Attention-based encoder-decoder networks for workflow recognition

Behavior recognition is a fundamental yet challenging task in intelligent surveillance system, which plays an increasingly important role in the process of “Industry 4.0”. However, monitoring the workflow of both workers and machines in production procedure is quite difficult in complex industrial e...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 28-29; pp. 34973 - 34995
Main Authors Zhang, Min, Hu, Haiyang, Li, Zhongjin, Chen, Jie
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-021-10633-5

Cover

Abstract Behavior recognition is a fundamental yet challenging task in intelligent surveillance system, which plays an increasingly important role in the process of “Industry 4.0”. However, monitoring the workflow of both workers and machines in production procedure is quite difficult in complex industrial environments. In this paper, we propose a novel workflow recognition framework to recognize the behavior of working subjects based on the well-designed encoder-decoder structure. Namely, attention-based workflow recognition framework, termed as AWR. To improve the accuracy of workflow recognition, a temporal attention cell ( AttCell ) is introduced to draw dynamic attention distribution in the last stage of the framework. In addition, a Rough-to-Refine phase localization model is exploited to improve localization accuracy, which can effectively identify the boundaries of a specific phase instance in long untrimmed videos. Comprehensive experiments indicate a 1.4% mAP@IoU= 0.4 boost on THUMOS’14 dataset and a 3.4% mAP@IoU= 0.4 boost on hand-crafted workflow dataset detection challenge compared to the advanced GTAN pipeline respectively. More remarkably, the effectiveness of the workflow recognition system is validated in a real-world production scenario.
AbstractList Behavior recognition is a fundamental yet challenging task in intelligent surveillance system, which plays an increasingly important role in the process of “Industry 4.0”. However, monitoring the workflow of both workers and machines in production procedure is quite difficult in complex industrial environments. In this paper, we propose a novel workflow recognition framework to recognize the behavior of working subjects based on the well-designed encoder-decoder structure. Namely, attention-based workflow recognition framework, termed as AWR. To improve the accuracy of workflow recognition, a temporal attention cell (AttCell) is introduced to draw dynamic attention distribution in the last stage of the framework. In addition, a Rough-to-Refine phase localization model is exploited to improve localization accuracy, which can effectively identify the boundaries of a specific phase instance in long untrimmed videos. Comprehensive experiments indicate a 1.4% mAP@IoU= 0.4 boost on THUMOS’14 dataset and a 3.4% mAP@IoU= 0.4 boost on hand-crafted workflow dataset detection challenge compared to the advanced GTAN pipeline respectively. More remarkably, the effectiveness of the workflow recognition system is validated in a real-world production scenario.
Behavior recognition is a fundamental yet challenging task in intelligent surveillance system, which plays an increasingly important role in the process of “Industry 4.0”. However, monitoring the workflow of both workers and machines in production procedure is quite difficult in complex industrial environments. In this paper, we propose a novel workflow recognition framework to recognize the behavior of working subjects based on the well-designed encoder-decoder structure. Namely, attention-based workflow recognition framework, termed as AWR. To improve the accuracy of workflow recognition, a temporal attention cell ( AttCell ) is introduced to draw dynamic attention distribution in the last stage of the framework. In addition, a Rough-to-Refine phase localization model is exploited to improve localization accuracy, which can effectively identify the boundaries of a specific phase instance in long untrimmed videos. Comprehensive experiments indicate a 1.4% mAP@IoU= 0.4 boost on THUMOS’14 dataset and a 3.4% mAP@IoU= 0.4 boost on hand-crafted workflow dataset detection challenge compared to the advanced GTAN pipeline respectively. More remarkably, the effectiveness of the workflow recognition system is validated in a real-world production scenario.
Author Hu, Haiyang
Li, Zhongjin
Chen, Jie
Zhang, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 2
  givenname: Haiyang
  orcidid: 0000-0002-6070-8524
  surname: Hu
  fullname: Hu, Haiyang
  email: huhaiyang@hdu.edu.cn
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 3
  givenname: Zhongjin
  surname: Li
  fullname: Li, Zhongjin
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
– sequence: 4
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: School of Computer Science and Technology, Hangzhou Dianzi University
BookMark eNp9kEtLAzEQx4NUsK1-AU8LnqOTx252j6X4goIXPYdsHmVrTWqSUvz2Zq0geOhhmBlmfvP4z9DEB28RuiZwSwDEXSIEOMVACSbQMIbrMzQltWBYCEomJWYtYFEDuUCzlDYApKkpn6LFImfr8xA87lWyprJeB2MjNvbHV97mQ4jvqXIhVmPktuFQxVJd-2HkLtG5U9tkr379HL093L8un_Dq5fF5uVhhzUiXcWOgp8IKxTR3nesdc6ajWveWawVCdIQ3ihsNXPS2bcGUtBxpgAowbflpjm6Oc3cxfO5tynIT9tGXlZI2wJti3dhFj106hpSidXIXhw8VvyQBOUolj1LJIpX8kUrWBWr_QXrIanwuRzVsT6PsiKayx69t_LvqBPUNrv9_4Q
CitedBy_id crossref_primary_10_1007_s40747_023_01252_8
crossref_primary_10_1080_15567036_2022_2053250
crossref_primary_10_3390_app14031185
crossref_primary_10_1007_s11042_022_12630_8
Cites_doi 10.1109/TMI.2017.2787657
10.1109/TPAMI.2017.2712608
10.1109/ICCV.2015.510
10.1109/CVPR.2018.00124
10.1080/135062800394667
10.1016/j.neunet.2011.06.001
10.1145/2733373.2806224
10.1109/CVPR.2016.219
10.1109/CVPR.2018.00675
10.1016/j.patrec.2018.10.011
10.1016/j.cviu.2011.09.006
10.1109/CVPR.2009.5206848
10.1007/s11263-014-0781-x
10.1007/978-3-642-40760-4_43
10.1109/ICCV.2011.6126472
10.1109/ICIP.2016.7532630
10.1109/ICCV.2017.617
10.1007/978-1-4842-4267-4_6
10.1109/CVPR.2019.00043
10.1109/CVPR.2016.213
10.1109/CVPR.2016.119
10.1109/TBME.2011.2181168
10.1109/ICIP.2015.7351642
10.1109/ICCV.2019.00209
10.1080/13645706.2019.1584116
10.1109/TPAMI.2018.2868668
10.1109/ICCV.2013.441
10.1007/978-3-642-15711-0_50
10.1109/WIAMIS.2013.6616141
10.1016/j.cviu.2017.10.011
10.1109/TMM.2017.2659221
10.1109/MMUL.2012.31
10.1186/s13640-018-0316-4
10.1145/3316782.3321523
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-021-10633-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 34995
ExternalDocumentID 10_1007_s11042_021_10633_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61802095
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61572162
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61702144
  funderid: https://doi.org/10.13039/501100001809
– fundername: Zhejiang Provincial Key Science and Technology Project Foundation
  grantid: 2018C01012
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LQ17F020003
  funderid: https://doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 61572251
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-6d0b27e7a3c4f9fbf3fd92ccbe4ca0779146a4dc047be880d46a016d0270d8063
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Sat Jul 26 00:12:05 EDT 2025
Wed Oct 01 04:51:13 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Fri Feb 21 02:47:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28-29
Keywords Temporal action localization
Activity detection
Workflow recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6d0b27e7a3c4f9fbf3fd92ccbe4ca0779146a4dc047be880d46a016d0270d8063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6070-8524
PQID 2604660496
PQPubID 54626
PageCount 23
ParticipantIDs proquest_journals_2604660496
crossref_primary_10_1007_s11042_021_10633_5
crossref_citationtrail_10_1007_s11042_021_10633_5
springer_journals_10_1007_s11042_021_10633_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211100
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Sharma S, Kiros R, Salakhutdinov R (2015) Action recognition using visual attention. arXiv:1511.04119
Zhu W, Hu J, Sun G, Cao X, Qiao Y (2016) A key volume mining deep framework for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1991–1999
Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv:1409.0473
Jiang B, Wang M, Gan W, Wu W, Yan J (2019) STM: SpatioTemporal and motion encoding for action recognition. In: Proceedings of the IEEE international conference on computer vision, pp 2000–2009
VoulodimosAKosmopoulosDVeresGGrabnerHVan GoolLVarvarigouTOnline classification of visual tasks for industrial workflow monitoringNeural Netw201124885286010.1016/j.neunet.2011.06.001
Dogan E, Eren G, Wolf C, Baskurt A (2015) Activity recognition with volume motion templates and histograms of 3d gradients. In: 2015 IEEE International Conference on Image Processing (ICIP), pp 4421–4425
Thomay C, Gollan B, Haslgrübler M, Ferscha A, Heftberger J (2019) A multi-sensor algorithm for activity and workflow recognition in an industrial setting. In: Proceedings of the 12th ACM international conference on pervasive technologies related to assistive environments, pp 69–76
Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M (2018) A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6450–6459
Zhang L, Wang QW (2018) XIOLIFT database, https://pan.baidu.com/s/lySILNURWDN40q5TpAvGKUA
RensinkRAThe dynamic representation of scenesVis Cogn200071-3174210.1080/135062800394667
Zhang Q, Hua G (2015) Multi-view visual recognition of imperfect testing data. In: Proceedings of the 23rd ACM international conference on multimedia, pp 561–570
Makantasis K, Doulamis A, Doulamis N, Psychas K (2016) Deep learning based human behavior recognition in industrial workflows. In: 2016 IEEE International conference on image processing (ICIP), pp 1609–1613
Protopapadakis E, Doulamis A, Makantasis K, Voulodimos A (2012) A semi-supervised approach for industrial workflow recognition. In: Proceedings of the second international conference on advanced communications and computation, pp 21–26
Long F, Yao T, Qiu Z, Tian X, Luo J, Mei T (2019) Gaussian temporal awareness networks for action localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 344–353
HuHChengKLiZChenJHuHWorkflow recognition with structured two-stream convolutional networksPattern Recogn Lett201813026727410.1016/j.patrec.2018.10.011
WangLXiongYWangZQiaoYLinDTangXVan GoolLTemporal segment networks for action recognition in videosIEEE Trans Pattern Anal Mach Intell201841112740275510.1109/TPAMI.2018.2868668
LalysFRiffaudLBougetDJanninPA framework for the recognition of high-level surgical tasks from video images for cataract surgeriesIEEE Trans Biomed Eng201159496697610.1109/TBME.2011.2181168
Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941
Blum T, Feußner H, Navab N (2010) Modeling and segmentation of surgical workflow from laparoscopic video. In: International conference on medical image computing and computer-assisted intervention, pp 400–407
Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: IEEE Conference on computer vision and pattern recognition, pp 248–255
Tao L, Zappella L, Hager GD, Vidal R (2013) Surgical gesture segmentation and recognition. In: International conference on medical image computing and computer-assisted intervention, pp 339–346
VoulodimosAKosmopoulosDVasileiouGSardisEAnagnostopoulosVLalosCVarvarigouTA threefold dataset for activity and workflow recognition in complex industrial environmentsIEEE MultiMedia2012193425210.1109/MMUL.2012.31
MaZChangXYangYSebeNHauptmannAGThe many shades of negativityIEEE Trans Multimed20171971558156810.1109/TMM.2017.2659221
Zaremba W, Sutskever I, Vinyals O (2014) Recurrent neural network regularization. arXiv:1409.2329
ChenYSunQLZhongKSemi-supervised spatio-temporal CNN for recognition of surgical workflowEURASIP Journal on Image and Video Processing2018201817610.1186/s13640-018-0316-4
Lan T, Wang Y, Mori G (2011) Discriminative figure-centric models for joint action localization and recognition. In: 2011 International conference on computer vision, pp 2003–2010
Lu J, Corso JJ (2015) Human action segmentation with hierarchical supervoxel consistency. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3762–3771
VarolGLaptevISchmidCLong-term temporal convolutions for action recognitionIEEE Trans Pattern Anal Mach Intell20184061510151710.1109/TPAMI.2017.2712608
YangYMaZNieFChangXHauptmannAGMulti-class active learning by uncertainty sampling with diversity maximizationInt J Comput Vis20151132113127334673910.1007/s11263-014-0781-x
Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Bengio Y (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp 2048–2057
Shou Z, Wang D, Chang SF (2016) Temporal action localization in untrimmed videos via multi-stage cnns. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1049–1058
WangLQiaoYTangXAction recognition and detection by combining motion and appearance featuresTHUMOS14 Action Recognition Challenge2014122
PadoyNMachine and deep learning for workflow recognition during surgeryMinimally Invasive Therapy & Allied Technologies2019282829010.1080/13645706.2019.1584116
JinYDouQChenHYuLQinJFuCWHengPASV-RCNEt: workflow recognition from surgical videos using recurrent convolutional networkIEEE Trans Medical Imag20173751114112610.1109/TMI.2017.2787657
KosmopoulosDIDoulamisNDVoulodimosASBayesian filter based behavior recognition in workflows allowing for user feedbackComput Vis Image Underst2012116342243410.1016/j.cviu.2011.09.006
Xu H, Das A, Saenko K (2017) R-c3d: Region convolutional 3d network for temporal activity detection. In: Proceedings of the IEEE international conference on computer vision, pp 5783–5792
LiZGavrilyukKGavvesEJainMSnoekCGVideolstm convolves, attends and flows for action recognitionComput Vis Image Underst2018166415010.1016/j.cviu.2017.10.011
Lu J, Yang J, Batra D, Parikh D (2016) Hierarchical co-attention for visual question answering. In: Neural Information Processing Systems (NIPS), pp 2
Wang H, Schmid C (2013) Action recognition with improved trajectories. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 3551–3558
Chao YW, Vijayanarasimhan S, Seybold B, Ross DA, Deng J, Sukthankar R (2018) Rethinking the faster r-cnn architecture for temporal action localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1130–1139
Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497
Kulkarni A, Shivananda A (2019) Deep learning for NLP. In: Natural language processing recipes, pp 185–227
Gorban A, Idrees H, Jiang Y G, Zamir A R, Laptev I, Shah M (2015) THUMOS challenge: Action recognition with a large number of classes
Protopapadakis EE, Doulamis AD, Doulamis ND (2013) Tapped delay multiclass support vector machines for industrial workflow recognition. In: 2013 14th International workshop on image analysis for multimedia interactive services (WIAMIS), pp 1–4
L Wang (10633_CR35) 2014; 1
Y Yang (10633_CR40) 2015; 113
N Padoy (10633_CR22) 2019; 28
F Lalys (10633_CR14) 2011; 59
L Wang (10633_CR37) 2018; 41
10633_CR10
10633_CR30
10633_CR31
10633_CR3
10633_CR36
10633_CR15
10633_CR5
10633_CR6
10633_CR13
Z Ma (10633_CR20) 2017; 19
10633_CR18
10633_CR19
10633_CR1
10633_CR38
10633_CR2
10633_CR17
10633_CR39
10633_CR7
10633_CR8
A Voulodimos (10633_CR33) 2012; 19
Z Li (10633_CR16) 2018; 166
A Voulodimos (10633_CR34) 2011; 24
Y Jin (10633_CR11) 2017; 37
RA Rensink (10633_CR25) 2000; 7
H Hu (10633_CR9) 2018; 130
10633_CR21
10633_CR43
G Varol (10633_CR32) 2018; 40
10633_CR44
10633_CR41
10633_CR42
10633_CR26
10633_CR23
Y Chen (10633_CR4) 2018; 2018
DI Kosmopoulos (10633_CR12) 2012; 116
10633_CR24
10633_CR29
10633_CR27
10633_CR28
References_xml – reference: Dogan E, Eren G, Wolf C, Baskurt A (2015) Activity recognition with volume motion templates and histograms of 3d gradients. In: 2015 IEEE International Conference on Image Processing (ICIP), pp 4421–4425
– reference: MaZChangXYangYSebeNHauptmannAGThe many shades of negativityIEEE Trans Multimed20171971558156810.1109/TMM.2017.2659221
– reference: HuHChengKLiZChenJHuHWorkflow recognition with structured two-stream convolutional networksPattern Recogn Lett201813026727410.1016/j.patrec.2018.10.011
– reference: Zaremba W, Sutskever I, Vinyals O (2014) Recurrent neural network regularization. arXiv:1409.2329
– reference: ChenYSunQLZhongKSemi-supervised spatio-temporal CNN for recognition of surgical workflowEURASIP Journal on Image and Video Processing2018201817610.1186/s13640-018-0316-4
– reference: Protopapadakis E, Doulamis A, Makantasis K, Voulodimos A (2012) A semi-supervised approach for industrial workflow recognition. In: Proceedings of the second international conference on advanced communications and computation, pp 21–26
– reference: VarolGLaptevISchmidCLong-term temporal convolutions for action recognitionIEEE Trans Pattern Anal Mach Intell20184061510151710.1109/TPAMI.2017.2712608
– reference: Xu H, Das A, Saenko K (2017) R-c3d: Region convolutional 3d network for temporal activity detection. In: Proceedings of the IEEE international conference on computer vision, pp 5783–5792
– reference: LalysFRiffaudLBougetDJanninPA framework for the recognition of high-level surgical tasks from video images for cataract surgeriesIEEE Trans Biomed Eng201159496697610.1109/TBME.2011.2181168
– reference: Wang H, Schmid C (2013) Action recognition with improved trajectories. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 3551–3558
– reference: Tao L, Zappella L, Hager GD, Vidal R (2013) Surgical gesture segmentation and recognition. In: International conference on medical image computing and computer-assisted intervention, pp 339–346
– reference: Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941
– reference: Protopapadakis EE, Doulamis AD, Doulamis ND (2013) Tapped delay multiclass support vector machines for industrial workflow recognition. In: 2013 14th International workshop on image analysis for multimedia interactive services (WIAMIS), pp 1–4
– reference: JinYDouQChenHYuLQinJFuCWHengPASV-RCNEt: workflow recognition from surgical videos using recurrent convolutional networkIEEE Trans Medical Imag20173751114112610.1109/TMI.2017.2787657
– reference: WangLXiongYWangZQiaoYLinDTangXVan GoolLTemporal segment networks for action recognition in videosIEEE Trans Pattern Anal Mach Intell201841112740275510.1109/TPAMI.2018.2868668
– reference: Blum T, Feußner H, Navab N (2010) Modeling and segmentation of surgical workflow from laparoscopic video. In: International conference on medical image computing and computer-assisted intervention, pp 400–407
– reference: Zhu W, Hu J, Sun G, Cao X, Qiao Y (2016) A key volume mining deep framework for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1991–1999
– reference: Sharma S, Kiros R, Salakhutdinov R (2015) Action recognition using visual attention. arXiv:1511.04119
– reference: LiZGavrilyukKGavvesEJainMSnoekCGVideolstm convolves, attends and flows for action recognitionComput Vis Image Underst2018166415010.1016/j.cviu.2017.10.011
– reference: YangYMaZNieFChangXHauptmannAGMulti-class active learning by uncertainty sampling with diversity maximizationInt J Comput Vis20151132113127334673910.1007/s11263-014-0781-x
– reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv:1409.0473
– reference: VoulodimosAKosmopoulosDVasileiouGSardisEAnagnostopoulosVLalosCVarvarigouTA threefold dataset for activity and workflow recognition in complex industrial environmentsIEEE MultiMedia2012193425210.1109/MMUL.2012.31
– reference: Lan T, Wang Y, Mori G (2011) Discriminative figure-centric models for joint action localization and recognition. In: 2011 International conference on computer vision, pp 2003–2010
– reference: Long F, Yao T, Qiu Z, Tian X, Luo J, Mei T (2019) Gaussian temporal awareness networks for action localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 344–353
– reference: Shou Z, Wang D, Chang SF (2016) Temporal action localization in untrimmed videos via multi-stage cnns. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1049–1058
– reference: Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M (2018) A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6450–6459
– reference: Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Bengio Y (2015) Show, attend and tell: Neural image caption generation with visual attention. In: International conference on machine learning, pp 2048–2057
– reference: Thomay C, Gollan B, Haslgrübler M, Ferscha A, Heftberger J (2019) A multi-sensor algorithm for activity and workflow recognition in an industrial setting. In: Proceedings of the 12th ACM international conference on pervasive technologies related to assistive environments, pp 69–76
– reference: WangLQiaoYTangXAction recognition and detection by combining motion and appearance featuresTHUMOS14 Action Recognition Challenge2014122
– reference: Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: IEEE Conference on computer vision and pattern recognition, pp 248–255
– reference: Chao YW, Vijayanarasimhan S, Seybold B, Ross DA, Deng J, Sukthankar R (2018) Rethinking the faster r-cnn architecture for temporal action localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1130–1139
– reference: KosmopoulosDIDoulamisNDVoulodimosASBayesian filter based behavior recognition in workflows allowing for user feedbackComput Vis Image Underst2012116342243410.1016/j.cviu.2011.09.006
– reference: RensinkRAThe dynamic representation of scenesVis Cogn200071-3174210.1080/135062800394667
– reference: Makantasis K, Doulamis A, Doulamis N, Psychas K (2016) Deep learning based human behavior recognition in industrial workflows. In: 2016 IEEE International conference on image processing (ICIP), pp 1609–1613
– reference: Gorban A, Idrees H, Jiang Y G, Zamir A R, Laptev I, Shah M (2015) THUMOS challenge: Action recognition with a large number of classes
– reference: Zhang L, Wang QW (2018) XIOLIFT database, https://pan.baidu.com/s/lySILNURWDN40q5TpAvGKUA
– reference: Kulkarni A, Shivananda A (2019) Deep learning for NLP. In: Natural language processing recipes, pp 185–227
– reference: PadoyNMachine and deep learning for workflow recognition during surgeryMinimally Invasive Therapy & Allied Technologies2019282829010.1080/13645706.2019.1584116
– reference: Jiang B, Wang M, Gan W, Wu W, Yan J (2019) STM: SpatioTemporal and motion encoding for action recognition. In: Proceedings of the IEEE international conference on computer vision, pp 2000–2009
– reference: Lu J, Yang J, Batra D, Parikh D (2016) Hierarchical co-attention for visual question answering. In: Neural Information Processing Systems (NIPS), pp 2
– reference: Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497
– reference: Lu J, Corso JJ (2015) Human action segmentation with hierarchical supervoxel consistency. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3762–3771
– reference: VoulodimosAKosmopoulosDVeresGGrabnerHVan GoolLVarvarigouTOnline classification of visual tasks for industrial workflow monitoringNeural Netw201124885286010.1016/j.neunet.2011.06.001
– reference: Zhang Q, Hua G (2015) Multi-view visual recognition of imperfect testing data. In: Proceedings of the 23rd ACM international conference on multimedia, pp 561–570
– volume: 37
  start-page: 1114
  issue: 5
  year: 2017
  ident: 10633_CR11
  publication-title: IEEE Trans Medical Imag
  doi: 10.1109/TMI.2017.2787657
– volume: 40
  start-page: 1510
  issue: 6
  year: 2018
  ident: 10633_CR32
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2712608
– ident: 10633_CR30
  doi: 10.1109/ICCV.2015.510
– ident: 10633_CR3
  doi: 10.1109/CVPR.2018.00124
– ident: 10633_CR19
– volume: 1
  start-page: 2
  issue: 2
  year: 2014
  ident: 10633_CR35
  publication-title: THUMOS14 Action Recognition Challenge
– volume: 7
  start-page: 17
  issue: 1-3
  year: 2000
  ident: 10633_CR25
  publication-title: Vis Cogn
  doi: 10.1080/135062800394667
– volume: 24
  start-page: 852
  issue: 8
  year: 2011
  ident: 10633_CR34
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2011.06.001
– ident: 10633_CR42
  doi: 10.1145/2733373.2806224
– ident: 10633_CR44
  doi: 10.1109/CVPR.2016.219
– ident: 10633_CR31
  doi: 10.1109/CVPR.2018.00675
– volume: 130
  start-page: 267
  year: 2018
  ident: 10633_CR9
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.10.011
– volume: 116
  start-page: 422
  issue: 3
  year: 2012
  ident: 10633_CR12
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2011.09.006
– ident: 10633_CR8
– ident: 10633_CR5
  doi: 10.1109/CVPR.2009.5206848
– volume: 113
  start-page: 113
  issue: 2
  year: 2015
  ident: 10633_CR40
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0781-x
– ident: 10633_CR38
– ident: 10633_CR28
  doi: 10.1007/978-3-642-40760-4_43
– ident: 10633_CR15
  doi: 10.1109/ICCV.2011.6126472
– ident: 10633_CR21
  doi: 10.1109/ICIP.2016.7532630
– ident: 10633_CR18
– ident: 10633_CR39
  doi: 10.1109/ICCV.2017.617
– ident: 10633_CR43
– ident: 10633_CR13
  doi: 10.1007/978-1-4842-4267-4_6
– ident: 10633_CR17
  doi: 10.1109/CVPR.2019.00043
– ident: 10633_CR7
  doi: 10.1109/CVPR.2016.213
– ident: 10633_CR26
– ident: 10633_CR27
  doi: 10.1109/CVPR.2016.119
– volume: 59
  start-page: 966
  issue: 4
  year: 2011
  ident: 10633_CR14
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2181168
– ident: 10633_CR6
  doi: 10.1109/ICIP.2015.7351642
– ident: 10633_CR10
  doi: 10.1109/ICCV.2019.00209
– volume: 28
  start-page: 82
  issue: 2
  year: 2019
  ident: 10633_CR22
  publication-title: Minimally Invasive Therapy & Allied Technologies
  doi: 10.1080/13645706.2019.1584116
– volume: 41
  start-page: 2740
  issue: 11
  year: 2018
  ident: 10633_CR37
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2868668
– ident: 10633_CR24
– ident: 10633_CR41
– ident: 10633_CR36
  doi: 10.1109/ICCV.2013.441
– ident: 10633_CR2
  doi: 10.1007/978-3-642-15711-0_50
– ident: 10633_CR23
  doi: 10.1109/WIAMIS.2013.6616141
– volume: 166
  start-page: 41
  year: 2018
  ident: 10633_CR16
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2017.10.011
– volume: 19
  start-page: 1558
  issue: 7
  year: 2017
  ident: 10633_CR20
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2659221
– ident: 10633_CR1
– volume: 19
  start-page: 42
  issue: 3
  year: 2012
  ident: 10633_CR33
  publication-title: IEEE MultiMedia
  doi: 10.1109/MMUL.2012.31
– volume: 2018
  start-page: 76
  issue: 1
  year: 2018
  ident: 10633_CR4
  publication-title: EURASIP Journal on Image and Video Processing
  doi: 10.1186/s13640-018-0316-4
– ident: 10633_CR29
  doi: 10.1145/3316782.3321523
SSID ssj0016524
Score 2.304121
Snippet Behavior recognition is a fundamental yet challenging task in intelligent surveillance system, which plays an increasingly important role in the process of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 34973
SubjectTerms 1166- Advances of machine learning in data analytics and visual information processing
Coders
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Encoders-Decoders
Localization
Multimedia Information Systems
Recognition
Special Purpose and Application-Based Systems
Workflow
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe9GDj6pYrZKDN13MY7ObHESqtBTBImKht5B95FSS2kb8-84mm1YFewhJSLKE2Z3H7s58H8B1LAKORi8lDOcChMoQdS4IAhJngQh9SSNfmPWOlwkbT-nzLJy1YNLUwpi0ysYmVoZaFdKskd9h3E0ZHjF7WHwQwxpldlcbCo3UUiuo-wpibAc6vkHGakPncTh5fVvvK7DQ0txGLkFf6dkymrqYzjOlKiZlAadJ-Lvhb1e1iT__bJlWnmh0CPs2hHQGdZ8fQUvnXTho6Bkcq61d2PuBNXgMg0FZ1qmNxHgu5RgES6WXROnq7OR1QvjKwTDWMVfZvPhy1glGRX4C09Hw_WlMLH8CkahYJWHKFT7XPA0kzeJMZEGmYl9KoalMXc5jtJIpVdKlXGjUY4W3KCKFM1VXRSiDU2jnRa7PwImlJwMVCo3hC2VRllLOhRdK5krJfcl74DWiSqQFFzccF_NkA4tsxJugeJNKvEnYg5v1N4saWmPr2_2mBxKrZqtkMyh6cNv0yubx_62db2_tAnb9aiCYpZY-tMvlp77E4KMUV3ZEfQPxAdOD
  priority: 102
  providerName: ProQuest
Title Attention-based encoder-decoder networks for workflow recognition
URI https://link.springer.com/article/10.1007/s11042-021-10633-5
https://www.proquest.com/docview/2604660496
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwzGLbBQ48BojBmHrgBpH6SJr22KE9BGJCiEnjVDWPnqYObUX8Pk4fKyBA4lClUVMf7Di24xfAVSg8jodeQny0BQiVDHnO8zwSpp5grqSBK8x9x8PMn87p3YItqqSwTR3tXrski5O6SXZzTCqJCSlAMwbBsRZ0mCnnhbt47kZb34HPqla2gU1QHjpVqszPML6Ko0bH_OYWLaTN-BD2KzXRikq6HsGOzrpwULdgsCqO7MLep3qCxxBFeV6GLxIjnZRlqlQqvSZKF6OVlUHfGwtVVcu8pcvVu7UNIlplJzAfj55vp6TqkUAkMk9OfGULl2ueeJKmYSpSL1WhK6XQVCY25yGehAlV0qZcaORVhVNEkUJr1FYB4uAU2tkq02dghdKRnmJCo4pC_SBNKOfCYdK3peSu5D1walTFsiogbvpYLOOm9LFBb4zojQv0xqwH19t_XsvyGX-u7tcUiCtW2sRocFEfn9DvwU1Nlebz79DO_7f8AnbdYmOY65U-tPP1m75EhSMXA2gF48kAOtF4OJyZcfJyP8JxOJo9Pg2K3fcBohnPVQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT4QwEJ6selAPvo2rq_agJ20EWuhyMGZ9ZX1tjNHEG9IHJ8OqizH-OX-bUyi7aqI3DwQI0MN0mPmmnZkPYCuWTKDRS2mEsQDlKsR_jjFG44zJMFC8HUi73nHVi7p3_Pw-vG_AR10LY9Mqa5tYGmrdV3aNfA9xN4_wiKODp2dqWaPs7mpNoZE6agW9X7YYc4UdF-b9DUO4wf7ZMc73dhCcntwedaljGaAK1a-gkfZkIIxImeJZnMmMZToOlJKGq9QTIkZbknKtPC6kQW3XeIs4SWM85-k2engcdwwmOOMxBn8Thye965vhPkYUOlrdtkfRN_uubKcq3vNtaYxNkcCwDMUTfneNI7z7Y4u29HynczDjICvpVDo2Dw2TL8BsTQdBnHVYgOkvvQ0XodMpiiqVklpPqYntmKnNC9WmPJO8SkAfEITNxF5lj_03Mkxo6udLcPcvklyG8byfmxUgsfIV06E0CJd41M5SLoT0QxV5SolAiSb4tagS5ZqZW06Nx2TUhtmKN0HxJqV4k7AJO8NvnqpWHn--3apnIHG_9SAZKWETdutZGT3-fbTVv0fbhMnu7dVlcnnWu1iDqaBUCrvM04Lx4uXVrCPwKeSG0y4CD_-t0J8hxRD-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSAgOLAVEWX2AE1hkceLmgFAFFEqh4gBSbyFecqqS0gZV_BpfxzhLC0j0xiFKoiQ-jF9m3tizABwHwuWo9CLqoy9AmfTwn3NdlwaxKzxHsoYjzHrHY9e_e2H3Pa83B59VLowJq6x0Yq6oVSrNGvk58m7m4xH453EZFvF03bocvFHTQcrstFbtNAqIdPTHGN230UX7Guf6xHFaN89Xd7TsMEAlQi-jvrKEwzWPXMniIBaxG6vAkVJoJiOL8wD1SMSUtBgXGpGu8BY5kkJfzlINtO447jwsclPF3WSpt24nOxi-VzbUbVgUrbJdJuwUaXu2SYoxwRHokKFgvJ9Gccp0f23O5javtQ6rJVklzQJdGzCnkxqsVY0gSKkXarDyrarhJjSbWVYEUVJjIxUxtTKVHlKl8zNJitDzEUHCTMxV3E_HZBLKlCZb8PIvctyGhSRN9A6QQNrSVZ7QSJSY34gjxrmwPelbUnJH8jrYlahCWZYxN900-uG0ALMRb4jiDXPxhl4dTiffDIoiHjPf3q9mICx_6FE4hV8dzqpZmT7-e7Td2aMdwRLCOHxodzt7sOzkmDDrO_uwkA3f9QEynkwc5tAi8PrfWP4Cnh4OmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-based+encoder-decoder+networks+for+workflow+recognition&rft.jtitle=Multimedia+tools+and+applications&rft.au=Zhang%2C+Min&rft.au=Hu%2C+Haiyang&rft.au=Li%2C+Zhongjin&rft.au=Chen%2C+Jie&rft.date=2021-11-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=28-29&rft.spage=34973&rft.epage=34995&rft_id=info:doi/10.1007%2Fs11042-021-10633-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_021_10633_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon