An O(n+m) time algorithm for computing a minimum semitotal dominating set in an interval graph

Let G = ( V , E ) be a graph without isolated vertices. A set D ⊆ V is said to be a dominating set of G if for every vertex v ∈ V \ D , there exists a vertex u ∈ D such that u v ∈ E . A set D ⊆ V is called a semitotal dominating set of G if D is a dominating set and every vertex in D is within dista...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied mathematics & computing Vol. 66; no. 1-2; pp. 733 - 747
Main Authors Pradhan, D., Pal, Saikat
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1598-5865
1865-2085
DOI10.1007/s12190-020-01459-9

Cover

Abstract Let G = ( V , E ) be a graph without isolated vertices. A set D ⊆ V is said to be a dominating set of G if for every vertex v ∈ V \ D , there exists a vertex u ∈ D such that u v ∈ E . A set D ⊆ V is called a semitotal dominating set of G if D is a dominating set and every vertex in D is within distance 2 from another vertex of D . For a given graph G , the semitotal domination problem is to find a semitotal dominating set of G with minimum cardinality. The decision version of the semitotal domination problem is shown to be NP-complete for chordal graphs and bipartite graphs. Henning and Pandey (Theor Comput Sci 766:46–57, 2019) proposed an O ( n 2 ) time algorithm for computing a minimum semitotal dominating set in interval graphs. In this paper, we show that for a given interval graph G = ( V , E ) , a minimum semitotal dominating set of G can be computed in O ( n + m ) time, where n = | V | and m = | E | . This improves the complexity of the semitotal domination problem for interval graphs from O ( n 2 ) to O ( n + m ) .
AbstractList Let G=(V,E) be a graph without isolated vertices. A set D⊆V is said to be a dominating set of G if for every vertex v∈V\D, there exists a vertex u∈D such that uv∈E. A set D⊆V is called a semitotal dominating set of G if D is a dominating set and every vertex in D is within distance 2 from another vertex of D. For a given graph G, the semitotal domination problem is to find a semitotal dominating set of G with minimum cardinality. The decision version of the semitotal domination problem is shown to be NP-complete for chordal graphs and bipartite graphs. Henning and Pandey (Theor Comput Sci 766:46–57, 2019) proposed an O(n2) time algorithm for computing a minimum semitotal dominating set in interval graphs. In this paper, we show that for a given interval graph G=(V,E), a minimum semitotal dominating set of G can be computed in O(n+m) time, where n=|V| and m=|E|. This improves the complexity of the semitotal domination problem for interval graphs from O(n2) to O(n+m).
Let G = ( V , E ) be a graph without isolated vertices. A set D ⊆ V is said to be a dominating set of G if for every vertex v ∈ V \ D , there exists a vertex u ∈ D such that u v ∈ E . A set D ⊆ V is called a semitotal dominating set of G if D is a dominating set and every vertex in D is within distance 2 from another vertex of D . For a given graph G , the semitotal domination problem is to find a semitotal dominating set of G with minimum cardinality. The decision version of the semitotal domination problem is shown to be NP-complete for chordal graphs and bipartite graphs. Henning and Pandey (Theor Comput Sci 766:46–57, 2019) proposed an O ( n 2 ) time algorithm for computing a minimum semitotal dominating set in interval graphs. In this paper, we show that for a given interval graph G = ( V , E ) , a minimum semitotal dominating set of G can be computed in O ( n + m ) time, where n = | V | and m = | E | . This improves the complexity of the semitotal domination problem for interval graphs from O ( n 2 ) to O ( n + m ) .
Author Pal, Saikat
Pradhan, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Pradhan
  fullname: Pradhan, D.
  organization: Department of Mathematics and Computing, Indian Institute of Technology (ISM)
– sequence: 2
  givenname: Saikat
  surname: Pal
  fullname: Pal, Saikat
  email: palsaikat67@gmail.com
  organization: Department of Mathematics and Computing, Indian Institute of Technology (ISM)
BookMark eNp9kE1LAzEQhoNUsK3-AU8BL4qsJrubNHMsxS8o9KJXQ3Y326Y0SU1SwX9vbAXBQw-ZhJn3mcy8IzRw3mmELim5o4RM7iMtKZCClPnQmkEBJ2hIBWdFSQQb5DcDUbCcOEOjGNeE8AkQGKL3qcOLa3drb3AyVmO1Wfpg0sri3gfcervdJeOWWGFrnLE7i6O2JvmkNrjzOaf25agTNg4rl2PS4TNXl0FtV-fotFebqC9-7zF6e3x4nT0X88XTy2w6L9qKQio461UlNG-gq0FAU0ED0OZxgdWcElAT1jKiOHSct9AJQepOsVLBpBGKUF6N0dWh7zb4j52OSa79Lrj8pSxZybioCWFZJQ6qNvgYg-5la1JewLsUlNlISuSPm_Lgpsxuyr2bEjJa_kO3wVgVvo5D1QGKWeyWOvxNdYT6BtlaiGY
CitedBy_id crossref_primary_10_1016_j_dam_2023_05_030
crossref_primary_10_1109_TCSS_2021_3096247
Cites_doi 10.1016/j.disc.2014.01.021
10.1007/s00026-016-0331-z
10.1016/j.dam.2018.06.010
10.23638/DMTCS-20-2-5
10.1016/j.tcs.2018.09.019
10.1007/s00373-017-1769-4
10.1016/S0022-0000(76)80045-1
10.1007/978-1-4614-6525-6
10.1016/j.disc.2007.12.044
10.1016/0020-0190(88)90091-9
10.7151/dmgt.1844
ContentType Journal Article
Copyright Korean Society for Informatics and Computational Applied Mathematics 2020
Korean Society for Informatics and Computational Applied Mathematics 2020.
Copyright_xml – notice: Korean Society for Informatics and Computational Applied Mathematics 2020
– notice: Korean Society for Informatics and Computational Applied Mathematics 2020.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s12190-020-01459-9
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1865-2085
EndPage 747
ExternalDocumentID 10_1007_s12190_020_01459_9
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5VS
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZQ
I~X
J-C
J0Z
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
L6V
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-65fa38e6b9d4989b39b99c5869546109a75c50a69d66c9d8804da52a97b8a0163
IEDL.DBID AGYKE
ISSN 1598-5865
IngestDate Wed Sep 17 23:56:07 EDT 2025
Wed Oct 01 04:46:38 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Fri Feb 21 02:48:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Domination
Interval graphs
68Q25
Total domination
Polynomial time algorithm
Semitotal domination
05C69
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-65fa38e6b9d4989b39b99c5869546109a75c50a69d66c9d8804da52a97b8a0163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2525684005
PQPubID 54415
PageCount 15
ParticipantIDs proquest_journals_2525684005
crossref_citationtrail_10_1007_s12190_020_01459_9
crossref_primary_10_1007_s12190_020_01459_9
springer_journals_10_1007_s12190_020_01459_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of applied mathematics & computing
PublicationTitleAbbrev J. Appl. Math. Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Henning, Marcon (CR8) 2016; 36
Ramalingam, Pandu Rangan (CR13) 1998; 27
Goddard, Henning, McPillan (CR3) 2014; 94
Haynes, Hedetniemi, Slater (CR5) 1998
Booth, Lueker (CR1) 1976; 13
Zhu, Liu (CR15) 2019; 254
Henning, Marcon (CR9) 2016; 20
Haynes, Hedetniemi, Slater (CR4) 1998
CR16
Henning, Marcon (CR7) 2014; 324
Henning, Yeo (CR12) 2013
Shao, Wu (CR14) 2018; 3
Henning (CR10) 2017; 33
Henning (CR6) 2009; 309
Henning, Pandey (CR11) 2019; 766
Chang, Du, Pardalos (CR2) 1998
MA Henning (1459_CR9) 2016; 20
MA Henning (1459_CR12) 2013
TW Haynes (1459_CR5) 1998
MA Henning (1459_CR7) 2014; 324
W Goddard (1459_CR3) 2014; 94
KS Booth (1459_CR1) 1976; 13
TW Haynes (1459_CR4) 1998
MA Henning (1459_CR10) 2017; 33
MA Henning (1459_CR6) 2009; 309
1459_CR16
MA Henning (1459_CR11) 2019; 766
MA Henning (1459_CR8) 2016; 36
E Zhu (1459_CR15) 2019; 254
GJ Chang (1459_CR2) 1998
Z Shao (1459_CR14) 2018; 3
G Ramalingam (1459_CR13) 1998; 27
References_xml – volume: 94
  start-page: 67
  year: 2014
  end-page: 81
  ident: CR3
  article-title: Semitotal domination in graphs
  publication-title: Util. Math.
– volume: 766
  start-page: 46
  year: 2019
  end-page: 57
  ident: CR11
  article-title: Algorithmic aspects of semitotal domination in graphs
  publication-title: Theor. Comput. Sci.
– volume: 13
  start-page: 335
  year: 1976
  end-page: 379
  ident: CR1
  article-title: Testing for consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms
  publication-title: J. Comput. Syst. Sci.
– year: 2013
  ident: CR12
  publication-title: Total Domination in Graphs
– volume: 20
  start-page: 799
  year: 2016
  end-page: 813
  ident: CR9
  article-title: Semitotal domination in claw-free cubic graphs
  publication-title: Ann Combin.
– year: 1998
  ident: CR4
  publication-title: Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics
– volume: 3
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR14
  article-title: Complexity and approximation ratio of semitotal domination in graphs
  publication-title: Commun. Combin. Optim.
– volume: 254
  start-page: 295
  year: 2019
  end-page: 298
  ident: CR15
  article-title: On the semitotal domination number of line graphs
  publication-title: Discrete Appl. Math.
– ident: CR16
– volume: 36
  start-page: 71
  year: 2016
  end-page: 93
  ident: CR8
  article-title: Vertices contained in all or in no minimum semitotal dominating set of a tree Discuss
  publication-title: Math. Graph. Theory
– volume: 309
  start-page: 32
  year: 2009
  end-page: 63
  ident: CR6
  article-title: A survey of selected recent results on total domination in graphs
  publication-title: Discrete Math.
– year: 1998
  ident: CR5
  publication-title: Domination in Graphs: Advanced Topics. Monographs and Textbooks in Pure and Applied Mathematics
– volume: 27
  start-page: 271
  year: 1998
  end-page: 274
  ident: CR13
  article-title: A unified approach to domination problems in interval graphs
  publication-title: Inform. Process. Lett.
– volume: 33
  start-page: 403
  year: 2017
  end-page: 417
  ident: CR10
  article-title: Edge weighting functions on semitotal dominating sets
  publication-title: Graphs Combin.
– volume: 324
  start-page: 13
  year: 2014
  end-page: 18
  ident: CR7
  article-title: On matching and semitotal domination in graphs
  publication-title: Discrete Math.
– start-page: 339
  year: 1998
  end-page: 405
  ident: CR2
  article-title: Algorithmic aspects of domination in graphs
  publication-title: Handbook of Combinatorial Optimization
– volume: 324
  start-page: 13
  year: 2014
  ident: 1459_CR7
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2014.01.021
– volume: 94
  start-page: 67
  year: 2014
  ident: 1459_CR3
  publication-title: Util. Math.
– volume: 3
  start-page: 1
  year: 2018
  ident: 1459_CR14
  publication-title: Commun. Combin. Optim.
– volume: 20
  start-page: 799
  year: 2016
  ident: 1459_CR9
  publication-title: Ann Combin.
  doi: 10.1007/s00026-016-0331-z
– volume: 254
  start-page: 295
  year: 2019
  ident: 1459_CR15
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.06.010
– ident: 1459_CR16
  doi: 10.23638/DMTCS-20-2-5
– start-page: 339
  volume-title: Handbook of Combinatorial Optimization
  year: 1998
  ident: 1459_CR2
– volume: 766
  start-page: 46
  year: 2019
  ident: 1459_CR11
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2018.09.019
– volume: 33
  start-page: 403
  year: 2017
  ident: 1459_CR10
  publication-title: Graphs Combin.
  doi: 10.1007/s00373-017-1769-4
– volume: 13
  start-page: 335
  year: 1976
  ident: 1459_CR1
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(76)80045-1
– volume-title: Total Domination in Graphs
  year: 2013
  ident: 1459_CR12
  doi: 10.1007/978-1-4614-6525-6
– volume-title: Domination in Graphs: Advanced Topics. Monographs and Textbooks in Pure and Applied Mathematics
  year: 1998
  ident: 1459_CR5
– volume: 309
  start-page: 32
  year: 2009
  ident: 1459_CR6
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.12.044
– volume: 27
  start-page: 271
  year: 1998
  ident: 1459_CR13
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(88)90091-9
– volume-title: Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics
  year: 1998
  ident: 1459_CR4
– volume: 36
  start-page: 71
  year: 2016
  ident: 1459_CR8
  publication-title: Math. Graph. Theory
  doi: 10.7151/dmgt.1844
SSID ssj0067909
Score 2.2258878
Snippet Let G = ( V , E ) be a graph without isolated vertices. A set D ⊆ V is said to be a dominating set of G if for every vertex v ∈ V \ D , there exists a vertex u...
Let G=(V,E) be a graph without isolated vertices. A set D⊆V is said to be a dominating set of G if for every vertex v∈V\D, there exists a vertex u∈D such that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 733
SubjectTerms Algorithms
Apexes
Applied mathematics
Computational Mathematics and Numerical Analysis
Graph theory
Graphs
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Original Research
Theory of Computation
Title An O(n+m) time algorithm for computing a minimum semitotal dominating set in an interval graph
URI https://link.springer.com/article/10.1007/s12190-020-01459-9
https://www.proquest.com/docview/2525684005
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1865-2085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067909
  issn: 1598-5865
  databaseCode: AFBBN
  dateStart: 19940901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1865-2085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067909
  issn: 1598-5865
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1865-2085
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067909
  issn: 1598-5865
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-i5bIdxmCbVj4qH3YY6lK1ie3Ex4IoCNRyoVJ3WeSvsmokRSS97K_fs5tQrQKknu04yfPzez_b7_0ewLdIU8WN7Qeq19cBNYYGis3CwDouMyYTFfqstNGYX03o9ZRNq6Swoo52r68kvaVeJ7uFLu3ZbXfcVZgIRAN2Pd9WE3YHlz9vLmoLzGPhQzvQU7usIs6qZJmXR_nfIa1R5sbFqPc3wz2Y1F-6CjP5012Wqqv_bpA4bvsrH-FDBUDJYKUx-7Bj8wN4P3pmby0-wa9BTm6_553slLjS80Q-3C-e5uXvjCDCJdrXgcDXEUkcMUm2zEhhM7QMiOOJWbjYGt9c2JLMcyJzMveBldjq6bE_w2R4cXd-FVR1GAKNC7QMOJvJKLFcCUNFIlQklBAaBSuYZ2uXMdOsJ7kwnGth0CJQI1koRawSiZAy-gLNfJHbr0CopVKzmGqNOExYR2do9EwmsYk0ghHTgn49GamuSMpdrYyHdE2v7GSXouxSL7tUtKDz_MzjiqLjzd7H9Ryn1XIt0pAh8sOtbo-14Ec9Zevm10c73K77EbwLXUyMP8U5hmb5tLQnCGpK1UYdHp6djduVLrehMQkH_wC0Rey5
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHIAD4ikGA3LgABqVtjZJm-OEQAO2cdmknajyGkxaO0S7_4-TtatAgMQ5qQ92HX9O7M8IXQaKSKZN25OttvKI1sSTdOJ7xnKZURFJ33Wl9QesOyKPYzoumsKystq9fJJ0J3XV7Obbtmeb7tinMO7xdbRhCawsY_7I75TnLwu5K-yAOG17ihgtWmV-lvE1HFUY89uzqIs297top4CJuLO06x5aM-k-2u6vOFazA_TSSfHzVdpMrrEdEI_F7HUOmf5bggGHYuWmNYBsLLClD0kWCc5MAv4LaBvrua2AccuZyfE0xSLFU1f-CKuOxPoQje7vhrddr5iW4Clwo9xjdCKCyDDJNeERlwGXnCtQAKeOU12EVNGWYFwzprgGvyVaUF_wUEYCgF9whGrpPDXHCBNDhKIhUQrQEjeWdFCriYhCHSiADLqO2qXSYlVQiduJFrO4IkG2io5B0bFTdMzrqLn65n1JpPHn7kZpi7hwqiz2KeAzSEhbtI5uSvtUy79LO_nf9gu02R32e3HvYfB0irZ8W8Xi7l0aqJZ_LMwZwJBcnru_7hPBMdBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE6MH4zOiqD140OBG2G272yNRCT5AD5JwctMXSsIuRJb_77Tsgho18TzdHqad9uvOfN8gdBooIpk2dU_W6sojWhNP0r7vGatlRkUkfcdKa3dYq0vuerT3icXvqt2LlOSM02BVmtLscqz7lwvim28p0PbpY9Ni3OPLaIVYoQTY0V2_UZzFLOSuyAPubMsvYjSnzfw8x9eraYE3v6VI3c3T3EQbOWTEjdkab6Elk26j9fZcb3Wyg14aKX48S6vJObbN4rEYvo7g1f-WYMCkWLnODTA3FthKiSTTBE9MArEMyBvrka2GceaJyfAgxSLFA1cKCVYnaL2Lus2b56uWl3dO8BSEVOYx2hdBZJjkmvCIy4BLzhU4gFOnry5CqmhNMK4ZU1xDDBMtqC94KCMBIDDYQ6V0lJp9hIkhQtGQKAXIiRsrQKhVX0ShDhTAB11G9cJpscplxW13i2G8EES2jo7B0bFzdMzLqDr_ZjwT1fhzdKVYizgPsEnsU8Bq8Dit0TK6KNZnYf59toP_DT9Bq0_XzfjhtnN_iNZ8W9DifsFUUCl7n5ojQCSZPHab7gMdY9R8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+%24%24O%28n%2Bm%29%24%24+time+algorithm+for+computing+a+minimum+semitotal+dominating+set+in+an+interval+graph&rft.jtitle=Journal+of+applied+mathematics+%26+computing&rft.au=Pradhan%2C+D.&rft.au=Pal%2C+Saikat&rft.date=2021-06-01&rft.issn=1598-5865&rft.eissn=1865-2085&rft.volume=66&rft.issue=1-2&rft.spage=733&rft.epage=747&rft_id=info:doi/10.1007%2Fs12190-020-01459-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12190_020_01459_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5865&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5865&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5865&client=summon