Controlled phase gate and Grover’s search algorithm on two distant NV-centers assisted by an NAMR

We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our...

Full description

Saved in:
Bibliographic Details
Published inQuantum information processing Vol. 19; no. 6
Main Authors Hua, Ming, Tao, Ming-Jie, Zhou, Zeng-Rong, Wei, Hai-Rui
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1570-0755
1573-1332
DOI10.1007/s11128-020-02682-w

Cover

Abstract We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our gate is completed by using resonant operations between NV-centers and the NAMR, and single-qubit operations on the NV-center, which let the gate to be achieved within a short time with a high fidelity. To study the performance of the gate for universal quantum computation, we simulate a two-qubit Grover’s search algorithm on the NV-centers with a fidelity of 98.46 % .
AbstractList We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our gate is completed by using resonant operations between NV-centers and the NAMR, and single-qubit operations on the NV-center, which let the gate to be achieved within a short time with a high fidelity. To study the performance of the gate for universal quantum computation, we simulate a two-qubit Grover’s search algorithm on the NV-centers with a fidelity of 98.46%.
We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our gate is completed by using resonant operations between NV-centers and the NAMR, and single-qubit operations on the NV-center, which let the gate to be achieved within a short time with a high fidelity. To study the performance of the gate for universal quantum computation, we simulate a two-qubit Grover’s search algorithm on the NV-centers with a fidelity of 98.46 % .
ArticleNumber 187
Author Hua, Ming
Zhou, Zeng-Rong
Tao, Ming-Jie
Wei, Hai-Rui
Author_xml – sequence: 1
  givenname: Ming
  surname: Hua
  fullname: Hua, Ming
  organization: Department of Applied Physics, School of Physical Science and Technology, Tianjin Polytechnic University
– sequence: 2
  givenname: Ming-Jie
  orcidid: 0000-0002-3259-4179
  surname: Tao
  fullname: Tao, Ming-Jie
  email: taomingjie1020@sina.com
  organization: Faculty of foundation, Space Engineering University
– sequence: 3
  givenname: Zeng-Rong
  surname: Zhou
  fullname: Zhou, Zeng-Rong
  organization: Department of Physics, Tsinghua University
– sequence: 4
  givenname: Hai-Rui
  surname: Wei
  fullname: Wei, Hai-Rui
  organization: School of Mathematics and Physics, University of Science and Technology Beijing
BookMark eNp9kMtKAzEUhoNUsFZfwFXA9WguM5nMUoo3qBVE3YY0c6adMiY1SS3d-Rq-nk9i2gqCiy7CCTnn-0_4jlHPOgsInVFyQQkpLwOllMmMMJKOkCxbHaA-LUqeUc5Zb3tPrbIojtBxCHNCGBVS9JEZOhu96zqo8WKmA-CpjoC1rfGtdx_gvz-_Ag6gvZlh3U2db-PsDTuL48rhug1R24jHr5kBG8EHrENIjyltsk4peHz18HSCDhvdBTj9rQP0cnP9PLzLRo-398OrUWY4rWImpJRUCCPKxgBIY2oBnOc8l7k2eaMnFSlFXZeUalMT2VRVwQsimSGsYgxKPkDnu9yFd-9LCFHN3dLbtFKxnNCKEyI2U2w3ZbwLwUOjFr59036tKFEbmWonUyWZaitTrRIk_0GmjTq2G3m67fajfIeGtMdOwf_9ag_1AyVbjEk
CitedBy_id crossref_primary_10_1007_s11128_022_03694_4
crossref_primary_10_1016_j_optlastec_2025_112508
crossref_primary_10_1140_epjd_s10053_024_00896_6
crossref_primary_10_1007_s11128_022_03801_5
crossref_primary_10_1002_andp_202200507
Cites_doi 10.1103/PhysRevLett.121.110501
10.1126/science.1083800
10.1038/ncomms2930
10.1038/nature05231
10.1038/s41598-017-14245-8
10.1016/j.cpc.2012.02.021
10.1103/PhysRevLett.110.190501
10.1038/nature13729
10.1103/PhysRevLett.93.250502
10.1103/PhysRevLett.117.120501
10.1103/PhysRevB.82.024514
10.1002/andp.201700402
10.1103/PhysRevLett.81.1322
10.1103/PhysRevA.75.022312
10.1063/1.1927327
10.1103/PhysRevLett.108.043604
10.1103/PhysRevLett.83.5166
10.1103/PhysRevLett.107.266403
10.1126/science.1157233
10.1103/PhysRevA.97.022332
10.1103/PhysRevA.69.062320
10.1103/PhysRevB.79.041302
10.1103/PhysRevA.91.062325
10.1103/PhysRevLett.75.4710
10.1103/PhysRevA.98.022121
10.1063/1.4802893
10.1103/PhysRevA.75.012324
10.1103/PhysRevA.96.023826
10.1103/PhysRevA.75.032329
10.1103/PhysRevA.91.052322
10.1103/PhysRevA.91.042329
10.1103/PhysRevA.81.042323
10.1103/PhysRevA.83.054305
10.1038/30687
10.1103/PhysRevA.91.032307
10.1103/PhysRevA.82.062326
10.1038/ncomms9603
10.1103/RevModPhys.67.249
10.1038/nature02831
10.1063/1.2822406
10.1038/nphys1245
10.1146/annurev-conmatphys-030212-184238
10.1103/PhysRevLett.79.325
10.1103/PhysRevA.97.062336
10.1103/PhysRevLett.93.130501
10.1016/j.cpc.2012.11.019
10.1007/s11128-016-1263-6
10.1103/PhysRevA.64.022307
10.1103/PhysRevA.97.022322
10.1038/nmat2420
10.1103/PhysRevA.80.022335
10.1103/PhysRevA.97.012329
10.1088/1367-2630/15/12/123032
10.1038/35051009
10.1103/RevModPhys.85.623
10.1103/PhysRevA.86.022327
10.1103/PhysRevB.85.155204
10.1103/PhysRevLett.120.060501
10.1103/PhysRevB.74.104303
10.1103/PhysRevA.84.010301
10.1038/nature05027
10.1103/PhysRevLett.74.4091
10.1126/science.1094419
10.1126/science.1216821
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11128-020-02682-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-1332
ExternalDocumentID 10_1007_s11128_020_02682_w
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2018M631438
– fundername: National Natural Science Foundation of China
  grantid: 11704281; 11647042
– fundername: National Natural Science Foundation of China
  grantid: 11604012
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-6888166c67fcee8ccd6e3343484ac4fab9076dd711acd08f99535082c02922e73
IEDL.DBID U2A
ISSN 1570-0755
IngestDate Thu Sep 25 01:04:29 EDT 2025
Wed Oct 01 02:37:39 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
Fri Feb 21 02:38:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Nanomechanical cantilevel resonator
Nitrogen vacancy center
Quantum computation
Universal quantum gate
Grover’s search algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6888166c67fcee8ccd6e3343484ac4fab9076dd711acd08f99535082c02922e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3259-4179
PQID 2401930067
PQPubID 2043832
ParticipantIDs proquest_journals_2401930067
crossref_primary_10_1007_s11128_020_02682_w
crossref_citationtrail_10_1007_s11128_020_02682_w
springer_journals_10_1007_s11128_020_02682_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Quantum information processing
PublicationTitleAbbrev Quantum Inf Process
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BlaisAHuangRSWallraffAGirvinSMSchoelkopfRJCavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computationPhys. Rev. A2004690623202004PhRvA..69f2320B
BassettLCHeremansFJYaleCGBuckleyBBAwschalomDDElectrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fieldsPhys. Rev. Lett.20111072664032011PhRvL.107z6403B
NeumannPMizuochiNRemppFHemmerPWatanabeHYamasakiSJacquesVGaebelTJelezkoFWrachtrupJMultipartite entanglement among single spins in diamondScience200832013262008Sci...320.1326N
ZhouLGWeiLFGaoMWangXBStrong coupling between two distant electronic spins via a nanomechanical resonatorPhys. Rev. A2010810423232010PhRvA..81d2323Z
YeBLZhengZFYangCPMultiplex-controlled phase gate with qubits distributed in a multicavity systemPhys. Rev. A2018970623362018PhRvA..97f2336Y
FengZBRobust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centersPhys. Rev. A2015910323072015PhRvA..91c2307F
TurchetteQAHoodCJLangeWMabuchiHKimbleHJMeasurement of conditional phase shifts for quantum logicPhys. Rev. Lett.19957547101995PhRvL..75.4710T13620361020.81553
BalasubramanianGNeumannPTwitchenDMarkhamMKolesovRMizuochiNIsoyaJAchardJBeckJTisslerJJacquesVHemmerPRJelezkoFWrachtrupJUltralong spin coherence time in isotopically engineered diamondNat. Mater.200983832009NatMa...8..383B
MatsuzakiYZhuXKakuyanagiKToidaHShimookaTMizuochiNNemotoKSembaKMunroWJYamaguchiHSaitoSImproving the lifetime of the nitrogen-vacancy-center ensemble coupled with a superconducting flux qubit by applying magnetic fieldsPhys. Rev. A2015910423292015PhRvA..91d2329M
LongGLGrover algorithm with zero theoretical failure ratePhys. Rev. A2001640223072001PhRvA..64b2307L
NielsenMAChuangILQuantum Computing and Quantum Information2000CambridgeCambridge University Press1049.81015
ChiorescuIBertetPSembaKNakamuraYHarmansCJPMMooijJECoherent dynamics of a flux qubit coupled to a harmonic oscillatorNature (London)20044311592004Natur.431..159C
CiracJIZollerPQuantum computations with cold trapped ionsPhys. Rev. Lett.19957440911995PhRvL..74.4091C
JonesJAMoscaMHansenRHImplementation of a quantum search algorithm on a quantum computerNature (London)19983933441998Natur.393..344J
RauschenbeutelANoguesGOsnaghiSBertetPBruneMRaimondJMHarocheSCoherent operation of a tunable quantum phase gate in cavity QEDPhys. Rev. Lett.19998351661999PhRvL..83.5166R
FengWZhangCWangZQinLPLiXQGradual partial-collapse theory for ideal nondemolition longitudinal readout of qubits in circuit QEDPhys. Rev. A2018980221212018PhRvA..98b2121F
LiXXLiPBMaSLLiFLPreparing entangled states between two NV centers via the damping of nanomechanical resonatorsSci. Rep.20177141162017NatSR...714116L
ByrnesTForsterGTesslerLGeneralized Groveri’s algorithm for multiple phase inversion statesPhys. Rev. Lett.20181200605012018PhRvL.120f0501B
RablPCappellaroPDuttMVGJiangLMazeJRLukinMDStrong magnetic coupling between an electronic spin qubit and a mechanical resonatorPhys. Rev. B200979041302(R)2009PhRvB..79d1302R
GroverLKQuantum mechanics helps in searching for a needle in a haystackPhys. Rev. Lett.1997793251997PhRvL..79..325G
JohanssonJRNationPDNoriFQuTiP: an open-source Python framework for the dynamics of open quantum systemsComput. Phys. Commun.201218317602012CoPhC.183.1760J
RetzkerASolanoEReznikBTavis–Cummings model and collective multiqubit entanglement in trapped ionsPhys. Rev. A2007750223122007PhRvA..75b2312R
ChenQYangWLFengMDuJFEntangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonatorsPhys. Rev. A2011830543052011PhRvA..83e4305C
PigeauBRohrSde LépinayLMGloppeAJacquesVArcizetOObservation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical systemNat. Commun.2015686032015NatCo...6.8603P
BernienHChildressLRobledoLMarkhamMTwitchenDHansonRTwo-photon quantum interference from separate nitrogen vacancy centers in diamondPhys. Rev. Lett.20121080436042012PhRvL.108d3604B
HaackGHelmerFMariantoniMMarquardtFSolanoEResonant quantum gates in circuit quantum electrodynamicsPhys. Rev. B2010820245142010PhRvB..82b4514H
WangHJShinCSAvalosCESeltzerSJBudkerDPinesABajajVSSensitive magnetic control of ensemble nuclear spin hyperpolarization in diamondNat. Commun.2013419402013NatCo...4.1940W
WangZHde LangeGRistèDHansonRDobrovitskiVVComparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamondPhys. Rev. B2012851552042012PhRvB..85o5204W
YangCPZhengSBNoriFMultiqubit tunable phase gate of one qubit simultaneously controlling n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} qubits in a cavityPhys. Rev. A2010820623262010PhRvA..82f2326Y
GaoYPCaoCWangTJZhangYWangCCavity-mediated coupling of phonons and magnonsPhys. Rev. A2017960238262017PhRvA..96b3826G
ZuCWangWBHeLZhangWGDaiCYWangFDuanLMExperimental realization of universal geometric quantum gates with solid-state spinsNature (London)2014514722014Natur.514...72Z
VerbridgeSSCraigheadHGParpiaJMA megahertz nanomechanical resonator with room temperature quality factor over a millionAppl. Phys. Lett.2008920131122008ApPhL..92a3112V
XuZYHuYMYangWLFengMDuJFDeterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilevePhys. Rev. A2009800223352009PhRvA..80b2335X
YangWLYinZQHuYFengMDuJFHigh-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computationPhys. Rev. A201184010301(R)2011PhRvA..84a0301Y
EkinciKLRoukesMLNanoelectromechanical systemsRev. Sci. Instrum.2005760611012005RScI...76f1101E
BlaisAGambettaJWallraffASchusterDIGirvinSMDevoretMHSchoelkopfRJQuantum-information processing with circuit quantum electrodynamicsPhys. Rev. A2007750323292007PhRvA..75c2329B
PoyatosJFCiracJIZollerPQuantum gates with “Hot” trapped ionsPhys. Rev. Lett.19988113221998PhRvL..81.1322P
TaoMJHuaMAiQDengFGQuantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QEDPhys. Rev. A2015910623252015PhRvA..91f2325T
JohanssonJRNationPDNoriFQuTiP 2: a Python framework for the dynamics of open quantum systemsComput. Phys. Commun.201318412342013CoPhC.184.1234J
HongZPLiuBJCaiJQZhangXDHuYWangZDXueZYImplementing universal nonadiabatic holonomic quantum gates with transmonsPhys. Rev. A2018970223322018PhRvA..97b2332H
BaoNBoulandAJordanSPGrover search and the no-signaling principlePhys. Rev. Lett.20161171205012016PhRvL.117l0501B
TwamleyJBarrettSDSuperconducting cavity bus for single nitrogen-vacancy defect centers in diamondPhys. Rev. A201081241202(R)2010PhRvB..81x1202T
ChenQYangWLFengMControllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubitsPhys. Rev. A2012860223272012PhRvA..86b2327C
KolkowitzSJayichACBUnterreithmeierQPBennettSDRablPHarrisJGELukinMDCoherent sensing of a mechanical resonator with a single-spin qubitScience201233516032012Sci...335.1603K
NaikABuuOLaHayeMDArmourADClerkAABlencoweMPSchwabKCCooling a nanomechanical resonator with quantum back-actionNature20064431932006Natur.443..193N
WangZLZhongYPHeLJWangHMartinisJMClelandANXieQWQuantum state characterization of a fast tunable superconducting resonatorAppl. Phys. Lett.20131021635032013ApPhL.102p3503W
WrachtrupJSchrödinger’s cat is still aliveNat. Phys.20095248
LiXWuYSteelDGammonDStievaterTHKatzerDSOarkDPiermarochiCShamJAn all-optical quantum gate in a semiconductor quantum dotScience20033018092003Sci...301..809L
SidlesJAGarbiniJLBrulandKJRugarDZügerOHoenSYannoniCSMagnetic resonance force microscopyRev. Mod. Phys.1995672491995RvMP...67..249S
WeiSJLongGLDuality quantum computer and the efficient quantum simulationsQuantum Inf. Proc.20161511892016QuIP...15.1189W34757891338.81148
MansonNBHarrisonJPSellarsMJNitrogen-vacancy center in diamond: model of the electronic structure and associated dynamicsPhys. Rev. B2006741043032006PhRvB..74j4303M
KnillELaflammeRMilburnGJA scheme for efficient quantum computation with linear opticsNature (London)2001409462001Natur.409...46K
HuaMTaoMJAlsaediAHayatTDengFGUniversal distributed quantum computing on superconducting qutrits with dark photonsAnnalen der Physik201853017004022018AnP...53000402H3796484
LaHayeMDBuuOCamarotaBSchwabKCApproaching the quantum limit of a nanomechanical resonatorScience2004304742004Sci...304...74L
SuWJYangZBZhongZRArbitrary control of entanglement between two nitrogen-vacancy-center ensembles coupling to a superconducting-circuit qubitPhys. Rev. A2018970123292018PhRvA..97a2329S
XinTPedernalesJSSolanoELongGLEntanglement measures in embedding quantum simulators with nuclear spinsPhys. Rev. A2018970223222018PhRvA..97b2322X
DobrovitskiVVFuchsGDFalkALSantoriCAwschalomDDQuantum control over single spins in diamondAnnu. Rev. Condens. Matter Phys.20134232013ARCMP...4...23D
XuYCaiWMaYMuXHuLChenTWangHSongYPXueZYYinZQSunLSingle-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuitPhys. Rev. Lett.20181211105012018PhRvL.121k0501X
TulsiAQuantum search algorithm tailored to clause-satisfaction problemsPhys. Rev. A2015910523222015PhRvA..91e2322T
XiangZLAshhabSYouJQNoriFHybrid quantum circuits: superconducting circuits interacting with other quantum systemsRev. Mod. Phys.2013856232013RvMP...85..623X
YinZQLiFLMultiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiberPhys. Rev. A2007750123242007PhRvA..75a2324Y
FengGRXuGFLongGLExperimental realization of nonadiabatic holonomic quantum computationPhys. Rev. Lett.20131101905012013PhRvL.110s0501F
KlecknerDBouwmeesterDSub-kelvin optical cooling of a micromechanical resonatorNature (London)2006444752006Natur.444...75K
ZhouJHLiuTFengMYangWLChenCYTwamleyJQuantum phase transition in a driven Tavis–Cummings modelNew J. Phys.2013151230322013NJPh...15l3032Z
NemotKMunroW
SJ Wei (2682_CR2) 2016; 15
A Naik (2682_CR45) 2006; 443
JR Johansson (2682_CR57) 2013; 184
C Zu (2682_CR65) 2014; 514
ZP Hong (2682_CR24) 2018; 97
T Xin (2682_CR14) 2018; 97
HJ Wang (2682_CR42) 2013; 4
D Kleckner (2682_CR46) 2006; 444
ZL Wang (2682_CR66) 2013; 102
LK Grover (2682_CR3) 1997; 79
LG Zhou (2682_CR37) 2010; 81
JH Zhou (2682_CR54) 2013; 15
KL Ekinci (2682_CR32) 2005; 76
X Li (2682_CR15) 2003; 301
LC Bassett (2682_CR63) 2011; 107
QA Turchette (2682_CR10) 1995; 75
SS Verbridge (2682_CR33) 2008; 92
P Rabl (2682_CR34) 2009; 79
WJ Su (2682_CR55) 2018; 97
GR Feng (2682_CR13) 2013; 110
A Blais (2682_CR21) 2007; 75
J Twamley (2682_CR49) 2010; 81
MA Nielsen (2682_CR1) 2000
GL Long (2682_CR4) 2001; 64
Y Xu (2682_CR25) 2018; 121
MD LaHaye (2682_CR44) 2004; 304
A Tulsi (2682_CR61) 2015; 91
B Pigeau (2682_CR39) 2015; 6
N Bao (2682_CR59) 2016; 117
P Neumann (2682_CR30) 2008; 320
F Jelezko (2682_CR28) 2004; 93
YP Gao (2682_CR18) 2017; 96
G Balasubramanian (2682_CR31) 2009; 8
ZB Feng (2682_CR43) 2015; 91
Q Chen (2682_CR51) 2012; 86
XX Li (2682_CR40) 2017; 7
JI Cirac (2682_CR8) 1995; 74
K Nemot (2682_CR17) 2004; 93
A Retzker (2682_CR53) 2007; 75
MJ Tao (2682_CR6) 2015; 91
H Bernien (2682_CR64) 2012; 108
M Hua (2682_CR27) 2018; 530
VV Dobrovitski (2682_CR50) 2013; 4
BL Ye (2682_CR22) 2018; 97
S Kolkowitz (2682_CR38) 2012; 335
NB Manson (2682_CR48) 2006; 74
T Byrnes (2682_CR60) 2018; 120
JA Jones (2682_CR12) 1998; 393
Q Chen (2682_CR52) 2011; 83
A Blais (2682_CR19) 2004; 69
ZH Wang (2682_CR41) 2012; 85
WL Yang (2682_CR29) 2011; 84
A Rauschenbeutel (2682_CR11) 1999; 83
ZL Xiang (2682_CR23) 2013; 85
W Feng (2682_CR26) 2018; 98
JR Johansson (2682_CR56) 2012; 183
CP Yang (2682_CR7) 2010; 82
I Chiorescu (2682_CR20) 2004; 431
ZY Xu (2682_CR36) 2009; 80
JF Poyatos (2682_CR9) 1998; 81
E Knill (2682_CR16) 2001; 409
JA Sidles (2682_CR47) 1995; 67
ZQ Yin (2682_CR58) 2007; 75
J Wrachtrup (2682_CR35) 2009; 5
G Haack (2682_CR5) 2010; 82
Y Matsuzaki (2682_CR62) 2015; 91
References_xml – reference: GroverLKQuantum mechanics helps in searching for a needle in a haystackPhys. Rev. Lett.1997793251997PhRvL..79..325G
– reference: XuYCaiWMaYMuXHuLChenTWangHSongYPXueZYYinZQSunLSingle-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuitPhys. Rev. Lett.20181211105012018PhRvL.121k0501X
– reference: NemotKMunroWJNearly deterministic linear optical controlled-NOT gatePhys. Rev. Lett.2004932505022004PhRvL..93y0502N
– reference: BalasubramanianGNeumannPTwitchenDMarkhamMKolesovRMizuochiNIsoyaJAchardJBeckJTisslerJJacquesVHemmerPRJelezkoFWrachtrupJUltralong spin coherence time in isotopically engineered diamondNat. Mater.200983832009NatMa...8..383B
– reference: GaoYPCaoCWangTJZhangYWangCCavity-mediated coupling of phonons and magnonsPhys. Rev. A2017960238262017PhRvA..96b3826G
– reference: KlecknerDBouwmeesterDSub-kelvin optical cooling of a micromechanical resonatorNature (London)2006444752006Natur.444...75K
– reference: WangHJShinCSAvalosCESeltzerSJBudkerDPinesABajajVSSensitive magnetic control of ensemble nuclear spin hyperpolarization in diamondNat. Commun.2013419402013NatCo...4.1940W
– reference: DobrovitskiVVFuchsGDFalkALSantoriCAwschalomDDQuantum control over single spins in diamondAnnu. Rev. Condens. Matter Phys.20134232013ARCMP...4...23D
– reference: SidlesJAGarbiniJLBrulandKJRugarDZügerOHoenSYannoniCSMagnetic resonance force microscopyRev. Mod. Phys.1995672491995RvMP...67..249S
– reference: RauschenbeutelANoguesGOsnaghiSBertetPBruneMRaimondJMHarocheSCoherent operation of a tunable quantum phase gate in cavity QEDPhys. Rev. Lett.19998351661999PhRvL..83.5166R
– reference: XiangZLAshhabSYouJQNoriFHybrid quantum circuits: superconducting circuits interacting with other quantum systemsRev. Mod. Phys.2013856232013RvMP...85..623X
– reference: FengWZhangCWangZQinLPLiXQGradual partial-collapse theory for ideal nondemolition longitudinal readout of qubits in circuit QEDPhys. Rev. A2018980221212018PhRvA..98b2121F
– reference: FengGRXuGFLongGLExperimental realization of nonadiabatic holonomic quantum computationPhys. Rev. Lett.20131101905012013PhRvL.110s0501F
– reference: LaHayeMDBuuOCamarotaBSchwabKCApproaching the quantum limit of a nanomechanical resonatorScience2004304742004Sci...304...74L
– reference: TaoMJHuaMAiQDengFGQuantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QEDPhys. Rev. A2015910623252015PhRvA..91f2325T
– reference: NeumannPMizuochiNRemppFHemmerPWatanabeHYamasakiSJacquesVGaebelTJelezkoFWrachtrupJMultipartite entanglement among single spins in diamondScience200832013262008Sci...320.1326N
– reference: WeiSJLongGLDuality quantum computer and the efficient quantum simulationsQuantum Inf. Proc.20161511892016QuIP...15.1189W34757891338.81148
– reference: YangWLYinZQHuYFengMDuJFHigh-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computationPhys. Rev. A201184010301(R)2011PhRvA..84a0301Y
– reference: BernienHChildressLRobledoLMarkhamMTwitchenDHansonRTwo-photon quantum interference from separate nitrogen vacancy centers in diamondPhys. Rev. Lett.20121080436042012PhRvL.108d3604B
– reference: HaackGHelmerFMariantoniMMarquardtFSolanoEResonant quantum gates in circuit quantum electrodynamicsPhys. Rev. B2010820245142010PhRvB..82b4514H
– reference: YinZQLiFLMultiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiberPhys. Rev. A2007750123242007PhRvA..75a2324Y
– reference: TurchetteQAHoodCJLangeWMabuchiHKimbleHJMeasurement of conditional phase shifts for quantum logicPhys. Rev. Lett.19957547101995PhRvL..75.4710T13620361020.81553
– reference: JonesJAMoscaMHansenRHImplementation of a quantum search algorithm on a quantum computerNature (London)19983933441998Natur.393..344J
– reference: BaoNBoulandAJordanSPGrover search and the no-signaling principlePhys. Rev. Lett.20161171205012016PhRvL.117l0501B
– reference: SuWJYangZBZhongZRArbitrary control of entanglement between two nitrogen-vacancy-center ensembles coupling to a superconducting-circuit qubitPhys. Rev. A2018970123292018PhRvA..97a2329S
– reference: NielsenMAChuangILQuantum Computing and Quantum Information2000CambridgeCambridge University Press1049.81015
– reference: MansonNBHarrisonJPSellarsMJNitrogen-vacancy center in diamond: model of the electronic structure and associated dynamicsPhys. Rev. B2006741043032006PhRvB..74j4303M
– reference: ByrnesTForsterGTesslerLGeneralized Groveri’s algorithm for multiple phase inversion statesPhys. Rev. Lett.20181200605012018PhRvL.120f0501B
– reference: YangCPZhengSBNoriFMultiqubit tunable phase gate of one qubit simultaneously controlling n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} qubits in a cavityPhys. Rev. A2010820623262010PhRvA..82f2326Y
– reference: KnillELaflammeRMilburnGJA scheme for efficient quantum computation with linear opticsNature (London)2001409462001Natur.409...46K
– reference: ChenQYangWLFengMControllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubitsPhys. Rev. A2012860223272012PhRvA..86b2327C
– reference: WrachtrupJSchrödinger’s cat is still aliveNat. Phys.20095248
– reference: BlaisAGambettaJWallraffASchusterDIGirvinSMDevoretMHSchoelkopfRJQuantum-information processing with circuit quantum electrodynamicsPhys. Rev. A2007750323292007PhRvA..75c2329B
– reference: EkinciKLRoukesMLNanoelectromechanical systemsRev. Sci. Instrum.2005760611012005RScI...76f1101E
– reference: ZhouLGWeiLFGaoMWangXBStrong coupling between two distant electronic spins via a nanomechanical resonatorPhys. Rev. A2010810423232010PhRvA..81d2323Z
– reference: PigeauBRohrSde LépinayLMGloppeAJacquesVArcizetOObservation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical systemNat. Commun.2015686032015NatCo...6.8603P
– reference: JelezkoFGaebelTPopaIDomhanMGruberAWrachtrupJObservation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gatePhys. Rev. Lett.2004931305012004PhRvL..93m0501J
– reference: KolkowitzSJayichACBUnterreithmeierQPBennettSDRablPHarrisJGELukinMDCoherent sensing of a mechanical resonator with a single-spin qubitScience201233516032012Sci...335.1603K
– reference: ChenQYangWLFengMDuJFEntangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonatorsPhys. Rev. A2011830543052011PhRvA..83e4305C
– reference: BlaisAHuangRSWallraffAGirvinSMSchoelkopfRJCavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computationPhys. Rev. A2004690623202004PhRvA..69f2320B
– reference: MatsuzakiYZhuXKakuyanagiKToidaHShimookaTMizuochiNNemotoKSembaKMunroWJYamaguchiHSaitoSImproving the lifetime of the nitrogen-vacancy-center ensemble coupled with a superconducting flux qubit by applying magnetic fieldsPhys. Rev. A2015910423292015PhRvA..91d2329M
– reference: TulsiAQuantum search algorithm tailored to clause-satisfaction problemsPhys. Rev. A2015910523222015PhRvA..91e2322T
– reference: PoyatosJFCiracJIZollerPQuantum gates with “Hot” trapped ionsPhys. Rev. Lett.19988113221998PhRvL..81.1322P
– reference: NaikABuuOLaHayeMDArmourADClerkAABlencoweMPSchwabKCCooling a nanomechanical resonator with quantum back-actionNature20064431932006Natur.443..193N
– reference: JohanssonJRNationPDNoriFQuTiP: an open-source Python framework for the dynamics of open quantum systemsComput. Phys. Commun.201218317602012CoPhC.183.1760J
– reference: WangZHde LangeGRistèDHansonRDobrovitskiVVComparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamondPhys. Rev. B2012851552042012PhRvB..85o5204W
– reference: YeBLZhengZFYangCPMultiplex-controlled phase gate with qubits distributed in a multicavity systemPhys. Rev. A2018970623362018PhRvA..97f2336Y
– reference: XinTPedernalesJSSolanoELongGLEntanglement measures in embedding quantum simulators with nuclear spinsPhys. Rev. A2018970223222018PhRvA..97b2322X
– reference: ZuCWangWBHeLZhangWGDaiCYWangFDuanLMExperimental realization of universal geometric quantum gates with solid-state spinsNature (London)2014514722014Natur.514...72Z
– reference: JohanssonJRNationPDNoriFQuTiP 2: a Python framework for the dynamics of open quantum systemsComput. Phys. Commun.201318412342013CoPhC.184.1234J
– reference: CiracJIZollerPQuantum computations with cold trapped ionsPhys. Rev. Lett.19957440911995PhRvL..74.4091C
– reference: HuaMTaoMJAlsaediAHayatTDengFGUniversal distributed quantum computing on superconducting qutrits with dark photonsAnnalen der Physik201853017004022018AnP...53000402H3796484
– reference: ChiorescuIBertetPSembaKNakamuraYHarmansCJPMMooijJECoherent dynamics of a flux qubit coupled to a harmonic oscillatorNature (London)20044311592004Natur.431..159C
– reference: XuZYHuYMYangWLFengMDuJFDeterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilevePhys. Rev. A2009800223352009PhRvA..80b2335X
– reference: RetzkerASolanoEReznikBTavis–Cummings model and collective multiqubit entanglement in trapped ionsPhys. Rev. A2007750223122007PhRvA..75b2312R
– reference: TwamleyJBarrettSDSuperconducting cavity bus for single nitrogen-vacancy defect centers in diamondPhys. Rev. A201081241202(R)2010PhRvB..81x1202T
– reference: RablPCappellaroPDuttMVGJiangLMazeJRLukinMDStrong magnetic coupling between an electronic spin qubit and a mechanical resonatorPhys. Rev. B200979041302(R)2009PhRvB..79d1302R
– reference: VerbridgeSSCraigheadHGParpiaJMA megahertz nanomechanical resonator with room temperature quality factor over a millionAppl. Phys. Lett.2008920131122008ApPhL..92a3112V
– reference: BassettLCHeremansFJYaleCGBuckleyBBAwschalomDDElectrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fieldsPhys. Rev. Lett.20111072664032011PhRvL.107z6403B
– reference: HongZPLiuBJCaiJQZhangXDHuYWangZDXueZYImplementing universal nonadiabatic holonomic quantum gates with transmonsPhys. Rev. A2018970223322018PhRvA..97b2332H
– reference: ZhouJHLiuTFengMYangWLChenCYTwamleyJQuantum phase transition in a driven Tavis–Cummings modelNew J. Phys.2013151230322013NJPh...15l3032Z
– reference: LiXXLiPBMaSLLiFLPreparing entangled states between two NV centers via the damping of nanomechanical resonatorsSci. Rep.20177141162017NatSR...714116L
– reference: LongGLGrover algorithm with zero theoretical failure ratePhys. Rev. A2001640223072001PhRvA..64b2307L
– reference: LiXWuYSteelDGammonDStievaterTHKatzerDSOarkDPiermarochiCShamJAn all-optical quantum gate in a semiconductor quantum dotScience20033018092003Sci...301..809L
– reference: WangZLZhongYPHeLJWangHMartinisJMClelandANXieQWQuantum state characterization of a fast tunable superconducting resonatorAppl. Phys. Lett.20131021635032013ApPhL.102p3503W
– reference: FengZBRobust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centersPhys. Rev. A2015910323072015PhRvA..91c2307F
– volume: 121
  start-page: 110501
  year: 2018
  ident: 2682_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.110501
– volume: 301
  start-page: 809
  year: 2003
  ident: 2682_CR15
  publication-title: Science
  doi: 10.1126/science.1083800
– volume: 4
  start-page: 1940
  year: 2013
  ident: 2682_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2930
– volume: 444
  start-page: 75
  year: 2006
  ident: 2682_CR46
  publication-title: Nature (London)
  doi: 10.1038/nature05231
– volume: 7
  start-page: 14116
  year: 2017
  ident: 2682_CR40
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14245-8
– volume: 183
  start-page: 1760
  year: 2012
  ident: 2682_CR56
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.02.021
– volume: 110
  start-page: 190501
  year: 2013
  ident: 2682_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.190501
– volume: 514
  start-page: 72
  year: 2014
  ident: 2682_CR65
  publication-title: Nature (London)
  doi: 10.1038/nature13729
– volume: 93
  start-page: 250502
  year: 2004
  ident: 2682_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.250502
– volume: 117
  start-page: 120501
  year: 2016
  ident: 2682_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.120501
– volume: 82
  start-page: 024514
  year: 2010
  ident: 2682_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.024514
– volume: 530
  start-page: 1700402
  year: 2018
  ident: 2682_CR27
  publication-title: Annalen der Physik
  doi: 10.1002/andp.201700402
– volume: 81
  start-page: 1322
  year: 1998
  ident: 2682_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.1322
– volume: 75
  start-page: 022312
  year: 2007
  ident: 2682_CR53
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.022312
– volume: 76
  start-page: 061101
  year: 2005
  ident: 2682_CR32
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1927327
– volume: 108
  start-page: 043604
  year: 2012
  ident: 2682_CR64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.043604
– volume-title: Quantum Computing and Quantum Information
  year: 2000
  ident: 2682_CR1
– volume: 83
  start-page: 5166
  year: 1999
  ident: 2682_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.5166
– volume: 107
  start-page: 266403
  year: 2011
  ident: 2682_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.266403
– volume: 320
  start-page: 1326
  year: 2008
  ident: 2682_CR30
  publication-title: Science
  doi: 10.1126/science.1157233
– volume: 97
  start-page: 022332
  year: 2018
  ident: 2682_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022332
– volume: 69
  start-page: 062320
  year: 2004
  ident: 2682_CR19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.062320
– volume: 79
  start-page: 041302(R)
  year: 2009
  ident: 2682_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.041302
– volume: 91
  start-page: 062325
  year: 2015
  ident: 2682_CR6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.062325
– volume: 75
  start-page: 4710
  year: 1995
  ident: 2682_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4710
– volume: 98
  start-page: 022121
  year: 2018
  ident: 2682_CR26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.022121
– volume: 102
  start-page: 163503
  year: 2013
  ident: 2682_CR66
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802893
– volume: 75
  start-page: 012324
  year: 2007
  ident: 2682_CR58
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.012324
– volume: 96
  start-page: 023826
  year: 2017
  ident: 2682_CR18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.023826
– volume: 75
  start-page: 032329
  year: 2007
  ident: 2682_CR21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032329
– volume: 81
  start-page: 241202(R)
  year: 2010
  ident: 2682_CR49
  publication-title: Phys. Rev. A
– volume: 91
  start-page: 052322
  year: 2015
  ident: 2682_CR61
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.052322
– volume: 91
  start-page: 042329
  year: 2015
  ident: 2682_CR62
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.042329
– volume: 81
  start-page: 042323
  year: 2010
  ident: 2682_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.042323
– volume: 83
  start-page: 054305
  year: 2011
  ident: 2682_CR52
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.054305
– volume: 393
  start-page: 344
  year: 1998
  ident: 2682_CR12
  publication-title: Nature (London)
  doi: 10.1038/30687
– volume: 91
  start-page: 032307
  year: 2015
  ident: 2682_CR43
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.032307
– volume: 82
  start-page: 062326
  year: 2010
  ident: 2682_CR7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.062326
– volume: 6
  start-page: 8603
  year: 2015
  ident: 2682_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9603
– volume: 67
  start-page: 249
  year: 1995
  ident: 2682_CR47
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.67.249
– volume: 431
  start-page: 159
  year: 2004
  ident: 2682_CR20
  publication-title: Nature (London)
  doi: 10.1038/nature02831
– volume: 92
  start-page: 013112
  year: 2008
  ident: 2682_CR33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2822406
– volume: 5
  start-page: 248
  year: 2009
  ident: 2682_CR35
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1245
– volume: 4
  start-page: 23
  year: 2013
  ident: 2682_CR50
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-030212-184238
– volume: 79
  start-page: 325
  year: 1997
  ident: 2682_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.325
– volume: 97
  start-page: 062336
  year: 2018
  ident: 2682_CR22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.062336
– volume: 93
  start-page: 130501
  year: 2004
  ident: 2682_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.130501
– volume: 184
  start-page: 1234
  year: 2013
  ident: 2682_CR57
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.11.019
– volume: 15
  start-page: 1189
  year: 2016
  ident: 2682_CR2
  publication-title: Quantum Inf. Proc.
  doi: 10.1007/s11128-016-1263-6
– volume: 64
  start-page: 022307
  year: 2001
  ident: 2682_CR4
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.022307
– volume: 97
  start-page: 022322
  year: 2018
  ident: 2682_CR14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022322
– volume: 8
  start-page: 383
  year: 2009
  ident: 2682_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2420
– volume: 80
  start-page: 022335
  year: 2009
  ident: 2682_CR36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.80.022335
– volume: 97
  start-page: 012329
  year: 2018
  ident: 2682_CR55
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.012329
– volume: 15
  start-page: 123032
  year: 2013
  ident: 2682_CR54
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/12/123032
– volume: 409
  start-page: 46
  year: 2001
  ident: 2682_CR16
  publication-title: Nature (London)
  doi: 10.1038/35051009
– volume: 85
  start-page: 623
  year: 2013
  ident: 2682_CR23
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.623
– volume: 86
  start-page: 022327
  year: 2012
  ident: 2682_CR51
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.022327
– volume: 85
  start-page: 155204
  year: 2012
  ident: 2682_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.155204
– volume: 120
  start-page: 060501
  year: 2018
  ident: 2682_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.060501
– volume: 74
  start-page: 104303
  year: 2006
  ident: 2682_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.104303
– volume: 84
  start-page: 010301(R)
  year: 2011
  ident: 2682_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.010301
– volume: 443
  start-page: 193
  year: 2006
  ident: 2682_CR45
  publication-title: Nature
  doi: 10.1038/nature05027
– volume: 74
  start-page: 4091
  year: 1995
  ident: 2682_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.4091
– volume: 304
  start-page: 74
  year: 2004
  ident: 2682_CR44
  publication-title: Science
  doi: 10.1126/science.1094419
– volume: 335
  start-page: 1603
  year: 2012
  ident: 2682_CR38
  publication-title: Science
  doi: 10.1126/science.1216821
SSID ssj0021686
Score 2.229748
Snippet We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Computer simulation
Data Structures and Information Theory
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Qubits (quantum computing)
Search algorithms
Spintronics
Title Controlled phase gate and Grover’s search algorithm on two distant NV-centers assisted by an NAMR
URI https://link.springer.com/article/10.1007/s11128-020-02682-w
https://www.proquest.com/docview/2401930067
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-1332
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0021686
  issn: 1570-0755
  databaseCode: ABDBF
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1573-1332
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0021686
  issn: 1570-0755
  databaseCode: AMVHM
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1332
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021686
  issn: 1570-0755
  databaseCode: AFBBN
  dateStart: 20020401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1332
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021686
  issn: 1570-0755
  databaseCode: AGYKE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1332
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021686
  issn: 1570-0755
  databaseCode: U2A
  dateStart: 20020401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60InjxLVZr2YM3Xchjd5Mcq7SKYg5ipZ5CsptVoaaljRRv_g3_nr_E2TwsigqecshmDvPIfDM7D4BDJbnm2uNUONKhLLYU9XUSUM0SlmoZ6Fia1MBVKM777GLAB1VT2LSudq-vJIs_9bzZDaGBT024g3ED4sLZIixxM84LtbjvdD7DLFsU-x1tblaqeJxXrTI_0_jqjuYY89u1aOFteuuwWsFE0inlugELabYJa_UKBlJZ5CYsFxWccroF8rQsOh-miowf0DcRkyAjcabI2cTUab6_vk1JqdgkHt6PJo_5wxMZZSSfjYgyMDLLSXhLTbkmYkKCqNqogCLJC1IhYefqehv6ve7N6TmtNihQiaaVU4HxrS2EFJ5GZ-hLqUTqusxlPosl03GCobFQyrPtWCrL10HAXURsjrScwHFSz92BRjbK0l0glqeVYIGlzRI_iVGGcL1YaU8ihFBW4DbBrhkZyWq8uNlyMYzmg5EN8yNkflQwP5o14ejzm3E5XOPP061aPlFlaNMIAQlCUONzm3Bcy2z--ndqe_87vg8rTqE2Jv_SgkY-eU4PEI7kSRuWOr2Tk9A8z-4uu-1CGz8ARWTZow
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xRWi5AMtDlNf6sLfFKA_HSY4VAsqjPawoglOUjGNAlBS1QRWc-Bv8PX4J4zyoQLAS5zhWYs94vm88D4A_Cj3tad_j0kGHi9hSPNBJyLVIRKox1DEa10CnK9s9cXTunVdJYaM62r2-kixO6kmyG0GDgBu6Q7yBcOH4B0wLIihOA6ZbBxfHe29Ey5ZFh0fbM01VfM-rkmU-n-W9QZqgzA8Xo4W92Z-HXv2lZZjJzc59nuzg44cijt_9lQWYqwAoa5US8wum0mwR5uvmDqzS9UWYKWJDcbQEuFuGs_dTxe6uyOox43pjcabYwdBEgL48PY9YqTIs7l8Ohtf51S0bZCwfD5gyADXLWfeMm0BQQpuM8LoRLsWSB5qFdVudf8vQ29873W3zqjcDR1LanEtizraUKH1NZjZAVDJ1XeGKQMQodJwQ6ZZK-bYdo7ICHYaeS1jQQcsJHSf13RVoZIMsXQVm-VpJEVratAdE4i_S9WOlfSRwoqzQbYJdb1CEVeFy0z-jH01KLpv1jGg9o2I9o3ET_r69c1eW7fjv6I1636NKhUcRQR0Ct8aaN2G73sbJ469nW_ve8N_ws33aOYlODrvH6zDrFFJhvDwb0MiH9-kmgZ482apk_BVA1Pav
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCMSFpYAoFPCBG1hkcZzkWAFlbYUQRdyixI4pUkmrNqjixm_we3wJ4ywtIEDiHGcO4xnNe-NZAPakcJSjXIdyS1iUhYaknop8qljEYiV8FQqdGmi2-FmbXdw795-6-LNq9_JJMu9p0FOakvSwL9XhpPENYYJHNfVBDoEYcTQNs0wPSkCLblv1MeUyebbr0XT0ehXXcYq2mZ9lfA1NE7z57Yk0izyNZVgsICOp53e8AlNxUoGlch0DKbyzAnNZNacYroI4ygvQu7Ek_Q7GKaKTZSRMJDkd6JrN99e3IcmNnITdh97gMe08kV5C0lGPSA0pk5S07qgu3UR8SBBha3OQJHpBKaRVb96sQbtxcnt0RottClSgm6WUI9c1ORfcVRgYPSEkj22b2cxjoWAqjJAmcyld0wyFNDzl-46N6M0ShuVbVuza6zCT9JJ4A4jhKsmZbyi90E8g4-C2G0rlCoQT0vDtKpilIgNRjBrXGy-6wWRIslZ-gMoPMuUHoyrsj__p54M2_jxdK-8nKJxuGCA4QTiq428VDso7m3z-Xdrm_47vwvz1cSO4Om9dbsGClVmQTsvUYCYdPMfbiFLSaCczxA-w0d27
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+phase+gate+and+Grover%E2%80%99s+search+algorithm+on+two+distant+NV-centers+assisted+by+an+NAMR&rft.jtitle=Quantum+information+processing&rft.au=Hua%2C+Ming&rft.au=Tao%2C+Ming-Jie&rft.au=Zhou%2C+Zeng-Rong&rft.au=Wei%2C+Hai-Rui&rft.date=2020-06-01&rft.issn=1570-0755&rft.eissn=1573-1332&rft.volume=19&rft.issue=6&rft_id=info:doi/10.1007%2Fs11128-020-02682-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11128_020_02682_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-0755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-0755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-0755&client=summon