Design of a sports culture data fusion system based on a data mining algorithm
The sports industry is an important component of social life and the national economy. With the advent of the era of big data, promoting the decision-making and scientific construction of the sports and cultural goods industry is conducive to the transformation and upgrading of the sports industry....
Saved in:
| Published in | Personal and ubiquitous computing Vol. 24; no. 1; pp. 75 - 86 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.02.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1617-4909 1617-4917 |
| DOI | 10.1007/s00779-019-01273-6 |
Cover
| Abstract | The sports industry is an important component of social life and the national economy. With the advent of the era of big data, promoting the decision-making and scientific construction of the sports and cultural goods industry is conducive to the transformation and upgrading of the sports industry. In view of the shortcomings of the current sports stationery industry consumption data system, this paper combines
K
-means spatial clustering, fusion decision tree, naive Bayes, and other data mining algorithms and data warehouse technologies to the sports stationery industry. The consumption data system is the research object, and the analysis of geospatial feature clustering, customer segmentation, and consumption preference prediction of sports stationery industry consumption is carried out. The data mining–based sports cultural product industry data fusion system model is constructed, and the architecture, technology path, and function realization of the model are clarified. The actual case analysis and performance test results show that the realized sports cultural goods consumption data fusion system can provide a scientific reference model and basis for the modern sports stationery industry to use data mining and other new technologies to establish a decision-making information system. |
|---|---|
| AbstractList | The sports industry is an important component of social life and the national economy. With the advent of the era of big data, promoting the decision-making and scientific construction of the sports and cultural goods industry is conducive to the transformation and upgrading of the sports industry. In view of the shortcomings of the current sports stationery industry consumption data system, this paper combines K-means spatial clustering, fusion decision tree, naive Bayes, and other data mining algorithms and data warehouse technologies to the sports stationery industry. The consumption data system is the research object, and the analysis of geospatial feature clustering, customer segmentation, and consumption preference prediction of sports stationery industry consumption is carried out. The data mining–based sports cultural product industry data fusion system model is constructed, and the architecture, technology path, and function realization of the model are clarified. The actual case analysis and performance test results show that the realized sports cultural goods consumption data fusion system can provide a scientific reference model and basis for the modern sports stationery industry to use data mining and other new technologies to establish a decision-making information system. The sports industry is an important component of social life and the national economy. With the advent of the era of big data, promoting the decision-making and scientific construction of the sports and cultural goods industry is conducive to the transformation and upgrading of the sports industry. In view of the shortcomings of the current sports stationery industry consumption data system, this paper combines K -means spatial clustering, fusion decision tree, naive Bayes, and other data mining algorithms and data warehouse technologies to the sports stationery industry. The consumption data system is the research object, and the analysis of geospatial feature clustering, customer segmentation, and consumption preference prediction of sports stationery industry consumption is carried out. The data mining–based sports cultural product industry data fusion system model is constructed, and the architecture, technology path, and function realization of the model are clarified. The actual case analysis and performance test results show that the realized sports cultural goods consumption data fusion system can provide a scientific reference model and basis for the modern sports stationery industry to use data mining and other new technologies to establish a decision-making information system. |
| Author | Zhang, Lan |
| Author_xml | – sequence: 1 givenname: Lan orcidid: 0000-0002-9356-5988 surname: Zhang fullname: Zhang, Lan email: l0706zltjl@163.com organization: Department of Sports and Arts, Zhejiang Yuexiu University of Foreign Languages |
| BookMark | eNp9kE1PAyEQhompiW31D3gi8bzKxxZ2j6Z-Jo1e9EwoO6w0W7YCe-i_l7pGEw89MDCZ92Fm3hma-N4DQpeUXFNC5E3MQdYFoYfDJC_ECZpSQWVR1lROft-kPkOzGDeEUClKMUUvdxBd63FvscZx14cUsRm6NATAjU4a2yG63uO4jwm2eK0jNDjneqxunXe-xbpr--DSx_YcnVrdRbj4uefo_eH-bflUrF4fn5e3q8JwWqdCaGAErCilEZw3lHBbUeAGhBRQrWtWScq0lqa0FOyaylqYRZZB2TSlqRd8jq7Gf3eh_xwgJrXph-BzS8WYkIuq4oRlVTWqTOhjDGCVcUmnvE8K2nWKEnVwT43uqeye-nZPiYyyf-guuK0O--MQH6GYxb6F8DfVEeoLNEaDzg |
| CitedBy_id | crossref_primary_10_1155_2022_5973920 crossref_primary_10_1155_2021_2536958 crossref_primary_10_1155_2022_5435027 crossref_primary_10_1371_journal_pone_0292557 crossref_primary_10_2478_amns_2025_0281 crossref_primary_10_1093_ijlct_ctab057 crossref_primary_10_1088_1742_6596_1852_3_032051 crossref_primary_10_1155_2022_2417826 crossref_primary_10_1080_03772063_2021_2016507 crossref_primary_10_1155_2022_6737194 crossref_primary_10_1155_2022_7543957 crossref_primary_10_1088_1742_6596_1852_3_032052 crossref_primary_10_1155_2022_6830375 crossref_primary_10_1109_TVT_2024_3382729 crossref_primary_10_1142_S0219649223500272 crossref_primary_10_1155_2022_1275508 crossref_primary_10_1155_2022_4047508 crossref_primary_10_1155_2022_4278058 crossref_primary_10_1162_dint_a_00207 crossref_primary_10_1155_2022_2838008 crossref_primary_10_2478_amns_2023_1_00177 crossref_primary_10_1155_2022_7441546 crossref_primary_10_1088_1742_6596_1982_1_012206 |
| Cites_doi | 10.1016/j.agsy.2010.08.003 10.1007/s10115-013-0721-z 10.1109/TGRS.2015.2472498 10.1007/s10489-016-0785-z 10.1002/rsa.20598 10.1109/JBHI.2015.2407157 10.1145/3011286.3011291 10.1007/s11277-017-5178-z 10.1038/bjc.2017.48 10.1016/j.jqsrt.2016.06.018 10.1016/j.landurbplan.2013.10.002 10.1029/2011GL048561 10.1108/MRR-11-2015-0272 10.1016/j.engappai.2016.02.002 10.5194/isprsarchives-XLI-B4-441-2016 10.4028/www.scientific.net/AMR.989-994.4538 10.1016/j.eswa.2014.09.019 10.1016/j.patcog.2016.04.016 10.1109/BigData.2015.7363880 10.1109/ICSGEA.2017.62 10.1109/ICCV.2015.45 10.1109/CDAN.2016.7570876 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Personal and Ubiquitous Computing is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Personal and Ubiquitous Computing is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s00779-019-01273-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1617-4917 |
| EndPage | 86 |
| ExternalDocumentID | 10_1007_s00779_019_01273_6 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC 06D 0R~ 0VY 123 199 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8AO 8FE 8FG 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AALFJ AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTV AAYFX AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADL ADMLS ADPZR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEBYY AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AENSD AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWIH AFWTZ AFWXC AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AIKLT AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BDXCO BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCLIF CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUFHI GXS H13 HCIFZ HF~ HG5 HG6 HGAVV HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAS LLZTM M0N M4Y MA- MQGED N2Q NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P62 P9O PF0 PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W7O WK8 XJE YLTOR YZZ Z45 Z7R Z7S Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEFXT AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO SJN 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-6ae20ef647c633d103f81e3ce676e8b928712aa7c4f1efb1796c5d10e4dd4c953 |
| IEDL.DBID | U2A |
| ISSN | 1617-4909 |
| IngestDate | Sat Aug 23 14:21:13 EDT 2025 Wed Oct 01 03:06:57 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 21 02:33:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | means Naive Bayes Data mining Decision tree Sports stationery |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-6ae20ef647c633d103f81e3ce676e8b928712aa7c4f1efb1796c5d10e4dd4c953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9356-5988 |
| PQID | 2267588302 |
| PQPubID | 25320 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2267588302 crossref_citationtrail_10_1007_s00779_019_01273_6 crossref_primary_10_1007_s00779_019_01273_6 springer_journals_10_1007_s00779_019_01273_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200200 2020-2-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 2 year: 2020 text: 20200200 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Personal and ubiquitous computing |
| PublicationTitleAbbrev | Pers Ubiquit Comput |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Sadath (CR1) 2014; 68 CR19 Magniez, Nayak, Santha, Sherman, Tardos, Xiao (CR14) 2015; 48 Loveless, Meade (CR22) 2011; 38 Bulusu (CR3) 2014 CR13 CR10 Carmonabayonas, Jiménezfonseca, Font (CR11) 2017; 116 Sun (CR2) 2014; 989-994 Fan, Myint (CR23) 2014; 121 Liu, Lu, Ma (CR21) 2017; 20 Liu, Xu, Di (CR26) 2016; XLI-B4 Yu (CR30) 2018; 102 CR4 Wu, Chen, Liu, Yang (CR15) 2016; 45 CR5 Sorel, Valérie Viaud (CR12) 2010; 103 CR8 CR7 CR9 CR27 CR25 Bejju (CR6) 2016; 133 Dudhia (CR16) 2016; 186 CR20 Czibula, Marian, Czibula (CR28) 2015; 42 Galster, Zdun, Weyns, Rabiser, Zhang, Goedicke, Perrouin (CR29) 2017; 41 Michael Chattalas, Singh, Singh (CR24) 2016; 39 Zhang, Wan, Huang, Ling (CR17) 2016; 54 Jiang, Li, Wang, Zhang (CR18) 2016; 52 1273_CR7 1273_CR8 1273_CR5 1273_CR20 Chia-Chi Wu (1273_CR15) 2016; 45 1273_CR4 M Galster (1273_CR29) 2017; 41 DBKD Michael Chattalas (1273_CR24) 2016; 39 A Bejju (1273_CR6) 2016; 133 1273_CR9 G Czibula (1273_CR28) 2015; 42 L Sorel (1273_CR12) 2010; 103 1273_CR25 1273_CR27 Y Zhang (1273_CR17) 2016; 54 C Fan (1273_CR23) 2014; 121 A Carmonabayonas (1273_CR11) 2017; 116 H Yu (1273_CR30) 2018; 102 B Liu (1273_CR26) 2016; XLI-B4 X Liu (1273_CR21) 2017; 20 L Sun (1273_CR2) 2014; 989-994 A Bulusu (1273_CR3) 2014 L Sadath (1273_CR1) 2014; 68 John P. Loveless (1273_CR22) 2011; 38 1273_CR19 Frédéric Magniez (1273_CR14) 2015; 48 A Dudhia (1273_CR16) 2016; 186 1273_CR10 L Jiang (1273_CR18) 2016; 52 1273_CR13 |
| References_xml | – volume: 103 start-page: 0 issue: 9 year: 2010 end-page: 655 ident: CR12 article-title: Modeling spatio-temporal crop allocation patterns by a stochastic decision tree method, considering agronomic driving factors[J] publication-title: Agric Syst doi: 10.1016/j.agsy.2010.08.003 – volume: 42 start-page: 545 issue: 3 year: 2015 end-page: 577 ident: CR28 article-title: Detecting software design defects using relational association rule mining[J] publication-title: Knowl Inf Syst doi: 10.1007/s10115-013-0721-z – volume: 133 start-page: 36 year: 2016 end-page: 40 ident: CR6 article-title: Sales analysis of E-commerce websites using data mining techniques[J] publication-title: Int J Comput Appl – ident: CR4 – volume: 54 start-page: 1025 issue: 2 year: 2016 end-page: 1034 ident: CR17 article-title: DEM-assisted RFM block adjustment of pushbroom nadir viewing HRS imagery[J] publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2472498 – volume: 45 start-page: 673 issue: 3 year: 2016 end-page: 685 ident: CR15 article-title: Decision tree induction with a constrained number of leaf nodes publication-title: Applied Intelligence doi: 10.1007/s10489-016-0785-z – ident: CR10 – volume: 48 start-page: 612 issue: 3 year: 2015 end-page: 638 ident: CR14 article-title: Improved bounds for the randomized decision tree Complexity of recursive majority publication-title: Random Structures & Algorithms doi: 10.1002/rsa.20598 – volume: 20 start-page: 655 issue: 2 year: 2017 end-page: 668 ident: CR21 article-title: Privacy-preserving patient-centric clinical decision support system on naïve Bayesian classification[J] publication-title: IEEE J Biomed Health Informatics doi: 10.1109/JBHI.2015.2407157 – volume: 41 start-page: 27 issue: 6 year: 2017 end-page: 30 ident: CR29 article-title: Variability and complexity in software design[J] publication-title: ACM SIGSOFT Softw Eng Notes doi: 10.1145/3011286.3011291 – volume: 102 start-page: 1223 issue: 2 year: 2018 end-page: 1232 ident: CR30 article-title: Platform design of sports meeting management system for regular colleges and universities based on B/S structure[J] publication-title: Wirel Pers Commun doi: 10.1007/s11277-017-5178-z – ident: CR8 – volume: 116 start-page: 994 issue: 8 year: 2017 end-page: 1001 ident: CR11 article-title: Predicting serious complications in patients with cancer and pulmonary embolism using decision tree modelling: the EPIPHANY index.[J] publication-title: Br J Cancer doi: 10.1038/bjc.2017.48 – volume: 186 start-page: 243 year: 2016 end-page: 253 ident: CR16 article-title: The reference forward model (RFM)[J] publication-title: J Quant Spectrosc Radiat Transf doi: 10.1016/j.jqsrt.2016.06.018 – ident: CR25 – ident: CR27 – volume: 121 start-page: 117 issue: 1 year: 2014 end-page: 128 ident: CR23 article-title: A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation[J] publication-title: Landsc Urban Plan doi: 10.1016/j.landurbplan.2013.10.002 – year: 2014 ident: CR3 publication-title: Transforming E-commerce through data mining[J] – ident: CR19 – volume: 38 start-page: n/a-n/a issue: 17 year: 2011 ident: CR22 article-title: Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW= 9.0 Tohoku-oki earthquake publication-title: Geophysical Research Letters doi: 10.1029/2011GL048561 – volume: 39 start-page: 215 issue: 2 year: 2016 end-page: 234 ident: CR24 article-title: Accounting for risk in the traditional RFM approach[J] publication-title: Manag Res Rev doi: 10.1108/MRR-11-2015-0272 – ident: CR13 – volume: 52 start-page: 26 year: 2016 end-page: 39 ident: CR18 article-title: Deep feature weighting for naive Bayes and its application to text classification[J] publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.02.002 – volume: XLI-B4 start-page: 441 year: 2016 end-page: 448 ident: CR26 article-title: A solution to low Rfm fitting precision of planetary orbiter images caused by exposure time changing[J] publication-title: ISPRS - Int Arch Photogramm, Remote Sens Spat Inf Sci doi: 10.5194/isprsarchives-XLI-B4-441-2016 – ident: CR9 – volume: 68 start-page: 32 issue: 24 year: 2014 end-page: 37 ident: CR1 article-title: Data mining in E-commerce: a CRM platform[J] publication-title: Int J Comput Appl – ident: CR5 – ident: CR7 – volume: 989-994 start-page: 4538 year: 2014 end-page: 4541 ident: CR2 article-title: The application design of personalized recommendation system based on data mining to E-commerce[J] publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.989-994.4538 – ident: CR20 – volume: 103 start-page: 0 issue: 9 year: 2010 ident: 1273_CR12 publication-title: Agric Syst doi: 10.1016/j.agsy.2010.08.003 – ident: 1273_CR10 – ident: 1273_CR20 doi: 10.1016/j.eswa.2014.09.019 – volume: XLI-B4 start-page: 441 year: 2016 ident: 1273_CR26 publication-title: ISPRS - Int Arch Photogramm, Remote Sens Spat Inf Sci doi: 10.5194/isprsarchives-XLI-B4-441-2016 – volume-title: Transforming E-commerce through data mining[J] year: 2014 ident: 1273_CR3 – ident: 1273_CR13 doi: 10.1016/j.patcog.2016.04.016 – ident: 1273_CR27 – volume: 42 start-page: 545 issue: 3 year: 2015 ident: 1273_CR28 publication-title: Knowl Inf Syst doi: 10.1007/s10115-013-0721-z – volume: 45 start-page: 673 issue: 3 year: 2016 ident: 1273_CR15 publication-title: Applied Intelligence doi: 10.1007/s10489-016-0785-z – volume: 52 start-page: 26 year: 2016 ident: 1273_CR18 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.02.002 – volume: 39 start-page: 215 issue: 2 year: 2016 ident: 1273_CR24 publication-title: Manag Res Rev doi: 10.1108/MRR-11-2015-0272 – ident: 1273_CR9 – volume: 186 start-page: 243 year: 2016 ident: 1273_CR16 publication-title: J Quant Spectrosc Radiat Transf doi: 10.1016/j.jqsrt.2016.06.018 – volume: 989-994 start-page: 4538 year: 2014 ident: 1273_CR2 publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.989-994.4538 – ident: 1273_CR5 doi: 10.1109/BigData.2015.7363880 – volume: 20 start-page: 655 issue: 2 year: 2017 ident: 1273_CR21 publication-title: IEEE J Biomed Health Informatics doi: 10.1109/JBHI.2015.2407157 – volume: 102 start-page: 1223 issue: 2 year: 2018 ident: 1273_CR30 publication-title: Wirel Pers Commun doi: 10.1007/s11277-017-5178-z – volume: 48 start-page: 612 issue: 3 year: 2015 ident: 1273_CR14 publication-title: Random Structures & Algorithms doi: 10.1002/rsa.20598 – volume: 41 start-page: 27 issue: 6 year: 2017 ident: 1273_CR29 publication-title: ACM SIGSOFT Softw Eng Notes doi: 10.1145/3011286.3011291 – volume: 116 start-page: 994 issue: 8 year: 2017 ident: 1273_CR11 publication-title: Br J Cancer doi: 10.1038/bjc.2017.48 – volume: 54 start-page: 1025 issue: 2 year: 2016 ident: 1273_CR17 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2472498 – volume: 133 start-page: 36 year: 2016 ident: 1273_CR6 publication-title: Int J Comput Appl – ident: 1273_CR8 doi: 10.1109/ICSGEA.2017.62 – ident: 1273_CR25 – volume: 38 start-page: n/a-n/a issue: 17 year: 2011 ident: 1273_CR22 publication-title: Geophysical Research Letters doi: 10.1029/2011GL048561 – volume: 68 start-page: 32 issue: 24 year: 2014 ident: 1273_CR1 publication-title: Int J Comput Appl – ident: 1273_CR4 – volume: 121 start-page: 117 issue: 1 year: 2014 ident: 1273_CR23 publication-title: Landsc Urban Plan doi: 10.1016/j.landurbplan.2013.10.002 – ident: 1273_CR19 doi: 10.1109/ICCV.2015.45 – ident: 1273_CR7 doi: 10.1109/CDAN.2016.7570876 |
| SSID | ssj0017646 |
| Score | 2.3946676 |
| Snippet | The sports industry is an important component of social life and the national economy. With the advent of the era of big data, promoting the decision-making... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 75 |
| SubjectTerms | Algorithms Bayesian analysis Clustering Computer Science Consumption Data integration Data mining Data warehouses Decision making Decision trees Mobile Computing Multisensor fusion New technology Original Article Performance tests Personal Computing Segmentation Sports Stationery User Interfaces and Human Computer Interaction |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED6VdmHhjSgU5IENLPJwnGRAiEerCokKISp1ixw_YOgLmv5_fE7SCiQ6ZIj8GM4-39l3930Al9KPRKRCQRFrhDLrg9NE-jlV2kSp1L7kCh_0Xwa8P2TPo2jUgEFdC4NplfWZ6A5qNZP4Rn5j3QTr2iJa1d38iyJrFEZXawoNUVErqFsHMbYFrQCRsZrQeugOXt9WcYWYl_VG1m5TlnppVUbjiukQ2QZzh_CzRp3y36Zq7X_-CZk6S9Tbg53KhST35ZrvQ0NPD2C3pmcglbYewuDJZWeQmSGCuNvrgpRAG5pgYigxS3wqIyWYM0F7poj9F2XrxFFHEDH-sGIoPidHMOx13x_7tKJPoNLqVUG50IGnDWex5GGofC80ia9DqXnMdZKneFcKhIglM742udVMLiPbTTOlmEyj8Bia09lUnwBhnCVCaWFkKhk3nmBGiyAPE57KVMReG_xaUpmssMWR4mKcrVCRnXQzK93MSTfjbbhajZmXyBobe3fqBcgqLVtk6z3Rhut6UdbN_892unm2M9gO8FrtkrM70Cy-l_rc-h5FflFtqB_QstRx priority: 102 providerName: ProQuest |
| Title | Design of a sports culture data fusion system based on a data mining algorithm |
| URI | https://link.springer.com/article/10.1007/s00779-019-01273-6 https://www.proquest.com/docview/2267588302 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1617-4917 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0017646 issn: 1617-4909 databaseCode: ADMLS dateStart: 20030201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1617-4917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017646 issn: 1617-4909 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1617-4917 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017646 issn: 1617-4909 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1617-4917 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017646 issn: 1617-4909 databaseCode: 8FG dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1617-4917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017646 issn: 1617-4909 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1617-4917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017646 issn: 1617-4909 databaseCode: U2A dateStart: 20010220 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5se_HiW6zWkoM3Dewjm90cq_aBYhGxUE9LNg8V-pA-_r9J9lEUFTwsYUk2h5nMzkxm5huAC-FHPJIhxxZrBBNjg-NE-BmWSkdMKF9QaS_0H4Z0MCJ342hcFIUty2z3MiTp_tRVsZtFnrG5PfYxShfTGjQiC-dlTvEo6FSxg5jmNUVGN2PCPFaUyvy8x1d1tLExv4VFnbbp7cFOYSaiTs7XfdhSswPYLVswoEIiD2F46zIw0FwjjpyHukQ5mIZCNvkT6bW9DkM5YDOyOksi887z2alrD4H45HW-eF-9TY9g1Os-3wxw0SIBCyM7K0y5CjylKYkFDUPpe6FOfBUKRWOqkoxZfyjgPBZE-0pnRvqoiMwyRaQkgkXhMdRn85k6AUQoSbhUXAsmCNUeJ1rxIAsTygTjsdcEv6RUKgr8cNvGYpJWyMeOuqmhbuqom9ImXFbffOToGX-ubpUMSAtJWqbGPDQujUUpa8JVyZTN9O-7nf5v-RlsB9aVdgnZLaivFmt1buyNVdaGWtLrt6HR6b_cd8143R0-PrXdofsEYL_O9Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VzQEutOUhUtLiA5zAYh9e7_oQVS1NlNIkQiiRelu8fsChedAkQvw5fhserzcRSPTWwx5W9vownrW_sWe-D-CNijOZ6VRS5BqhzGFwWqi4otrYTCgTK67xQH805oMp-3ST3ezB76YWBtMqmzXRL9R6ofCM_IODCQ7aIlvV2fIHRdUovF1tJDRkkFbQXU8xFgo7rs2vny6EW3WvLt18v02Sfm_ycUCDygBVzv3WlEuTRMZyliuepjqOUlvEJlWG59wUlcCQIpEyV8zGxlbOgbnKXDfDtGZKoGqE2wJaLGXCBX-ti97485ftPUbO6_omhxMoE5EIZTu-eA-ZdDBXCR8HIij_e2vc4d1_rmj9ztc_hCcBspLz2seOYM_Mn8JBIwdBwurwDMaXPhuELCyRxEfLK1ITexiCiajEbvBojtTk0QT3T03cu6xbZ16qgsjbb87s6--z5zB9EEO-gP35Ym5eAmGcFVIbaZVQjNtIMmtkUqUFF0rIPGpD3FiqVIHLHCU1bsstC7O3bumsW3rrlrwN77bfLGsmj3t7d5oJKMNfvSp3PtiG982k7Jr_P9rx_aO9hkeDyWhYDq_G16_gcYIhvU8M78D--m5jThzuWVenwbkIfH1of_4DHKoRsA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB0hkBANN2I5XUAF1uZwnKRACLEs94oCpO2C4wOKvWAXIX6Nr8PjJLsCCTqKFJEdF-OX8bM98wZgT_qRiFQoKGqNUGY5OE2kn1OlTZRK7Uuu8ED_tsUvHthVO2pPwWeVC4NhlZVPdI5a9SWekdctTbDUFtWq6qYMi7hrNI8HLxQrSOFNa1VOo4DItf54t9u34dFlw871fhA0z-5PL2hZYYBKC70R5UIHnjacxZKHofK90CS-DqXmMddJnuJ2IhAilsz42uQWvFxGtptmSjGZYsUI6_5nYlRxxyz15vn4BiPmRWaTZQiUpV5aJuy4tD3U0MEoJXwsfaD8-6I4Ybo_LmfdmtdchPmSrJKTAl1LMKV7y7BQFYIgpV9YgVbDxYGQviGCuH3ykBSSHppgCCoxb3goRwrZaIIrpyL2XRStXVekgojOkzXy6Lm7Cg__YsY1mO71e3odCOMsEUoLI1PJuPEEM1oEeZjwVKYi9mrgV5bKZKlijsU0OtlYf9lZN7PWzZx1M16Dg_E3g0LD48_eW9UEZOX_PMwm6KvBYTUpk-bfR9v4e7RdmLUozm4uW9ebMBfgXt5FhG_B9Oj1TW9bwjPKdxyyCDz-N5S_AJIkD0o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+sports+culture+data+fusion+system+based+on+a+data+mining+algorithm&rft.jtitle=Personal+and+ubiquitous+computing&rft.au=Zhang%2C+Lan&rft.date=2020-02-01&rft.pub=Springer+London&rft.issn=1617-4909&rft.eissn=1617-4917&rft.volume=24&rft.issue=1&rft.spage=75&rft.epage=86&rft_id=info:doi/10.1007%2Fs00779-019-01273-6&rft.externalDocID=10_1007_s00779_019_01273_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4909&client=summon |