Controlled phase gate and Grover’s search algorithm on two distant NV-centers assisted by an NAMR
We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our...
Saved in:
| Published in | Quantum information processing Vol. 19; no. 6 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.06.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1570-0755 1573-1332 |
| DOI | 10.1007/s11128-020-02682-w |
Cover
| Abstract | We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our gate is completed by using resonant operations between NV-centers and the NAMR, and single-qubit operations on the NV-center, which let the gate to be achieved within a short time with a high fidelity. To study the performance of the gate for universal quantum computation, we simulate a two-qubit Grover’s search algorithm on the NV-centers with a fidelity of
98.46
%
. |
|---|---|
| AbstractList | We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our gate is completed by using resonant operations between NV-centers and the NAMR, and single-qubit operations on the NV-center, which let the gate to be achieved within a short time with a high fidelity. To study the performance of the gate for universal quantum computation, we simulate a two-qubit Grover’s search algorithm on the NV-centers with a fidelity of 98.46%. We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our gate is completed by using resonant operations between NV-centers and the NAMR, and single-qubit operations on the NV-center, which let the gate to be achieved within a short time with a high fidelity. To study the performance of the gate for universal quantum computation, we simulate a two-qubit Grover’s search algorithm on the NV-centers with a fidelity of 98.46 % . |
| ArticleNumber | 187 |
| Author | Hua, Ming Zhou, Zeng-Rong Tao, Ming-Jie Wei, Hai-Rui |
| Author_xml | – sequence: 1 givenname: Ming surname: Hua fullname: Hua, Ming organization: Department of Applied Physics, School of Physical Science and Technology, Tianjin Polytechnic University – sequence: 2 givenname: Ming-Jie orcidid: 0000-0002-3259-4179 surname: Tao fullname: Tao, Ming-Jie email: taomingjie1020@sina.com organization: Faculty of foundation, Space Engineering University – sequence: 3 givenname: Zeng-Rong surname: Zhou fullname: Zhou, Zeng-Rong organization: Department of Physics, Tsinghua University – sequence: 4 givenname: Hai-Rui surname: Wei fullname: Wei, Hai-Rui organization: School of Mathematics and Physics, University of Science and Technology Beijing |
| BookMark | eNp9kMtKAzEUhoNUsFZfwFXA9WguM5nMUoo3qBVE3YY0c6adMiY1SS3d-Rq-nk9i2gqCiy7CCTnn-0_4jlHPOgsInVFyQQkpLwOllMmMMJKOkCxbHaA-LUqeUc5Zb3tPrbIojtBxCHNCGBVS9JEZOhu96zqo8WKmA-CpjoC1rfGtdx_gvz-_Ag6gvZlh3U2db-PsDTuL48rhug1R24jHr5kBG8EHrENIjyltsk4peHz18HSCDhvdBTj9rQP0cnP9PLzLRo-398OrUWY4rWImpJRUCCPKxgBIY2oBnOc8l7k2eaMnFSlFXZeUalMT2VRVwQsimSGsYgxKPkDnu9yFd-9LCFHN3dLbtFKxnNCKEyI2U2w3ZbwLwUOjFr59036tKFEbmWonUyWZaitTrRIk_0GmjTq2G3m67fajfIeGtMdOwf_9ag_1AyVbjEk |
| CitedBy_id | crossref_primary_10_1007_s11128_022_03694_4 crossref_primary_10_1016_j_optlastec_2025_112508 crossref_primary_10_1140_epjd_s10053_024_00896_6 crossref_primary_10_1007_s11128_022_03801_5 crossref_primary_10_1002_andp_202200507 |
| Cites_doi | 10.1103/PhysRevLett.121.110501 10.1126/science.1083800 10.1038/ncomms2930 10.1038/nature05231 10.1038/s41598-017-14245-8 10.1016/j.cpc.2012.02.021 10.1103/PhysRevLett.110.190501 10.1038/nature13729 10.1103/PhysRevLett.93.250502 10.1103/PhysRevLett.117.120501 10.1103/PhysRevB.82.024514 10.1002/andp.201700402 10.1103/PhysRevLett.81.1322 10.1103/PhysRevA.75.022312 10.1063/1.1927327 10.1103/PhysRevLett.108.043604 10.1103/PhysRevLett.83.5166 10.1103/PhysRevLett.107.266403 10.1126/science.1157233 10.1103/PhysRevA.97.022332 10.1103/PhysRevA.69.062320 10.1103/PhysRevB.79.041302 10.1103/PhysRevA.91.062325 10.1103/PhysRevLett.75.4710 10.1103/PhysRevA.98.022121 10.1063/1.4802893 10.1103/PhysRevA.75.012324 10.1103/PhysRevA.96.023826 10.1103/PhysRevA.75.032329 10.1103/PhysRevA.91.052322 10.1103/PhysRevA.91.042329 10.1103/PhysRevA.81.042323 10.1103/PhysRevA.83.054305 10.1038/30687 10.1103/PhysRevA.91.032307 10.1103/PhysRevA.82.062326 10.1038/ncomms9603 10.1103/RevModPhys.67.249 10.1038/nature02831 10.1063/1.2822406 10.1038/nphys1245 10.1146/annurev-conmatphys-030212-184238 10.1103/PhysRevLett.79.325 10.1103/PhysRevA.97.062336 10.1103/PhysRevLett.93.130501 10.1016/j.cpc.2012.11.019 10.1007/s11128-016-1263-6 10.1103/PhysRevA.64.022307 10.1103/PhysRevA.97.022322 10.1038/nmat2420 10.1103/PhysRevA.80.022335 10.1103/PhysRevA.97.012329 10.1088/1367-2630/15/12/123032 10.1038/35051009 10.1103/RevModPhys.85.623 10.1103/PhysRevA.86.022327 10.1103/PhysRevB.85.155204 10.1103/PhysRevLett.120.060501 10.1103/PhysRevB.74.104303 10.1103/PhysRevA.84.010301 10.1038/nature05027 10.1103/PhysRevLett.74.4091 10.1126/science.1094419 10.1126/science.1216821 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11128-020-02682-w |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Computer Science |
| EISSN | 1573-1332 |
| ExternalDocumentID | 10_1007_s11128_020_02682_w |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2018M631438 – fundername: National Natural Science Foundation of China grantid: 11704281; 11647042 – fundername: National Natural Science Foundation of China grantid: 11604012 |
| GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9O PF0 PT4 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-6888166c67fcee8ccd6e3343484ac4fab9076dd711acd08f99535082c02922e73 |
| IEDL.DBID | U2A |
| ISSN | 1570-0755 |
| IngestDate | Thu Sep 25 01:04:29 EDT 2025 Wed Oct 01 02:37:39 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 Fri Feb 21 02:38:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Nanomechanical cantilevel resonator Nitrogen vacancy center Quantum computation Universal quantum gate Grover’s search algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-6888166c67fcee8ccd6e3343484ac4fab9076dd711acd08f99535082c02922e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3259-4179 |
| PQID | 2401930067 |
| PQPubID | 2043832 |
| ParticipantIDs | proquest_journals_2401930067 crossref_primary_10_1007_s11128_020_02682_w crossref_citationtrail_10_1007_s11128_020_02682_w springer_journals_10_1007_s11128_020_02682_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200600 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Quantum information processing |
| PublicationTitleAbbrev | Quantum Inf Process |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BlaisAHuangRSWallraffAGirvinSMSchoelkopfRJCavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computationPhys. Rev. A2004690623202004PhRvA..69f2320B BassettLCHeremansFJYaleCGBuckleyBBAwschalomDDElectrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fieldsPhys. Rev. Lett.20111072664032011PhRvL.107z6403B NeumannPMizuochiNRemppFHemmerPWatanabeHYamasakiSJacquesVGaebelTJelezkoFWrachtrupJMultipartite entanglement among single spins in diamondScience200832013262008Sci...320.1326N ZhouLGWeiLFGaoMWangXBStrong coupling between two distant electronic spins via a nanomechanical resonatorPhys. Rev. A2010810423232010PhRvA..81d2323Z YeBLZhengZFYangCPMultiplex-controlled phase gate with qubits distributed in a multicavity systemPhys. Rev. A2018970623362018PhRvA..97f2336Y FengZBRobust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centersPhys. Rev. A2015910323072015PhRvA..91c2307F TurchetteQAHoodCJLangeWMabuchiHKimbleHJMeasurement of conditional phase shifts for quantum logicPhys. Rev. Lett.19957547101995PhRvL..75.4710T13620361020.81553 BalasubramanianGNeumannPTwitchenDMarkhamMKolesovRMizuochiNIsoyaJAchardJBeckJTisslerJJacquesVHemmerPRJelezkoFWrachtrupJUltralong spin coherence time in isotopically engineered diamondNat. Mater.200983832009NatMa...8..383B MatsuzakiYZhuXKakuyanagiKToidaHShimookaTMizuochiNNemotoKSembaKMunroWJYamaguchiHSaitoSImproving the lifetime of the nitrogen-vacancy-center ensemble coupled with a superconducting flux qubit by applying magnetic fieldsPhys. Rev. A2015910423292015PhRvA..91d2329M LongGLGrover algorithm with zero theoretical failure ratePhys. Rev. A2001640223072001PhRvA..64b2307L NielsenMAChuangILQuantum Computing and Quantum Information2000CambridgeCambridge University Press1049.81015 ChiorescuIBertetPSembaKNakamuraYHarmansCJPMMooijJECoherent dynamics of a flux qubit coupled to a harmonic oscillatorNature (London)20044311592004Natur.431..159C CiracJIZollerPQuantum computations with cold trapped ionsPhys. Rev. Lett.19957440911995PhRvL..74.4091C JonesJAMoscaMHansenRHImplementation of a quantum search algorithm on a quantum computerNature (London)19983933441998Natur.393..344J RauschenbeutelANoguesGOsnaghiSBertetPBruneMRaimondJMHarocheSCoherent operation of a tunable quantum phase gate in cavity QEDPhys. Rev. Lett.19998351661999PhRvL..83.5166R FengWZhangCWangZQinLPLiXQGradual partial-collapse theory for ideal nondemolition longitudinal readout of qubits in circuit QEDPhys. Rev. A2018980221212018PhRvA..98b2121F LiXXLiPBMaSLLiFLPreparing entangled states between two NV centers via the damping of nanomechanical resonatorsSci. Rep.20177141162017NatSR...714116L ByrnesTForsterGTesslerLGeneralized Groveri’s algorithm for multiple phase inversion statesPhys. Rev. Lett.20181200605012018PhRvL.120f0501B RablPCappellaroPDuttMVGJiangLMazeJRLukinMDStrong magnetic coupling between an electronic spin qubit and a mechanical resonatorPhys. Rev. B200979041302(R)2009PhRvB..79d1302R GroverLKQuantum mechanics helps in searching for a needle in a haystackPhys. Rev. Lett.1997793251997PhRvL..79..325G JohanssonJRNationPDNoriFQuTiP: an open-source Python framework for the dynamics of open quantum systemsComput. Phys. Commun.201218317602012CoPhC.183.1760J RetzkerASolanoEReznikBTavis–Cummings model and collective multiqubit entanglement in trapped ionsPhys. Rev. A2007750223122007PhRvA..75b2312R ChenQYangWLFengMDuJFEntangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonatorsPhys. Rev. A2011830543052011PhRvA..83e4305C PigeauBRohrSde LépinayLMGloppeAJacquesVArcizetOObservation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical systemNat. Commun.2015686032015NatCo...6.8603P BernienHChildressLRobledoLMarkhamMTwitchenDHansonRTwo-photon quantum interference from separate nitrogen vacancy centers in diamondPhys. Rev. Lett.20121080436042012PhRvL.108d3604B HaackGHelmerFMariantoniMMarquardtFSolanoEResonant quantum gates in circuit quantum electrodynamicsPhys. Rev. B2010820245142010PhRvB..82b4514H WangHJShinCSAvalosCESeltzerSJBudkerDPinesABajajVSSensitive magnetic control of ensemble nuclear spin hyperpolarization in diamondNat. Commun.2013419402013NatCo...4.1940W WangZHde LangeGRistèDHansonRDobrovitskiVVComparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamondPhys. Rev. B2012851552042012PhRvB..85o5204W YangCPZhengSBNoriFMultiqubit tunable phase gate of one qubit simultaneously controlling n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} qubits in a cavityPhys. Rev. A2010820623262010PhRvA..82f2326Y GaoYPCaoCWangTJZhangYWangCCavity-mediated coupling of phonons and magnonsPhys. Rev. A2017960238262017PhRvA..96b3826G ZuCWangWBHeLZhangWGDaiCYWangFDuanLMExperimental realization of universal geometric quantum gates with solid-state spinsNature (London)2014514722014Natur.514...72Z VerbridgeSSCraigheadHGParpiaJMA megahertz nanomechanical resonator with room temperature quality factor over a millionAppl. Phys. Lett.2008920131122008ApPhL..92a3112V XuZYHuYMYangWLFengMDuJFDeterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilevePhys. Rev. A2009800223352009PhRvA..80b2335X YangWLYinZQHuYFengMDuJFHigh-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computationPhys. Rev. A201184010301(R)2011PhRvA..84a0301Y EkinciKLRoukesMLNanoelectromechanical systemsRev. Sci. Instrum.2005760611012005RScI...76f1101E BlaisAGambettaJWallraffASchusterDIGirvinSMDevoretMHSchoelkopfRJQuantum-information processing with circuit quantum electrodynamicsPhys. Rev. A2007750323292007PhRvA..75c2329B PoyatosJFCiracJIZollerPQuantum gates with “Hot” trapped ionsPhys. Rev. Lett.19988113221998PhRvL..81.1322P TaoMJHuaMAiQDengFGQuantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QEDPhys. Rev. A2015910623252015PhRvA..91f2325T JohanssonJRNationPDNoriFQuTiP 2: a Python framework for the dynamics of open quantum systemsComput. Phys. Commun.201318412342013CoPhC.184.1234J HongZPLiuBJCaiJQZhangXDHuYWangZDXueZYImplementing universal nonadiabatic holonomic quantum gates with transmonsPhys. Rev. A2018970223322018PhRvA..97b2332H BaoNBoulandAJordanSPGrover search and the no-signaling principlePhys. Rev. Lett.20161171205012016PhRvL.117l0501B TwamleyJBarrettSDSuperconducting cavity bus for single nitrogen-vacancy defect centers in diamondPhys. Rev. A201081241202(R)2010PhRvB..81x1202T ChenQYangWLFengMControllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubitsPhys. Rev. A2012860223272012PhRvA..86b2327C KolkowitzSJayichACBUnterreithmeierQPBennettSDRablPHarrisJGELukinMDCoherent sensing of a mechanical resonator with a single-spin qubitScience201233516032012Sci...335.1603K NaikABuuOLaHayeMDArmourADClerkAABlencoweMPSchwabKCCooling a nanomechanical resonator with quantum back-actionNature20064431932006Natur.443..193N WangZLZhongYPHeLJWangHMartinisJMClelandANXieQWQuantum state characterization of a fast tunable superconducting resonatorAppl. Phys. Lett.20131021635032013ApPhL.102p3503W WrachtrupJSchrödinger’s cat is still aliveNat. Phys.20095248 LiXWuYSteelDGammonDStievaterTHKatzerDSOarkDPiermarochiCShamJAn all-optical quantum gate in a semiconductor quantum dotScience20033018092003Sci...301..809L SidlesJAGarbiniJLBrulandKJRugarDZügerOHoenSYannoniCSMagnetic resonance force microscopyRev. Mod. Phys.1995672491995RvMP...67..249S WeiSJLongGLDuality quantum computer and the efficient quantum simulationsQuantum Inf. Proc.20161511892016QuIP...15.1189W34757891338.81148 MansonNBHarrisonJPSellarsMJNitrogen-vacancy center in diamond: model of the electronic structure and associated dynamicsPhys. Rev. B2006741043032006PhRvB..74j4303M KnillELaflammeRMilburnGJA scheme for efficient quantum computation with linear opticsNature (London)2001409462001Natur.409...46K HuaMTaoMJAlsaediAHayatTDengFGUniversal distributed quantum computing on superconducting qutrits with dark photonsAnnalen der Physik201853017004022018AnP...53000402H3796484 LaHayeMDBuuOCamarotaBSchwabKCApproaching the quantum limit of a nanomechanical resonatorScience2004304742004Sci...304...74L SuWJYangZBZhongZRArbitrary control of entanglement between two nitrogen-vacancy-center ensembles coupling to a superconducting-circuit qubitPhys. Rev. A2018970123292018PhRvA..97a2329S XinTPedernalesJSSolanoELongGLEntanglement measures in embedding quantum simulators with nuclear spinsPhys. Rev. A2018970223222018PhRvA..97b2322X DobrovitskiVVFuchsGDFalkALSantoriCAwschalomDDQuantum control over single spins in diamondAnnu. Rev. Condens. Matter Phys.20134232013ARCMP...4...23D XuYCaiWMaYMuXHuLChenTWangHSongYPXueZYYinZQSunLSingle-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuitPhys. Rev. Lett.20181211105012018PhRvL.121k0501X TulsiAQuantum search algorithm tailored to clause-satisfaction problemsPhys. Rev. A2015910523222015PhRvA..91e2322T XiangZLAshhabSYouJQNoriFHybrid quantum circuits: superconducting circuits interacting with other quantum systemsRev. Mod. Phys.2013856232013RvMP...85..623X YinZQLiFLMultiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiberPhys. Rev. A2007750123242007PhRvA..75a2324Y FengGRXuGFLongGLExperimental realization of nonadiabatic holonomic quantum computationPhys. Rev. Lett.20131101905012013PhRvL.110s0501F KlecknerDBouwmeesterDSub-kelvin optical cooling of a micromechanical resonatorNature (London)2006444752006Natur.444...75K ZhouJHLiuTFengMYangWLChenCYTwamleyJQuantum phase transition in a driven Tavis–Cummings modelNew J. Phys.2013151230322013NJPh...15l3032Z NemotKMunroW SJ Wei (2682_CR2) 2016; 15 A Naik (2682_CR45) 2006; 443 JR Johansson (2682_CR57) 2013; 184 C Zu (2682_CR65) 2014; 514 ZP Hong (2682_CR24) 2018; 97 T Xin (2682_CR14) 2018; 97 HJ Wang (2682_CR42) 2013; 4 D Kleckner (2682_CR46) 2006; 444 ZL Wang (2682_CR66) 2013; 102 LK Grover (2682_CR3) 1997; 79 LG Zhou (2682_CR37) 2010; 81 JH Zhou (2682_CR54) 2013; 15 KL Ekinci (2682_CR32) 2005; 76 X Li (2682_CR15) 2003; 301 LC Bassett (2682_CR63) 2011; 107 QA Turchette (2682_CR10) 1995; 75 SS Verbridge (2682_CR33) 2008; 92 P Rabl (2682_CR34) 2009; 79 WJ Su (2682_CR55) 2018; 97 GR Feng (2682_CR13) 2013; 110 A Blais (2682_CR21) 2007; 75 J Twamley (2682_CR49) 2010; 81 MA Nielsen (2682_CR1) 2000 GL Long (2682_CR4) 2001; 64 Y Xu (2682_CR25) 2018; 121 MD LaHaye (2682_CR44) 2004; 304 A Tulsi (2682_CR61) 2015; 91 B Pigeau (2682_CR39) 2015; 6 N Bao (2682_CR59) 2016; 117 P Neumann (2682_CR30) 2008; 320 F Jelezko (2682_CR28) 2004; 93 YP Gao (2682_CR18) 2017; 96 G Balasubramanian (2682_CR31) 2009; 8 ZB Feng (2682_CR43) 2015; 91 Q Chen (2682_CR51) 2012; 86 XX Li (2682_CR40) 2017; 7 JI Cirac (2682_CR8) 1995; 74 K Nemot (2682_CR17) 2004; 93 A Retzker (2682_CR53) 2007; 75 MJ Tao (2682_CR6) 2015; 91 H Bernien (2682_CR64) 2012; 108 M Hua (2682_CR27) 2018; 530 VV Dobrovitski (2682_CR50) 2013; 4 BL Ye (2682_CR22) 2018; 97 S Kolkowitz (2682_CR38) 2012; 335 NB Manson (2682_CR48) 2006; 74 T Byrnes (2682_CR60) 2018; 120 JA Jones (2682_CR12) 1998; 393 Q Chen (2682_CR52) 2011; 83 A Blais (2682_CR19) 2004; 69 ZH Wang (2682_CR41) 2012; 85 WL Yang (2682_CR29) 2011; 84 A Rauschenbeutel (2682_CR11) 1999; 83 ZL Xiang (2682_CR23) 2013; 85 W Feng (2682_CR26) 2018; 98 JR Johansson (2682_CR56) 2012; 183 CP Yang (2682_CR7) 2010; 82 I Chiorescu (2682_CR20) 2004; 431 ZY Xu (2682_CR36) 2009; 80 JF Poyatos (2682_CR9) 1998; 81 E Knill (2682_CR16) 2001; 409 JA Sidles (2682_CR47) 1995; 67 ZQ Yin (2682_CR58) 2007; 75 J Wrachtrup (2682_CR35) 2009; 5 G Haack (2682_CR5) 2010; 82 Y Matsuzaki (2682_CR62) 2015; 91 |
| References_xml | – reference: GroverLKQuantum mechanics helps in searching for a needle in a haystackPhys. Rev. Lett.1997793251997PhRvL..79..325G – reference: XuYCaiWMaYMuXHuLChenTWangHSongYPXueZYYinZQSunLSingle-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuitPhys. Rev. Lett.20181211105012018PhRvL.121k0501X – reference: NemotKMunroWJNearly deterministic linear optical controlled-NOT gatePhys. Rev. Lett.2004932505022004PhRvL..93y0502N – reference: BalasubramanianGNeumannPTwitchenDMarkhamMKolesovRMizuochiNIsoyaJAchardJBeckJTisslerJJacquesVHemmerPRJelezkoFWrachtrupJUltralong spin coherence time in isotopically engineered diamondNat. Mater.200983832009NatMa...8..383B – reference: GaoYPCaoCWangTJZhangYWangCCavity-mediated coupling of phonons and magnonsPhys. Rev. A2017960238262017PhRvA..96b3826G – reference: KlecknerDBouwmeesterDSub-kelvin optical cooling of a micromechanical resonatorNature (London)2006444752006Natur.444...75K – reference: WangHJShinCSAvalosCESeltzerSJBudkerDPinesABajajVSSensitive magnetic control of ensemble nuclear spin hyperpolarization in diamondNat. Commun.2013419402013NatCo...4.1940W – reference: DobrovitskiVVFuchsGDFalkALSantoriCAwschalomDDQuantum control over single spins in diamondAnnu. Rev. Condens. Matter Phys.20134232013ARCMP...4...23D – reference: SidlesJAGarbiniJLBrulandKJRugarDZügerOHoenSYannoniCSMagnetic resonance force microscopyRev. Mod. Phys.1995672491995RvMP...67..249S – reference: RauschenbeutelANoguesGOsnaghiSBertetPBruneMRaimondJMHarocheSCoherent operation of a tunable quantum phase gate in cavity QEDPhys. Rev. Lett.19998351661999PhRvL..83.5166R – reference: XiangZLAshhabSYouJQNoriFHybrid quantum circuits: superconducting circuits interacting with other quantum systemsRev. Mod. Phys.2013856232013RvMP...85..623X – reference: FengWZhangCWangZQinLPLiXQGradual partial-collapse theory for ideal nondemolition longitudinal readout of qubits in circuit QEDPhys. Rev. A2018980221212018PhRvA..98b2121F – reference: FengGRXuGFLongGLExperimental realization of nonadiabatic holonomic quantum computationPhys. Rev. Lett.20131101905012013PhRvL.110s0501F – reference: LaHayeMDBuuOCamarotaBSchwabKCApproaching the quantum limit of a nanomechanical resonatorScience2004304742004Sci...304...74L – reference: TaoMJHuaMAiQDengFGQuantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QEDPhys. Rev. A2015910623252015PhRvA..91f2325T – reference: NeumannPMizuochiNRemppFHemmerPWatanabeHYamasakiSJacquesVGaebelTJelezkoFWrachtrupJMultipartite entanglement among single spins in diamondScience200832013262008Sci...320.1326N – reference: WeiSJLongGLDuality quantum computer and the efficient quantum simulationsQuantum Inf. Proc.20161511892016QuIP...15.1189W34757891338.81148 – reference: YangWLYinZQHuYFengMDuJFHigh-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computationPhys. Rev. A201184010301(R)2011PhRvA..84a0301Y – reference: BernienHChildressLRobledoLMarkhamMTwitchenDHansonRTwo-photon quantum interference from separate nitrogen vacancy centers in diamondPhys. Rev. Lett.20121080436042012PhRvL.108d3604B – reference: HaackGHelmerFMariantoniMMarquardtFSolanoEResonant quantum gates in circuit quantum electrodynamicsPhys. Rev. B2010820245142010PhRvB..82b4514H – reference: YinZQLiFLMultiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiberPhys. Rev. A2007750123242007PhRvA..75a2324Y – reference: TurchetteQAHoodCJLangeWMabuchiHKimbleHJMeasurement of conditional phase shifts for quantum logicPhys. Rev. Lett.19957547101995PhRvL..75.4710T13620361020.81553 – reference: JonesJAMoscaMHansenRHImplementation of a quantum search algorithm on a quantum computerNature (London)19983933441998Natur.393..344J – reference: BaoNBoulandAJordanSPGrover search and the no-signaling principlePhys. Rev. Lett.20161171205012016PhRvL.117l0501B – reference: SuWJYangZBZhongZRArbitrary control of entanglement between two nitrogen-vacancy-center ensembles coupling to a superconducting-circuit qubitPhys. Rev. A2018970123292018PhRvA..97a2329S – reference: NielsenMAChuangILQuantum Computing and Quantum Information2000CambridgeCambridge University Press1049.81015 – reference: MansonNBHarrisonJPSellarsMJNitrogen-vacancy center in diamond: model of the electronic structure and associated dynamicsPhys. Rev. B2006741043032006PhRvB..74j4303M – reference: ByrnesTForsterGTesslerLGeneralized Groveri’s algorithm for multiple phase inversion statesPhys. Rev. Lett.20181200605012018PhRvL.120f0501B – reference: YangCPZhengSBNoriFMultiqubit tunable phase gate of one qubit simultaneously controlling n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} qubits in a cavityPhys. Rev. A2010820623262010PhRvA..82f2326Y – reference: KnillELaflammeRMilburnGJA scheme for efficient quantum computation with linear opticsNature (London)2001409462001Natur.409...46K – reference: ChenQYangWLFengMControllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubitsPhys. Rev. A2012860223272012PhRvA..86b2327C – reference: WrachtrupJSchrödinger’s cat is still aliveNat. Phys.20095248 – reference: BlaisAGambettaJWallraffASchusterDIGirvinSMDevoretMHSchoelkopfRJQuantum-information processing with circuit quantum electrodynamicsPhys. Rev. A2007750323292007PhRvA..75c2329B – reference: EkinciKLRoukesMLNanoelectromechanical systemsRev. Sci. Instrum.2005760611012005RScI...76f1101E – reference: ZhouLGWeiLFGaoMWangXBStrong coupling between two distant electronic spins via a nanomechanical resonatorPhys. Rev. A2010810423232010PhRvA..81d2323Z – reference: PigeauBRohrSde LépinayLMGloppeAJacquesVArcizetOObservation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical systemNat. Commun.2015686032015NatCo...6.8603P – reference: JelezkoFGaebelTPopaIDomhanMGruberAWrachtrupJObservation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gatePhys. Rev. Lett.2004931305012004PhRvL..93m0501J – reference: KolkowitzSJayichACBUnterreithmeierQPBennettSDRablPHarrisJGELukinMDCoherent sensing of a mechanical resonator with a single-spin qubitScience201233516032012Sci...335.1603K – reference: ChenQYangWLFengMDuJFEntangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonatorsPhys. Rev. A2011830543052011PhRvA..83e4305C – reference: BlaisAHuangRSWallraffAGirvinSMSchoelkopfRJCavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computationPhys. Rev. A2004690623202004PhRvA..69f2320B – reference: MatsuzakiYZhuXKakuyanagiKToidaHShimookaTMizuochiNNemotoKSembaKMunroWJYamaguchiHSaitoSImproving the lifetime of the nitrogen-vacancy-center ensemble coupled with a superconducting flux qubit by applying magnetic fieldsPhys. Rev. A2015910423292015PhRvA..91d2329M – reference: TulsiAQuantum search algorithm tailored to clause-satisfaction problemsPhys. Rev. A2015910523222015PhRvA..91e2322T – reference: PoyatosJFCiracJIZollerPQuantum gates with “Hot” trapped ionsPhys. Rev. Lett.19988113221998PhRvL..81.1322P – reference: NaikABuuOLaHayeMDArmourADClerkAABlencoweMPSchwabKCCooling a nanomechanical resonator with quantum back-actionNature20064431932006Natur.443..193N – reference: JohanssonJRNationPDNoriFQuTiP: an open-source Python framework for the dynamics of open quantum systemsComput. Phys. Commun.201218317602012CoPhC.183.1760J – reference: WangZHde LangeGRistèDHansonRDobrovitskiVVComparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamondPhys. Rev. B2012851552042012PhRvB..85o5204W – reference: YeBLZhengZFYangCPMultiplex-controlled phase gate with qubits distributed in a multicavity systemPhys. Rev. A2018970623362018PhRvA..97f2336Y – reference: XinTPedernalesJSSolanoELongGLEntanglement measures in embedding quantum simulators with nuclear spinsPhys. Rev. A2018970223222018PhRvA..97b2322X – reference: ZuCWangWBHeLZhangWGDaiCYWangFDuanLMExperimental realization of universal geometric quantum gates with solid-state spinsNature (London)2014514722014Natur.514...72Z – reference: JohanssonJRNationPDNoriFQuTiP 2: a Python framework for the dynamics of open quantum systemsComput. Phys. Commun.201318412342013CoPhC.184.1234J – reference: CiracJIZollerPQuantum computations with cold trapped ionsPhys. Rev. Lett.19957440911995PhRvL..74.4091C – reference: HuaMTaoMJAlsaediAHayatTDengFGUniversal distributed quantum computing on superconducting qutrits with dark photonsAnnalen der Physik201853017004022018AnP...53000402H3796484 – reference: ChiorescuIBertetPSembaKNakamuraYHarmansCJPMMooijJECoherent dynamics of a flux qubit coupled to a harmonic oscillatorNature (London)20044311592004Natur.431..159C – reference: XuZYHuYMYangWLFengMDuJFDeterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilevePhys. Rev. A2009800223352009PhRvA..80b2335X – reference: RetzkerASolanoEReznikBTavis–Cummings model and collective multiqubit entanglement in trapped ionsPhys. Rev. A2007750223122007PhRvA..75b2312R – reference: TwamleyJBarrettSDSuperconducting cavity bus for single nitrogen-vacancy defect centers in diamondPhys. Rev. A201081241202(R)2010PhRvB..81x1202T – reference: RablPCappellaroPDuttMVGJiangLMazeJRLukinMDStrong magnetic coupling between an electronic spin qubit and a mechanical resonatorPhys. Rev. B200979041302(R)2009PhRvB..79d1302R – reference: VerbridgeSSCraigheadHGParpiaJMA megahertz nanomechanical resonator with room temperature quality factor over a millionAppl. Phys. Lett.2008920131122008ApPhL..92a3112V – reference: BassettLCHeremansFJYaleCGBuckleyBBAwschalomDDElectrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fieldsPhys. Rev. Lett.20111072664032011PhRvL.107z6403B – reference: HongZPLiuBJCaiJQZhangXDHuYWangZDXueZYImplementing universal nonadiabatic holonomic quantum gates with transmonsPhys. Rev. A2018970223322018PhRvA..97b2332H – reference: ZhouJHLiuTFengMYangWLChenCYTwamleyJQuantum phase transition in a driven Tavis–Cummings modelNew J. Phys.2013151230322013NJPh...15l3032Z – reference: LiXXLiPBMaSLLiFLPreparing entangled states between two NV centers via the damping of nanomechanical resonatorsSci. Rep.20177141162017NatSR...714116L – reference: LongGLGrover algorithm with zero theoretical failure ratePhys. Rev. A2001640223072001PhRvA..64b2307L – reference: LiXWuYSteelDGammonDStievaterTHKatzerDSOarkDPiermarochiCShamJAn all-optical quantum gate in a semiconductor quantum dotScience20033018092003Sci...301..809L – reference: WangZLZhongYPHeLJWangHMartinisJMClelandANXieQWQuantum state characterization of a fast tunable superconducting resonatorAppl. Phys. Lett.20131021635032013ApPhL.102p3503W – reference: FengZBRobust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centersPhys. Rev. A2015910323072015PhRvA..91c2307F – volume: 121 start-page: 110501 year: 2018 ident: 2682_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.110501 – volume: 301 start-page: 809 year: 2003 ident: 2682_CR15 publication-title: Science doi: 10.1126/science.1083800 – volume: 4 start-page: 1940 year: 2013 ident: 2682_CR42 publication-title: Nat. Commun. doi: 10.1038/ncomms2930 – volume: 444 start-page: 75 year: 2006 ident: 2682_CR46 publication-title: Nature (London) doi: 10.1038/nature05231 – volume: 7 start-page: 14116 year: 2017 ident: 2682_CR40 publication-title: Sci. Rep. doi: 10.1038/s41598-017-14245-8 – volume: 183 start-page: 1760 year: 2012 ident: 2682_CR56 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.02.021 – volume: 110 start-page: 190501 year: 2013 ident: 2682_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.190501 – volume: 514 start-page: 72 year: 2014 ident: 2682_CR65 publication-title: Nature (London) doi: 10.1038/nature13729 – volume: 93 start-page: 250502 year: 2004 ident: 2682_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.250502 – volume: 117 start-page: 120501 year: 2016 ident: 2682_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.120501 – volume: 82 start-page: 024514 year: 2010 ident: 2682_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.024514 – volume: 530 start-page: 1700402 year: 2018 ident: 2682_CR27 publication-title: Annalen der Physik doi: 10.1002/andp.201700402 – volume: 81 start-page: 1322 year: 1998 ident: 2682_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.1322 – volume: 75 start-page: 022312 year: 2007 ident: 2682_CR53 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.022312 – volume: 76 start-page: 061101 year: 2005 ident: 2682_CR32 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1927327 – volume: 108 start-page: 043604 year: 2012 ident: 2682_CR64 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.043604 – volume-title: Quantum Computing and Quantum Information year: 2000 ident: 2682_CR1 – volume: 83 start-page: 5166 year: 1999 ident: 2682_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.5166 – volume: 107 start-page: 266403 year: 2011 ident: 2682_CR63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.266403 – volume: 320 start-page: 1326 year: 2008 ident: 2682_CR30 publication-title: Science doi: 10.1126/science.1157233 – volume: 97 start-page: 022332 year: 2018 ident: 2682_CR24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022332 – volume: 69 start-page: 062320 year: 2004 ident: 2682_CR19 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.062320 – volume: 79 start-page: 041302(R) year: 2009 ident: 2682_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.041302 – volume: 91 start-page: 062325 year: 2015 ident: 2682_CR6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.062325 – volume: 75 start-page: 4710 year: 1995 ident: 2682_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4710 – volume: 98 start-page: 022121 year: 2018 ident: 2682_CR26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.022121 – volume: 102 start-page: 163503 year: 2013 ident: 2682_CR66 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4802893 – volume: 75 start-page: 012324 year: 2007 ident: 2682_CR58 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.012324 – volume: 96 start-page: 023826 year: 2017 ident: 2682_CR18 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.023826 – volume: 75 start-page: 032329 year: 2007 ident: 2682_CR21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.032329 – volume: 81 start-page: 241202(R) year: 2010 ident: 2682_CR49 publication-title: Phys. Rev. A – volume: 91 start-page: 052322 year: 2015 ident: 2682_CR61 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.052322 – volume: 91 start-page: 042329 year: 2015 ident: 2682_CR62 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.042329 – volume: 81 start-page: 042323 year: 2010 ident: 2682_CR37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.042323 – volume: 83 start-page: 054305 year: 2011 ident: 2682_CR52 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.054305 – volume: 393 start-page: 344 year: 1998 ident: 2682_CR12 publication-title: Nature (London) doi: 10.1038/30687 – volume: 91 start-page: 032307 year: 2015 ident: 2682_CR43 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.032307 – volume: 82 start-page: 062326 year: 2010 ident: 2682_CR7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.062326 – volume: 6 start-page: 8603 year: 2015 ident: 2682_CR39 publication-title: Nat. Commun. doi: 10.1038/ncomms9603 – volume: 67 start-page: 249 year: 1995 ident: 2682_CR47 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.67.249 – volume: 431 start-page: 159 year: 2004 ident: 2682_CR20 publication-title: Nature (London) doi: 10.1038/nature02831 – volume: 92 start-page: 013112 year: 2008 ident: 2682_CR33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2822406 – volume: 5 start-page: 248 year: 2009 ident: 2682_CR35 publication-title: Nat. Phys. doi: 10.1038/nphys1245 – volume: 4 start-page: 23 year: 2013 ident: 2682_CR50 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-030212-184238 – volume: 79 start-page: 325 year: 1997 ident: 2682_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.325 – volume: 97 start-page: 062336 year: 2018 ident: 2682_CR22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.062336 – volume: 93 start-page: 130501 year: 2004 ident: 2682_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.130501 – volume: 184 start-page: 1234 year: 2013 ident: 2682_CR57 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.11.019 – volume: 15 start-page: 1189 year: 2016 ident: 2682_CR2 publication-title: Quantum Inf. Proc. doi: 10.1007/s11128-016-1263-6 – volume: 64 start-page: 022307 year: 2001 ident: 2682_CR4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.022307 – volume: 97 start-page: 022322 year: 2018 ident: 2682_CR14 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022322 – volume: 8 start-page: 383 year: 2009 ident: 2682_CR31 publication-title: Nat. Mater. doi: 10.1038/nmat2420 – volume: 80 start-page: 022335 year: 2009 ident: 2682_CR36 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.80.022335 – volume: 97 start-page: 012329 year: 2018 ident: 2682_CR55 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.012329 – volume: 15 start-page: 123032 year: 2013 ident: 2682_CR54 publication-title: New J. Phys. doi: 10.1088/1367-2630/15/12/123032 – volume: 409 start-page: 46 year: 2001 ident: 2682_CR16 publication-title: Nature (London) doi: 10.1038/35051009 – volume: 85 start-page: 623 year: 2013 ident: 2682_CR23 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.623 – volume: 86 start-page: 022327 year: 2012 ident: 2682_CR51 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.022327 – volume: 85 start-page: 155204 year: 2012 ident: 2682_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.155204 – volume: 120 start-page: 060501 year: 2018 ident: 2682_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.060501 – volume: 74 start-page: 104303 year: 2006 ident: 2682_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.104303 – volume: 84 start-page: 010301(R) year: 2011 ident: 2682_CR29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.010301 – volume: 443 start-page: 193 year: 2006 ident: 2682_CR45 publication-title: Nature doi: 10.1038/nature05027 – volume: 74 start-page: 4091 year: 1995 ident: 2682_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.4091 – volume: 304 start-page: 74 year: 2004 ident: 2682_CR44 publication-title: Science doi: 10.1126/science.1094419 – volume: 335 start-page: 1603 year: 2012 ident: 2682_CR38 publication-title: Science doi: 10.1126/science.1216821 |
| SSID | ssj0021686 |
| Score | 2.229748 |
| Snippet | We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Computer simulation Data Structures and Information Theory Mathematical Physics Physics Physics and Astronomy Quantum Computing Quantum Information Technology Quantum Physics Qubits (quantum computing) Search algorithms Spintronics |
| Title | Controlled phase gate and Grover’s search algorithm on two distant NV-centers assisted by an NAMR |
| URI | https://link.springer.com/article/10.1007/s11128-020-02682-w https://www.proquest.com/docview/2401930067 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-1332 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0021686 issn: 1570-0755 databaseCode: ABDBF dateStart: 20041001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1573-1332 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0021686 issn: 1570-0755 databaseCode: AMVHM dateStart: 20041001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1332 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021686 issn: 1570-0755 databaseCode: AFBBN dateStart: 20020401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1332 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021686 issn: 1570-0755 databaseCode: AGYKE dateStart: 20020101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1332 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021686 issn: 1570-0755 databaseCode: U2A dateStart: 20020401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60InjxLVZr2YM3Xchjd5Mcq7SKYg5ipZ5CsptVoaaljRRv_g3_nr_E2TwsigqecshmDvPIfDM7D4BDJbnm2uNUONKhLLYU9XUSUM0SlmoZ6Fia1MBVKM777GLAB1VT2LSudq-vJIs_9bzZDaGBT024g3ED4sLZIixxM84LtbjvdD7DLFsU-x1tblaqeJxXrTI_0_jqjuYY89u1aOFteuuwWsFE0inlugELabYJa_UKBlJZ5CYsFxWccroF8rQsOh-miowf0DcRkyAjcabI2cTUab6_vk1JqdgkHt6PJo_5wxMZZSSfjYgyMDLLSXhLTbkmYkKCqNqogCLJC1IhYefqehv6ve7N6TmtNihQiaaVU4HxrS2EFJ5GZ-hLqUTqusxlPosl03GCobFQyrPtWCrL10HAXURsjrScwHFSz92BRjbK0l0glqeVYIGlzRI_iVGGcL1YaU8ihFBW4DbBrhkZyWq8uNlyMYzmg5EN8yNkflQwP5o14ejzm3E5XOPP061aPlFlaNMIAQlCUONzm3Bcy2z--ndqe_87vg8rTqE2Jv_SgkY-eU4PEI7kSRuWOr2Tk9A8z-4uu-1CGz8ARWTZow |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xRWi5AMtDlNf6sLfFKA_HSY4VAsqjPawoglOUjGNAlBS1QRWc-Bv8PX4J4zyoQLAS5zhWYs94vm88D4A_Cj3tad_j0kGHi9hSPNBJyLVIRKox1DEa10CnK9s9cXTunVdJYaM62r2-kixO6kmyG0GDgBu6Q7yBcOH4B0wLIihOA6ZbBxfHe29Ey5ZFh0fbM01VfM-rkmU-n-W9QZqgzA8Xo4W92Z-HXv2lZZjJzc59nuzg44cijt_9lQWYqwAoa5US8wum0mwR5uvmDqzS9UWYKWJDcbQEuFuGs_dTxe6uyOox43pjcabYwdBEgL48PY9YqTIs7l8Ohtf51S0bZCwfD5gyADXLWfeMm0BQQpuM8LoRLsWSB5qFdVudf8vQ29873W3zqjcDR1LanEtizraUKH1NZjZAVDJ1XeGKQMQodJwQ6ZZK-bYdo7ICHYaeS1jQQcsJHSf13RVoZIMsXQVm-VpJEVratAdE4i_S9WOlfSRwoqzQbYJdb1CEVeFy0z-jH01KLpv1jGg9o2I9o3ET_r69c1eW7fjv6I1636NKhUcRQR0Ct8aaN2G73sbJ469nW_ve8N_ws33aOYlODrvH6zDrFFJhvDwb0MiH9-kmgZ482apk_BVA1Pav |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCMSFpYAoFPCBG1hkcZzkWAFlbYUQRdyixI4pUkmrNqjixm_we3wJ4ywtIEDiHGcO4xnNe-NZAPakcJSjXIdyS1iUhYaknop8qljEYiV8FQqdGmi2-FmbXdw795-6-LNq9_JJMu9p0FOakvSwL9XhpPENYYJHNfVBDoEYcTQNs0wPSkCLblv1MeUyebbr0XT0ehXXcYq2mZ9lfA1NE7z57Yk0izyNZVgsICOp53e8AlNxUoGlch0DKbyzAnNZNacYroI4ygvQu7Ek_Q7GKaKTZSRMJDkd6JrN99e3IcmNnITdh97gMe08kV5C0lGPSA0pk5S07qgu3UR8SBBha3OQJHpBKaRVb96sQbtxcnt0RottClSgm6WUI9c1ORfcVRgYPSEkj22b2cxjoWAqjJAmcyld0wyFNDzl-46N6M0ShuVbVuza6zCT9JJ4A4jhKsmZbyi90E8g4-C2G0rlCoQT0vDtKpilIgNRjBrXGy-6wWRIslZ-gMoPMuUHoyrsj__p54M2_jxdK-8nKJxuGCA4QTiq428VDso7m3z-Xdrm_47vwvz1cSO4Om9dbsGClVmQTsvUYCYdPMfbiFLSaCczxA-w0d27 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+phase+gate+and+Grover%E2%80%99s+search+algorithm+on+two+distant+NV-centers+assisted+by+an+NAMR&rft.jtitle=Quantum+information+processing&rft.au=Hua%2C+Ming&rft.au=Tao%2C+Ming-Jie&rft.au=Zhou%2C+Zeng-Rong&rft.au=Wei%2C+Hai-Rui&rft.date=2020-06-01&rft.issn=1570-0755&rft.eissn=1573-1332&rft.volume=19&rft.issue=6&rft_id=info:doi/10.1007%2Fs11128-020-02682-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11128_020_02682_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0755&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0755&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0755&client=summon |