Intelligent Prediction of Blasting-Induced Ground Vibration Using ANFIS Optimized by GA and PSO

Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground vibration is an important prerequisite in the minimization of its environmental impacts. This study proposes hybrid intelligent models to predic...

Full description

Saved in:
Bibliographic Details
Published inNatural resources research (New York, N.Y.) Vol. 29; no. 2; pp. 739 - 750
Main Authors Yang, Haiqing, Hasanipanah, Mahdi, Tahir, M. M., Bui, Dieu Tien
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1520-7439
1573-8981
DOI10.1007/s11053-019-09515-3

Cover

Abstract Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground vibration is an important prerequisite in the minimization of its environmental impacts. This study proposes hybrid intelligent models to predict ground vibration using adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) and genetic algorithms (GAs). To build prediction models using ANFIS, ANFIS–GA, and ANFIS–PSO, a database was established, consisting of 86 data samples gathered from two quarries in Iran. The input parameters of the proposed models were the burden, spacing, stemming, powder factor, maximum charge per delay (MCD), and distance from the blast points, while peak particle velocity (PPV) was considered as the output parameter. Based on the sensitivity analysis results, MCD was found as the most effective parameter of PPV. To check the applicability and efficiency of the proposed models, several traditional performance indices such as determination coefficient ( R 2 ) and root-mean-square error (RMSE) were computed. The obtained results showed that the proposed ANFIS–GA and ANFIS–PSO models were capable of statistically predicting ground vibration with excellent levels of accuracy. Compared to the ANFIS, the ANFIS–GA model showed an approximately 61% decrease in RMSE and 10% increase in R 2 . Also, the ANFIS–PSO model showed an approximately 53% decrease in RMSE and 9% increase in R 2 compared to ANFIS. In other words, the ANFIS performance was optimized with the use of GA and PSO.
AbstractList Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground vibration is an important prerequisite in the minimization of its environmental impacts. This study proposes hybrid intelligent models to predict ground vibration using adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) and genetic algorithms (GAs). To build prediction models using ANFIS, ANFIS–GA, and ANFIS–PSO, a database was established, consisting of 86 data samples gathered from two quarries in Iran. The input parameters of the proposed models were the burden, spacing, stemming, powder factor, maximum charge per delay (MCD), and distance from the blast points, while peak particle velocity (PPV) was considered as the output parameter. Based on the sensitivity analysis results, MCD was found as the most effective parameter of PPV. To check the applicability and efficiency of the proposed models, several traditional performance indices such as determination coefficient ( R 2 ) and root-mean-square error (RMSE) were computed. The obtained results showed that the proposed ANFIS–GA and ANFIS–PSO models were capable of statistically predicting ground vibration with excellent levels of accuracy. Compared to the ANFIS, the ANFIS–GA model showed an approximately 61% decrease in RMSE and 10% increase in R 2 . Also, the ANFIS–PSO model showed an approximately 53% decrease in RMSE and 9% increase in R 2 compared to ANFIS. In other words, the ANFIS performance was optimized with the use of GA and PSO.
Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground vibration is an important prerequisite in the minimization of its environmental impacts. This study proposes hybrid intelligent models to predict ground vibration using adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) and genetic algorithms (GAs). To build prediction models using ANFIS, ANFIS–GA, and ANFIS–PSO, a database was established, consisting of 86 data samples gathered from two quarries in Iran. The input parameters of the proposed models were the burden, spacing, stemming, powder factor, maximum charge per delay (MCD), and distance from the blast points, while peak particle velocity (PPV) was considered as the output parameter. Based on the sensitivity analysis results, MCD was found as the most effective parameter of PPV. To check the applicability and efficiency of the proposed models, several traditional performance indices such as determination coefficient (R2) and root-mean-square error (RMSE) were computed. The obtained results showed that the proposed ANFIS–GA and ANFIS–PSO models were capable of statistically predicting ground vibration with excellent levels of accuracy. Compared to the ANFIS, the ANFIS–GA model showed an approximately 61% decrease in RMSE and 10% increase in R2. Also, the ANFIS–PSO model showed an approximately 53% decrease in RMSE and 9% increase in R2 compared to ANFIS. In other words, the ANFIS performance was optimized with the use of GA and PSO.
Author Hasanipanah, Mahdi
Yang, Haiqing
Bui, Dieu Tien
Tahir, M. M.
Author_xml – sequence: 1
  givenname: Haiqing
  surname: Yang
  fullname: Yang, Haiqing
  organization: School of Civil Engineering, Chongqing University
– sequence: 2
  givenname: Mahdi
  surname: Hasanipanah
  fullname: Hasanipanah, Mahdi
  organization: Institute of Research and Development, Duy Tan University
– sequence: 3
  givenname: M. M.
  surname: Tahir
  fullname: Tahir, M. M.
  organization: UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction (ISIIC), School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia
– sequence: 4
  givenname: Dieu Tien
  surname: Bui
  fullname: Bui, Dieu Tien
  email: buitiendieu@tdtu.edu.vn
  organization: Geographic Information Science Research Group, Ton Duc Thang University, Faculty of Environment and Labour Safety, Ton Duc Thang University
BookMark eNp9kEFrwyAYQGVssLbbH9hJ2NlNYxL12JW1C5S10HVXMcYUS2o6tYfu1y9tBoMdelLwPb-PNwTXrnUGgAeCnwjG7DkQgjOKMBEIi4xkiF6BAckYRVxwcn26JxixlIpbMAxhizuJ8mwAZOGiaRq7MS7CpTeV1dG2DrY1fGlUiNZtUOGqgzYVnPn24Cr4aUuvztA6dM9w_D4tVnCxj3ZnvzusPMLZGKqOXK4Wd-CmVk0w97_nCKynrx-TNzRfzIrJeI40JSKi3CQ6w7xWFaM0Z2VFTZoTInLFOcaiUjUzqTFpzQWpUswyxpJMM641T0vFUzoCj_2_e99-HUyIctsevOtGykQQTimjKe2opKe0b0PwppZ7b3fKHyXB8hRS9iFlF1KeQ8qTxP9J2sZzgOiVbS6rtFdDN8dtjP_b6oL1A8RWiEA
CitedBy_id crossref_primary_10_1080_19942060_2024_2447389
crossref_primary_10_1007_s11053_019_09605_2
crossref_primary_10_3934_geosci_2023019
crossref_primary_10_1007_s00521_022_08093_5
crossref_primary_10_3390_app9183715
crossref_primary_10_1007_s12517_023_11561_4
crossref_primary_10_3390_app14093759
crossref_primary_10_1007_s00366_020_01231_4
crossref_primary_10_3390_w15142656
crossref_primary_10_1007_s11053_021_09896_4
crossref_primary_10_3390_app13127166
crossref_primary_10_1007_s00366_020_01131_7
crossref_primary_10_1088_1742_6596_2029_1_012095
crossref_primary_10_3390_su17030860
crossref_primary_10_1016_j_cesys_2024_100201
crossref_primary_10_1007_s11053_021_09960_z
crossref_primary_10_1007_s13369_023_07666_3
crossref_primary_10_1007_s00366_020_01225_2
crossref_primary_10_1038_s41598_022_25512_8
crossref_primary_10_1080_17480930_2022_2131137
crossref_primary_10_1007_s11709_023_0940_7
crossref_primary_10_1007_s00170_024_13524_9
crossref_primary_10_1007_s12517_024_11979_4
crossref_primary_10_1007_s11356_022_19683_0
crossref_primary_10_1007_s40430_022_03798_z
crossref_primary_10_1007_s12517_021_07391_x
crossref_primary_10_1007_s10064_019_01626_8
crossref_primary_10_1007_s11053_021_09823_7
crossref_primary_10_1007_s12540_020_00854_y
crossref_primary_10_1007_s42461_024_00976_6
crossref_primary_10_1007_s00366_019_00858_2
crossref_primary_10_1007_s11053_019_09597_z
crossref_primary_10_1007_s00366_019_00895_x
crossref_primary_10_1007_s00366_020_00977_1
crossref_primary_10_1007_s00366_021_01332_8
crossref_primary_10_1007_s00603_023_03272_9
crossref_primary_10_1155_2023_5063981
crossref_primary_10_1007_s12010_022_03934_4
crossref_primary_10_1108_ECAM_08_2024_1047
crossref_primary_10_3390_app13179906
crossref_primary_10_1007_s11053_020_09764_7
crossref_primary_10_1016_j_ijmst_2021_01_007
crossref_primary_10_3390_w14050751
crossref_primary_10_1007_s00366_021_01444_1
crossref_primary_10_3390_app10020434
crossref_primary_10_1007_s12665_023_11194_6
crossref_primary_10_3389_frwa_2024_1401689
crossref_primary_10_1007_s00366_020_01085_w
crossref_primary_10_1515_cppm_2021_0065
crossref_primary_10_1007_s12665_021_09506_9
crossref_primary_10_1007_s12665_021_10049_2
crossref_primary_10_1007_s00366_020_00937_9
crossref_primary_10_1007_s00521_021_06248_4
crossref_primary_10_1007_s00366_019_00919_6
crossref_primary_10_1038_s41598_020_76569_2
crossref_primary_10_1093_jcde_qwab009
crossref_primary_10_1007_s00366_021_01381_z
crossref_primary_10_1038_s41598_019_50262_5
crossref_primary_10_1080_10826068_2022_2090002
crossref_primary_10_1093_jcde_qwaf007
crossref_primary_10_1007_s11053_024_10445_y
crossref_primary_10_3389_fpubh_2022_1094771
crossref_primary_10_1007_s00366_020_01173_x
crossref_primary_10_1007_s11053_021_09968_5
crossref_primary_10_3390_app12189189
crossref_primary_10_3390_mining3020019
crossref_primary_10_1007_s11053_019_09611_4
crossref_primary_10_1007_s42108_023_00252_1
crossref_primary_10_1038_s41598_023_32693_3
crossref_primary_10_1007_s00366_020_01207_4
crossref_primary_10_1007_s11053_019_09548_8
crossref_primary_10_1007_s41939_024_00492_6
crossref_primary_10_1016_j_jocs_2023_102097
crossref_primary_10_1007_s11053_020_09676_6
crossref_primary_10_1016_j_mlwa_2023_100517
crossref_primary_10_3390_machines10070567
crossref_primary_10_1016_j_measen_2022_100546
crossref_primary_10_3390_su14158993
crossref_primary_10_1111_sum_12753
crossref_primary_10_1016_j_coal_2023_104294
crossref_primary_10_1007_s11053_019_09532_2
crossref_primary_10_32604_cmes_2024_048398
Cites_doi 10.1007/s00366-016-0477-7
10.1007/s00366-017-0508-z
10.1007/s00521-016-2577-0
10.1007/s00366-016-0463-0
10.1007/s00366-018-0659-6
10.1007/s00366-018-0582-x
10.1108/EC-08-2017-0290
10.1016/j.soildyn.2006.06.004
10.1007/s11600-019-00268-4
10.1016/j.ijrmms.2014.10.004
10.1007/s11053-019-09464-x
10.1016/j.mineng.2019.01.004
10.1007/s00500-014-1498-z
10.1109/21.256541
10.1007/s00366-019-00726-z
10.1007/s00366-019-00725-0
10.1007/s00366-016-0462-1
10.1007/s00603-018-1667-y
10.1007/s00366-010-0190-x
10.1007/s00521-012-0856-y
10.1007/s00366-018-0686-3
10.1007/s11053-019-09473-w
10.1007/s00521-016-2746-1
10.1007/s13762-017-1395-y
10.1007/s00366-019-00720-5
10.1007/s12665-015-4274-1
10.1007/s12665-016-6335-5
10.1007/s12517-015-1908-2
10.1007/s00366-019-00711-6
10.1007/s11053-018-9424-1
10.1007/s10706-015-9869-5
10.1007/s00254-005-1291-5
10.1016/j.asoc.2018.07.035
10.1016/j.jallcom.2008.08.120
10.1016/S1674-5264(09)60243-X
10.1007/s11053-019-09470-z
10.1007/s12665-017-6864-6
10.1007/s42452-018-0136-2
10.1109/access.2019.2918177
10.1016/j.ssci.2019.05.046
10.1007/s00366-019-00769-2
10.1016/j.measurement.2018.08.052
10.1007/s10661-018-6719-y
10.1007/BF01045717
10.1007/s00366-017-0568-0
10.1007/s00366-016-0497-3
10.1007/s00366-016-0475-9
10.1016/j.mineng.2018.04.010
10.1016/j.tust.2018.07.023
10.1007/s10064-014-0657-x
10.1016/j.ijrmms.2009.03.004
10.1007/s12517-013-1174-0
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2019
International Association for Mathematical Geosciences 2019.
Copyright_xml – notice: International Association for Mathematical Geosciences 2019
– notice: International Association for Mathematical Geosciences 2019.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOI 10.1007/s11053-019-09515-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
EISSN 1573-8981
EndPage 750
ExternalDocumentID 10_1007_s11053_019_09515_3
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-6e2c508fad73367bd3e461196a88009daf7e4ee4f891d40757725c78cc84ba843
IEDL.DBID U2A
ISSN 1520-7439
IngestDate Sun Jul 13 04:17:16 EDT 2025
Wed Oct 01 04:27:02 EDT 2025
Thu Apr 24 22:51:04 EDT 2025
Fri Feb 21 02:32:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords GA
ANFIS
Blasting
PSO
Ground vibration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6e2c508fad73367bd3e461196a88009daf7e4ee4f891d40757725c78cc84ba843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918337343
PQPubID 2043663
PageCount 12
ParticipantIDs proquest_journals_2918337343
crossref_primary_10_1007_s11053_019_09515_3
crossref_citationtrail_10_1007_s11053_019_09515_3
springer_journals_10_1007_s11053_019_09515_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200400
2020-4-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Official Journal of the International Association for Mathematical Geosciences
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Qi, Fourie, Ma, Tang (CR48) 2018; 71
Jahed Armaghani, Hajihassani, Mohamad, Marto, Noorani (CR24) 2014; 7
Palupi Rini, Shamsuddin, Yuhaniz (CR46) 2016; 20
Lu, Zhou, Ding, Shi, Luan, Li (CR36) 2019
Hasanipanah, Shahnazar, Arab, Golzar, Amiri (CR22) 2017; 33
Qi, Chen, Fourie, Zhang (CR47) 2018; 123
Nguyen, Xuan-Nam, Quang-Hieu, Thao-Qui, Ngoc-Hoan, Le (CR42) 2018; 1
Zhou, Nekouie, Arslan, Pham, Hasanipanah (CR60) 2019
Hasanipanah, Bakhshandeh Amnieh, Khamesi, Jahed Armaghani, Bagheri Golzar, Shahnazar (CR17) 2016
Nguyen, Bui (CR39) 2018
Rai, Singh (CR50) 2004; 11
Nguyen, Bui, Bui, Cuong (CR40) 2019
Nikafshan Rad, Jalali, Jalalifar (CR45) 2015; 73
Hajihassani, Armaghani, Marto, Mohamad (CR14) 2015; 74
Zhou, Li, Yang, Wang, Shi, Yao, Mitri (CR59) 2019; 118
Hasanipanah, Golzar, Larki, Maryaki, Ghahremanians (CR20) 2017; 33
Yang, Li, Jie, Zhang (CR56) 2018; 81
Hasanipanah, Naderi, Kashir, Noorani, Zeynali Aaq Qaleh (CR21) 2017; 33
Qi, Tang, Dong, Chen, Fourie, Liu (CR49) 2019; 133
Arthur, Temeng, Ziggah (CR3) 2019
Deng, Luo, Wu, Hu (CR5) 2010; 20
CR6
Jiang, Arslan, Soltani Tehrani, Khorami, Hasanipanah (CR29) 2019
Khandelwal, Singh (CR32) 2007; 27
Liao, Khandelwal, Yang, Koopialipoor, Murlidhar (CR35) 2019
Khandelwal, Singh (CR33) 2009; 46
Nikafshan Rad, Hasanipanah, Rezaei, Eghlim (CR44) 2018; 34
Jahed Armaghani, Hasanipanah, Bakhshandeh Amnieh, Tien Bui, Mehrabi, Khorami (CR27) 2019
Hajihassani, Jahed Armaghani, Monjezi, Mohamad, Marto (CR15) 2015; 74
Trivedi, Singh, Gupta (CR55) 2015; 33
Ambraseys, Hendron, Stagg, Zienkiewicz (CR2) 1968
Khandelwal (CR31) 2011; 27
Jahed Armaghani, Hajihassani, Monjezi, Mohamad, Marto, Moghaddam (CR25) 2015; 8
Hasanipanah, Faradonbeh, Armaghani, Amnieh, Khandelwal (CR19) 2017; 76
Jahed Armaghani, Hasanipanah, Bakhshandeh Amnieh, Mohamad (CR26) 2018; 29
Shahnazar, Rad, Hasanipanah, Tahir, Armaghani, Ghoroqi (CR51) 2017; 76
CR13
CR12
Zhou, Aghili, Noroozi Ghaleini, Tien Bui, Tahir, Koopialipoor (CR58) 2019
CR11
Jang (CR28) 1993; 23
CR10
CR53
Taheri, Hasanipanah, Bagheri Golzar, Abd Majid (CR54) 2017; 33
Zhao, Yang, Chen, Chen, Huang, Liu (CR57) 2018
Hasanipanah, Faradonbeh, Amnieh, Armaghani, Monjezi (CR18) 2017; 33
Nikafshan Rad, Bakhshayeshi, Wan Jusoh, Tahir, Kok Foong (CR43) 2019
Hasanipanah, Bakhshandeh Amnieh, Arab, Zamzam (CR16) 2018; 30
Farinha, Mendes, Baranda, Calinas, Vieira (CR7) 2009; 483
Alameer, Abd Elaziz, Ewees, Ye, Jianhua (CR1) 2019
Gao, Alqahtani, Mubarakali, Mavaluru, Khalafi (CR9) 2019
Monjezi, Hasanipanah, Khandelwal (CR38) 2013; 22
Yang, Zang (CR61) 1997; 30
Shirani Faradonbeh, Hasanipanah, Amnieh, Armaghani, Monjezi (CR52) 2018; 190
CR23
Keshtegar, Hasanipanah, Bakhshayeshi, Sarafraz (CR30) 2019; 131
Behzadafshar, Mohebbi, Soltani Tehrani, Hasanipanah, Tabrizi (CR4) 2018; 35
Fouladgar, Hasanipanah, Bakhshandeh Amnieh (CR8) 2017; 33
Nguyen, Drebenstedt, Bui, Bui (CR41) 2019
Kuzu, Ergin (CR34) 2005; 48
Mojtahedi, Ebtehaj, Hasanipanah, Bonakdari, Amnieh (CR37) 2019; 35
K Taheri (9515_CR54) 2017; 33
J Zhou (9515_CR58) 2019
J Deng (9515_CR5) 2010; 20
H Nguyen (9515_CR41) 2019
M Hasanipanah (9515_CR16) 2018; 30
R Rai (9515_CR50) 2004; 11
SFF Mojtahedi (9515_CR37) 2019; 35
CK Arthur (9515_CR3) 2019
R Trivedi (9515_CR55) 2015; 33
D Jahed Armaghani (9515_CR25) 2015; 8
M Khandelwal (9515_CR31) 2011; 27
D Palupi Rini (9515_CR46) 2016; 20
HQ Yang (9515_CR56) 2018; 81
N Fouladgar (9515_CR8) 2017; 33
M Khandelwal (9515_CR33) 2009; 46
M Khandelwal (9515_CR32) 2007; 27
C Qi (9515_CR47) 2018; 123
K Behzadafshar (9515_CR4) 2018; 35
9515_CR6
M Hasanipanah (9515_CR20) 2017; 33
J Zhou (9515_CR59) 2019; 118
J Zhou (9515_CR60) 2019
9515_CR23
Y Zhao (9515_CR57) 2018
D Jahed Armaghani (9515_CR27) 2019
R Shirani Faradonbeh (9515_CR52) 2018; 190
9515_CR13
C Qi (9515_CR49) 2019; 133
M Hajihassani (9515_CR14) 2015; 74
M Hasanipanah (9515_CR17) 2016
H Nikafshan Rad (9515_CR43) 2019
D Jahed Armaghani (9515_CR26) 2018; 29
M Monjezi (9515_CR38) 2013; 22
M Hasanipanah (9515_CR18) 2017; 33
M Hasanipanah (9515_CR22) 2017; 33
JSR Jang (9515_CR28) 1993; 23
Z Alameer (9515_CR1) 2019
9515_CR12
9515_CR11
9515_CR10
9515_CR53
NR Ambraseys (9515_CR2) 1968
X Lu (9515_CR36) 2019
H Nguyen (9515_CR40) 2019
H Nikafshan Rad (9515_CR45) 2015; 73
C Qi (9515_CR48) 2018; 71
M Hajihassani (9515_CR15) 2015; 74
Y Yang (9515_CR61) 1997; 30
D Jahed Armaghani (9515_CR24) 2014; 7
B Keshtegar (9515_CR30) 2019; 131
H Nguyen (9515_CR42) 2018; 1
M Hasanipanah (9515_CR19) 2017; 76
W Jiang (9515_CR29) 2019
AR Farinha (9515_CR7) 2009; 483
X Liao (9515_CR35) 2019
A Shahnazar (9515_CR51) 2017; 76
H Nguyen (9515_CR39) 2018
M Hasanipanah (9515_CR21) 2017; 33
W Gao (9515_CR9) 2019
C Kuzu (9515_CR34) 2005; 48
H Nikafshan Rad (9515_CR44) 2018; 34
References_xml – volume: 33
  start-page: 349
  issue: 3
  year: 2017
  end-page: 359
  ident: CR22
  article-title: Developing a new hybrid-AI model to predict blast-induced backbreak
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0477-7
– volume: 11
  start-page: 178
  year: 2004
  end-page: 184
  ident: CR50
  article-title: A new predictor for ground vibration prediction and its comparison with other predictors
  publication-title: Indian Journal of Engineering and Materials Sciences
– volume: 33
  start-page: 951
  issue: 4
  year: 2017
  end-page: 959
  ident: CR20
  article-title: Estimation of blast-induced ground vibration through a soft computing framework
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-017-0508-z
– volume: 29
  start-page: 457
  issue: 9
  year: 2018
  end-page: 465
  ident: CR26
  article-title: Feasibility of ICA in approximating ground vibration resulting from mine blasting
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2577-0
– ident: CR12
– volume: 33
  start-page: 181
  issue: 2
  year: 2017
  end-page: 189
  ident: CR8
  article-title: Application of cuckoo search algorithm to estimate peak particle velocity in mine blasting
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0463-0
– year: 2019
  ident: CR29
  article-title: Simulating the peak particle velocity in rock blasting projects using a neuro-fuzzy inference system
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0659-6
– start-page: 203
  year: 1968
  end-page: 207
  ident: CR2
  article-title: Dynamic behavior of rock masses
  publication-title: Rock mechanics in engineering practices
– volume: 35
  start-page: 47
  issue: 1
  year: 2019
  end-page: 56
  ident: CR37
  article-title: Proposing a novel hybrid intelligent model for the simulation of particle size distribution resulting from blasting
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0582-x
– volume: 35
  start-page: 1774
  issue: 4
  year: 2018
  end-page: 1787
  ident: CR4
  article-title: Predicting the ground vibration induced by mine blasting using imperialist competitive algorithm
  publication-title: Engineering Computation
  doi: 10.1108/EC-08-2017-0290
– volume: 27
  start-page: 116
  year: 2007
  end-page: 125
  ident: CR32
  article-title: Evaluation of blast-induced ground vibration predictors
  publication-title: Soil Dynamics and Earthquake Engineering
  doi: 10.1016/j.soildyn.2006.06.004
– year: 2019
  ident: CR40
  article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study
  publication-title: Acta Geophysica
  doi: 10.1007/s11600-019-00268-4
– volume: 73
  start-page: 1
  year: 2015
  end-page: 9
  ident: CR45
  article-title: Prediction of rock mass rating system based on continuous functions using Chaos–ANFIS model
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2014.10.004
– year: 2019
  ident: CR43
  article-title: Prediction of flyrock in mine blasting: A new computational intelligence approach
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09464-x
– volume: 133
  start-page: 69
  year: 2019
  end-page: 79
  ident: CR49
  article-title: Towards Intelligent Mining for Backfill: A genetic programming-based method for strength forecasting of cemented paste backfill
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2019.01.004
– volume: 20
  start-page: 251
  year: 2016
  end-page: 262
  ident: CR46
  article-title: Particle swarm optimization for ANFIS interpretability and accuracy
  publication-title: Soft Computing
  doi: 10.1007/s00500-014-1498-z
– ident: CR11
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: CR28
  article-title: ANFIS: Adaptive-network-based fuzzy inference system
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.256541
– year: 2019
  ident: CR58
  article-title: A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00726-z
– year: 2019
  ident: CR60
  article-title: Novel approach for forecasting the blast-induced AOp using a hybrid fuzzy system and firefly algorithm
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00725-0
– volume: 33
  start-page: 173
  issue: 2
  year: 2017
  end-page: 179
  ident: CR21
  article-title: Prediction of blast produced ground vibration using particle swarm optimization
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0462-1
– year: 2018
  ident: CR57
  article-title: Effects of jointed rock mass and mixed ground conditions on the cutting efficiency and cutter wear of tunnel boring machine
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-018-1667-y
– volume: 27
  start-page: 193
  year: 2011
  end-page: 200
  ident: CR31
  article-title: Blast-induced ground vibration prediction using support vector machine
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-010-0190-x
– volume: 22
  start-page: 1637
  issue: 7–8
  year: 2013
  end-page: 1643
  ident: CR38
  article-title: Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-012-0856-y
– year: 2019
  ident: CR3
  article-title: Novel approach to predicting blast-induced ground vibration using Gaussian process regression
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0686-3
– year: 2019
  ident: CR1
  article-title: Forecasting copper prices using hybrid adaptive neuro-fuzzy inference system and genetic algorithms
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09473-w
– volume: 30
  start-page: 1015
  issue: 4
  year: 2018
  end-page: 1024
  ident: CR16
  article-title: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2746-1
– year: 2016
  ident: CR17
  article-title: Prediction of an environmental issue of mine blasting: An imperialistic competitive algorithm-based fuzzy system
  publication-title: International Journal of Environmental Science and Technology
  doi: 10.1007/s13762-017-1395-y
– year: 2019
  ident: CR9
  article-title: Developing an innovative soft computing scheme for prediction of air overpressure resulting from mine blasting using GMDH optimized by GA
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00720-5
– volume: 74
  start-page: 2799
  issue: 4
  year: 2015
  end-page: 2817
  ident: CR15
  article-title: Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-015-4274-1
– volume: 76
  start-page: 27
  issue: 1
  year: 2017
  ident: CR19
  article-title: Development of a precise model for prediction of blast-induced flyrock using regression tree technique
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-016-6335-5
– volume: 8
  start-page: 9647
  year: 2015
  end-page: 9665
  ident: CR25
  article-title: Application of two intelligent systems in predicting environmental impacts of quarry blasting
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-015-1908-2
– year: 2019
  ident: CR35
  article-title: Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00711-6
– year: 2018
  ident: CR39
  article-title: Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9424-1
– ident: CR53
– volume: 33
  start-page: 875
  year: 2015
  end-page: 891
  ident: CR55
  article-title: Prediction of blast induced flyrock in opencast mines using ANN and ANFIS
  publication-title: Geotechnical and Geological Engineering
  doi: 10.1007/s10706-015-9869-5
– volume: 48
  start-page: 211
  year: 2005
  end-page: 217
  ident: CR34
  article-title: An assessment of environmental impacts of quarry-blasting operation: A case study in Istanbul, Turkey
  publication-title: Environmental Geology
  doi: 10.1007/s00254-005-1291-5
– volume: 71
  start-page: 649
  year: 2018
  end-page: 658
  ident: CR48
  article-title: A hybrid method for improved stability prediction in construction projects: A case study of stope hangingwall stability
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.07.035
– volume: 483
  start-page: 235
  year: 2009
  end-page: 238
  ident: CR7
  article-title: Behavior of explosive compacted/consolidated of nanometric copper powders
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2008.08.120
– ident: CR10
– volume: 20
  start-page: 557
  year: 2010
  end-page: 562
  ident: CR5
  article-title: Explosive limits of mixed gases containing CH , CO and C H in the goaf area
  publication-title: Mining Science and Technology (China)
  doi: 10.1016/S1674-5264(09)60243-X
– year: 2019
  ident: CR41
  article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09470-z
– volume: 76
  start-page: 527
  issue: 15
  year: 2017
  ident: CR51
  article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-017-6864-6
– volume: 1
  start-page: 125
  issue: 1
  year: 2018
  ident: CR42
  article-title: Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: A case study in Vietnam
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-018-0136-2
– ident: CR6
– year: 2019
  ident: CR36
  article-title: Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2918177
– volume: 118
  start-page: 505
  year: 2019
  end-page: 518
  ident: CR59
  article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2019.05.046
– year: 2019
  ident: CR27
  article-title: Development of a novel hybrid intelligent model for solving engineering problems using GS-GMDH algorithm
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00769-2
– ident: CR23
– volume: 131
  start-page: 35
  year: 2019
  end-page: 41
  ident: CR30
  article-title: A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.052
– volume: 190
  start-page: 351
  issue: 6
  year: 2018
  ident: CR52
  article-title: Development of GP and GEP models to estimate an environmental issue induced by blasting operation
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-018-6719-y
– volume: 30
  start-page: 207
  year: 1997
  end-page: 222
  ident: CR61
  article-title: A hierarchical analysis for rock engineering using artificial neural networks
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/BF01045717
– ident: CR13
– volume: 34
  start-page: 709
  issue: 4
  year: 2018
  end-page: 717
  ident: CR44
  article-title: Developing a least squares support vector machine for estimating the blast-induced flyrock
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-017-0568-0
– volume: 33
  start-page: 689
  issue: 3
  year: 2017
  end-page: 700
  ident: CR54
  article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0497-3
– volume: 33
  start-page: 307
  issue: 2
  year: 2017
  end-page: 316
  ident: CR18
  article-title: Forecasting blast-induced ground vibration developing a CART model
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0475-9
– volume: 123
  start-page: 16
  year: 2018
  end-page: 27
  ident: CR47
  article-title: An intelligent modelling framework for mechanical properties of cemented paste backfill
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2018.04.010
– volume: 81
  start-page: 112
  year: 2018
  end-page: 120
  ident: CR56
  article-title: Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2018.07.023
– volume: 74
  start-page: 873
  issue: 3
  year: 2015
  end-page: 886
  ident: CR14
  article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-014-0657-x
– volume: 46
  start-page: 1214
  issue: 7
  year: 2009
  end-page: 1222
  ident: CR33
  article-title: Prediction of blast-induced ground vibration using artificial neural network
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2009.03.004
– volume: 7
  start-page: 5383
  year: 2014
  end-page: 5396
  ident: CR24
  article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-013-1174-0
– volume: 74
  start-page: 873
  issue: 3
  year: 2015
  ident: 9515_CR14
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-014-0657-x
– ident: 9515_CR6
– volume: 73
  start-page: 1
  year: 2015
  ident: 9515_CR45
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2014.10.004
– ident: 9515_CR12
– volume: 23
  start-page: 665
  year: 1993
  ident: 9515_CR28
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.256541
– year: 2019
  ident: 9515_CR41
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09470-z
– year: 2019
  ident: 9515_CR43
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09464-x
– year: 2019
  ident: 9515_CR3
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0686-3
– volume: 1
  start-page: 125
  issue: 1
  year: 2018
  ident: 9515_CR42
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-018-0136-2
– volume: 35
  start-page: 1774
  issue: 4
  year: 2018
  ident: 9515_CR4
  publication-title: Engineering Computation
  doi: 10.1108/EC-08-2017-0290
– volume: 190
  start-page: 351
  issue: 6
  year: 2018
  ident: 9515_CR52
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-018-6719-y
– volume: 27
  start-page: 116
  year: 2007
  ident: 9515_CR32
  publication-title: Soil Dynamics and Earthquake Engineering
  doi: 10.1016/j.soildyn.2006.06.004
– volume: 46
  start-page: 1214
  issue: 7
  year: 2009
  ident: 9515_CR33
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2009.03.004
– year: 2019
  ident: 9515_CR9
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00720-5
– volume: 30
  start-page: 1015
  issue: 4
  year: 2018
  ident: 9515_CR16
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2746-1
– volume: 76
  start-page: 527
  issue: 15
  year: 2017
  ident: 9515_CR51
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-017-6864-6
– volume: 30
  start-page: 207
  year: 1997
  ident: 9515_CR61
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/BF01045717
– year: 2019
  ident: 9515_CR36
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2918177
– volume: 133
  start-page: 69
  year: 2019
  ident: 9515_CR49
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2019.01.004
– year: 2019
  ident: 9515_CR1
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09473-w
– year: 2019
  ident: 9515_CR29
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0659-6
– volume: 33
  start-page: 689
  issue: 3
  year: 2017
  ident: 9515_CR54
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0497-3
– volume: 35
  start-page: 47
  issue: 1
  year: 2019
  ident: 9515_CR37
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0582-x
– ident: 9515_CR13
– year: 2019
  ident: 9515_CR58
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00726-z
– year: 2019
  ident: 9515_CR60
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00725-0
– volume: 33
  start-page: 307
  issue: 2
  year: 2017
  ident: 9515_CR18
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0475-9
– volume: 74
  start-page: 2799
  issue: 4
  year: 2015
  ident: 9515_CR15
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-015-4274-1
– volume: 8
  start-page: 9647
  year: 2015
  ident: 9515_CR25
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-015-1908-2
– ident: 9515_CR23
– volume: 48
  start-page: 211
  year: 2005
  ident: 9515_CR34
  publication-title: Environmental Geology
  doi: 10.1007/s00254-005-1291-5
– year: 2019
  ident: 9515_CR40
  publication-title: Acta Geophysica
  doi: 10.1007/s11600-019-00268-4
– volume: 34
  start-page: 709
  issue: 4
  year: 2018
  ident: 9515_CR44
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-017-0568-0
– volume: 27
  start-page: 193
  year: 2011
  ident: 9515_CR31
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-010-0190-x
– ident: 9515_CR10
– volume: 33
  start-page: 181
  issue: 2
  year: 2017
  ident: 9515_CR8
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0463-0
– volume: 81
  start-page: 112
  year: 2018
  ident: 9515_CR56
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2018.07.023
– volume: 33
  start-page: 951
  issue: 4
  year: 2017
  ident: 9515_CR20
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-017-0508-z
– year: 2019
  ident: 9515_CR27
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00769-2
– year: 2019
  ident: 9515_CR35
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00711-6
– volume: 33
  start-page: 173
  issue: 2
  year: 2017
  ident: 9515_CR21
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0462-1
– year: 2018
  ident: 9515_CR57
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-018-1667-y
– year: 2016
  ident: 9515_CR17
  publication-title: International Journal of Environmental Science and Technology
  doi: 10.1007/s13762-017-1395-y
– volume: 7
  start-page: 5383
  year: 2014
  ident: 9515_CR24
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-013-1174-0
– volume: 483
  start-page: 235
  year: 2009
  ident: 9515_CR7
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2008.08.120
– volume: 118
  start-page: 505
  year: 2019
  ident: 9515_CR59
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2019.05.046
– start-page: 203
  volume-title: Rock mechanics in engineering practices
  year: 1968
  ident: 9515_CR2
– volume: 20
  start-page: 251
  year: 2016
  ident: 9515_CR46
  publication-title: Soft Computing
  doi: 10.1007/s00500-014-1498-z
– volume: 29
  start-page: 457
  issue: 9
  year: 2018
  ident: 9515_CR26
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2577-0
– ident: 9515_CR11
– volume: 11
  start-page: 178
  year: 2004
  ident: 9515_CR50
  publication-title: Indian Journal of Engineering and Materials Sciences
– ident: 9515_CR53
– volume: 131
  start-page: 35
  year: 2019
  ident: 9515_CR30
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.052
– volume: 71
  start-page: 649
  year: 2018
  ident: 9515_CR48
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.07.035
– volume: 22
  start-page: 1637
  issue: 7–8
  year: 2013
  ident: 9515_CR38
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-012-0856-y
– volume: 20
  start-page: 557
  year: 2010
  ident: 9515_CR5
  publication-title: Mining Science and Technology (China)
  doi: 10.1016/S1674-5264(09)60243-X
– volume: 76
  start-page: 27
  issue: 1
  year: 2017
  ident: 9515_CR19
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-016-6335-5
– volume: 33
  start-page: 349
  issue: 3
  year: 2017
  ident: 9515_CR22
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0477-7
– volume: 123
  start-page: 16
  year: 2018
  ident: 9515_CR47
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2018.04.010
– volume: 33
  start-page: 875
  year: 2015
  ident: 9515_CR55
  publication-title: Geotechnical and Geological Engineering
  doi: 10.1007/s10706-015-9869-5
– year: 2018
  ident: 9515_CR39
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9424-1
SSID ssj0007385
Score 2.4980106
Snippet Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 739
SubjectTerms Adaptive systems
Artificial neural networks
Blasting
Chemistry and Earth Sciences
Civil engineering
Computer Science
Earth and Environmental Science
Earth Sciences
Efficiency
Environmental impact
Explosives
Fossil Fuels (incl. Carbon Capture)
Fuzzy logic
Genetic algorithms
Geography
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mineral Resources
Mines
Optimization
Original Paper
Parameter sensitivity
Particle swarm optimization
Performance indices
Physics
Prediction models
Quarries
R&D
Research & development
Root-mean-square errors
Sensitivity analysis
Statistical analysis
Statistics for Engineering
Surface mines
Sustainable Development
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCAkOCAaI8VIO3KBibdO0PSA00MbjMCZgaLcqzUNCgo1HOcCvx87aDZDYuW4Odmx_TpzPAAc6CXxraXpZ0xiPp8b3UmIcwmQuBY-MSLRrkO2Kyz6_HkSDOehWb2GorbKKiS5Q65GiM_LjIMXNF8YhD09fXj2aGkW3q9UIDVmOVtAnjmJsHhYCYsaqwcJZu9u7ncRm4m5xDKpYNBEUL5_RjB_TIdSg3iJqIcIs74W_U9UUf_65MnWZqLMKKyWEZK2xzddgzgzrsPyDWLAOixduYO_nOmRXE87NgvXe6FqGTMFGlp0hcKamZ4_GdyijGZ1DDTV7oAraCbl-Atbqdq7u2A3GlufHLxTLP9lFi0mU7N3dbEC_074_v_TKoQqeQm8rPGEChaDMSk1EiHGuQ8OFj34o0ZObqZY2NtwYbpPU11jtRQi_IxUnSiU8lwkPN6E2HA3NFrA8zK20EiGVxKJE5IkVMc91GimR-EKHDfAr_WWqZBynwRdP2ZQrmXSeoc4zp_MM_zmc_PMy5tuYKb1bmSUrfe89m-6UBhxVppp-_n-17dmr7cBSQMW2a9vZhVrx9mH2EJEU-X65zb4BbjLZHg
  priority: 102
  providerName: ProQuest
Title Intelligent Prediction of Blasting-Induced Ground Vibration Using ANFIS Optimized by GA and PSO
URI https://link.springer.com/article/10.1007/s11053-019-09515-3
https://www.proquest.com/docview/2918337343
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-8981
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVKhwgJIWUQjRHriBpdper9dHB-VFpSQiBJWTtd6HWqkkKDGH9Nczs7ETQIDEyZZ2dg-enZlvvLPfALwxMgqdo-5ll9YGPLNhkBHjEAZzJXhihTS-QHYiRgv-4Tq5ri-FbZpq9-ZI0nvqw2U3hAJU-0MlPhiFg_gIjhOi88JdvIjyvf8lfhbPkoqJEcHt-qrMn9f4NRwdMOZvx6I-2gxO4UkNE1m-0-szeGCXbXjatGBgtUW24fFPfIJtOKlbmt9s2_Bw6Hv20puv8tSbMyjGewLOis3WdEZDemErx3qIoqkCOqBeHtoaRj-lloZ9pnTaC_niApZPBuM5m6Kj-Xp7j2Lllg1zplByNp-ew2LQ__R-FNQdFgKNplcFwkYaEZpThlgR09LElosQjVKhWV9mRrnUcmu5k1loMPVLEIsnOpVaS14qyePn0FqulvYFsDIunXIK8ZXCDEWU0omUlyZLtJChMPEFhM2HLnRNP05dMO6KA3EyKadA5RReOQXOebuf821HvvFP6U6jv6I2xE0RZeiz4jTmOPyu0elh-O-rvfw_8VfwKKJM3Nf0dKBVrb_b1whXqrILR3Iw7MJxPvxy1cdnrz-Zfez6PfsDqEngmw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xEIIeUHlU0NLiQ3uCFeza6909IBRaQlIgRLzEzfX6IVVqEwqpqvTH9bd1xtlNWiS4cd6xDzOznm_smW8A3ts8ib2n6WW7zkWicHFUEOMQBnMtRepkbkOBbEe2rsTnm_RmCv7UvTBUVlmfieGgtn1Dd-Q7SYHOxzMu-P7tj4imRtHraj1CQ1ejFexeoBirGjuO3fAXpnD3e-1PaO8PSdI8vPzYiqopA5FB9xtE0iUGUYrXlpgBs9JyJ2SMjqnRtXcLq33mhHPC50VsMf1JEY-mJsuNyUWpc8Fx32mYFVwUmPzNHhx2uufjWEBcMYGxFZM0gv5V286oeQ-hDdUyUckSooqI_x8aJ3j3wRNtiHzNl7BYQVbWGPnYEky53jK8-IfIcBnmjsKA4OEKqPaY43PAunf0DESmZ33PDhCoU5F1RONCjLOM7r16ll1Txh6EQv0Ca3Sa7Qt2hmfZ96-_UawcsqMG0yjZvThbhatnUe8rmOn1e24NWMlLr71GCKcxCZJl7mUmSlukRuaxtHwd4lp_ylQM5zRo45uacDOTzhXqXAWdK1yzNV5zO-L3eFJ6ozaLqv71ezXxzHXYrk01-fz4bq-f3m0T5luXpyfqpN05fgMLCSX6oWRoA2YGdz_dW0RDg_Jd5XIMvjy3l_8FzCsVZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VrXgdSlmo2vLygVuJIInjJMcFurBQLSvRRdwsxw-B1AbEhgP8ema8yS4gqNRbpIx9yHjsb-JvvgHYNlkUOkfdy_asDXhuwyAnxSE8zJXgiRWZ8QTZvjge8pPL5PJZFb9nuzdXkuOaBlJpKqvdW-N2p4VvCAuIB0R0HzyRg3gGPnISSsAVPYw6k72YtFq8YiomSQS967KZt-d4eTRN8earK1J_8nQ_w6caMrLO2MfL8MGWbVhq2jGwOjrbsPhMW7AN83V786uHNswe-f699OQZn3q0ArI3EeOs2OCO7mvIR-zGsX1E1MSGDqivh7aG0Q-q0rALSq29kScasE6_2ztnZ7jp_L1-RLPigR11mELLwfnZKgy7P38fHAd1t4VAYxhWgbCRRrTmlCGFxLQwseUixABVGOJ7uVEutdxa7rI8NJgGJojLE51mWme8UBmPv0CrvCntV2BFXDjlFGIthdmKKDInUl6YPNEiC4WJv0HYfGipayly6ojxR05FlMk5Ep0jvXMkjvkxGXM7FuL4p_V64z9ZB-VIRjnuX3Eac3y90_h0-vr92b7_n_kWzA0Ou_JXr3-6BgsRJeie6rMOreru3m4giqmKTb9QnwA6nOOv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Prediction+of+Blasting-Induced+Ground+Vibration+Using+ANFIS+Optimized+by+GA+and+PSO&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Yang%2C+Haiqing&rft.au=Hasanipanah%2C+Mahdi&rft.au=Tahir%2C+M.+M.&rft.au=Bui%2C+Dieu+Tien&rft.date=2020-04-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=29&rft.issue=2&rft.spage=739&rft.epage=750&rft_id=info:doi/10.1007%2Fs11053-019-09515-3&rft.externalDocID=10_1007_s11053_019_09515_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon