Intelligent Prediction of Blasting-Induced Ground Vibration Using ANFIS Optimized by GA and PSO
Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground vibration is an important prerequisite in the minimization of its environmental impacts. This study proposes hybrid intelligent models to predic...
Saved in:
| Published in | Natural resources research (New York, N.Y.) Vol. 29; no. 2; pp. 739 - 750 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.04.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1520-7439 1573-8981 |
| DOI | 10.1007/s11053-019-09515-3 |
Cover
| Abstract | Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground vibration is an important prerequisite in the minimization of its environmental impacts. This study proposes hybrid intelligent models to predict ground vibration using adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) and genetic algorithms (GAs). To build prediction models using ANFIS, ANFIS–GA, and ANFIS–PSO, a database was established, consisting of 86 data samples gathered from two quarries in Iran. The input parameters of the proposed models were the burden, spacing, stemming, powder factor, maximum charge per delay (MCD), and distance from the blast points, while peak particle velocity (PPV) was considered as the output parameter. Based on the sensitivity analysis results, MCD was found as the most effective parameter of PPV. To check the applicability and efficiency of the proposed models, several traditional performance indices such as determination coefficient (
R
2
) and root-mean-square error (RMSE) were computed. The obtained results showed that the proposed ANFIS–GA and ANFIS–PSO models were capable of statistically predicting ground vibration with excellent levels of accuracy. Compared to the ANFIS, the ANFIS–GA model showed an approximately 61% decrease in RMSE and 10% increase in
R
2
. Also, the ANFIS–PSO model showed an approximately 53% decrease in RMSE and 9% increase in
R
2
compared to ANFIS. In other words, the ANFIS performance was optimized with the use of GA and PSO. |
|---|---|
| AbstractList | Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground vibration is an important prerequisite in the minimization of its environmental impacts. This study proposes hybrid intelligent models to predict ground vibration using adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) and genetic algorithms (GAs). To build prediction models using ANFIS, ANFIS–GA, and ANFIS–PSO, a database was established, consisting of 86 data samples gathered from two quarries in Iran. The input parameters of the proposed models were the burden, spacing, stemming, powder factor, maximum charge per delay (MCD), and distance from the blast points, while peak particle velocity (PPV) was considered as the output parameter. Based on the sensitivity analysis results, MCD was found as the most effective parameter of PPV. To check the applicability and efficiency of the proposed models, several traditional performance indices such as determination coefficient (
R
2
) and root-mean-square error (RMSE) were computed. The obtained results showed that the proposed ANFIS–GA and ANFIS–PSO models were capable of statistically predicting ground vibration with excellent levels of accuracy. Compared to the ANFIS, the ANFIS–GA model showed an approximately 61% decrease in RMSE and 10% increase in
R
2
. Also, the ANFIS–PSO model showed an approximately 53% decrease in RMSE and 9% increase in
R
2
compared to ANFIS. In other words, the ANFIS performance was optimized with the use of GA and PSO. Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground vibration is an important prerequisite in the minimization of its environmental impacts. This study proposes hybrid intelligent models to predict ground vibration using adaptive neuro-fuzzy inference system (ANFIS) optimized by particle swarm optimization (PSO) and genetic algorithms (GAs). To build prediction models using ANFIS, ANFIS–GA, and ANFIS–PSO, a database was established, consisting of 86 data samples gathered from two quarries in Iran. The input parameters of the proposed models were the burden, spacing, stemming, powder factor, maximum charge per delay (MCD), and distance from the blast points, while peak particle velocity (PPV) was considered as the output parameter. Based on the sensitivity analysis results, MCD was found as the most effective parameter of PPV. To check the applicability and efficiency of the proposed models, several traditional performance indices such as determination coefficient (R2) and root-mean-square error (RMSE) were computed. The obtained results showed that the proposed ANFIS–GA and ANFIS–PSO models were capable of statistically predicting ground vibration with excellent levels of accuracy. Compared to the ANFIS, the ANFIS–GA model showed an approximately 61% decrease in RMSE and 10% increase in R2. Also, the ANFIS–PSO model showed an approximately 53% decrease in RMSE and 9% increase in R2 compared to ANFIS. In other words, the ANFIS performance was optimized with the use of GA and PSO. |
| Author | Hasanipanah, Mahdi Yang, Haiqing Bui, Dieu Tien Tahir, M. M. |
| Author_xml | – sequence: 1 givenname: Haiqing surname: Yang fullname: Yang, Haiqing organization: School of Civil Engineering, Chongqing University – sequence: 2 givenname: Mahdi surname: Hasanipanah fullname: Hasanipanah, Mahdi organization: Institute of Research and Development, Duy Tan University – sequence: 3 givenname: M. M. surname: Tahir fullname: Tahir, M. M. organization: UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction (ISIIC), School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia – sequence: 4 givenname: Dieu Tien surname: Bui fullname: Bui, Dieu Tien email: buitiendieu@tdtu.edu.vn organization: Geographic Information Science Research Group, Ton Duc Thang University, Faculty of Environment and Labour Safety, Ton Duc Thang University |
| BookMark | eNp9kEFrwyAYQGVssLbbH9hJ2NlNYxL12JW1C5S10HVXMcYUS2o6tYfu1y9tBoMdelLwPb-PNwTXrnUGgAeCnwjG7DkQgjOKMBEIi4xkiF6BAckYRVxwcn26JxixlIpbMAxhizuJ8mwAZOGiaRq7MS7CpTeV1dG2DrY1fGlUiNZtUOGqgzYVnPn24Cr4aUuvztA6dM9w_D4tVnCxj3ZnvzusPMLZGKqOXK4Wd-CmVk0w97_nCKynrx-TNzRfzIrJeI40JSKi3CQ6w7xWFaM0Z2VFTZoTInLFOcaiUjUzqTFpzQWpUswyxpJMM641T0vFUzoCj_2_e99-HUyIctsevOtGykQQTimjKe2opKe0b0PwppZ7b3fKHyXB8hRS9iFlF1KeQ8qTxP9J2sZzgOiVbS6rtFdDN8dtjP_b6oL1A8RWiEA |
| CitedBy_id | crossref_primary_10_1080_19942060_2024_2447389 crossref_primary_10_1007_s11053_019_09605_2 crossref_primary_10_3934_geosci_2023019 crossref_primary_10_1007_s00521_022_08093_5 crossref_primary_10_3390_app9183715 crossref_primary_10_1007_s12517_023_11561_4 crossref_primary_10_3390_app14093759 crossref_primary_10_1007_s00366_020_01231_4 crossref_primary_10_3390_w15142656 crossref_primary_10_1007_s11053_021_09896_4 crossref_primary_10_3390_app13127166 crossref_primary_10_1007_s00366_020_01131_7 crossref_primary_10_1088_1742_6596_2029_1_012095 crossref_primary_10_3390_su17030860 crossref_primary_10_1016_j_cesys_2024_100201 crossref_primary_10_1007_s11053_021_09960_z crossref_primary_10_1007_s13369_023_07666_3 crossref_primary_10_1007_s00366_020_01225_2 crossref_primary_10_1038_s41598_022_25512_8 crossref_primary_10_1080_17480930_2022_2131137 crossref_primary_10_1007_s11709_023_0940_7 crossref_primary_10_1007_s00170_024_13524_9 crossref_primary_10_1007_s12517_024_11979_4 crossref_primary_10_1007_s11356_022_19683_0 crossref_primary_10_1007_s40430_022_03798_z crossref_primary_10_1007_s12517_021_07391_x crossref_primary_10_1007_s10064_019_01626_8 crossref_primary_10_1007_s11053_021_09823_7 crossref_primary_10_1007_s12540_020_00854_y crossref_primary_10_1007_s42461_024_00976_6 crossref_primary_10_1007_s00366_019_00858_2 crossref_primary_10_1007_s11053_019_09597_z crossref_primary_10_1007_s00366_019_00895_x crossref_primary_10_1007_s00366_020_00977_1 crossref_primary_10_1007_s00366_021_01332_8 crossref_primary_10_1007_s00603_023_03272_9 crossref_primary_10_1155_2023_5063981 crossref_primary_10_1007_s12010_022_03934_4 crossref_primary_10_1108_ECAM_08_2024_1047 crossref_primary_10_3390_app13179906 crossref_primary_10_1007_s11053_020_09764_7 crossref_primary_10_1016_j_ijmst_2021_01_007 crossref_primary_10_3390_w14050751 crossref_primary_10_1007_s00366_021_01444_1 crossref_primary_10_3390_app10020434 crossref_primary_10_1007_s12665_023_11194_6 crossref_primary_10_3389_frwa_2024_1401689 crossref_primary_10_1007_s00366_020_01085_w crossref_primary_10_1515_cppm_2021_0065 crossref_primary_10_1007_s12665_021_09506_9 crossref_primary_10_1007_s12665_021_10049_2 crossref_primary_10_1007_s00366_020_00937_9 crossref_primary_10_1007_s00521_021_06248_4 crossref_primary_10_1007_s00366_019_00919_6 crossref_primary_10_1038_s41598_020_76569_2 crossref_primary_10_1093_jcde_qwab009 crossref_primary_10_1007_s00366_021_01381_z crossref_primary_10_1038_s41598_019_50262_5 crossref_primary_10_1080_10826068_2022_2090002 crossref_primary_10_1093_jcde_qwaf007 crossref_primary_10_1007_s11053_024_10445_y crossref_primary_10_3389_fpubh_2022_1094771 crossref_primary_10_1007_s00366_020_01173_x crossref_primary_10_1007_s11053_021_09968_5 crossref_primary_10_3390_app12189189 crossref_primary_10_3390_mining3020019 crossref_primary_10_1007_s11053_019_09611_4 crossref_primary_10_1007_s42108_023_00252_1 crossref_primary_10_1038_s41598_023_32693_3 crossref_primary_10_1007_s00366_020_01207_4 crossref_primary_10_1007_s11053_019_09548_8 crossref_primary_10_1007_s41939_024_00492_6 crossref_primary_10_1016_j_jocs_2023_102097 crossref_primary_10_1007_s11053_020_09676_6 crossref_primary_10_1016_j_mlwa_2023_100517 crossref_primary_10_3390_machines10070567 crossref_primary_10_1016_j_measen_2022_100546 crossref_primary_10_3390_su14158993 crossref_primary_10_1111_sum_12753 crossref_primary_10_1016_j_coal_2023_104294 crossref_primary_10_1007_s11053_019_09532_2 crossref_primary_10_32604_cmes_2024_048398 |
| Cites_doi | 10.1007/s00366-016-0477-7 10.1007/s00366-017-0508-z 10.1007/s00521-016-2577-0 10.1007/s00366-016-0463-0 10.1007/s00366-018-0659-6 10.1007/s00366-018-0582-x 10.1108/EC-08-2017-0290 10.1016/j.soildyn.2006.06.004 10.1007/s11600-019-00268-4 10.1016/j.ijrmms.2014.10.004 10.1007/s11053-019-09464-x 10.1016/j.mineng.2019.01.004 10.1007/s00500-014-1498-z 10.1109/21.256541 10.1007/s00366-019-00726-z 10.1007/s00366-019-00725-0 10.1007/s00366-016-0462-1 10.1007/s00603-018-1667-y 10.1007/s00366-010-0190-x 10.1007/s00521-012-0856-y 10.1007/s00366-018-0686-3 10.1007/s11053-019-09473-w 10.1007/s00521-016-2746-1 10.1007/s13762-017-1395-y 10.1007/s00366-019-00720-5 10.1007/s12665-015-4274-1 10.1007/s12665-016-6335-5 10.1007/s12517-015-1908-2 10.1007/s00366-019-00711-6 10.1007/s11053-018-9424-1 10.1007/s10706-015-9869-5 10.1007/s00254-005-1291-5 10.1016/j.asoc.2018.07.035 10.1016/j.jallcom.2008.08.120 10.1016/S1674-5264(09)60243-X 10.1007/s11053-019-09470-z 10.1007/s12665-017-6864-6 10.1007/s42452-018-0136-2 10.1109/access.2019.2918177 10.1016/j.ssci.2019.05.046 10.1007/s00366-019-00769-2 10.1016/j.measurement.2018.08.052 10.1007/s10661-018-6719-y 10.1007/BF01045717 10.1007/s00366-017-0568-0 10.1007/s00366-016-0497-3 10.1007/s00366-016-0475-9 10.1016/j.mineng.2018.04.010 10.1016/j.tust.2018.07.023 10.1007/s10064-014-0657-x 10.1016/j.ijrmms.2009.03.004 10.1007/s12517-013-1174-0 |
| ContentType | Journal Article |
| Copyright | International Association for Mathematical Geosciences 2019 International Association for Mathematical Geosciences 2019. |
| Copyright_xml | – notice: International Association for Mathematical Geosciences 2019 – notice: International Association for Mathematical Geosciences 2019. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY |
| DOI | 10.1007/s11053-019-09515-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering Geology Physics Computer Science |
| EISSN | 1573-8981 |
| EndPage | 750 |
| ExternalDocumentID | 10_1007_s11053_019_09515_3 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-6e2c508fad73367bd3e461196a88009daf7e4ee4f891d40757725c78cc84ba843 |
| IEDL.DBID | U2A |
| ISSN | 1520-7439 |
| IngestDate | Sun Jul 13 04:17:16 EDT 2025 Wed Oct 01 04:27:02 EDT 2025 Thu Apr 24 22:51:04 EDT 2025 Fri Feb 21 02:32:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | GA ANFIS Blasting PSO Ground vibration |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-6e2c508fad73367bd3e461196a88009daf7e4ee4f891d40757725c78cc84ba843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918337343 |
| PQPubID | 2043663 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2918337343 crossref_primary_10_1007_s11053_019_09515_3 crossref_citationtrail_10_1007_s11053_019_09515_3 springer_journals_10_1007_s11053_019_09515_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200400 2020-4-00 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | Official Journal of the International Association for Mathematical Geosciences |
| PublicationTitle | Natural resources research (New York, N.Y.) |
| PublicationTitleAbbrev | Nat Resour Res |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Qi, Fourie, Ma, Tang (CR48) 2018; 71 Jahed Armaghani, Hajihassani, Mohamad, Marto, Noorani (CR24) 2014; 7 Palupi Rini, Shamsuddin, Yuhaniz (CR46) 2016; 20 Lu, Zhou, Ding, Shi, Luan, Li (CR36) 2019 Hasanipanah, Shahnazar, Arab, Golzar, Amiri (CR22) 2017; 33 Qi, Chen, Fourie, Zhang (CR47) 2018; 123 Nguyen, Xuan-Nam, Quang-Hieu, Thao-Qui, Ngoc-Hoan, Le (CR42) 2018; 1 Zhou, Nekouie, Arslan, Pham, Hasanipanah (CR60) 2019 Hasanipanah, Bakhshandeh Amnieh, Khamesi, Jahed Armaghani, Bagheri Golzar, Shahnazar (CR17) 2016 Nguyen, Bui (CR39) 2018 Rai, Singh (CR50) 2004; 11 Nguyen, Bui, Bui, Cuong (CR40) 2019 Nikafshan Rad, Jalali, Jalalifar (CR45) 2015; 73 Hajihassani, Armaghani, Marto, Mohamad (CR14) 2015; 74 Zhou, Li, Yang, Wang, Shi, Yao, Mitri (CR59) 2019; 118 Hasanipanah, Golzar, Larki, Maryaki, Ghahremanians (CR20) 2017; 33 Yang, Li, Jie, Zhang (CR56) 2018; 81 Hasanipanah, Naderi, Kashir, Noorani, Zeynali Aaq Qaleh (CR21) 2017; 33 Qi, Tang, Dong, Chen, Fourie, Liu (CR49) 2019; 133 Arthur, Temeng, Ziggah (CR3) 2019 Deng, Luo, Wu, Hu (CR5) 2010; 20 CR6 Jiang, Arslan, Soltani Tehrani, Khorami, Hasanipanah (CR29) 2019 Khandelwal, Singh (CR32) 2007; 27 Liao, Khandelwal, Yang, Koopialipoor, Murlidhar (CR35) 2019 Khandelwal, Singh (CR33) 2009; 46 Nikafshan Rad, Hasanipanah, Rezaei, Eghlim (CR44) 2018; 34 Jahed Armaghani, Hasanipanah, Bakhshandeh Amnieh, Tien Bui, Mehrabi, Khorami (CR27) 2019 Hajihassani, Jahed Armaghani, Monjezi, Mohamad, Marto (CR15) 2015; 74 Trivedi, Singh, Gupta (CR55) 2015; 33 Ambraseys, Hendron, Stagg, Zienkiewicz (CR2) 1968 Khandelwal (CR31) 2011; 27 Jahed Armaghani, Hajihassani, Monjezi, Mohamad, Marto, Moghaddam (CR25) 2015; 8 Hasanipanah, Faradonbeh, Armaghani, Amnieh, Khandelwal (CR19) 2017; 76 Jahed Armaghani, Hasanipanah, Bakhshandeh Amnieh, Mohamad (CR26) 2018; 29 Shahnazar, Rad, Hasanipanah, Tahir, Armaghani, Ghoroqi (CR51) 2017; 76 CR13 CR12 Zhou, Aghili, Noroozi Ghaleini, Tien Bui, Tahir, Koopialipoor (CR58) 2019 CR11 Jang (CR28) 1993; 23 CR10 CR53 Taheri, Hasanipanah, Bagheri Golzar, Abd Majid (CR54) 2017; 33 Zhao, Yang, Chen, Chen, Huang, Liu (CR57) 2018 Hasanipanah, Faradonbeh, Amnieh, Armaghani, Monjezi (CR18) 2017; 33 Nikafshan Rad, Bakhshayeshi, Wan Jusoh, Tahir, Kok Foong (CR43) 2019 Hasanipanah, Bakhshandeh Amnieh, Arab, Zamzam (CR16) 2018; 30 Farinha, Mendes, Baranda, Calinas, Vieira (CR7) 2009; 483 Alameer, Abd Elaziz, Ewees, Ye, Jianhua (CR1) 2019 Gao, Alqahtani, Mubarakali, Mavaluru, Khalafi (CR9) 2019 Monjezi, Hasanipanah, Khandelwal (CR38) 2013; 22 Yang, Zang (CR61) 1997; 30 Shirani Faradonbeh, Hasanipanah, Amnieh, Armaghani, Monjezi (CR52) 2018; 190 CR23 Keshtegar, Hasanipanah, Bakhshayeshi, Sarafraz (CR30) 2019; 131 Behzadafshar, Mohebbi, Soltani Tehrani, Hasanipanah, Tabrizi (CR4) 2018; 35 Fouladgar, Hasanipanah, Bakhshandeh Amnieh (CR8) 2017; 33 Nguyen, Drebenstedt, Bui, Bui (CR41) 2019 Kuzu, Ergin (CR34) 2005; 48 Mojtahedi, Ebtehaj, Hasanipanah, Bonakdari, Amnieh (CR37) 2019; 35 K Taheri (9515_CR54) 2017; 33 J Zhou (9515_CR58) 2019 J Deng (9515_CR5) 2010; 20 H Nguyen (9515_CR41) 2019 M Hasanipanah (9515_CR16) 2018; 30 R Rai (9515_CR50) 2004; 11 SFF Mojtahedi (9515_CR37) 2019; 35 CK Arthur (9515_CR3) 2019 R Trivedi (9515_CR55) 2015; 33 D Jahed Armaghani (9515_CR25) 2015; 8 M Khandelwal (9515_CR31) 2011; 27 D Palupi Rini (9515_CR46) 2016; 20 HQ Yang (9515_CR56) 2018; 81 N Fouladgar (9515_CR8) 2017; 33 M Khandelwal (9515_CR33) 2009; 46 M Khandelwal (9515_CR32) 2007; 27 C Qi (9515_CR47) 2018; 123 K Behzadafshar (9515_CR4) 2018; 35 9515_CR6 M Hasanipanah (9515_CR20) 2017; 33 J Zhou (9515_CR59) 2019; 118 J Zhou (9515_CR60) 2019 9515_CR23 Y Zhao (9515_CR57) 2018 D Jahed Armaghani (9515_CR27) 2019 R Shirani Faradonbeh (9515_CR52) 2018; 190 9515_CR13 C Qi (9515_CR49) 2019; 133 M Hajihassani (9515_CR14) 2015; 74 M Hasanipanah (9515_CR17) 2016 H Nikafshan Rad (9515_CR43) 2019 D Jahed Armaghani (9515_CR26) 2018; 29 M Monjezi (9515_CR38) 2013; 22 M Hasanipanah (9515_CR18) 2017; 33 M Hasanipanah (9515_CR22) 2017; 33 JSR Jang (9515_CR28) 1993; 23 Z Alameer (9515_CR1) 2019 9515_CR12 9515_CR11 9515_CR10 9515_CR53 NR Ambraseys (9515_CR2) 1968 X Lu (9515_CR36) 2019 H Nguyen (9515_CR40) 2019 H Nikafshan Rad (9515_CR45) 2015; 73 C Qi (9515_CR48) 2018; 71 M Hajihassani (9515_CR15) 2015; 74 Y Yang (9515_CR61) 1997; 30 D Jahed Armaghani (9515_CR24) 2014; 7 B Keshtegar (9515_CR30) 2019; 131 H Nguyen (9515_CR42) 2018; 1 M Hasanipanah (9515_CR19) 2017; 76 W Jiang (9515_CR29) 2019 AR Farinha (9515_CR7) 2009; 483 X Liao (9515_CR35) 2019 A Shahnazar (9515_CR51) 2017; 76 H Nguyen (9515_CR39) 2018 M Hasanipanah (9515_CR21) 2017; 33 W Gao (9515_CR9) 2019 C Kuzu (9515_CR34) 2005; 48 H Nikafshan Rad (9515_CR44) 2018; 34 |
| References_xml | – volume: 33 start-page: 349 issue: 3 year: 2017 end-page: 359 ident: CR22 article-title: Developing a new hybrid-AI model to predict blast-induced backbreak publication-title: Engineering with Computers doi: 10.1007/s00366-016-0477-7 – volume: 11 start-page: 178 year: 2004 end-page: 184 ident: CR50 article-title: A new predictor for ground vibration prediction and its comparison with other predictors publication-title: Indian Journal of Engineering and Materials Sciences – volume: 33 start-page: 951 issue: 4 year: 2017 end-page: 959 ident: CR20 article-title: Estimation of blast-induced ground vibration through a soft computing framework publication-title: Engineering with Computers doi: 10.1007/s00366-017-0508-z – volume: 29 start-page: 457 issue: 9 year: 2018 end-page: 465 ident: CR26 article-title: Feasibility of ICA in approximating ground vibration resulting from mine blasting publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2577-0 – ident: CR12 – volume: 33 start-page: 181 issue: 2 year: 2017 end-page: 189 ident: CR8 article-title: Application of cuckoo search algorithm to estimate peak particle velocity in mine blasting publication-title: Engineering with Computers doi: 10.1007/s00366-016-0463-0 – year: 2019 ident: CR29 article-title: Simulating the peak particle velocity in rock blasting projects using a neuro-fuzzy inference system publication-title: Engineering with Computers doi: 10.1007/s00366-018-0659-6 – start-page: 203 year: 1968 end-page: 207 ident: CR2 article-title: Dynamic behavior of rock masses publication-title: Rock mechanics in engineering practices – volume: 35 start-page: 47 issue: 1 year: 2019 end-page: 56 ident: CR37 article-title: Proposing a novel hybrid intelligent model for the simulation of particle size distribution resulting from blasting publication-title: Engineering with Computers doi: 10.1007/s00366-018-0582-x – volume: 35 start-page: 1774 issue: 4 year: 2018 end-page: 1787 ident: CR4 article-title: Predicting the ground vibration induced by mine blasting using imperialist competitive algorithm publication-title: Engineering Computation doi: 10.1108/EC-08-2017-0290 – volume: 27 start-page: 116 year: 2007 end-page: 125 ident: CR32 article-title: Evaluation of blast-induced ground vibration predictors publication-title: Soil Dynamics and Earthquake Engineering doi: 10.1016/j.soildyn.2006.06.004 – year: 2019 ident: CR40 article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study publication-title: Acta Geophysica doi: 10.1007/s11600-019-00268-4 – volume: 73 start-page: 1 year: 2015 end-page: 9 ident: CR45 article-title: Prediction of rock mass rating system based on continuous functions using Chaos–ANFIS model publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/j.ijrmms.2014.10.004 – year: 2019 ident: CR43 article-title: Prediction of flyrock in mine blasting: A new computational intelligence approach publication-title: Natural Resources Research doi: 10.1007/s11053-019-09464-x – volume: 133 start-page: 69 year: 2019 end-page: 79 ident: CR49 article-title: Towards Intelligent Mining for Backfill: A genetic programming-based method for strength forecasting of cemented paste backfill publication-title: Minerals Engineering doi: 10.1016/j.mineng.2019.01.004 – volume: 20 start-page: 251 year: 2016 end-page: 262 ident: CR46 article-title: Particle swarm optimization for ANFIS interpretability and accuracy publication-title: Soft Computing doi: 10.1007/s00500-014-1498-z – ident: CR11 – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: CR28 article-title: ANFIS: Adaptive-network-based fuzzy inference system publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.256541 – year: 2019 ident: CR58 article-title: A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network publication-title: Engineering with Computers doi: 10.1007/s00366-019-00726-z – year: 2019 ident: CR60 article-title: Novel approach for forecasting the blast-induced AOp using a hybrid fuzzy system and firefly algorithm publication-title: Engineering with Computers doi: 10.1007/s00366-019-00725-0 – volume: 33 start-page: 173 issue: 2 year: 2017 end-page: 179 ident: CR21 article-title: Prediction of blast produced ground vibration using particle swarm optimization publication-title: Engineering with Computers doi: 10.1007/s00366-016-0462-1 – year: 2018 ident: CR57 article-title: Effects of jointed rock mass and mixed ground conditions on the cutting efficiency and cutter wear of tunnel boring machine publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/s00603-018-1667-y – volume: 27 start-page: 193 year: 2011 end-page: 200 ident: CR31 article-title: Blast-induced ground vibration prediction using support vector machine publication-title: Engineering with Computers doi: 10.1007/s00366-010-0190-x – volume: 22 start-page: 1637 issue: 7–8 year: 2013 end-page: 1643 ident: CR38 article-title: Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network publication-title: Neural Computing and Applications doi: 10.1007/s00521-012-0856-y – year: 2019 ident: CR3 article-title: Novel approach to predicting blast-induced ground vibration using Gaussian process regression publication-title: Engineering with Computers doi: 10.1007/s00366-018-0686-3 – year: 2019 ident: CR1 article-title: Forecasting copper prices using hybrid adaptive neuro-fuzzy inference system and genetic algorithms publication-title: Natural Resources Research doi: 10.1007/s11053-019-09473-w – volume: 30 start-page: 1015 issue: 4 year: 2018 end-page: 1024 ident: CR16 article-title: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2746-1 – year: 2016 ident: CR17 article-title: Prediction of an environmental issue of mine blasting: An imperialistic competitive algorithm-based fuzzy system publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-017-1395-y – year: 2019 ident: CR9 article-title: Developing an innovative soft computing scheme for prediction of air overpressure resulting from mine blasting using GMDH optimized by GA publication-title: Engineering with Computers doi: 10.1007/s00366-019-00720-5 – volume: 74 start-page: 2799 issue: 4 year: 2015 end-page: 2817 ident: CR15 article-title: Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach publication-title: Environmental Earth Sciences doi: 10.1007/s12665-015-4274-1 – volume: 76 start-page: 27 issue: 1 year: 2017 ident: CR19 article-title: Development of a precise model for prediction of blast-induced flyrock using regression tree technique publication-title: Environmental Earth Sciences doi: 10.1007/s12665-016-6335-5 – volume: 8 start-page: 9647 year: 2015 end-page: 9665 ident: CR25 article-title: Application of two intelligent systems in predicting environmental impacts of quarry blasting publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-015-1908-2 – year: 2019 ident: CR35 article-title: Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques publication-title: Engineering with Computers doi: 10.1007/s00366-019-00711-6 – year: 2018 ident: CR39 article-title: Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest publication-title: Natural Resources Research doi: 10.1007/s11053-018-9424-1 – ident: CR53 – volume: 33 start-page: 875 year: 2015 end-page: 891 ident: CR55 article-title: Prediction of blast induced flyrock in opencast mines using ANN and ANFIS publication-title: Geotechnical and Geological Engineering doi: 10.1007/s10706-015-9869-5 – volume: 48 start-page: 211 year: 2005 end-page: 217 ident: CR34 article-title: An assessment of environmental impacts of quarry-blasting operation: A case study in Istanbul, Turkey publication-title: Environmental Geology doi: 10.1007/s00254-005-1291-5 – volume: 71 start-page: 649 year: 2018 end-page: 658 ident: CR48 article-title: A hybrid method for improved stability prediction in construction projects: A case study of stope hangingwall stability publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.07.035 – volume: 483 start-page: 235 year: 2009 end-page: 238 ident: CR7 article-title: Behavior of explosive compacted/consolidated of nanometric copper powders publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2008.08.120 – ident: CR10 – volume: 20 start-page: 557 year: 2010 end-page: 562 ident: CR5 article-title: Explosive limits of mixed gases containing CH , CO and C H in the goaf area publication-title: Mining Science and Technology (China) doi: 10.1016/S1674-5264(09)60243-X – year: 2019 ident: CR41 article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network publication-title: Natural Resources Research doi: 10.1007/s11053-019-09470-z – volume: 76 start-page: 527 issue: 15 year: 2017 ident: CR51 article-title: A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model publication-title: Environmental Earth Sciences doi: 10.1007/s12665-017-6864-6 – volume: 1 start-page: 125 issue: 1 year: 2018 ident: CR42 article-title: Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: A case study in Vietnam publication-title: SN Applied Sciences doi: 10.1007/s42452-018-0136-2 – ident: CR6 – year: 2019 ident: CR36 article-title: Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill publication-title: IEEE Access doi: 10.1109/access.2019.2918177 – volume: 118 start-page: 505 year: 2019 end-page: 518 ident: CR59 article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories publication-title: Safety Science doi: 10.1016/j.ssci.2019.05.046 – year: 2019 ident: CR27 article-title: Development of a novel hybrid intelligent model for solving engineering problems using GS-GMDH algorithm publication-title: Engineering with Computers doi: 10.1007/s00366-019-00769-2 – ident: CR23 – volume: 131 start-page: 35 year: 2019 end-page: 41 ident: CR30 article-title: A novel nonlinear modeling for the prediction of blast-induced airblast using a modified conjugate FR method publication-title: Measurement doi: 10.1016/j.measurement.2018.08.052 – volume: 190 start-page: 351 issue: 6 year: 2018 ident: CR52 article-title: Development of GP and GEP models to estimate an environmental issue induced by blasting operation publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-018-6719-y – volume: 30 start-page: 207 year: 1997 end-page: 222 ident: CR61 article-title: A hierarchical analysis for rock engineering using artificial neural networks publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/BF01045717 – ident: CR13 – volume: 34 start-page: 709 issue: 4 year: 2018 end-page: 717 ident: CR44 article-title: Developing a least squares support vector machine for estimating the blast-induced flyrock publication-title: Engineering with Computers doi: 10.1007/s00366-017-0568-0 – volume: 33 start-page: 689 issue: 3 year: 2017 end-page: 700 ident: CR54 article-title: A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration publication-title: Engineering with Computers doi: 10.1007/s00366-016-0497-3 – volume: 33 start-page: 307 issue: 2 year: 2017 end-page: 316 ident: CR18 article-title: Forecasting blast-induced ground vibration developing a CART model publication-title: Engineering with Computers doi: 10.1007/s00366-016-0475-9 – volume: 123 start-page: 16 year: 2018 end-page: 27 ident: CR47 article-title: An intelligent modelling framework for mechanical properties of cemented paste backfill publication-title: Minerals Engineering doi: 10.1016/j.mineng.2018.04.010 – volume: 81 start-page: 112 year: 2018 end-page: 120 ident: CR56 article-title: Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2018.07.023 – volume: 74 start-page: 873 issue: 3 year: 2015 end-page: 886 ident: CR14 article-title: Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-014-0657-x – volume: 46 start-page: 1214 issue: 7 year: 2009 end-page: 1222 ident: CR33 article-title: Prediction of blast-induced ground vibration using artificial neural network publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/j.ijrmms.2009.03.004 – volume: 7 start-page: 5383 year: 2014 end-page: 5396 ident: CR24 article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-013-1174-0 – volume: 74 start-page: 873 issue: 3 year: 2015 ident: 9515_CR14 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-014-0657-x – ident: 9515_CR6 – volume: 73 start-page: 1 year: 2015 ident: 9515_CR45 publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/j.ijrmms.2014.10.004 – ident: 9515_CR12 – volume: 23 start-page: 665 year: 1993 ident: 9515_CR28 publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.256541 – year: 2019 ident: 9515_CR41 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09470-z – year: 2019 ident: 9515_CR43 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09464-x – year: 2019 ident: 9515_CR3 publication-title: Engineering with Computers doi: 10.1007/s00366-018-0686-3 – volume: 1 start-page: 125 issue: 1 year: 2018 ident: 9515_CR42 publication-title: SN Applied Sciences doi: 10.1007/s42452-018-0136-2 – volume: 35 start-page: 1774 issue: 4 year: 2018 ident: 9515_CR4 publication-title: Engineering Computation doi: 10.1108/EC-08-2017-0290 – volume: 190 start-page: 351 issue: 6 year: 2018 ident: 9515_CR52 publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-018-6719-y – volume: 27 start-page: 116 year: 2007 ident: 9515_CR32 publication-title: Soil Dynamics and Earthquake Engineering doi: 10.1016/j.soildyn.2006.06.004 – volume: 46 start-page: 1214 issue: 7 year: 2009 ident: 9515_CR33 publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/j.ijrmms.2009.03.004 – year: 2019 ident: 9515_CR9 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00720-5 – volume: 30 start-page: 1015 issue: 4 year: 2018 ident: 9515_CR16 publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2746-1 – volume: 76 start-page: 527 issue: 15 year: 2017 ident: 9515_CR51 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-017-6864-6 – volume: 30 start-page: 207 year: 1997 ident: 9515_CR61 publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/BF01045717 – year: 2019 ident: 9515_CR36 publication-title: IEEE Access doi: 10.1109/access.2019.2918177 – volume: 133 start-page: 69 year: 2019 ident: 9515_CR49 publication-title: Minerals Engineering doi: 10.1016/j.mineng.2019.01.004 – year: 2019 ident: 9515_CR1 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09473-w – year: 2019 ident: 9515_CR29 publication-title: Engineering with Computers doi: 10.1007/s00366-018-0659-6 – volume: 33 start-page: 689 issue: 3 year: 2017 ident: 9515_CR54 publication-title: Engineering with Computers doi: 10.1007/s00366-016-0497-3 – volume: 35 start-page: 47 issue: 1 year: 2019 ident: 9515_CR37 publication-title: Engineering with Computers doi: 10.1007/s00366-018-0582-x – ident: 9515_CR13 – year: 2019 ident: 9515_CR58 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00726-z – year: 2019 ident: 9515_CR60 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00725-0 – volume: 33 start-page: 307 issue: 2 year: 2017 ident: 9515_CR18 publication-title: Engineering with Computers doi: 10.1007/s00366-016-0475-9 – volume: 74 start-page: 2799 issue: 4 year: 2015 ident: 9515_CR15 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-015-4274-1 – volume: 8 start-page: 9647 year: 2015 ident: 9515_CR25 publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-015-1908-2 – ident: 9515_CR23 – volume: 48 start-page: 211 year: 2005 ident: 9515_CR34 publication-title: Environmental Geology doi: 10.1007/s00254-005-1291-5 – year: 2019 ident: 9515_CR40 publication-title: Acta Geophysica doi: 10.1007/s11600-019-00268-4 – volume: 34 start-page: 709 issue: 4 year: 2018 ident: 9515_CR44 publication-title: Engineering with Computers doi: 10.1007/s00366-017-0568-0 – volume: 27 start-page: 193 year: 2011 ident: 9515_CR31 publication-title: Engineering with Computers doi: 10.1007/s00366-010-0190-x – ident: 9515_CR10 – volume: 33 start-page: 181 issue: 2 year: 2017 ident: 9515_CR8 publication-title: Engineering with Computers doi: 10.1007/s00366-016-0463-0 – volume: 81 start-page: 112 year: 2018 ident: 9515_CR56 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2018.07.023 – volume: 33 start-page: 951 issue: 4 year: 2017 ident: 9515_CR20 publication-title: Engineering with Computers doi: 10.1007/s00366-017-0508-z – year: 2019 ident: 9515_CR27 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00769-2 – year: 2019 ident: 9515_CR35 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00711-6 – volume: 33 start-page: 173 issue: 2 year: 2017 ident: 9515_CR21 publication-title: Engineering with Computers doi: 10.1007/s00366-016-0462-1 – year: 2018 ident: 9515_CR57 publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/s00603-018-1667-y – year: 2016 ident: 9515_CR17 publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-017-1395-y – volume: 7 start-page: 5383 year: 2014 ident: 9515_CR24 publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-013-1174-0 – volume: 483 start-page: 235 year: 2009 ident: 9515_CR7 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2008.08.120 – volume: 118 start-page: 505 year: 2019 ident: 9515_CR59 publication-title: Safety Science doi: 10.1016/j.ssci.2019.05.046 – start-page: 203 volume-title: Rock mechanics in engineering practices year: 1968 ident: 9515_CR2 – volume: 20 start-page: 251 year: 2016 ident: 9515_CR46 publication-title: Soft Computing doi: 10.1007/s00500-014-1498-z – volume: 29 start-page: 457 issue: 9 year: 2018 ident: 9515_CR26 publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2577-0 – ident: 9515_CR11 – volume: 11 start-page: 178 year: 2004 ident: 9515_CR50 publication-title: Indian Journal of Engineering and Materials Sciences – ident: 9515_CR53 – volume: 131 start-page: 35 year: 2019 ident: 9515_CR30 publication-title: Measurement doi: 10.1016/j.measurement.2018.08.052 – volume: 71 start-page: 649 year: 2018 ident: 9515_CR48 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.07.035 – volume: 22 start-page: 1637 issue: 7–8 year: 2013 ident: 9515_CR38 publication-title: Neural Computing and Applications doi: 10.1007/s00521-012-0856-y – volume: 20 start-page: 557 year: 2010 ident: 9515_CR5 publication-title: Mining Science and Technology (China) doi: 10.1016/S1674-5264(09)60243-X – volume: 76 start-page: 27 issue: 1 year: 2017 ident: 9515_CR19 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-016-6335-5 – volume: 33 start-page: 349 issue: 3 year: 2017 ident: 9515_CR22 publication-title: Engineering with Computers doi: 10.1007/s00366-016-0477-7 – volume: 123 start-page: 16 year: 2018 ident: 9515_CR47 publication-title: Minerals Engineering doi: 10.1016/j.mineng.2018.04.010 – volume: 33 start-page: 875 year: 2015 ident: 9515_CR55 publication-title: Geotechnical and Geological Engineering doi: 10.1007/s10706-015-9869-5 – year: 2018 ident: 9515_CR39 publication-title: Natural Resources Research doi: 10.1007/s11053-018-9424-1 |
| SSID | ssj0007385 |
| Score | 2.4980106 |
| Snippet | Ground vibration induced by rock blasting is one of the most crucial problems in surface mines and tunneling projects. Hence, accurate prediction of ground... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 739 |
| SubjectTerms | Adaptive systems Artificial neural networks Blasting Chemistry and Earth Sciences Civil engineering Computer Science Earth and Environmental Science Earth Sciences Efficiency Environmental impact Explosives Fossil Fuels (incl. Carbon Capture) Fuzzy logic Genetic algorithms Geography Mathematical Modeling and Industrial Mathematics Mathematical models Mineral Resources Mines Optimization Original Paper Parameter sensitivity Particle swarm optimization Performance indices Physics Prediction models Quarries R&D Research & development Root-mean-square errors Sensitivity analysis Statistical analysis Statistics for Engineering Surface mines Sustainable Development Vibration |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCAkOCAaI8VIO3KBibdO0PSA00MbjMCZgaLcqzUNCgo1HOcCvx87aDZDYuW4Odmx_TpzPAAc6CXxraXpZ0xiPp8b3UmIcwmQuBY-MSLRrkO2Kyz6_HkSDOehWb2GorbKKiS5Q65GiM_LjIMXNF8YhD09fXj2aGkW3q9UIDVmOVtAnjmJsHhYCYsaqwcJZu9u7ncRm4m5xDKpYNBEUL5_RjB_TIdSg3iJqIcIs74W_U9UUf_65MnWZqLMKKyWEZK2xzddgzgzrsPyDWLAOixduYO_nOmRXE87NgvXe6FqGTMFGlp0hcKamZ4_GdyijGZ1DDTV7oAraCbl-Atbqdq7u2A3GlufHLxTLP9lFi0mU7N3dbEC_074_v_TKoQqeQm8rPGEChaDMSk1EiHGuQ8OFj34o0ZObqZY2NtwYbpPU11jtRQi_IxUnSiU8lwkPN6E2HA3NFrA8zK20EiGVxKJE5IkVMc91GimR-EKHDfAr_WWqZBynwRdP2ZQrmXSeoc4zp_MM_zmc_PMy5tuYKb1bmSUrfe89m-6UBhxVppp-_n-17dmr7cBSQMW2a9vZhVrx9mH2EJEU-X65zb4BbjLZHg priority: 102 providerName: ProQuest |
| Title | Intelligent Prediction of Blasting-Induced Ground Vibration Using ANFIS Optimized by GA and PSO |
| URI | https://link.springer.com/article/10.1007/s11053-019-09515-3 https://www.proquest.com/docview/2918337343 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-8981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-8981 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-8981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-8981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007385 issn: 1520-7439 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVKhwgJIWUQjRHriBpdper9dHB-VFpSQiBJWTtd6HWqkkKDGH9Nczs7ETQIDEyZZ2dg-enZlvvLPfALwxMgqdo-5ll9YGPLNhkBHjEAZzJXhihTS-QHYiRgv-4Tq5ri-FbZpq9-ZI0nvqw2U3hAJU-0MlPhiFg_gIjhOi88JdvIjyvf8lfhbPkoqJEcHt-qrMn9f4NRwdMOZvx6I-2gxO4UkNE1m-0-szeGCXbXjatGBgtUW24fFPfIJtOKlbmt9s2_Bw6Hv20puv8tSbMyjGewLOis3WdEZDemErx3qIoqkCOqBeHtoaRj-lloZ9pnTaC_niApZPBuM5m6Kj-Xp7j2Lllg1zplByNp-ew2LQ__R-FNQdFgKNplcFwkYaEZpThlgR09LElosQjVKhWV9mRrnUcmu5k1loMPVLEIsnOpVaS14qyePn0FqulvYFsDIunXIK8ZXCDEWU0omUlyZLtJChMPEFhM2HLnRNP05dMO6KA3EyKadA5RReOQXOebuf821HvvFP6U6jv6I2xE0RZeiz4jTmOPyu0elh-O-rvfw_8VfwKKJM3Nf0dKBVrb_b1whXqrILR3Iw7MJxPvxy1cdnrz-Zfez6PfsDqEngmw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xEIIeUHlU0NLiQ3uCFeza6909IBRaQlIgRLzEzfX6IVVqEwqpqvTH9bd1xtlNWiS4cd6xDzOznm_smW8A3ts8ib2n6WW7zkWicHFUEOMQBnMtRepkbkOBbEe2rsTnm_RmCv7UvTBUVlmfieGgtn1Dd-Q7SYHOxzMu-P7tj4imRtHraj1CQ1ejFexeoBirGjuO3fAXpnD3e-1PaO8PSdI8vPzYiqopA5FB9xtE0iUGUYrXlpgBs9JyJ2SMjqnRtXcLq33mhHPC50VsMf1JEY-mJsuNyUWpc8Fx32mYFVwUmPzNHhx2uufjWEBcMYGxFZM0gv5V286oeQ-hDdUyUckSooqI_x8aJ3j3wRNtiHzNl7BYQVbWGPnYEky53jK8-IfIcBnmjsKA4OEKqPaY43PAunf0DESmZ33PDhCoU5F1RONCjLOM7r16ll1Txh6EQv0Ca3Sa7Qt2hmfZ96-_UawcsqMG0yjZvThbhatnUe8rmOn1e24NWMlLr71GCKcxCZJl7mUmSlukRuaxtHwd4lp_ylQM5zRo45uacDOTzhXqXAWdK1yzNV5zO-L3eFJ6ozaLqv71ezXxzHXYrk01-fz4bq-f3m0T5luXpyfqpN05fgMLCSX6oWRoA2YGdz_dW0RDg_Jd5XIMvjy3l_8FzCsVZw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VrXgdSlmo2vLygVuJIInjJMcFurBQLSvRRdwsxw-B1AbEhgP8ema8yS4gqNRbpIx9yHjsb-JvvgHYNlkUOkfdy_asDXhuwyAnxSE8zJXgiRWZ8QTZvjge8pPL5PJZFb9nuzdXkuOaBlJpKqvdW-N2p4VvCAuIB0R0HzyRg3gGPnISSsAVPYw6k72YtFq8YiomSQS967KZt-d4eTRN8earK1J_8nQ_w6caMrLO2MfL8MGWbVhq2jGwOjrbsPhMW7AN83V786uHNswe-f699OQZn3q0ArI3EeOs2OCO7mvIR-zGsX1E1MSGDqivh7aG0Q-q0rALSq29kScasE6_2ztnZ7jp_L1-RLPigR11mELLwfnZKgy7P38fHAd1t4VAYxhWgbCRRrTmlCGFxLQwseUixABVGOJ7uVEutdxa7rI8NJgGJojLE51mWme8UBmPv0CrvCntV2BFXDjlFGIthdmKKDInUl6YPNEiC4WJv0HYfGipayly6ojxR05FlMk5Ep0jvXMkjvkxGXM7FuL4p_V64z9ZB-VIRjnuX3Eac3y90_h0-vr92b7_n_kWzA0Ou_JXr3-6BgsRJeie6rMOreru3m4giqmKTb9QnwA6nOOv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Prediction+of+Blasting-Induced+Ground+Vibration+Using+ANFIS+Optimized+by+GA+and+PSO&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Yang%2C+Haiqing&rft.au=Hasanipanah%2C+Mahdi&rft.au=Tahir%2C+M.+M.&rft.au=Bui%2C+Dieu+Tien&rft.date=2020-04-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=29&rft.issue=2&rft.spage=739&rft.epage=750&rft_id=info:doi/10.1007%2Fs11053-019-09515-3&rft.externalDocID=10_1007_s11053_019_09515_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |