX6x1xgV7QZjwt2C6AxwFc2dFWKZdLtlcmwDVFUzhGMEKrzQ3V-qM7fQJsmTB_7Q7R5cHTy7aL17R1LBzM0_6zmB4URvizfwbL90zk1Wz-q8AgubvLyoWi24ysr5_IF2qrdE3ygBf4SDUT6Cj0LmqqAr9GiwxzuYQ5nEreYwxpOuIYT7mMOA-ZwD3Ntpw5zeAlzb9DVZHwZTEldtYMwUOcFcYTrejBPSAbPQjiMz3zBbZNFnBmMSofZzPNdDraijCw6Y75vcovPHMrBWRY2s96iYZql4h3CnDNw8KXnCldS2-WRTyMpwKI0mPTs_WiESPMsQ1ZT2qvKKkm4Xnoj9Lntv9BkLn_tud2IJqxf-PvQpJ4PBp9B6QjRFXF1vdYPCEg2rPdPvv4H9Lx7cbbRsMhL8RGs32K2gza8yfFOjT_4PByfnp3_BsYjt2k
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELVaONALpV_qFmh9qNST2SZ27PWRrhaWFlAloOIWOWMbECFZLYko_PqON8lCl_bSnjOxnPE4fs-eeSbkoxDG-ETHTBoFTGivmVFCMhX7SIVadO5D7fDBoRyfiK-nyemDWpiQVmnd2bS-rRqF1L4toQ4bZXOtAVyB-3cTOMcBjpABRTLpn1dX-VOyjGRF4ORc3t79Mvoxp12SN-fMWsRMI95opRsfN_P70nSPN1dvZifX8249WIB2nhPout7knVxu1VW2BXcLqo7_921rZLXFp3S7CagX5IkrXpKVYXct3CsyGf2sLopZNQQdlm6mQIFt09LT74jEr4LULsX4unQ5Papzf2EdxV94CdNbBKL5NTWFpbtlbtmC0bCcOnYU8lJn9pMuZe81OdkZHQ_HrL22gQHO54pJp5BX89gDetxJsJl2NonBWIhAeAkJDLSyCBa84SIDrWPLbSaFRbbkEuBvyFJRFu4todYCMjw_UE55kShrtDDeIaSIwA-Sz6ZHWDdiKbSa5uFqjTwN3AadmQZnpsGZaXBmj3ya208aNY-_Wm50AZC2s_o6jcVA44qPHLRHxEJQ3Fv9ucGY84i_-7fXPpCV8fHBfrq_d_htnTzDh7rZBdogS9W0dpuIi6rsfRv4vwC88A0Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVgKwGXlk-xUMAHJE7uktix18d2u9vyVVUqRdwiZ2xD1ZBEu4mg_fUdb5ItLHCBcyaWMx5n3rPHz4S8FMIYn-iYSaOACe01M0pIpmIfqXAWnftwdvjDkTw8FW8_J3014aIrq7Tuy7y5qFuF1JEtoQkLZSutAczAo8sKvuIAR8iAIpmMKutvkg3M9VIMyMbuwd7004p1Sd5uM2sRM41wo1Nu_L2VXzPTNdzc_L7cuF716qf8M9siWd_ztuzkfKepsx24XBN1_K9Pu0s2O3RKd9twukduuOI-uT3pL4V7QKrpj_qsWJ6FoJPSLfUnsGlaenqMOPxbENqlGF3nLqcnTe7PrKP4Ay9hfoEwNF9QU1h6UOaWrRlNyrljJ6EqdWlf9QV7D8npbPpxcsi6SxsY4GyumXQKWTWPPaDDnQSbaWeTGIyFCISXkMBYK4tQwRsuMtA6ttxmUljkSi4B_ogMirJwjwm1FpDf-bFyyotEWaOF8Q4BRQR-nLw2Q8L6AUuhUzQPF2vkaWA26Ms0-DINvkyDL4fk1cq-arU8_mq53Y9_2s3pRRqLscZ8jwx0SMRaTFxb_bnBmPOIP_m3116QW8f7s_T9m6N3T8kdfKbbJaBtMqjnjXuGoKjOnndhfwXIeAvS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extinction+Coefficient+of+Plasmonic+Nickel+Sulfide+Nanocrystals+and+Gold-Nickel+Sulfide+Core-Shell+Nanoparticles&rft.jtitle=Zeitschrift+f%C3%BCr+physikalische+Chemie+%28Neue+Folge%29&rft.au=Himstedt%2C+Rasmus&rft.au=Hinrichs%2C+Dominik&rft.au=Dorfs%2C+Dirk&rft.date=2019-01-01&rft.issn=0942-9352&rft.eissn=2196-7156&rft.volume=233&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1515%2Fzpch-2018-1165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_zpch_2018_1165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-9352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-9352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-9352&client=summon