A robust feature matching algorithm based on adaptive feature fusion combined with image superresolution reconstruction
With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios with low texture or extreme perspective changes, the matching accuracy is still difficult to guarantee. In this paper, a superresolution rec...
        Saved in:
      
    
          | Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 54; no. 17-18; pp. 8576 - 8591 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.09.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0924-669X 1573-7497  | 
| DOI | 10.1007/s10489-024-05600-0 | 
Cover
| Abstract | With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios with low texture or extreme perspective changes, the matching accuracy is still difficult to guarantee. In this paper, a superresolution reconstruction method based on a Residual-ESPCN (efficient subpixel convolutional neural network) approach is proposed based on LoFTR (local feature matching with transformers). The superresolution method is used to improve the interpolation method used in ASFF (adaptive spatial feature fusion) to increase the image resolution, enhance the detailed information of the image, and make the extracted features richer. Then, ASFF is introduced into the local feature extraction module of LoFTR, which can alleviate the inconsistency problem of information transmission between different scale features of the feature pyramid and lessen the amount of information lost during transmission from low- to high-resolution levels. Moreover, to improve the adaptability of the algorithm to different scenarios, OTSU is introduced to adaptively calculate the threshold of feature matching. The experimental results show that in different indoor or outdoor scenarios, our proposed algorithm for matching features can effectively improve the adaptability of feature matching and can achieve good results in terms of the area under the curve (AUC), accuracy and recall.
Graphical Abstract | 
    
|---|---|
| AbstractList | With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios with low texture or extreme perspective changes, the matching accuracy is still difficult to guarantee. In this paper, a superresolution reconstruction method based on a Residual-ESPCN (efficient subpixel convolutional neural network) approach is proposed based on LoFTR (local feature matching with transformers). The superresolution method is used to improve the interpolation method used in ASFF (adaptive spatial feature fusion) to increase the image resolution, enhance the detailed information of the image, and make the extracted features richer. Then, ASFF is introduced into the local feature extraction module of LoFTR, which can alleviate the inconsistency problem of information transmission between different scale features of the feature pyramid and lessen the amount of information lost during transmission from low- to high-resolution levels. Moreover, to improve the adaptability of the algorithm to different scenarios, OTSU is introduced to adaptively calculate the threshold of feature matching. The experimental results show that in different indoor or outdoor scenarios, our proposed algorithm for matching features can effectively improve the adaptability of feature matching and can achieve good results in terms of the area under the curve (AUC), accuracy and recall. With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios with low texture or extreme perspective changes, the matching accuracy is still difficult to guarantee. In this paper, a superresolution reconstruction method based on a Residual-ESPCN (efficient subpixel convolutional neural network) approach is proposed based on LoFTR (local feature matching with transformers). The superresolution method is used to improve the interpolation method used in ASFF (adaptive spatial feature fusion) to increase the image resolution, enhance the detailed information of the image, and make the extracted features richer. Then, ASFF is introduced into the local feature extraction module of LoFTR, which can alleviate the inconsistency problem of information transmission between different scale features of the feature pyramid and lessen the amount of information lost during transmission from low- to high-resolution levels. Moreover, to improve the adaptability of the algorithm to different scenarios, OTSU is introduced to adaptively calculate the threshold of feature matching. The experimental results show that in different indoor or outdoor scenarios, our proposed algorithm for matching features can effectively improve the adaptability of feature matching and can achieve good results in terms of the area under the curve (AUC), accuracy and recall. Graphical Abstract  | 
    
| Author | Wang, Peng Zhang, Yingying Huangfu, Wenjun Ni, Cui  | 
    
| Author_xml | – sequence: 1 givenname: Wenjun surname: Huangfu fullname: Huangfu, Wenjun organization: School of Information Science and Electrical Engineering, Shandong Jiaotong University – sequence: 2 givenname: Cui surname: Ni fullname: Ni, Cui email: emilync@126.com organization: School of Information Science and Electrical Engineering, Shandong Jiaotong University – sequence: 3 givenname: Peng surname: Wang fullname: Wang, Peng email: knightwp@126.com organization: School of Information Science and Electrical Engineering, Shandong Jiaotong University, Institute of Automation, Shandong Academy of Sciences – sequence: 4 givenname: Yingying surname: Zhang fullname: Zhang, Yingying organization: School of Information Science and Electrical Engineering, Shandong Jiaotong University  | 
    
| BookMark | eNp9kM1KAzEURoNUsFZfwFXA9ehNk5lplqX4BwU3Cu5CkrnTTplOapKx-PZmrCi46Crc5Hw3H-ecjDrXISFXDG4YQHkbGIiZzGAqMsgLgAxOyJjlJc9KIcsRGYNMT0Uh387IeQgbAOAc2Jjs59Q704dIa9Sx90i3Otp1062oblfON3G9pUYHrKjrqK70LjYf-AvXfWjSvXVb03SJ2SeeNlu9Qhr6HXqPwbV9HBiP1nUh-t4O4wU5rXUb8PLnnJDX-7uXxWO2fH54WsyXmeVMxtS4shxyKTUWFUOLtpwZDWxqTMlqsFLkuZbWGmbqWkxtIQrNBFheCqx4XfEJuT7s3Xn33mOIauN636UvFQcJIIVMliZkdqCsdyF4rJVtoh56Rq-bVjFQg2Z10KySZvWtWUGKTv9Fdz4J8J_HQ_wQCgnuVuj_Wh1JfQHzBZWH | 
    
| CitedBy_id | crossref_primary_10_1109_TIM_2025_3545837 crossref_primary_10_2478_amns_2024_3046  | 
    
| Cites_doi | 10.1007/s10846-023-01812-7 10.1109/ICCV.2011.6126544 10.1109/CVPR46437.2021.00881 10.1016/S0262-8856(97)00056-5 10.1140/epjd/s10053-022-00505-4 10.1109/CVPRW50498.2020.00240 10.1109/ICME51207.2021.9428136 10.1109/CVPR42600.2020.01079 10.1007/978-3-030-58545-7_35 10.1007/978-3-319-46466-4_28 10.1109/ICCV48922.2021.00475 10.1109/TPAMI.2020.2982166 10.1117/12.3022812 10.1109/CVPR52729.2023.01211 10.1109/CVPR42600.2020.00662 10.1109/CVPR52729.2023.01326 10.1109/CVPR.2016.207 10.1109/ICCV51070.2023.00345 10.1023/B:VISI.0000029664.99615.94 10.1109/ICCV.1999.790410 10.1109/CVPR.2019.00828 10.1109/TSMC.1979.4310076 10.1007/s00371-023-03015-5 10.1007/978-3-030-67874-6_29 10.1109/TPAMI.2022.3218591 10.1109/ICCV51070.2023.01216 10.1007/11744023_32 10.1109/CVPR.2017.106 10.1109/CVPR42600.2020.01261 10.1109/CVPR46437.2021.01008 10.5244/C.2.23 10.1109/CVPR42600.2020.00499 10.1109/ICCEAI52939.2021.00075 10.1109/ICCV51070.2023.01131 10.1109/ICCV51070.2023.01174 10.1109/CVPR46437.2021.01218 10.1109/ICCV48922.2021.00061 10.1109/ICCV51070.2023.01150 10.1561/2200000073 10.1109/CVPR52729.2023.01459  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U  | 
    
| DOI | 10.1007/s10489-024-05600-0 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection (ProQuest Business/Economics) (LUT) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-7497 | 
    
| EndPage | 8591 | 
    
| ExternalDocumentID | 10_1007_s10489_024_05600_0 | 
    
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2021M702030 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: Shandong Provincial Transportation Science and Technology Project grantid: 2021B120  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-66dc30599ae6d1ecec78ba012bb71f0c9455a9ccb1bff42c646a140c374ed3fd3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0924-669X | 
    
| IngestDate | Tue Sep 02 03:18:23 EDT 2025 Wed Oct 01 04:10:05 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Fri Feb 21 02:38:46 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 17-18 | 
    
| Keywords | Feature matching Feature fusion Adaptive threshold Superresolution reconstruction  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-66dc30599ae6d1ecec78ba012bb71f0c9455a9ccb1bff42c646a140c374ed3fd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3090094957 | 
    
| PQPubID | 326365 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_3090094957 crossref_citationtrail_10_1007_s10489_024_05600_0 crossref_primary_10_1007_s10489_024_05600_0 springer_journals_10_1007_s10489_024_05600_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240900 2024-09-00 20240901  | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Boston  | 
    
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems | 
    
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) | 
    
| PublicationTitleAbbrev | Appl Intell | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Zhang K, Liang J, Van Gool L et al (2021) Designing a practical degradation model for deep blind image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 4791–4800 Van Hoorick B, Tokmakov P, Stent S et al. Tracking through containers and occluders in the Wild[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 13802–13812 Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features[C]. In: Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. Springer Berlin Heidelberg, pp 404–417 Dusmanu M, Rocco I, Pajdla T et al (2019) D2-net: A trainable cnn for joint description and detection of local features[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 8092–8101 Zhou Y, Li Z, Guo CL et al (2023) Srformer: Permuted self-attention for single image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12780–12791 Zhang Y, Tosi F, Mattoccia S et al (2023) Go-slam: Global optimization for consistent 3d instant reconstruction[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 3727–3737 Zhu M (2024) Dynamic feature pyramid networks for object detection[C]. Fifteenth International Conference on Signal Processing Systems (ICSPS 2023). SPIE 13091:503–511 Guo C, Fan B, Zhang Q et al (2020) Augfpn: Improving multi-scale feature learning for object detection[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12595–12604 Luo Z, Zhou L, Bai X, et al (2020) Aslfeat: Learning local features of accurate shape and localization[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 6589–6598 Lin T Y, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference On Computer Vision and Pattern recognition, pp 2117–2125 SharafutdinovDGriguletskiiMKopanevPKurenkovMFerrerGBurkovAComparison of modern open-source visual SLAM approachesJ Intell Rob Syst202310734310.1007/s10846-023-01812-7 OtsuNA threshold selection method from gray-level histogramsIEEE Trans Syst Man Cybern197991626610.1109/TSMC.1979.4310076 Zhou Z, Tulsiani S (2023) Sparsefusion: Distilling view-conditioned diffusion for 3d reconstruction[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12588–12597 Prajapati K, Chudasama V, Patel H et al (2020) Unsupervised single image super-resolution network (USISResNet) for real-world data using generative adversarial network[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 464–465 Zhang X, Li T, Zhao X (2023) Boosting single image super-resolution via partial channel shifting[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 13223–13232 Tan M, Pang R, Le QV (2020) Efficientdet: Scalable and efficient object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10781–10790 Gupta D K, Arya D, Gavves E (2021) Rotation equivariant siamese networks for tracking[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12362–12371 Chen W, Liu Y, Wang W et al (2022) Deep learning for instance retrieval: A survey[J]. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp 7270–7292 Rublee E, Rabaud V, Konolige K et al (2011) ORB: An efficient alternative to SIFT or SURF[C]. In: 2011 International Conference on Computer Vision. IEEE pp 2564–2571 TrajkovićMHedleyMFast corner detectionImage Vis Comput1998162758710.1016/S0262-8856(97)00056-5 Qiao S, Chen L C, Yuille A (2021) Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10213–10224 Wang Z, Gao G, Li J et al (2021) Lightweight image super-resolution with multi-scale feature interaction network[C]. In: 2021 IEEE International Conference on Multimedia and Expo (ICME). IEEE, pp 1–6 Chen Z, Zhang Y, Gu J et al (2023) Dual aggregation transformer for image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12312–12321 Li A, Zhang L, Liu Y et al (2023) Feature modulation transformer: Cross-refinement of global representation via high-frequency prior for image super-resolution[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12514–12524 Wang W, Xie E, Li X et al (2021) Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 568–578 Peng H (2021) Design of 3D image feature point detection system based on artificial intelligence[C]. In: Advanced Hybrid Information Processing: 4th EAI International Conference, ADHIP 2020, Binzhou, China, September 26-27, 2020, Proceedings, Part II 4. Springer International Publishing, pp 313–323 LinWZhangZZhangLInfrared moving small target detection and tracking algorithm based on feature point matchingThe European Physical Journal D2022761018510.1140/epjd/s10053-022-00505-4 Sun J, Shen Z, Wang Y, et al (2021) LoFTR: Detector-free local feature matching with transformers[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8922–8931 TyszkiewiczMFuaPTrullsEDISK: Learning local features with policy gradientAdv Neural Inf Process Syst2020331425414265 Sarlin P E, DeTone D, Malisiewicz T et al (2020) Superglue: Learning feature matching with graph neural networks[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4938–4947 Rocco I, Arandjelović R, Sivic J (2020) Efficient neighbourhood consensus networks via submanifold sparse convolutions[C]. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16. Springer International Publishing, pp 605–621 Lowe DG (1999) Object recognition from local scale-invariant features[C]. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE 2:1150–1157 LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision2004609111010.1023/B:VISI.0000029664.99615.94 Yi K M, Trulls E, Lepetit V et al (2016) Lift: Learned invariant feature transform[C]. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14. Springer International Publishing, pp 467–483 Hao W, Wang P, Ni C et al (2024) SuperGlue-based accurate feature matching via outlier filtering[J]. Vis Comput 40(5):3137–3150 Rocco I, Cimpoi M, Arandjelović R, Torii A, Pajdla T, Sivic J (2018) Neighbourhood consensus networks. Adv Neural Inf Process Syst 31 Shi W, Caballero J, Huszár F et al (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883 Peyré G, Cuturi M (2019) Computational optimal transport: With applications to data science[J]. Foundations and Trends® in Machine Learning 11(5–6):355–607 WangZChenJHoiSCDeep learning for image super-resolution: A surveyIEEE Trans Pattern Anal Mach Intell202043103365338710.1109/TPAMI.2020.2982166 Harris C, Stephens M (1988) A combined corner and edge detector[C]. Alvey vision conference 15(50):10–5244 Pan T, Xu F, Yang X et al (2023) Boundary-aware backward-compatible representation via adversarial learning in image retrieval[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 15201–15210 Yang G, Wang Z, Zhuang S (2021) PFF-FPN: a parallel feature fusion module based on FPN in pedestria detection[C]. 2021 International conference on computer engineering and artificial intelligence (ICCEAI). IEEE, pp 377–381 LiXHanKLiSPrisacariuVDual-resolution correspondence networksAdv Neural Inf Process Syst2020331734617357 5600_CR25 5600_CR26 5600_CR27 DG Lowe (5600_CR12) 2004; 60 5600_CR28 5600_CR29 5600_CR40 5600_CR41 5600_CR42 5600_CR21 5600_CR23 5600_CR24 5600_CR5 5600_CR6 5600_CR7 5600_CR8 M Trajković (5600_CR10) 1998; 16 X Li (5600_CR22) 2020; 33 5600_CR14 5600_CR36 5600_CR15 5600_CR37 D Sharafutdinov (5600_CR2) 2023; 107 5600_CR16 5600_CR38 5600_CR17 5600_CR39 5600_CR1 W Lin (5600_CR9) 2022; 76 5600_CR18 5600_CR19 5600_CR3 5600_CR4 N Otsu (5600_CR43) 1979; 9 5600_CR30 5600_CR31 5600_CR32 5600_CR11 5600_CR33 Z Wang (5600_CR34) 2020; 43 5600_CR13 5600_CR35 M Tyszkiewicz (5600_CR20) 2020; 33  | 
    
| References_xml | – reference: Dusmanu M, Rocco I, Pajdla T et al (2019) D2-net: A trainable cnn for joint description and detection of local features[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 8092–8101 – reference: Peyré G, Cuturi M (2019) Computational optimal transport: With applications to data science[J]. Foundations and Trends® in Machine Learning 11(5–6):355–607 – reference: SharafutdinovDGriguletskiiMKopanevPKurenkovMFerrerGBurkovAComparison of modern open-source visual SLAM approachesJ Intell Rob Syst202310734310.1007/s10846-023-01812-7 – reference: Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features[C]. In: Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. Springer Berlin Heidelberg, pp 404–417 – reference: LiXHanKLiSPrisacariuVDual-resolution correspondence networksAdv Neural Inf Process Syst2020331734617357 – reference: Zhang K, Liang J, Van Gool L et al (2021) Designing a practical degradation model for deep blind image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 4791–4800 – reference: Harris C, Stephens M (1988) A combined corner and edge detector[C]. Alvey vision conference 15(50):10–5244 – reference: Sarlin P E, DeTone D, Malisiewicz T et al (2020) Superglue: Learning feature matching with graph neural networks[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4938–4947 – reference: Prajapati K, Chudasama V, Patel H et al (2020) Unsupervised single image super-resolution network (USISResNet) for real-world data using generative adversarial network[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 464–465 – reference: Rocco I, Arandjelović R, Sivic J (2020) Efficient neighbourhood consensus networks via submanifold sparse convolutions[C]. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16. Springer International Publishing, pp 605–621 – reference: Rocco I, Cimpoi M, Arandjelović R, Torii A, Pajdla T, Sivic J (2018) Neighbourhood consensus networks. Adv Neural Inf Process Syst 31 – reference: Lin T Y, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference On Computer Vision and Pattern recognition, pp 2117–2125 – reference: OtsuNA threshold selection method from gray-level histogramsIEEE Trans Syst Man Cybern197991626610.1109/TSMC.1979.4310076 – reference: Zhou Z, Tulsiani S (2023) Sparsefusion: Distilling view-conditioned diffusion for 3d reconstruction[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12588–12597 – reference: Lowe DG (1999) Object recognition from local scale-invariant features[C]. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE 2:1150–1157 – reference: Sun J, Shen Z, Wang Y, et al (2021) LoFTR: Detector-free local feature matching with transformers[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8922–8931 – reference: Hao W, Wang P, Ni C et al (2024) SuperGlue-based accurate feature matching via outlier filtering[J]. Vis Comput 40(5):3137–3150 – reference: Tan M, Pang R, Le QV (2020) Efficientdet: Scalable and efficient object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10781–10790 – reference: Luo Z, Zhou L, Bai X, et al (2020) Aslfeat: Learning local features of accurate shape and localization[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 6589–6598 – reference: Wang W, Xie E, Li X et al (2021) Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 568–578 – reference: Wang Z, Gao G, Li J et al (2021) Lightweight image super-resolution with multi-scale feature interaction network[C]. In: 2021 IEEE International Conference on Multimedia and Expo (ICME). IEEE, pp 1–6 – reference: Chen W, Liu Y, Wang W et al (2022) Deep learning for instance retrieval: A survey[J]. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp 7270–7292 – reference: TrajkovićMHedleyMFast corner detectionImage Vis Comput1998162758710.1016/S0262-8856(97)00056-5 – reference: LoweDGDistinctive image features from scale-invariant keypointsInt J Comput Vision2004609111010.1023/B:VISI.0000029664.99615.94 – reference: Li A, Zhang L, Liu Y et al (2023) Feature modulation transformer: Cross-refinement of global representation via high-frequency prior for image super-resolution[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12514–12524 – reference: TyszkiewiczMFuaPTrullsEDISK: Learning local features with policy gradientAdv Neural Inf Process Syst2020331425414265 – reference: Van Hoorick B, Tokmakov P, Stent S et al. Tracking through containers and occluders in the Wild[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 13802–13812 – reference: Zhang X, Li T, Zhao X (2023) Boosting single image super-resolution via partial channel shifting[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 13223–13232 – reference: WangZChenJHoiSCDeep learning for image super-resolution: A surveyIEEE Trans Pattern Anal Mach Intell202043103365338710.1109/TPAMI.2020.2982166 – reference: Rublee E, Rabaud V, Konolige K et al (2011) ORB: An efficient alternative to SIFT or SURF[C]. In: 2011 International Conference on Computer Vision. IEEE pp 2564–2571 – reference: Gupta D K, Arya D, Gavves E (2021) Rotation equivariant siamese networks for tracking[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12362–12371 – reference: Yi K M, Trulls E, Lepetit V et al (2016) Lift: Learned invariant feature transform[C]. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14. Springer International Publishing, pp 467–483 – reference: Yang G, Wang Z, Zhuang S (2021) PFF-FPN: a parallel feature fusion module based on FPN in pedestria detection[C]. 2021 International conference on computer engineering and artificial intelligence (ICCEAI). IEEE, pp 377–381 – reference: Zhang Y, Tosi F, Mattoccia S et al (2023) Go-slam: Global optimization for consistent 3d instant reconstruction[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 3727–3737 – reference: Zhu M (2024) Dynamic feature pyramid networks for object detection[C]. Fifteenth International Conference on Signal Processing Systems (ICSPS 2023). SPIE 13091:503–511 – reference: Peng H (2021) Design of 3D image feature point detection system based on artificial intelligence[C]. In: Advanced Hybrid Information Processing: 4th EAI International Conference, ADHIP 2020, Binzhou, China, September 26-27, 2020, Proceedings, Part II 4. Springer International Publishing, pp 313–323 – reference: Pan T, Xu F, Yang X et al (2023) Boundary-aware backward-compatible representation via adversarial learning in image retrieval[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 15201–15210 – reference: Chen Z, Zhang Y, Gu J et al (2023) Dual aggregation transformer for image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12312–12321 – reference: Shi W, Caballero J, Huszár F et al (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1874–1883 – reference: Guo C, Fan B, Zhang Q et al (2020) Augfpn: Improving multi-scale feature learning for object detection[C]. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 12595–12604 – reference: Qiao S, Chen L C, Yuille A (2021) Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution[C]. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10213–10224 – reference: LinWZhangZZhangLInfrared moving small target detection and tracking algorithm based on feature point matchingThe European Physical Journal D2022761018510.1140/epjd/s10053-022-00505-4 – reference: Zhou Y, Li Z, Guo CL et al (2023) Srformer: Permuted self-attention for single image super-resolution[C]. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12780–12791 – volume: 107 start-page: 43 issue: 3 year: 2023 ident: 5600_CR2 publication-title: J Intell Rob Syst doi: 10.1007/s10846-023-01812-7 – ident: 5600_CR13 doi: 10.1109/ICCV.2011.6126544 – ident: 5600_CR25 doi: 10.1109/CVPR46437.2021.00881 – volume: 16 start-page: 75 issue: 2 year: 1998 ident: 5600_CR10 publication-title: Image Vis Comput doi: 10.1016/S0262-8856(97)00056-5 – volume: 76 start-page: 185 issue: 10 year: 2022 ident: 5600_CR9 publication-title: The European Physical Journal D doi: 10.1140/epjd/s10053-022-00505-4 – ident: 5600_CR35 doi: 10.1109/CVPRW50498.2020.00240 – ident: 5600_CR38 doi: 10.1109/ICME51207.2021.9428136 – ident: 5600_CR28 doi: 10.1109/CVPR42600.2020.01079 – ident: 5600_CR24 doi: 10.1007/978-3-030-58545-7_35 – ident: 5600_CR16 doi: 10.1007/978-3-319-46466-4_28 – ident: 5600_CR36 doi: 10.1109/ICCV48922.2021.00475 – volume: 43 start-page: 3365 issue: 10 year: 2020 ident: 5600_CR34 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2982166 – ident: 5600_CR29 doi: 10.1117/12.3022812 – ident: 5600_CR5 doi: 10.1109/CVPR52729.2023.01211 – ident: 5600_CR19 doi: 10.1109/CVPR42600.2020.00662 – ident: 5600_CR4 doi: 10.1109/CVPR52729.2023.01326 – ident: 5600_CR23 – ident: 5600_CR42 doi: 10.1109/CVPR.2016.207 – ident: 5600_CR1 doi: 10.1109/ICCV51070.2023.00345 – volume: 60 start-page: 91 year: 2004 ident: 5600_CR12 publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 5600_CR11 doi: 10.1109/ICCV.1999.790410 – ident: 5600_CR18 doi: 10.1109/CVPR.2019.00828 – volume: 33 start-page: 14254 year: 2020 ident: 5600_CR20 publication-title: Adv Neural Inf Process Syst – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 5600_CR43 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1979.4310076 – ident: 5600_CR21 doi: 10.1007/s00371-023-03015-5 – ident: 5600_CR8 doi: 10.1007/978-3-030-67874-6_29 – ident: 5600_CR6 doi: 10.1109/TPAMI.2022.3218591 – ident: 5600_CR41 doi: 10.1109/ICCV51070.2023.01216 – ident: 5600_CR14 doi: 10.1007/11744023_32 – ident: 5600_CR27 doi: 10.1109/CVPR.2017.106 – ident: 5600_CR30 doi: 10.1109/CVPR42600.2020.01261 – ident: 5600_CR32 doi: 10.1109/CVPR46437.2021.01008 – ident: 5600_CR15 doi: 10.5244/C.2.23 – ident: 5600_CR17 doi: 10.1109/CVPR42600.2020.00499 – ident: 5600_CR31 doi: 10.1109/ICCEAI52939.2021.00075 – ident: 5600_CR37 doi: 10.1109/ICCV51070.2023.01131 – ident: 5600_CR40 doi: 10.1109/ICCV51070.2023.01174 – ident: 5600_CR7 doi: 10.1109/CVPR46437.2021.01218 – volume: 33 start-page: 17346 year: 2020 ident: 5600_CR22 publication-title: Adv Neural Inf Process Syst – ident: 5600_CR33 doi: 10.1109/ICCV48922.2021.00061 – ident: 5600_CR39 doi: 10.1109/ICCV51070.2023.01150 – ident: 5600_CR26 doi: 10.1561/2200000073 – ident: 5600_CR3 doi: 10.1109/CVPR52729.2023.01459  | 
    
| SSID | ssj0003301 | 
    
| Score | 2.377683 | 
    
| Snippet | With the development of image feature matching technology, feature matching algorithms based on deep learning have achieved excellent results, but in scenarios... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 8576 | 
    
| SubjectTerms | Adaptive algorithms Algorithms Artificial Intelligence Artificial neural networks Computer Science Feature extraction Image enhancement Image reconstruction Image resolution Machine learning Machines Manufacturing Matching Mechanical Engineering Processes  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QuHDhjRgMlAM3iNQ2SbscJ8Q0IcGJSbtVeQLS1k5sE38fJ0s7QIDEuW4OtmP7S5zPCF05VohEy4xoRxUAFCqIok4QTwopZapSF5rHHx7z0ZjdT_gkPgpbNN3uzZVkiNSfHrsx396TMZL4NE0AqG9zT-cFXjzOBm38BYQe5uQBsiB5LibxqczPa3xNR5sa89u1aMg2w320G8tEPFjb9QBt2eoQ7TUjGHDckUfofYDfarVaLLGzgaITQwUa2iOxnD7XgPxfZthnKoPrCksj5z68tcJu5Q_LMCgAADLI-FNZ_DqDGIMXq7n1gzuia-KAnFu22WM0Ht493Y5InKVANGyyJSjCaOq5WKTNTWq11UVfSchOShWpS7RgnEuhtUqVcyzTOcslYC9NC2YNdYaeoE5VV_YUYWGgBOwbqZmSTHIlCqcFoETncs4tl12UNiotdSQa9_MupuWGItmboQQzlMEMZdJF1-0_8zXNxp_SvcZSZdxyi5ImwrdJCl500U1jvc3n31c7-5_4OdrJggP5PrMe6oDi7QUUJkt1GfzwAx3H3DE priority: 102 providerName: Springer Nature  | 
    
| Title | A robust feature matching algorithm based on adaptive feature fusion combined with image superresolution reconstruction | 
    
| URI | https://link.springer.com/article/10.1007/s10489-024-05600-0 https://www.proquest.com/docview/3090094957  | 
    
| Volume | 54 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BcuHSlpeaNkQ-9FZW7MO7Gx9QlaAEVNQIISKF08pPQIIkbRL17zPjeBNRqZz2YO9KOzOehz3-PoBvjpci1jKNtMsUFiiZiFTmRESgkFImKnG-efzXqLga85-TfLIDo_ouDLVV1j7RO2oz07RHfpbFgrrgRF7-mP-OiDWKTldrCg0ZqBXMuYcY24VmSshYDWj2B6Ob241vxurdc-hh1REVhZiEazThMh2n9iEciSkNiOK3oWqbf_5zZOoj0fATfAgpJOutdb4PO3Z6AB9regYWVush_O2xPzO1WiyZsx6-k2F26lsnmXx-wH9bPr4wimKGzaZMGjkn17eZ7Fa0kcZQOlg84xzasWVPL-h_2GI1t0TqEcyW-ap6g0R7BOPh4O7iKgo8C5HGBbhEQRidEU6LtIVJrLa67CqJkUupMnGxFjzPpdBaJco5nuqCFxLrMp2V3JrMmewYGtPZ1H4GJgymh10jNVeSy1yJ0mmBanOuyHObyxYktUgrHUDIiQvjudrCJ5MaKlRD5dVQxS34vnlnvobgeHd2u9ZUFZbjotoaTwtOa-1th___tS_vf-0r7KXeYKjnrA0NFLQ9wSRlqTqw2x1edqDZG_b7I3pe3l8POsEecXSc9l4B2cDqwA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB616YFeKE81EIoP5QQrdtfe3fgQoVBapa8IoVbKbfETkNokkERR_xy_jRnXmwgkeuvZXq_kGc_Dnvk-gH0vKpkalSfGc40JCpeJ5l4mBAqpVKYzH4rHz4fl4FKcjIrRBvxuemGorLKxicFQ24mhO_L3PJVUBSeL6sP0Z0KsUfS62lBoqEitYHsBYiw2dpy6myWmcLPe8SeU95s8Pzq8OBgkkWUgMah-86QsreGEUqJcaTNnnKm6WqHd1rrKfGqkKAoljdGZ9l7kphSlwqzE8Eo4y73luO4mbAkuJCZ_Wx8Ph5-_rHwB54GAOcUsB38kR7FtJzbvCSpXwpGUwo4k_ds1ruPdf55og-c7egQPY8jK-rc69hg23PgJ7DR0ECxah6ew7LNfE72YzZl3AS6UYTQcSjWZuvqGezn_fs3Ia1o2GTNl1ZRM7WqyX9DFHUNpYLKOc-iGmP24RnvHZoupIxKReExYyOJXyLfP4PJedvw5tMaTsdsFJi2Go12rjNBKqELLyhuJauJ9WRSuUG3Imi2tTQQ9J-6Nq3oN10xiqFEMdRBDnbbh7eqb6S3kx52zO42k6nj8Z_VaWdvwrpHeevj_q724e7XX8GBwcX5Wnx0PT1_Cdh6Uh-rdOtDCTXevMECa672ohQy-3rfi_wGUiyRy | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BlRCXPniIFFp8oKeyYnft3Y0PFUKlKZQWcQApt8XPtlJIUpIo6l_rr2PG8SaiEtw42-uVPJ_nYc98A7DvRSVTo_LEeK4xQOEy0dzLhEghlcp05kPy-I-L8vRafOsW3SX419TCUFploxODorYDQ3fkhzyVlAUnMYD3MS3i8qRzNPyTUAcpemlt2mnMIHLu_k4xfBt9OjtBWX_I886Xq8-nSewwkBiE3jgpS2s4MZQoV9rMGWeqtlaos7WuMp8aKYpCSWN0pr0XuSlFqTAiMbwSznJvOa67DC8qYnGnKvXO17kV4Dy0Xk4xvsHfyG4s2Ille4ISlXAkJYcjSR8axYWn-9_jbLB5ndfwMjqr7HiGrjew5Prr8KppBMGiXtiA6TG7G-jJaMy8C0ShDP3gkKTJVO8n7tz41y0je2nZoM-UVUNSsvPJfkJXdgzlgGE6zqG7Yfb7FjUdG02GjtqHxAPCQvw-57zdhOtn2e8tWOkP-m4bmLToiLatMkIroQotK28kAsT7sihcoVqQNVtam0h3Tl03evWCqJnEUKMY6iCGOm3Bx_k3wxnZx5OzdxtJ1fHgj-oFTFtw0EhvMfz4am-fXm0PVhHu9fezi_MdWMsDdijRbRdWcM_dO_SMxvp9gCCDm-fG_D2cwSIM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+feature+matching+algorithm+based+on+adaptive+feature+fusion+combined+with+image+superresolution+reconstruction&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Huangfu%2C+Wenjun&rft.au=Ni%2C+Cui&rft.au=Wang%2C+Peng&rft.au=Zhang%2C+Yingying&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=54&rft.issue=17-18&rft.spage=8576&rft.epage=8591&rft_id=info:doi/10.1007%2Fs10489-024-05600-0&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |