Detection of Breast Masses in Mammogram Images Using Growing Neural Gas Algorithm and Ripley’s K Function

Breast cancer is a serious public health problem in several countries. Computer-aided detection/diagnosis systems (CAD/CADx) have been used with relative success in aid of health care professionals. The goal of such systems is not to replace the professionals, but to join forces in order to detect t...

Full description

Saved in:
Bibliographic Details
Published inJournal of signal processing systems Vol. 55; no. 1-3; pp. 77 - 90
Main Authors de Oliveira Martins, Leonardo, Silva, Aristófanes Corrêa, de Paiva, Anselmo Cardoso, Gattass, Marcelo
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.04.2009
Subjects
Online AccessGet full text
ISSN1939-8018
1939-8115
DOI10.1007/s11265-008-0209-3

Cover

Abstract Breast cancer is a serious public health problem in several countries. Computer-aided detection/diagnosis systems (CAD/CADx) have been used with relative success in aid of health care professionals. The goal of such systems is not to replace the professionals, but to join forces in order to detect the different types of cancer at an early stage. The main contribution of this work is the presentation of a methodology for detecting masses in digitized mammograms using the growing neural gas algorithm for image segmentation and Ripley’s K function to describe the texture of segmented structures. The classification of these structures is accomplished through support vector machines which separate them in two groups, using shape and texture measures: masses and non-masses. The methodology obtained 89.30% of accuracy and a rate of 0.93 false positives per image.
AbstractList Breast cancer is a serious public health problem in several countries. Computer-aided detection/diagnosis systems (CAD/CADx) have been used with relative success in aid of health care professionals. The goal of such systems is not to replace the professionals, but to join forces in order to detect the different types of cancer at an early stage. The main contribution of this work is the presentation of a methodology for detecting masses in digitized mammograms using the growing neural gas algorithm for image segmentation and Ripley's K function to describe the texture of segmented structures. The classification of these structures is accomplished through support vector machines which separate them in two groups, using shape and texture measures: masses and non-masses. The methodology obtained 89.30% of accuracy and a rate of 0.93 false positives per image.
Breast cancer is a serious public health problem in several countries. Computer-aided detection/diagnosis systems (CAD/CADx) have been used with relative success in aid of health care professionals. The goal of such systems is not to replace the professionals, but to join forces in order to detect the different types of cancer at an early stage. The main contribution of this work is the presentation of a methodology for detecting masses in digitized mammograms using the growing neural gas algorithm for image segmentation and Ripley’s K function to describe the texture of segmented structures. The classification of these structures is accomplished through support vector machines which separate them in two groups, using shape and texture measures: masses and non-masses. The methodology obtained 89.30% of accuracy and a rate of 0.93 false positives per image.
Author de Paiva, Anselmo Cardoso
de Oliveira Martins, Leonardo
Gattass, Marcelo
Silva, Aristófanes Corrêa
Author_xml – sequence: 1
  givenname: Leonardo
  surname: de Oliveira Martins
  fullname: de Oliveira Martins, Leonardo
  email: leomartins82@gmail.com
  organization: Department of Electrical Engineering, Federal University of Maranhão—UFMA
– sequence: 2
  givenname: Aristófanes Corrêa
  surname: Silva
  fullname: Silva, Aristófanes Corrêa
  organization: Department of Electrical Engineering, Federal University of Maranhão—UFMA
– sequence: 3
  givenname: Anselmo Cardoso
  surname: de Paiva
  fullname: de Paiva, Anselmo Cardoso
  organization: Department of Computer Science, Federal University of Maranhão—UFMA
– sequence: 4
  givenname: Marcelo
  surname: Gattass
  fullname: Gattass, Marcelo
  organization: Departament of Informatics, Pontifical Catholic University of Rio de Janeiro, Technical Scientific Center
BookMark eNp9kE1OHDEQha2ISIFJDpCdV-yauOz-sZdAmAliSCTErC1PT3XHpNueuLqF2HENrpeTpIeBDQtW9VR671XpO2IHIQZk7CuIExCi-kYAsiwyIXQmpDCZ-sAOwSiTaYDi4FUL0J_YEdGdEKWoCjhkf77jgPXgY-Cx4WcJHQ382hEhcR8m1fexTa7nl71rp92KfGj5IsX73fyJY3IdXzjip10bkx9-99yFDb_x2w4f_j0-Eb_i8zE8X_jMPjauI_zyMmdsNb-4Pf-RLX8tLs9Pl1mtwAxZqfMcykJLBbqWSiuFooCmceVGGJnrxsjG5a4qDSoEVYBaKyPX1ToHlW8A1Ywd73u3Kf4dkQbbe6qx61zAOJJVqjSFFHoyVntjnSJRwsbWfnC7V4fkfGdB2B1cu4drJ7h2B3cqmDF4k9wm37v08G5G7jM0eUOLyd7FMYWJxDuh_1vdjdA
CitedBy_id crossref_primary_10_1007_s10916_014_0100_7
crossref_primary_10_1007_s00704_022_04143_z
crossref_primary_10_1016_j_jhydrol_2017_04_047
crossref_primary_10_1016_j_cmpb_2018_05_017
crossref_primary_10_1080_21681163_2016_1240630
crossref_primary_10_1016_j_cmpb_2024_108373
crossref_primary_10_1007_s10916_010_9448_5
crossref_primary_10_1145_2522968_2522975
crossref_primary_10_1007_s10278_014_9739_3
crossref_primary_10_1007_s13246_021_00977_5
crossref_primary_10_1007_s11042_024_19558_1
crossref_primary_10_1016_j_compbiomed_2011_05_017
crossref_primary_10_1007_s11042_017_4751_5
crossref_primary_10_1155_2016_1370259
crossref_primary_10_1016_j_compbiomed_2013_04_019
crossref_primary_10_1007_s10619_021_07355_w
crossref_primary_10_1016_j_ijleo_2015_06_034
crossref_primary_10_1016_j_eswa_2015_07_046
crossref_primary_10_4018_IJCVIP_2017070101
crossref_primary_10_1016_j_compbiomed_2012_09_003
crossref_primary_10_1080_0952813X_2015_1024496
Cites_doi 10.1118/1.2214177
10.1890/03-0280
10.1109/42.650876
10.1109/42.887618
10.1007/978-94-011-5318-8_75
10.1016/B978-012119792-6/50130-3
10.1109/42.925295
10.1148/radiol.2373041657
10.1111/j.2517-6161.1977.tb01615.x
10.4995/Thesis/10251/1862
10.1109/CGIV.2005.30
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2008
Copyright_xml – notice: Springer Science+Business Media, LLC 2008
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11265-008-0209-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-8115
EndPage 90
ExternalDocumentID 10_1007_s11265_008_0209_3
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P9P
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8P
Z8T
Z8W
Z92
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-684416582318c23833e051ffa6d09248f92fa4a769e3e13513b392b7b4134d1e3
IEDL.DBID U2A
ISSN 1939-8018
IngestDate Wed Oct 01 13:24:23 EDT 2025
Wed Oct 01 01:08:39 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Fri Feb 21 02:35:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-3
Keywords Mammography
Ripley’s
Growing neural gas
Computer-aided detection
Texture
function
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-684416582318c23833e051ffa6d09248f92fa4a769e3e13513b392b7b4134d1e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 33695208
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_33695208
crossref_citationtrail_10_1007_s11265_008_0209_3
crossref_primary_10_1007_s11265_008_0209_3
springer_journals_10_1007_s11265_008_0209_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090400
2009-4-00
20090401
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 4
  year: 2009
  text: 20090400
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationSubtitle for Signal, Image, and Video Technology (formerly the Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology)
PublicationTitle Journal of signal processing systems
PublicationTitleAbbrev J Sign Process Syst Sign Image Video Technol
PublicationYear 2009
Publisher Springer US
Publisher_xml – name: Springer US
References HaykinS.Redes Neurais: Princípios e Prática20012Porto AlegreBookman
Urban, D. L. (2003). Spatial analysis in ecology—point pattern analysis. Available at: http://www.nicholas.duke.edu/lel/env352/ripley.pdf.
Sousa, J. R. F. S., Silva, A. C., & Paiva, A. C. (2007). Lung Structures Classification Using 3D Geometric Measurements and SVM. In: 12th Iberoamerican Congress on Pattern Recognition—CIARP 2007, 2007, Valparaiso. Lecture Notes Computer Science—LNCS. (pp. 783–792). Berlin: Springer-Verlag, v. 4756.
Instituto Nacional do Câncer—INCA. (2006). Câncer no Brasil: dados dos registros de base populacional, volume 3. Rio de Janeiro: INCA, 2003. Available at http://www.inca.gov.br/regpop/2003/versaofinal.pdf. Accessed in 15 sep.
BellottiR.de CarloF.TangaroS.GarganoG.MaggipintoG.CastellanoM.A completely automated CAD system for mass detection in a large mammographic databaseMedical Physics2006333066307510.1118/1.2214177
A.C.S. (2006). Learn about breast cancer. Available at http://www.cancer.org.
MudigondaN. R.RangayyanR. M.DesautelsJ. E. L.Gradient and texture analysis for the classification of mammographic massesIEEE Transactions on Medical Imaging2000191032104310.1109/42.887618
ChanH.WeiJ.SahinerB.RaffertyE.WuT.RoubidoxM.Computer-aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary experienceRadiology200523731075108010.1148/radiol.2373041657
KovalevV. A.KruggelF.GertzH. J.CramonD. Y. V.Three-dimensional texture analysis of MRI brain datasetsIEEE Transactions on Medical Imaging20012042443310.1109/42.925295
Azpitarte, R. L. (2006). Aportaciones al Diagnóstico de Cáncer Asistido por Ordenador. Tese de Doutorado. Universidad Politécnica de Valencia.
Sampat, P., Markey, M. K., & Bovik, A. C. (2005). Computer-aided detection and diagnosis in mammography. Computer-Aided Detection and Diagnosis in Mammography. Handbook of Image and Video Processing, 2ed.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Kluwer Academic Publishers.
Instituto Nacional do Câncer—INCA. (2006). Estimativa 2006: Incidência de Câncer no Brasil. Rio de Janeiro: INCA, 2005. Available at http://www.inca.gov.br/estimativa/2006/versaofinal.pdf. Accessed in 19 feb.
MartinsL. de O.Braz JuniorG. S.SilvaE. C.SilvaA. C.PaivaA. C.Classification of breast tissues in mammogram images using Ripley’s K function and support vector machineICIAR20072007899910
Meyer-Baese, A. (2003). Pattern recognition for medical imaging. Elsevier.
Chang, C.-C., & Lin, C.-J. (2007). LIBSVM: a Library for Support Vector Machines. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf. Accessed in 08 oct.
Papoulis, A., & Pillai., S. U. (2002). Probability, random variables and stochastic processes. (4th edn.). McGraw-Hill.
RipleyB. D.Modelling spatial patternsJournal of the Royal Statistical Society, B197739172212488279
Rezai-Rad, G., & Jamarani, S. (2005). Detecting microcalcification clusters in digital mammograms using combination of wavelet and neural network, cgiv, p. 197–201, International Conference on Computer Graphics, Imaging and Visualization (CGIV'05).
University of Guelph. (2001). Shape Analysis & Measurement, CIS*6320, Lecture Notes.
Li, X. (2001). Texture analysis for optical coherence tomography image. Master’s thesis, The University of Arizona.
ScheuerellM. D.Quantifying aggregation and association in three dimensional landscapesEcology200485233223410.1890/03-0280
Braz Junior, G., Silva, E. C., de Paiva, A. C., Silva, A. C., & Gattass, M. (2007). Breast Tissues Mammograms Images Classification using Moran's Index, Geary's Coefficient and SVM. In: 14th International Conference on Neural Information Processing (ICONIP 2007), 2007, Kitakyushu. Lecture Notes Computer Science—LNCS.
Rangayyan, R. M., El-Faramawy, N. M., Desautels, J. E. L., & Alim, O. A. (1997). Measures of acutance and shape for classification of breast tumors, Associate Member, IEEE.
GonzalezR. C.WoodsR. E.Digital image processing19923Reading, MAAddison-Wesley
Heath, M., Bowyer, K., & Kopans, D. (1998). Current status of the digital database for screening mammography. Digital Mammography (pp. 457–460). Kluwer.
DaleM. R. T.DixonP.FortinM. J.LegendreP.MyersD. E.RosenbergM. S.Conceptual and mathematical relationships among methods for spatial analysisEcography20022555857710.1034/j.1600-0587.2002.250506.x
FritzkeB.TesauroE. G.TouretzkyD. S.LeenE. T. K.A growing neural gas network learns topologiesAdvances in Neural Information Processing Systems 71995Cambridge MAMIT Press625632
Martinez, T., & Schulten, K. (1991). A neural gas network learns topologies. Artificial Neural Networks. Elsevier.
Silva, D. F. (2006). Câncer de mama em mulheres no Maranhão: estudo de sobrevida no centro de assistência de Alta Complexidade em oncologia (CACON) em São Luís. Masters dissertation (Masters in Health Sciences). Federal University of Maranhão.
MartinsL. de O.SilvaE. C.SilvaA. C.PaivaA. C.GattassM.Classification of breast masses in mammogram images using Ripley’s K function and support vector machineMLDM20072007784794
209_CR9
N. R. Mudigonda (209_CR21) 2000; 19
M. R. T. Dale (209_CR25) 2002; 25
209_CR6
209_CR5
209_CR4
209_CR3
209_CR14
209_CR15
209_CR30
209_CR31
H. Chan (209_CR8) 2005; 237
L. de O. Martins (209_CR26) 2007; 2007
209_CR16
209_CR18
B. D. Ripley (209_CR12) 1977; 39
B. Fritzke (209_CR11) 1995
R. Bellotti (209_CR7) 2006; 33
M. D. Scheuerell (209_CR22) 2004; 85
L. de O. Martins (209_CR10) 2007; 2007
R. C. Gonzalez (209_CR17) 1992
209_CR2
209_CR23
209_CR1
209_CR24
V. A. Kovalev (209_CR19) 2001; 20
S. Haykin (209_CR13) 2001
209_CR20
209_CR27
209_CR28
209_CR29
References_xml – reference: ChanH.WeiJ.SahinerB.RaffertyE.WuT.RoubidoxM.Computer-aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary experienceRadiology200523731075108010.1148/radiol.2373041657
– reference: Chang, C.-C., & Lin, C.-J. (2007). LIBSVM: a Library for Support Vector Machines. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf. Accessed in 08 oct.
– reference: Martinez, T., & Schulten, K. (1991). A neural gas network learns topologies. Artificial Neural Networks. Elsevier.
– reference: GonzalezR. C.WoodsR. E.Digital image processing19923Reading, MAAddison-Wesley
– reference: University of Guelph. (2001). Shape Analysis & Measurement, CIS*6320, Lecture Notes.
– reference: Li, X. (2001). Texture analysis for optical coherence tomography image. Master’s thesis, The University of Arizona.
– reference: FritzkeB.TesauroE. G.TouretzkyD. S.LeenE. T. K.A growing neural gas network learns topologiesAdvances in Neural Information Processing Systems 71995Cambridge MAMIT Press625632
– reference: KovalevV. A.KruggelF.GertzH. J.CramonD. Y. V.Three-dimensional texture analysis of MRI brain datasetsIEEE Transactions on Medical Imaging20012042443310.1109/42.925295
– reference: Heath, M., Bowyer, K., & Kopans, D. (1998). Current status of the digital database for screening mammography. Digital Mammography (pp. 457–460). Kluwer.
– reference: MudigondaN. R.RangayyanR. M.DesautelsJ. E. L.Gradient and texture analysis for the classification of mammographic massesIEEE Transactions on Medical Imaging2000191032104310.1109/42.887618
– reference: Rangayyan, R. M., El-Faramawy, N. M., Desautels, J. E. L., & Alim, O. A. (1997). Measures of acutance and shape for classification of breast tumors, Associate Member, IEEE.
– reference: Urban, D. L. (2003). Spatial analysis in ecology—point pattern analysis. Available at: http://www.nicholas.duke.edu/lel/env352/ripley.pdf.
– reference: Azpitarte, R. L. (2006). Aportaciones al Diagnóstico de Cáncer Asistido por Ordenador. Tese de Doutorado. Universidad Politécnica de Valencia.
– reference: Braz Junior, G., Silva, E. C., de Paiva, A. C., Silva, A. C., & Gattass, M. (2007). Breast Tissues Mammograms Images Classification using Moran's Index, Geary's Coefficient and SVM. In: 14th International Conference on Neural Information Processing (ICONIP 2007), 2007, Kitakyushu. Lecture Notes Computer Science—LNCS.
– reference: Rezai-Rad, G., & Jamarani, S. (2005). Detecting microcalcification clusters in digital mammograms using combination of wavelet and neural network, cgiv, p. 197–201, International Conference on Computer Graphics, Imaging and Visualization (CGIV'05).
– reference: BellottiR.de CarloF.TangaroS.GarganoG.MaggipintoG.CastellanoM.A completely automated CAD system for mass detection in a large mammographic databaseMedical Physics2006333066307510.1118/1.2214177
– reference: Papoulis, A., & Pillai., S. U. (2002). Probability, random variables and stochastic processes. (4th edn.). McGraw-Hill.
– reference: Sousa, J. R. F. S., Silva, A. C., & Paiva, A. C. (2007). Lung Structures Classification Using 3D Geometric Measurements and SVM. In: 12th Iberoamerican Congress on Pattern Recognition—CIARP 2007, 2007, Valparaiso. Lecture Notes Computer Science—LNCS. (pp. 783–792). Berlin: Springer-Verlag, v. 4756.
– reference: A.C.S. (2006). Learn about breast cancer. Available at http://www.cancer.org.
– reference: Instituto Nacional do Câncer—INCA. (2006). Estimativa 2006: Incidência de Câncer no Brasil. Rio de Janeiro: INCA, 2005. Available at http://www.inca.gov.br/estimativa/2006/versaofinal.pdf. Accessed in 19 feb.
– reference: Sampat, P., Markey, M. K., & Bovik, A. C. (2005). Computer-aided detection and diagnosis in mammography. Computer-Aided Detection and Diagnosis in Mammography. Handbook of Image and Video Processing, 2ed.
– reference: Silva, D. F. (2006). Câncer de mama em mulheres no Maranhão: estudo de sobrevida no centro de assistência de Alta Complexidade em oncologia (CACON) em São Luís. Masters dissertation (Masters in Health Sciences). Federal University of Maranhão.
– reference: MartinsL. de O.SilvaE. C.SilvaA. C.PaivaA. C.GattassM.Classification of breast masses in mammogram images using Ripley’s K function and support vector machineMLDM20072007784794
– reference: ScheuerellM. D.Quantifying aggregation and association in three dimensional landscapesEcology200485233223410.1890/03-0280
– reference: Meyer-Baese, A. (2003). Pattern recognition for medical imaging. Elsevier.
– reference: Instituto Nacional do Câncer—INCA. (2006). Câncer no Brasil: dados dos registros de base populacional, volume 3. Rio de Janeiro: INCA, 2003. Available at http://www.inca.gov.br/regpop/2003/versaofinal.pdf. Accessed in 15 sep.
– reference: RipleyB. D.Modelling spatial patternsJournal of the Royal Statistical Society, B197739172212488279
– reference: HaykinS.Redes Neurais: Princípios e Prática20012Porto AlegreBookman
– reference: Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Kluwer Academic Publishers.
– reference: DaleM. R. T.DixonP.FortinM. J.LegendreP.MyersD. E.RosenbergM. S.Conceptual and mathematical relationships among methods for spatial analysisEcography20022555857710.1034/j.1600-0587.2002.250506.x
– reference: MartinsL. de O.Braz JuniorG. S.SilvaE. C.SilvaA. C.PaivaA. C.Classification of breast tissues in mammogram images using Ripley’s K function and support vector machineICIAR20072007899910
– ident: 209_CR3
– ident: 209_CR1
– volume: 33
  start-page: 3066
  year: 2006
  ident: 209_CR7
  publication-title: Medical Physics
  doi: 10.1118/1.2214177
– volume: 85
  start-page: 2332
  year: 2004
  ident: 209_CR22
  publication-title: Ecology
  doi: 10.1890/03-0280
– ident: 209_CR28
  doi: 10.1109/42.650876
– start-page: 625
  volume-title: Advances in Neural Information Processing Systems 7
  year: 1995
  ident: 209_CR11
– volume: 19
  start-page: 1032
  year: 2000
  ident: 209_CR21
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.887618
– ident: 209_CR20
– ident: 209_CR18
– ident: 209_CR16
– ident: 209_CR15
  doi: 10.1007/978-94-011-5318-8_75
– ident: 209_CR24
– ident: 209_CR9
– ident: 209_CR14
– volume-title: Redes Neurais: Princípios e Prática
  year: 2001
  ident: 209_CR13
– ident: 209_CR5
  doi: 10.1016/B978-012119792-6/50130-3
– ident: 209_CR4
– ident: 209_CR2
– ident: 209_CR29
– volume: 20
  start-page: 424
  year: 2001
  ident: 209_CR19
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.925295
– volume: 237
  start-page: 1075
  issue: 3
  year: 2005
  ident: 209_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.2373041657
– volume: 39
  start-page: 172
  year: 1977
  ident: 209_CR12
  publication-title: Journal of the Royal Statistical Society, B
  doi: 10.1111/j.2517-6161.1977.tb01615.x
– volume: 2007
  start-page: 899
  year: 2007
  ident: 209_CR26
  publication-title: ICIAR
– ident: 209_CR31
– ident: 209_CR30
  doi: 10.4995/Thesis/10251/1862
– volume-title: Digital image processing
  year: 1992
  ident: 209_CR17
– ident: 209_CR23
– volume: 25
  start-page: 558577
  year: 2002
  ident: 209_CR25
  publication-title: Ecography
– ident: 209_CR27
– ident: 209_CR6
  doi: 10.1109/CGIV.2005.30
– volume: 2007
  start-page: 784
  year: 2007
  ident: 209_CR10
  publication-title: MLDM
SSID ssj0060751
Score 1.9841541
Snippet Breast cancer is a serious public health problem in several countries. Computer-aided detection/diagnosis systems (CAD/CADx) have been used with relative...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77
SubjectTerms Circuits and Systems
Computer Imaging
Electrical Engineering
Engineering
Image Processing and Computer Vision
Pattern Recognition
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Vision
Title Detection of Breast Masses in Mammogram Images Using Growing Neural Gas Algorithm and Ripley’s K Function
URI https://link.springer.com/article/10.1007/s11265-008-0209-3
https://www.proquest.com/docview/33695208
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1939-8115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060751
  issn: 1939-8018
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1939-8115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060751
  issn: 1939-8018
  databaseCode: U2A
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEV5FA9MoEhJnLjOGKAPqMqAqFSmyEkcqGhT1KQDG3-Dv8cv4S6NKSBAYkqGxI5857vv8p3vCDl2EnAbXhIZdiS4AfGGZUhmSkOiRExXggrgeefeNe_0nauBOyjPcWc6211TkoWlXhx2s2zuGgVdbyNhv0yqLlbzAiXu2742vxx8oDWnkj00v0JTmT8N8dUZLRDmN1K08DWtdbJWgkTqz6W6QZZUuklWP5UO3CKPFyovsqhSOknoGaaW57QnkcKlwxTuQL8w8YpejsFiZLRIDaBtCLrxiiU5YIK2zKg_up9Mh_nDmMo0pjf43_357eU1o13aAp-HM2yTfqt5e94xysYJRgQ7Kje4AJAD0AKwm4jAJzOmYO8lieSxCfGWSDw7kY5scE8xhS36WAgwKWyE4NGc2FJsh1TSSap2CRWh5QlsLRSzGCUZ8gYEQZGQkSsjgBc1YuoVDKKyqjg2txgFi3rIuOhB0e0SFj1gNXLy8crTvKTGXw8fabEEoPjIZshUTWZZwBj3XNuELzjV0grK_Zf9Pt7ev57eJyuaPTKtA1LJpzN1CCAkD-uk6rfvus16oXzvC3TSWA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VcAAOtLxEaGn2wAlkZHvtjX0MjySQxwElEpys9XoNCHBQ7BzoqX-jf6-_pDOOt2lRi8TJPti76523v9kZgAMvRbMRpspyVSAsjDccS3JbWpIoYvsSWYDOOw-Gojv2Lq_96-ocd26y3Q0kWWrqxWE3xxW-VcL1LgH2S7DsYXzi1mC51bnpnRsFLNAKOnMwOSQFHBgw81-D_G2OFj7mK1i0tDbtjzAy65wnmTwcz4r4WH17VcLxnR_yCdYr75O15uyyAR90tglrf9Qk3IKHM12U6VkZm6TshHLWCzaQhA2z-wzvkHEpo4tdPKEqylmZc8A6GM3TlWp94AQdmbPW4-1kel_cPTGZJeyKfui__Pz-I2c91kZjSjNsw7h9PjrtWlVHBkuhqBaWCNB7Qp8FncJAobHnXKNQp6kUiY2BXJCGbio92RSh5pp6__EY_a-4GaOp9BJH8x2oZZNM7wILYicMqGdRwhNikVg0MbpSgVS-VOi31ME2hIlUVa6cumY8RotCy7SPUdlGE_cx4nU4_P3K87xWx1sPNwy1I5QogklkpiezPOJchL5r4wqODP2iSrDz_4-3966nG7DSHQ36Uf9i2PsMqwaisp0vUCumM72Pnk4Rf604-xehn_Bs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN5oTYwejM9YX92DJw0psLCFY7X2YW1jjE16Iwss2thCU-jBm3_Dv-cvcYaHVaMmnuAAu2RnZucbvtkZQk6NANyGHXiK7llcgXhDUwRThSJQIqopQAXwvHOvz9sD43poDvM-p3GR7V5QktmZBqzSFCbVqR9UFwffNJ2bSkrd60jeL5MVA-skgEIP9HqxFXPwh1pGK9u4FVsFrfnTEF8d0wJtfiNIU7_T3CQbOWCk9UzCW2RJhttk_VMZwR3y1JBJmlEV0iigF5hmntCeQDqXjkK4A13DJCzamcDuEdM0TYC2IADHK5bngAlaIqb18UM0GyWPEypCn97hP_jnt5fXmHZpE_wfzrBLBs2r-8u2kjdRUDywrkThFgAegBmA4ywP_DNjEuwwCAT3VYi9rMDWA2GIGrclk9iuj7kAmdyaC97N8DXJ9kgpjEK5T6jlaraFbYZ85qNUXV6DgMizhGcKD6BGmajFCjpeXmEcG12MnUVtZFx0J-18CYvusDI5-3hlmpXX-OvhSiEWB4wAmQ0RymgeO4xx29RV-ILzQlpObovx7-Md_OvpClm9bTSdm06_e0jWClJJ1Y5IKZnN5TFgk8Q9SfXvHetl1-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Breast+Masses+in+Mammogram+Images+Using+Growing+Neural+Gas+Algorithm+and+Ripley%E2%80%99s+K+Function&rft.jtitle=Journal+of+signal+processing+systems&rft.au=de+Oliveira+Martins%2C+Leonardo&rft.au=Silva%2C+Arist%C3%B3fanes+Corr%C3%AAa&rft.au=de+Paiva%2C+Anselmo+Cardoso&rft.au=Gattass%2C+Marcelo&rft.date=2009-04-01&rft.issn=1939-8018&rft.eissn=1939-8115&rft.volume=55&rft.issue=1-3&rft.spage=77&rft.epage=90&rft_id=info:doi/10.1007%2Fs11265-008-0209-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11265_008_0209_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-8018&client=summon