A robust feature matching algorithm based on adaptive feature fusion combined with image superresolution reconstruction

With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios with low texture or extreme perspective changes, the matching accuracy is still difficult to guarantee. In this paper, a superresolution rec...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 54; no. 17-18; pp. 8576 - 8591
Main Authors Huangfu, Wenjun, Ni, Cui, Wang, Peng, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-024-05600-0

Cover

Abstract With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios with low texture or extreme perspective changes, the matching accuracy is still difficult to guarantee. In this paper, a superresolution reconstruction method based on a Residual-ESPCN (efficient subpixel convolutional neural network) approach is proposed based on LoFTR (local feature matching with transformers). The superresolution method is used to improve the interpolation method used in ASFF (adaptive spatial feature fusion) to increase the image resolution, enhance the detailed information of the image, and make the extracted features richer. Then, ASFF is introduced into the local feature extraction module of LoFTR, which can alleviate the inconsistency problem of information transmission between different scale features of the feature pyramid and lessen the amount of information lost during transmission from low- to high-resolution levels. Moreover, to improve the adaptability of the algorithm to different scenarios, OTSU is introduced to adaptively calculate the threshold of feature matching. The experimental results show that in different indoor or outdoor scenarios, our proposed algorithm for matching features can effectively improve the adaptability of feature matching and can achieve good results in terms of the area under the curve (AUC), accuracy and recall. Graphical Abstract
AbstractList With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios with low texture or extreme perspective changes, the matching accuracy is still difficult to guarantee. In this paper, a superresolution reconstruction method based on a Residual-ESPCN (efficient subpixel convolutional neural network) approach is proposed based on LoFTR (local feature matching with transformers). The superresolution method is used to improve the interpolation method used in ASFF (adaptive spatial feature fusion) to increase the image resolution, enhance the detailed information of the image, and make the extracted features richer. Then, ASFF is introduced into the local feature extraction module of LoFTR, which can alleviate the inconsistency problem of information transmission between different scale features of the feature pyramid and lessen the amount of information lost during transmission from low- to high-resolution levels. Moreover, to improve the adaptability of the algorithm to different scenarios, OTSU is introduced to adaptively calculate the threshold of feature matching. The experimental results show that in different indoor or outdoor scenarios, our proposed algorithm for matching features can effectively improve the adaptability of feature matching and can achieve good results in terms of the area under the curve (AUC), accuracy and recall.
With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios with low texture or extreme perspective changes, the matching accuracy is still difficult to guarantee. In this paper, a superresolution reconstruction method based on a Residual-ESPCN (efficient subpixel convolutional neural network) approach is proposed based on LoFTR (local feature matching with transformers). The superresolution method is used to improve the interpolation method used in ASFF (adaptive spatial feature fusion) to increase the image resolution, enhance the detailed information of the image, and make the extracted features richer. Then, ASFF is introduced into the local feature extraction module of LoFTR, which can alleviate the inconsistency problem of information transmission between different scale features of the feature pyramid and lessen the amount of information lost during transmission from low- to high-resolution levels. Moreover, to improve the adaptability of the algorithm to different scenarios, OTSU is introduced to adaptively calculate the threshold of feature matching. The experimental results show that in different indoor or outdoor scenarios, our proposed algorithm for matching features can effectively improve the adaptability of feature matching and can achieve good results in terms of the area under the curve (AUC), accuracy and recall. Graphical Abstract
Author Wang, Peng
Zhang, Yingying
Huangfu, Wenjun
Ni, Cui
Author_xml – sequence: 1
  givenname: Wenjun
  surname: Huangfu
  fullname: Huangfu, Wenjun
  organization: School of Information Science and Electrical Engineering, Shandong Jiaotong University
– sequence: 2
  givenname: Cui
  surname: Ni
  fullname: Ni, Cui
  email: emilync@126.com
  organization: School of Information Science and Electrical Engineering, Shandong Jiaotong University
– sequence: 3
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: knightwp@126.com
  organization: School of Information Science and Electrical Engineering, Shandong Jiaotong University, Institute of Automation, Shandong Academy of Sciences
– sequence: 4
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  organization: School of Information Science and Electrical Engineering, Shandong Jiaotong University
BookMark eNp9kM1KAzEURoNUsFZfwFXA9ehNk5lplqX4BwU3Cu5CkrnTTplOapKx-PZmrCi46Crc5Hw3H-ecjDrXISFXDG4YQHkbGIiZzGAqMsgLgAxOyJjlJc9KIcsRGYNMT0Uh387IeQgbAOAc2Jjs59Q704dIa9Sx90i3Otp1062oblfON3G9pUYHrKjrqK70LjYf-AvXfWjSvXVb03SJ2SeeNlu9Qhr6HXqPwbV9HBiP1nUh-t4O4wU5rXUb8PLnnJDX-7uXxWO2fH54WsyXmeVMxtS4shxyKTUWFUOLtpwZDWxqTMlqsFLkuZbWGmbqWkxtIQrNBFheCqx4XfEJuT7s3Xn33mOIauN636UvFQcJIIVMliZkdqCsdyF4rJVtoh56Rq-bVjFQg2Z10KySZvWtWUGKTv9Fdz4J8J_HQ_wQCgnuVuj_Wh1JfQHzBZWH
CitedBy_id crossref_primary_10_1109_TIM_2025_3545837
crossref_primary_10_2478_amns_2024_3046
Cites_doi 10.1007/s10846-023-01812-7
10.1109/ICCV.2011.6126544
10.1109/CVPR46437.2021.00881
10.1016/S0262-8856(97)00056-5
10.1140/epjd/s10053-022-00505-4
10.1109/CVPRW50498.2020.00240
10.1109/ICME51207.2021.9428136
10.1109/CVPR42600.2020.01079
10.1007/978-3-030-58545-7_35
10.1007/978-3-319-46466-4_28
10.1109/ICCV48922.2021.00475
10.1109/TPAMI.2020.2982166
10.1117/12.3022812
10.1109/CVPR52729.2023.01211
10.1109/CVPR42600.2020.00662
10.1109/CVPR52729.2023.01326
10.1109/CVPR.2016.207
10.1109/ICCV51070.2023.00345
10.1023/B:VISI.0000029664.99615.94
10.1109/ICCV.1999.790410
10.1109/CVPR.2019.00828
10.1109/TSMC.1979.4310076
10.1007/s00371-023-03015-5
10.1007/978-3-030-67874-6_29
10.1109/TPAMI.2022.3218591
10.1109/ICCV51070.2023.01216
10.1007/11744023_32
10.1109/CVPR.2017.106
10.1109/CVPR42600.2020.01261
10.1109/CVPR46437.2021.01008
10.5244/C.2.23
10.1109/CVPR42600.2020.00499
10.1109/ICCEAI52939.2021.00075
10.1109/ICCV51070.2023.01131
10.1109/ICCV51070.2023.01174
10.1109/CVPR46437.2021.01218
10.1109/ICCV48922.2021.00061
10.1109/ICCV51070.2023.01150
10.1561/2200000073
10.1109/CVPR52729.2023.01459
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-024-05600-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection (ProQuest Business/Economics) (LUT)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 8591
ExternalDocumentID 10_1007_s10489_024_05600_0
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2021M702030
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: Shandong Provincial Transportation Science and Technology Project
  grantid: 2021B120
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-66dc30599ae6d1ecec78ba012bb71f0c9455a9ccb1bff42c646a140c374ed3fd3
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Tue Sep 02 03:18:23 EDT 2025
Wed Oct 01 04:10:05 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Fri Feb 21 02:38:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17-18
Keywords Feature matching
Feature fusion
Adaptive threshold
Superresolution reconstruction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-66dc30599ae6d1ecec78ba012bb71f0c9455a9ccb1bff42c646a140c374ed3fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3090094957
PQPubID 326365
PageCount 16
ParticipantIDs proquest_journals_3090094957
crossref_citationtrail_10_1007_s10489_024_05600_0
crossref_primary_10_1007_s10489_024_05600_0
springer_journals_10_1007_s10489_024_05600_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhang K, Liang J, Van Gool L et al (2021) Designing a practical degradation model for deep blind image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 4791–4800
Van Hoorick B, Tokmakov P, Stent S et al. Tracking through containers and occluders in the Wild[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 13802–13812
Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features[C]. In: Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. Springer Berlin Heidelberg, pp 404–417
Dusmanu M, Rocco I, Pajdla T et al (2019) D2-net: A trainable cnn for joint description and detection of local features[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 8092–8101
Zhou Y, Li Z, Guo CL et al (2023) Srformer: Permuted self-attention for single image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12780–12791
Zhang Y, Tosi F, Mattoccia S et al (2023) Go-slam: Global optimization for consistent 3d instant reconstruction[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 3727–3737
Zhu M (2024) Dynamic feature pyramid networks for object detection[C]. Fifteenth International Conference on Signal Processing Systems (ICSPS 2023). SPIE 13091:503–511
Guo C, Fan B, Zhang Q et al (2020) Augfpn: Improving multi-scale feature learning for object detection[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12595–12604
Luo Z, Zhou L, Bai X, et al (2020) Aslfeat: Learning local features of accurate shape and localization[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 6589–6598
Lin T Y, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference On Computer Vision and Pattern recognition, pp 2117–2125
SharafutdinovDGriguletskiiMKopanevPKurenkovMFerrerGBurkovAComparison of modern open-source visual SLAM approachesJ Intell Rob Syst202310734310.1007/s10846-023-01812-7
OtsuNA threshold selection method from gray-level histogramsIEEE Trans Syst Man Cybern197991626610.1109/TSMC.1979.4310076
Zhou Z, Tulsiani S (2023) Sparsefusion: Distilling view-conditioned diffusion for 3d reconstruction[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12588–12597
Prajapati K, Chudasama V, Patel H et al (2020) Unsupervised single image super-resolution network (USISResNet) for real-world data using generative adversarial network[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 464–465
Zhang X, Li T, Zhao X (2023) Boosting single image super-resolution via partial channel shifting[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 13223–13232
Tan M, Pang R, Le QV (2020) Efficientdet: Scalable and efficient object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10781–10790
Gupta D K, Arya D, Gavves E (2021) Rotation equivariant siamese networks for tracking[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12362–12371
Chen W, Liu Y, Wang W et al (2022) Deep learning for instance retrieval: A survey[J]. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp 7270–7292
Rublee E, Rabaud V, Konolige K et al (2011) ORB: An efficient alternative to SIFT or SURF[C]. In: 2011 International Conference on Computer Vision. IEEE pp 2564–2571
TrajkovićMHedleyMFast corner detectionImage Vis Comput1998162758710.1016/S0262-8856(97)00056-5
Qiao S, Chen L C, Yuille A (2021) Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10213–10224
Wang Z, Gao G, Li J et al (2021) Lightweight image super-resolution with multi-scale feature interaction network[C]. In: 2021 IEEE International Conference on Multimedia and Expo (ICME). IEEE, pp 1–6
Chen Z, Zhang Y, Gu J et al (2023) Dual aggregation transformer for image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12312–12321
Li A, Zhang L, Liu Y et al (2023) Feature modulation transformer: Cross-refinement of global representation via high-frequency prior for image super-resolution[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12514–12524
Wang W, Xie E, Li X et al (2021) Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 568–578
Peng H (2021) Design of 3D image feature point detection system based on artificial intelligence[C]. In: Advanced Hybrid Information Processing: 4th EAI International Conference, ADHIP 2020, Binzhou, China, September 26-27, 2020, Proceedings, Part II 4. Springer International Publishing, pp 313–323
LinWZhangZZhangLInfrared moving small target detection and tracking algorithm based on feature point matchingThe European Physical Journal D2022761018510.1140/epjd/s10053-022-00505-4
Sun J, Shen Z, Wang Y, et al (2021) LoFTR: Detector-free local feature matching with transformers[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8922–8931
TyszkiewiczMFuaPTrullsEDISK: Learning local features with policy gradientAdv Neural Inf Process Syst2020331425414265
Sarlin P E, DeTone D, Malisiewicz T et al (2020) Superglue: Learning feature matching with graph neural networks[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4938–4947
Rocco I, Arandjelović R, Sivic J (2020) Efficient neighbourhood consensus networks via submanifold sparse convolutions[C]. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16. Springer International Publishing, pp 605–621
Lowe DG (1999) Object recognition from local scale-invariant features[C]. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE 2:1150–1157
LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision2004609111010.1023/B:VISI.0000029664.99615.94
Yi K M, Trulls E, Lepetit V et al (2016) Lift: Learned invariant feature transform[C]. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14. Springer International Publishing, pp 467–483
Hao W, Wang P, Ni C et al (2024) SuperGlue-based accurate feature matching via outlier filtering[J]. Vis Comput 40(5):3137–3150
Rocco I, Cimpoi M, Arandjelović R, Torii A, Pajdla T, Sivic J (2018) Neighbourhood consensus networks. Adv Neural Inf Process Syst 31
Shi W, Caballero J, Huszár F et al (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883
Peyré G, Cuturi M (2019) Computational optimal transport: With applications to data science[J]. Foundations and Trends® in Machine Learning 11(5–6):355–607
WangZChenJHoiSCDeep learning for image super-resolution: A surveyIEEE Trans Pattern Anal Mach Intell202043103365338710.1109/TPAMI.2020.2982166
Harris C, Stephens M (1988) A combined corner and edge detector[C]. Alvey vision conference 15(50):10–5244
Pan T, Xu F, Yang X et al (2023) Boundary-aware backward-compatible representation via adversarial learning in image retrieval[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 15201–15210
Yang G, Wang Z, Zhuang S (2021) PFF-FPN: a parallel feature fusion module based on FPN in pedestria detection[C]. 2021 International conference on computer engineering and artificial intelligence (ICCEAI). IEEE, pp 377–381
LiXHanKLiSPrisacariuVDual-resolution correspondence networksAdv Neural Inf Process Syst2020331734617357
5600_CR25
5600_CR26
5600_CR27
DG Lowe (5600_CR12) 2004; 60
5600_CR28
5600_CR29
5600_CR40
5600_CR41
5600_CR42
5600_CR21
5600_CR23
5600_CR24
5600_CR5
5600_CR6
5600_CR7
5600_CR8
M Trajković (5600_CR10) 1998; 16
X Li (5600_CR22) 2020; 33
5600_CR14
5600_CR36
5600_CR15
5600_CR37
D Sharafutdinov (5600_CR2) 2023; 107
5600_CR16
5600_CR38
5600_CR17
5600_CR39
5600_CR1
W Lin (5600_CR9) 2022; 76
5600_CR18
5600_CR19
5600_CR3
5600_CR4
N Otsu (5600_CR43) 1979; 9
5600_CR30
5600_CR31
5600_CR32
5600_CR11
5600_CR33
Z Wang (5600_CR34) 2020; 43
5600_CR13
5600_CR35
M Tyszkiewicz (5600_CR20) 2020; 33
References_xml – reference: Dusmanu M, Rocco I, Pajdla T et al (2019) D2-net: A trainable cnn for joint description and detection of local features[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 8092–8101
– reference: Peyré G, Cuturi M (2019) Computational optimal transport: With applications to data science[J]. Foundations and Trends® in Machine Learning 11(5–6):355–607
– reference: SharafutdinovDGriguletskiiMKopanevPKurenkovMFerrerGBurkovAComparison of modern open-source visual SLAM approachesJ Intell Rob Syst202310734310.1007/s10846-023-01812-7
– reference: Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features[C]. In: Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. Springer Berlin Heidelberg, pp 404–417
– reference: LiXHanKLiSPrisacariuVDual-resolution correspondence networksAdv Neural Inf Process Syst2020331734617357
– reference: Zhang K, Liang J, Van Gool L et al (2021) Designing a practical degradation model for deep blind image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 4791–4800
– reference: Harris C, Stephens M (1988) A combined corner and edge detector[C]. Alvey vision conference 15(50):10–5244
– reference: Sarlin P E, DeTone D, Malisiewicz T et al (2020) Superglue: Learning feature matching with graph neural networks[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4938–4947
– reference: Prajapati K, Chudasama V, Patel H et al (2020) Unsupervised single image super-resolution network (USISResNet) for real-world data using generative adversarial network[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 464–465
– reference: Rocco I, Arandjelović R, Sivic J (2020) Efficient neighbourhood consensus networks via submanifold sparse convolutions[C]. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16. Springer International Publishing, pp 605–621
– reference: Rocco I, Cimpoi M, Arandjelović R, Torii A, Pajdla T, Sivic J (2018) Neighbourhood consensus networks. Adv Neural Inf Process Syst 31
– reference: Lin T Y, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference On Computer Vision and Pattern recognition, pp 2117–2125
– reference: OtsuNA threshold selection method from gray-level histogramsIEEE Trans Syst Man Cybern197991626610.1109/TSMC.1979.4310076
– reference: Zhou Z, Tulsiani S (2023) Sparsefusion: Distilling view-conditioned diffusion for 3d reconstruction[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12588–12597
– reference: Lowe DG (1999) Object recognition from local scale-invariant features[C]. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE 2:1150–1157
– reference: Sun J, Shen Z, Wang Y, et al (2021) LoFTR: Detector-free local feature matching with transformers[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8922–8931
– reference: Hao W, Wang P, Ni C et al (2024) SuperGlue-based accurate feature matching via outlier filtering[J]. Vis Comput 40(5):3137–3150
– reference: Tan M, Pang R, Le QV (2020) Efficientdet: Scalable and efficient object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10781–10790
– reference: Luo Z, Zhou L, Bai X, et al (2020) Aslfeat: Learning local features of accurate shape and localization[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 6589–6598
– reference: Wang W, Xie E, Li X et al (2021) Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 568–578
– reference: Wang Z, Gao G, Li J et al (2021) Lightweight image super-resolution with multi-scale feature interaction network[C]. In: 2021 IEEE International Conference on Multimedia and Expo (ICME). IEEE, pp 1–6
– reference: Chen W, Liu Y, Wang W et al (2022) Deep learning for instance retrieval: A survey[J]. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp 7270–7292
– reference: TrajkovićMHedleyMFast corner detectionImage Vis Comput1998162758710.1016/S0262-8856(97)00056-5
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision2004609111010.1023/B:VISI.0000029664.99615.94
– reference: Li A, Zhang L, Liu Y et al (2023) Feature modulation transformer: Cross-refinement of global representation via high-frequency prior for image super-resolution[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12514–12524
– reference: TyszkiewiczMFuaPTrullsEDISK: Learning local features with policy gradientAdv Neural Inf Process Syst2020331425414265
– reference: Van Hoorick B, Tokmakov P, Stent S et al. Tracking through containers and occluders in the Wild[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 13802–13812
– reference: Zhang X, Li T, Zhao X (2023) Boosting single image super-resolution via partial channel shifting[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 13223–13232
– reference: WangZChenJHoiSCDeep learning for image super-resolution: A surveyIEEE Trans Pattern Anal Mach Intell202043103365338710.1109/TPAMI.2020.2982166
– reference: Rublee E, Rabaud V, Konolige K et al (2011) ORB: An efficient alternative to SIFT or SURF[C]. In: 2011 International Conference on Computer Vision. IEEE pp 2564–2571
– reference: Gupta D K, Arya D, Gavves E (2021) Rotation equivariant siamese networks for tracking[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12362–12371
– reference: Yi K M, Trulls E, Lepetit V et al (2016) Lift: Learned invariant feature transform[C]. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14. Springer International Publishing, pp 467–483
– reference: Yang G, Wang Z, Zhuang S (2021) PFF-FPN: a parallel feature fusion module based on FPN in pedestria detection[C]. 2021 International conference on computer engineering and artificial intelligence (ICCEAI). IEEE, pp 377–381
– reference: Zhang Y, Tosi F, Mattoccia S et al (2023) Go-slam: Global optimization for consistent 3d instant reconstruction[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 3727–3737
– reference: Zhu M (2024) Dynamic feature pyramid networks for object detection[C]. Fifteenth International Conference on Signal Processing Systems (ICSPS 2023). SPIE 13091:503–511
– reference: Peng H (2021) Design of 3D image feature point detection system based on artificial intelligence[C]. In: Advanced Hybrid Information Processing: 4th EAI International Conference, ADHIP 2020, Binzhou, China, September 26-27, 2020, Proceedings, Part II 4. Springer International Publishing, pp 313–323
– reference: Pan T, Xu F, Yang X et al (2023) Boundary-aware backward-compatible representation via adversarial learning in image retrieval[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 15201–15210
– reference: Chen Z, Zhang Y, Gu J et al (2023) Dual aggregation transformer for image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12312–12321
– reference: Shi W, Caballero J, Huszár F et al (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883
– reference: Guo C, Fan B, Zhang Q et al (2020) Augfpn: Improving multi-scale feature learning for object detection[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12595–12604
– reference: Qiao S, Chen L C, Yuille A (2021) Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10213–10224
– reference: LinWZhangZZhangLInfrared moving small target detection and tracking algorithm based on feature point matchingThe European Physical Journal D2022761018510.1140/epjd/s10053-022-00505-4
– reference: Zhou Y, Li Z, Guo CL et al (2023) Srformer: Permuted self-attention for single image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12780–12791
– volume: 107
  start-page: 43
  issue: 3
  year: 2023
  ident: 5600_CR2
  publication-title: J Intell Rob Syst
  doi: 10.1007/s10846-023-01812-7
– ident: 5600_CR13
  doi: 10.1109/ICCV.2011.6126544
– ident: 5600_CR25
  doi: 10.1109/CVPR46437.2021.00881
– volume: 16
  start-page: 75
  issue: 2
  year: 1998
  ident: 5600_CR10
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(97)00056-5
– volume: 76
  start-page: 185
  issue: 10
  year: 2022
  ident: 5600_CR9
  publication-title: The European Physical Journal D
  doi: 10.1140/epjd/s10053-022-00505-4
– ident: 5600_CR35
  doi: 10.1109/CVPRW50498.2020.00240
– ident: 5600_CR38
  doi: 10.1109/ICME51207.2021.9428136
– ident: 5600_CR28
  doi: 10.1109/CVPR42600.2020.01079
– ident: 5600_CR24
  doi: 10.1007/978-3-030-58545-7_35
– ident: 5600_CR16
  doi: 10.1007/978-3-319-46466-4_28
– ident: 5600_CR36
  doi: 10.1109/ICCV48922.2021.00475
– volume: 43
  start-page: 3365
  issue: 10
  year: 2020
  ident: 5600_CR34
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2982166
– ident: 5600_CR29
  doi: 10.1117/12.3022812
– ident: 5600_CR5
  doi: 10.1109/CVPR52729.2023.01211
– ident: 5600_CR19
  doi: 10.1109/CVPR42600.2020.00662
– ident: 5600_CR4
  doi: 10.1109/CVPR52729.2023.01326
– ident: 5600_CR23
– ident: 5600_CR42
  doi: 10.1109/CVPR.2016.207
– ident: 5600_CR1
  doi: 10.1109/ICCV51070.2023.00345
– volume: 60
  start-page: 91
  year: 2004
  ident: 5600_CR12
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 5600_CR11
  doi: 10.1109/ICCV.1999.790410
– ident: 5600_CR18
  doi: 10.1109/CVPR.2019.00828
– volume: 33
  start-page: 14254
  year: 2020
  ident: 5600_CR20
  publication-title: Adv Neural Inf Process Syst
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 5600_CR43
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1979.4310076
– ident: 5600_CR21
  doi: 10.1007/s00371-023-03015-5
– ident: 5600_CR8
  doi: 10.1007/978-3-030-67874-6_29
– ident: 5600_CR6
  doi: 10.1109/TPAMI.2022.3218591
– ident: 5600_CR41
  doi: 10.1109/ICCV51070.2023.01216
– ident: 5600_CR14
  doi: 10.1007/11744023_32
– ident: 5600_CR27
  doi: 10.1109/CVPR.2017.106
– ident: 5600_CR30
  doi: 10.1109/CVPR42600.2020.01261
– ident: 5600_CR32
  doi: 10.1109/CVPR46437.2021.01008
– ident: 5600_CR15
  doi: 10.5244/C.2.23
– ident: 5600_CR17
  doi: 10.1109/CVPR42600.2020.00499
– ident: 5600_CR31
  doi: 10.1109/ICCEAI52939.2021.00075
– ident: 5600_CR37
  doi: 10.1109/ICCV51070.2023.01131
– ident: 5600_CR40
  doi: 10.1109/ICCV51070.2023.01174
– ident: 5600_CR7
  doi: 10.1109/CVPR46437.2021.01218
– volume: 33
  start-page: 17346
  year: 2020
  ident: 5600_CR22
  publication-title: Adv Neural Inf Process Syst
– ident: 5600_CR33
  doi: 10.1109/ICCV48922.2021.00061
– ident: 5600_CR39
  doi: 10.1109/ICCV51070.2023.01150
– ident: 5600_CR26
  doi: 10.1561/2200000073
– ident: 5600_CR3
  doi: 10.1109/CVPR52729.2023.01459
SSID ssj0003301
Score 2.377683
Snippet With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8576
SubjectTerms Adaptive algorithms
Algorithms
Artificial Intelligence
Artificial neural networks
Computer Science
Feature extraction
Image enhancement
Image reconstruction
Image resolution
Machine learning
Machines
Manufacturing
Matching
Mechanical Engineering
Processes
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QuHDhjRgMlAM3iNQ2SbscJ8Q0IcGJSbtVeQLS1k5sE38fJ0s7QIDEuW4OtmP7S5zPCF05VohEy4xoRxUAFCqIok4QTwopZapSF5rHHx7z0ZjdT_gkPgpbNN3uzZVkiNSfHrsx396TMZL4NE0AqG9zT-cFXjzOBm38BYQe5uQBsiB5LibxqczPa3xNR5sa89u1aMg2w320G8tEPFjb9QBt2eoQ7TUjGHDckUfofYDfarVaLLGzgaITQwUa2iOxnD7XgPxfZthnKoPrCksj5z68tcJu5Q_LMCgAADLI-FNZ_DqDGIMXq7n1gzuia-KAnFu22WM0Ht493Y5InKVANGyyJSjCaOq5WKTNTWq11UVfSchOShWpS7RgnEuhtUqVcyzTOcslYC9NC2YNdYaeoE5VV_YUYWGgBOwbqZmSTHIlCqcFoETncs4tl12UNiotdSQa9_MupuWGItmboQQzlMEMZdJF1-0_8zXNxp_SvcZSZdxyi5ImwrdJCl500U1jvc3n31c7-5_4OdrJggP5PrMe6oDi7QUUJkt1GfzwAx3H3DE
  priority: 102
  providerName: Springer Nature
Title A robust feature matching algorithm based on adaptive feature fusion combined with image superresolution reconstruction
URI https://link.springer.com/article/10.1007/s10489-024-05600-0
https://www.proquest.com/docview/3090094957
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BcuHSlpeaNkQ-9FZW7MO7Gx9QlaAEVNQIISKF08pPQIIkbRL17zPjeBNRqZz2YO9KOzOehz3-PoBvjpci1jKNtMsUFiiZiFTmRESgkFImKnG-efzXqLga85-TfLIDo_ouDLVV1j7RO2oz07RHfpbFgrrgRF7-mP-OiDWKTldrCg0ZqBXMuYcY24VmSshYDWj2B6Ob241vxurdc-hh1REVhZiEazThMh2n9iEciSkNiOK3oWqbf_5zZOoj0fATfAgpJOutdb4PO3Z6AB9regYWVush_O2xPzO1WiyZsx6-k2F26lsnmXx-wH9bPr4wimKGzaZMGjkn17eZ7Fa0kcZQOlg84xzasWVPL-h_2GI1t0TqEcyW-ap6g0R7BOPh4O7iKgo8C5HGBbhEQRidEU6LtIVJrLa67CqJkUupMnGxFjzPpdBaJco5nuqCFxLrMp2V3JrMmewYGtPZ1H4GJgymh10jNVeSy1yJ0mmBanOuyHObyxYktUgrHUDIiQvjudrCJ5MaKlRD5dVQxS34vnlnvobgeHd2u9ZUFZbjotoaTwtOa-1th___tS_vf-0r7KXeYKjnrA0NFLQ9wSRlqTqw2x1edqDZG_b7I3pe3l8POsEecXSc9l4B2cDqwA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB616YFeKE81EIoP5QQrdtfe3fgQoVBapa8IoVbKbfETkNokkERR_xy_jRnXmwgkeuvZXq_kGc_Dnvk-gH0vKpkalSfGc40JCpeJ5l4mBAqpVKYzH4rHz4fl4FKcjIrRBvxuemGorLKxicFQ24mhO_L3PJVUBSeL6sP0Z0KsUfS62lBoqEitYHsBYiw2dpy6myWmcLPe8SeU95s8Pzq8OBgkkWUgMah-86QsreGEUqJcaTNnnKm6WqHd1rrKfGqkKAoljdGZ9l7kphSlwqzE8Eo4y73luO4mbAkuJCZ_Wx8Ph5-_rHwB54GAOcUsB38kR7FtJzbvCSpXwpGUwo4k_ds1ruPdf55og-c7egQPY8jK-rc69hg23PgJ7DR0ECxah6ew7LNfE72YzZl3AS6UYTQcSjWZuvqGezn_fs3Ia1o2GTNl1ZRM7WqyX9DFHUNpYLKOc-iGmP24RnvHZoupIxKReExYyOJXyLfP4PJedvw5tMaTsdsFJi2Go12rjNBKqELLyhuJauJ9WRSuUG3Imi2tTQQ9J-6Nq3oN10xiqFEMdRBDnbbh7eqb6S3kx52zO42k6nj8Z_VaWdvwrpHeevj_q724e7XX8GBwcX5Wnx0PT1_Cdh6Uh-rdOtDCTXevMECa672ohQy-3rfi_wGUiyRy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BlRCXPniIFFp8oKeyYnft3Y0PFUKlKZQWcQApt8XPtlJIUpIo6l_rr2PG8SaiEtw42-uVPJ_nYc98A7DvRSVTo_LEeK4xQOEy0dzLhEghlcp05kPy-I-L8vRafOsW3SX419TCUFploxODorYDQ3fkhzyVlAUnMYD3MS3i8qRzNPyTUAcpemlt2mnMIHLu_k4xfBt9OjtBWX_I886Xq8-nSewwkBiE3jgpS2s4MZQoV9rMGWeqtlaos7WuMp8aKYpCSWN0pr0XuSlFqTAiMbwSznJvOa67DC8qYnGnKvXO17kV4Dy0Xk4xvsHfyG4s2Ille4ISlXAkJYcjSR8axYWn-9_jbLB5ndfwMjqr7HiGrjew5Prr8KppBMGiXtiA6TG7G-jJaMy8C0ShDP3gkKTJVO8n7tz41y0je2nZoM-UVUNSsvPJfkJXdgzlgGE6zqG7Yfb7FjUdG02GjtqHxAPCQvw-57zdhOtn2e8tWOkP-m4bmLToiLatMkIroQotK28kAsT7sihcoVqQNVtam0h3Tl03evWCqJnEUKMY6iCGOm3Bx_k3wxnZx5OzdxtJ1fHgj-oFTFtw0EhvMfz4am-fXm0PVhHu9fezi_MdWMsDdijRbRdWcM_dO_SMxvp9gCCDm-fG_D2cwSIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+feature+matching+algorithm+based+on+adaptive+feature+fusion+combined+with+image+superresolution+reconstruction&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Huangfu%2C+Wenjun&rft.au=Ni%2C+Cui&rft.au=Wang%2C+Peng&rft.au=Zhang%2C+Yingying&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=54&rft.issue=17-18&rft.spage=8576&rft.epage=8591&rft_id=info:doi/10.1007%2Fs10489-024-05600-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon