High-dimensional imbalanced biomedical data classification based on P-AdaBoost-PAUC algorithm

High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification accuracy by filtering out low-dimensional feature subsets that are highly correlated with the classification target and have minimal mutual...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 78; no. 14; pp. 16581 - 16604
Main Authors Li, Xiao, Li, Kewen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
DOI10.1007/s11227-022-04509-0

Cover

Abstract High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification accuracy by filtering out low-dimensional feature subsets that are highly correlated with the classification target and have minimal mutual redundancy. However, traditional feature selection algorithms tend to select the feature subset that is favorable to class with large sample size, resulting in poor classification performance for minority samples. In response to the above problems, the P-AdaBoost-PAUC algorithm is proposed to be applied to high-dimensional imbalanced biomedical data classification. The idea of P-AdaBoost-PAUC algorithm has two major contributions. The first is that an improved decision tree attribute optimization algorithm (DT-P) is proposed, which pays more attention to the correlation among attributes. The second is that an improved AdaBoost algorithm based on probabilistic AUC (AdaBoost-PAUC) is proposed, which comprehensively considers misclassification probability and AUC to pay more attention to minority samples. An ensemble algorithm for high-dimensional imbalanced biomedical data classification is formed, which is conducive to improve classification performance. Experimental results show that Recall, Specificity, F1, and AUC values of P-AdaBoost-PAUC ensemble algorithm have reached the highest values on datasets with different imbalance rate. Especially when the proportion of minority samples is only 12.6 % , Recall, Specificity, F1 and AUC values all reached above 0.95. And algorithm stability experiments show that P-AdaBoost-PAUC algorithm is more stable than other algorithms. Therefore, the P-AdaBoost-PAUC ensemble algorithm proposed in this paper improves classification performance of minority samples on high-dimensional imbalanced biomedical data to a certain extent.
AbstractList High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification accuracy by filtering out low-dimensional feature subsets that are highly correlated with the classification target and have minimal mutual redundancy. However, traditional feature selection algorithms tend to select the feature subset that is favorable to class with large sample size, resulting in poor classification performance for minority samples. In response to the above problems, the P-AdaBoost-PAUC algorithm is proposed to be applied to high-dimensional imbalanced biomedical data classification. The idea of P-AdaBoost-PAUC algorithm has two major contributions. The first is that an improved decision tree attribute optimization algorithm (DT-P) is proposed, which pays more attention to the correlation among attributes. The second is that an improved AdaBoost algorithm based on probabilistic AUC (AdaBoost-PAUC) is proposed, which comprehensively considers misclassification probability and AUC to pay more attention to minority samples. An ensemble algorithm for high-dimensional imbalanced biomedical data classification is formed, which is conducive to improve classification performance. Experimental results show that Recall, Specificity, F1, and AUC values of P-AdaBoost-PAUC ensemble algorithm have reached the highest values on datasets with different imbalance rate. Especially when the proportion of minority samples is only 12.6 % , Recall, Specificity, F1 and AUC values all reached above 0.95. And algorithm stability experiments show that P-AdaBoost-PAUC algorithm is more stable than other algorithms. Therefore, the P-AdaBoost-PAUC ensemble algorithm proposed in this paper improves classification performance of minority samples on high-dimensional imbalanced biomedical data to a certain extent.
High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification accuracy by filtering out low-dimensional feature subsets that are highly correlated with the classification target and have minimal mutual redundancy. However, traditional feature selection algorithms tend to select the feature subset that is favorable to class with large sample size, resulting in poor classification performance for minority samples. In response to the above problems, the P-AdaBoost-PAUC algorithm is proposed to be applied to high-dimensional imbalanced biomedical data classification. The idea of P-AdaBoost-PAUC algorithm has two major contributions. The first is that an improved decision tree attribute optimization algorithm (DT-P) is proposed, which pays more attention to the correlation among attributes. The second is that an improved AdaBoost algorithm based on probabilistic AUC (AdaBoost-PAUC) is proposed, which comprehensively considers misclassification probability and AUC to pay more attention to minority samples. An ensemble algorithm for high-dimensional imbalanced biomedical data classification is formed, which is conducive to improve classification performance. Experimental results show that Recall, Specificity, F1, and AUC values of P-AdaBoost-PAUC ensemble algorithm have reached the highest values on datasets with different imbalance rate. Especially when the proportion of minority samples is only 12.6%, Recall, Specificity, F1 and AUC values all reached above 0.95. And algorithm stability experiments show that P-AdaBoost-PAUC algorithm is more stable than other algorithms. Therefore, the P-AdaBoost-PAUC ensemble algorithm proposed in this paper improves classification performance of minority samples on high-dimensional imbalanced biomedical data to a certain extent.
Author Li, Xiao
Li, Kewen
Author_xml – sequence: 1
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: College of Computer Science and Technology, China University of Petroleum Huadong
– sequence: 2
  givenname: Kewen
  surname: Li
  fullname: Li, Kewen
  email: likw@upc.edu.cn
  organization: College of Computer Science and Technology, China University of Petroleum Huadong
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOT7Ec2x1rUCgV7sEcJs5tsm7K7qcn24L83toLgoadMhucZZt4JGfWuN4TcMrhnAOIhMMa5oMA5hSwHSeGCjFku0vgtsxEZg-RAyzzjV2QSwg4AslSkY_KxsJst1bYzfbCuxzaxXYUt9rXRSWVdZ7StY1fjgEndYgi2iY0hskmFIUKxWNGZxkfnwkBXs_U8wXbjvB223TW5bLAN5ub3nZL189P7fEGXby-v89mS1imTAy1yBGaQgWAVMCmy2khsmrwRpRS6kpoxI3SRp42uKm0QkMUiE4IXMtdNkU7J3Wnu3rvPgwmD2rmDj9cExQVjpQSZ8kiVJ6r2LgRvGlXb4XjK4NG2ioH6CVOdwlQxTHUMU0FU-T91722H_uu8lJ6kEOF-Y_zfVmesb7qAiXE
CitedBy_id crossref_primary_10_1007_s11227_025_07053_9
crossref_primary_10_1007_s00521_024_09713_y
crossref_primary_10_1007_s11227_022_05037_7
crossref_primary_10_1007_s11227_024_05951_y
crossref_primary_10_1016_j_bspc_2024_107447
Cites_doi 10.1109/TPAMI.2019.2891760
10.1016/j.neucom.2017.08.050
10.1007/s13042-018-0797-6
10.1007/s00726-011-0835-0
10.1109/TNNLS.2017.2732482
10.1016/j.neucom.2017.05.098
10.1016/j.compbiomed.2017.10.002
10.1007/s10115-018-1201-2
10.1111/j.1467-9868.2007.00607.x
10.1016/j.knosys.2017.09.006
10.1016/j.eswa.2016.12.035
10.1109/TNB.2005.853657
10.1016/j.bspc.2021.102610
10.1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO;2
10.1016/j.eswa.2007.11.051
10.1109/TIP.2017.2781298
10.1006/jcss.1997.1504
10.1016/j.ins.2014.07.015
10.1109/TKDE.2007.44
10.1016/j.ipm.2020.102388
10.1016/j.ins.2020.05.077
10.1109/ISNCC.2019.8909140
10.1007/s12065-020-00498-2
10.1109/SPAC.2017.8304290
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-022-04509-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 16604
ExternalDocumentID 10_1007_s11227_022_04509_0
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021MF082
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: The major project of National Natural Science Foundation of China
  grantid: 51991365
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-65a01ea1071b01974ce9aff5f7897db9d11e7d653fdbbdea0a1dbb4772695df63
IEDL.DBID AGYKE
ISSN 0920-8542
IngestDate Thu Sep 25 00:52:02 EDT 2025
Wed Oct 01 03:43:53 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Fri Feb 21 02:45:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Imbalanced data
Feature selection
Adaptive Boosting
Pearson
AUC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-65a01ea1071b01974ce9aff5f7897db9d11e7d653fdbbdea0a1dbb4772695df63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2711890932
PQPubID 2043774
PageCount 24
ParticipantIDs proquest_journals_2711890932
crossref_citationtrail_10_1007_s11227_022_04509_0
crossref_primary_10_1007_s11227_022_04509_0
springer_journals_10_1007_s11227_022_04509_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cao, Liu, Yang (CR9) 2017; 91
Lu, Feng, Chen (CR18) 2020; 42
Gaddam, Phoha, Balagani (CR14) 2007; 19
Park, Hastie (CR24) 2007; 69
Viegas, Rocha, Gonalves (CR10) 2018; 273
CR12
Yang, Lin, Zhu (CR27) 2019; 46
CR31
CR30
Sysoev (CR26) 2019; 59
Liu, Xu, Luo (CR4) 2018; 27
Duan, Rajapakse, Wang (CR22) 2005; 4
Haro-García, Cerruela-García, García-Pedrajas (CR3) 2020; 540
Cheriguene, Azizi, Dey (CR21) 2019; 10
Yang, Yu, Wen (CR5) 2019; 99
Lan (CR2) 2015; 03
Maldonado, Weber, Famili (CR7) 2014; 286
CR28
Zhou, Hu, Li (CR8) 2017; 136
Liu, Wu, Feng (CR19) 2018; 277
Wen, Li, Zhu (CR13) 2021; 58
Burrows, Benjamin, Beauchamp (CR16) 2010; 34
Polat, Guenes (CR15) 2009; 36
Elsebakhi, Asparouhov, Al-Ali (CR6) 2015; 8
Haixiang, Yijing, Shang (CR1) 2017; 73
Cai, Tao, Hu (CR20) 2012; 42
Dhananjay, Jayaraman (CR29) 2021; 68
Freund, Schapire (CR17) 1997; 55
Wa Ng, Xiao, Wa Ng (CR23) 2019; 99
Mazza-Anthony, Mazoure, Coates (CR25) 2020; 99
Khan, Hayat, Bennamoun (CR11) 2018; 29
C Wa Ng (4509_CR23) 2019; 99
K Polat (4509_CR15) 2009; 36
C Mazza-Anthony (4509_CR25) 2020; 99
4509_CR28
F Viegas (4509_CR10) 2018; 273
B Dhananjay (4509_CR29) 2021; 68
G Wen (4509_CR13) 2021; 58
WR Burrows (4509_CR16) 2010; 34
Y Freund (4509_CR17) 1997; 55
P Zhou (4509_CR8) 2017; 136
PA Yang (4509_CR27) 2019; 46
SH Khan (4509_CR11) 2018; 29
KB Duan (4509_CR22) 2005; 4
K Yang (4509_CR5) 2019; 99
MY Park (4509_CR24) 2007; 69
E Elsebakhi (4509_CR6) 2015; 8
S Maldonado (4509_CR7) 2014; 286
C Lu (4509_CR18) 2020; 42
M Liu (4509_CR4) 2018; 27
4509_CR12
Y Cai (4509_CR20) 2012; 42
4509_CR31
S Liu (4509_CR19) 2018; 277
4509_CR30
AD Haro-García (4509_CR3) 2020; 540
SR Gaddam (4509_CR14) 2007; 19
F Lan (4509_CR2) 2015; 03
P Cao (4509_CR9) 2017; 91
Guo Haixiang (4509_CR1) 2017; 73
S Cheriguene (4509_CR21) 2019; 10
O Sysoev (4509_CR26) 2019; 59
References_xml – volume: 42
  start-page: 925
  issue: 4
  year: 2020
  end-page: 938
  ident: CR18
  article-title: Tensor robust principal component analysis with a new tensor nuclear norm
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2891760
– ident: CR12
– ident: CR30
– volume: 8
  start-page: 203
  issue: 4
  year: 2015
  end-page: 214
  ident: CR6
  article-title: Novel incremental ranking framework for biomedical data analytics and dimensionality reduction: big data challenges and opportunities
  publication-title: J Comput Sci Syst Biol
– volume: 273
  start-page: 554
  year: 2018
  end-page: 569
  ident: CR10
  article-title: A genetic programming approach for feature selection in highly dimensional skewed data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.050
– volume: 10
  start-page: 1189
  issue: 5
  year: 2019
  end-page: 1204
  ident: CR21
  article-title: A new hybrid classifier selection model based on mRMR method and diversity measures
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-0797-6
– volume: 42
  start-page: 1387
  issue: 4
  year: 2012
  end-page: 1395
  ident: CR20
  article-title: Prediction of lysine ubiquitination with mRMR feature selection and analysis
  publication-title: Amino Acids
  doi: 10.1007/s00726-011-0835-0
– volume: 29
  start-page: 3573
  issue: 8
  year: 2018
  end-page: 3587
  ident: CR11
  article-title: Cost-sensitive learning of deep Feature representations from imbalanced data
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2732482
– volume: 277
  start-page: 208
  year: 2018
  end-page: 217
  ident: CR19
  article-title: Quasi-curvature local linear projection and extreme learning machine for nonlinear dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.098
– volume: 91
  start-page: 21
  year: 2017
  end-page: 37
  ident: CR9
  article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.10.002
– volume: 59
  start-page: 197
  issue: 1
  year: 2019
  end-page: 218
  ident: CR26
  article-title: A smoothed monotonic regression via L2 regularization
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-018-1201-2
– volume: 69
  start-page: 659
  issue: 4
  year: 2007
  end-page: 677
  ident: CR24
  article-title: L1-regularization path algorithm for generalized linear models
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2007.00607.x
– volume: 136
  start-page: 187
  year: 2017
  end-page: 199
  ident: CR8
  article-title: Online feature selection for high-dimensional class-imbalanced data
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.09.006
– volume: 73
  start-page: 220
  year: 2017
  end-page: 239
  ident: CR1
  article-title: Learning from class-imbalanced data: review of methods and applications
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.12.035
– volume: 99
  start-page: 1
  year: 2020
  end-page: 1
  ident: CR25
  article-title: Learning gaussian graphical models with ordered weighted L1 regularization
  publication-title: IEEE Trans Signal Process
– volume: 99
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR5
  article-title: Hybrid classifier ensemble for imbalanced data
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 99
  start-page: 1
  year: 2019
  end-page: 1
  ident: CR23
  article-title: Identification of autism based on SVM-RFE and stacked sparse Auto-Encoder
  publication-title: IEEE Access
– ident: CR31
– volume: 4
  start-page: 228
  issue: 3
  year: 2005
  end-page: 234
  ident: CR22
  article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2005.853657
– volume: 46
  start-page: 14
  issue: 12
  year: 2019
  end-page: 18
  ident: CR27
  article-title: AdaBoostRS: integration of high-dimensional unbalanced data learning
  publication-title: Computer Science
– volume: 68
  issue: 16
  year: 2021
  ident: CR29
  article-title: Analysis and classification of heart rate using CatBoost feature ranking model[J]
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102610
– volume: 34
  start-page: 1848
  issue: 8
  year: 2010
  end-page: 1862
  ident: CR16
  article-title: CART decision-tree statistical analysis and prediction of summer season maximum surface ozone for the Vancouver, Montreal, and Atlantic regions of Canada[J]
  publication-title: J Appl Meteorol
  doi: 10.1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO;2
– volume: 36
  start-page: 1587
  issue: 2–1
  year: 2009
  end-page: 1592
  ident: CR15
  article-title: A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.11.051
– volume: 27
  start-page: 1323
  issue: 3
  year: 2018
  end-page: 1335
  ident: CR4
  article-title: Cost-sensitive feature selection by optimizing F-measures
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2781298
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  end-page: 139
  ident: CR17
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– volume: 286
  start-page: 228
  year: 2014
  end-page: 246
  ident: CR7
  article-title: Feature selection for high-dimensional class-imbalanced data sets using support vector machines
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.07.015
– volume: 03
  start-page: 7
  issue: 3
  year: 2015
  end-page: 13
  ident: CR2
  article-title: The discriminate analysis and dimension reduction methods of high dimension
  publication-title: Open J Soc Sci
– volume: 19
  start-page: 345
  issue: 3
  year: 2007
  end-page: 354
  ident: CR14
  article-title: K-means+id3: a novel method for supervised anomaly detection by cascading k-Means clustering and id3 decision tree learning methods
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.44
– ident: CR28
– volume: 58
  start-page: 102388
  issue: 1
  year: 2021
  ident: CR13
  article-title: One-step spectral rotation clustering for imbalanced high-dimensional data
  publication-title: Inf Process Manage
  doi: 10.1016/j.ipm.2020.102388
– volume: 540
  start-page: 89
  year: 2020
  end-page: 116
  ident: CR3
  article-title: Ensembles of feature selectors for dealing with class-imbalanced datasets: a proposal and comparative study-ScienceDirect
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.05.077
– volume: 58
  start-page: 102388
  issue: 1
  year: 2021
  ident: 4509_CR13
  publication-title: Inf Process Manage
  doi: 10.1016/j.ipm.2020.102388
– volume: 19
  start-page: 345
  issue: 3
  year: 2007
  ident: 4509_CR14
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.44
– volume: 4
  start-page: 228
  issue: 3
  year: 2005
  ident: 4509_CR22
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2005.853657
– volume: 273
  start-page: 554
  year: 2018
  ident: 4509_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.050
– volume: 34
  start-page: 1848
  issue: 8
  year: 2010
  ident: 4509_CR16
  publication-title: J Appl Meteorol
  doi: 10.1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO;2
– ident: 4509_CR12
  doi: 10.1109/ISNCC.2019.8909140
– volume: 27
  start-page: 1323
  issue: 3
  year: 2018
  ident: 4509_CR4
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2781298
– volume: 46
  start-page: 14
  issue: 12
  year: 2019
  ident: 4509_CR27
  publication-title: Computer Science
– volume: 42
  start-page: 1387
  issue: 4
  year: 2012
  ident: 4509_CR20
  publication-title: Amino Acids
  doi: 10.1007/s00726-011-0835-0
– ident: 4509_CR31
  doi: 10.1007/s12065-020-00498-2
– volume: 10
  start-page: 1189
  issue: 5
  year: 2019
  ident: 4509_CR21
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-0797-6
– volume: 69
  start-page: 659
  issue: 4
  year: 2007
  ident: 4509_CR24
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2007.00607.x
– volume: 36
  start-page: 1587
  issue: 2–1
  year: 2009
  ident: 4509_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.11.051
– volume: 99
  start-page: 1
  year: 2020
  ident: 4509_CR25
  publication-title: IEEE Trans Signal Process
– volume: 99
  start-page: 1
  year: 2019
  ident: 4509_CR5
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 540
  start-page: 89
  year: 2020
  ident: 4509_CR3
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.05.077
– volume: 03
  start-page: 7
  issue: 3
  year: 2015
  ident: 4509_CR2
  publication-title: Open J Soc Sci
– ident: 4509_CR28
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 4509_CR17
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– volume: 99
  start-page: 1
  year: 2019
  ident: 4509_CR23
  publication-title: IEEE Access
– volume: 59
  start-page: 197
  issue: 1
  year: 2019
  ident: 4509_CR26
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-018-1201-2
– volume: 8
  start-page: 203
  issue: 4
  year: 2015
  ident: 4509_CR6
  publication-title: J Comput Sci Syst Biol
– volume: 286
  start-page: 228
  year: 2014
  ident: 4509_CR7
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.07.015
– volume: 91
  start-page: 21
  year: 2017
  ident: 4509_CR9
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.10.002
– volume: 29
  start-page: 3573
  issue: 8
  year: 2018
  ident: 4509_CR11
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2732482
– volume: 68
  issue: 16
  year: 2021
  ident: 4509_CR29
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102610
– ident: 4509_CR30
  doi: 10.1109/SPAC.2017.8304290
– volume: 42
  start-page: 925
  issue: 4
  year: 2020
  ident: 4509_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2891760
– volume: 277
  start-page: 208
  year: 2018
  ident: 4509_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.098
– volume: 73
  start-page: 220
  year: 2017
  ident: 4509_CR1
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.12.035
– volume: 136
  start-page: 187
  year: 2017
  ident: 4509_CR8
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.09.006
SSID ssj0004373
Score 2.348617
Snippet High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16581
SubjectTerms Algorithms
Biomedical data
Classification
Compilers
Computer Science
Decision trees
Interpreters
Optimization
Processor Architectures
Programming Languages
Recall
Redundancy
Statistical analysis
Title High-dimensional imbalanced biomedical data classification based on P-AdaBoost-PAUC algorithm
URI https://link.springer.com/article/10.1007/s11227-022-04509-0
https://www.proquest.com/docview/2711890932
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-0484
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5cKllELVhe3KB27UKM7L8TGlPFSgQoJI9FBFfsIK2EVs9sKvZ5wHEYhW4mYptpV4xvE39jefAbYjGbmMS05D7XerjBFUxMxRlWH47JTjmfPZyKe_06Mi_nWZXLZJYfOO7d4dSdZ_6j7ZjYUhp559jjDEb-kvwXKttzWA5fzwz_F-nw8ZNSfLAkOjLInDNlnm7V5eLkg9ynx1MFqvNwerUHRv2tBMbnYXldrVj69EHN_7KZ_gYwtASd54zBp8sNPPsNpd7kDaub4Ofz0DhBov_t8Id5DJnfI8SG0NaZL2vX2Jp5gS7TG4Jx3VdiZ-aTQEC2c0N_LHbDav6Fle7BF5ezV7mFTXdxtQHOxf7B3R9i4GqnGSVjRNZMCsxGCRKUSFPNZWSOcSNKbgRgnDmOUmTSJnlDJWBpJhIUbsnorEuDT6AoPpbGq_ApHMYoyVBVhPx6mzGY9lFhtrtAgC5aIhsM4gpW6Fyv19GbdlL7Hsx6_E8Svr8SuDIew8t7lvZDr-W3vU2blsp-y8DDnGWgI9NBzC985s_eN_97b5vupbsBLWlvc8tREMqoeF_YbAplJj9OOfpyfn49afx7BUhPkTeu3wCA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECZaD3rxbaxW5eBNSZZ9sRzXxqZq2_TQJr2YDSygTfow7fr_ZfbhRqMm3kgWOMwMyzfwzQdC157wTMQEI24Kp1VKccJ9aoiMbPpspGGRgWrk_iDsjv3HSTApi8LWFdu9upLM_9R1sRt1XUaAfW5hCBzpb6ItELACxfyxG9fVkF5xr8xtYhQFvluWyvw8x9ftqMaY365F892ms492S5iI48KvB2hDLw7RXvUEAy5X5BF6Bp4GUSDRX8hr4OlcAlsx1QoXpfXgBQxEUJwCUgZqUO4NDBuYwrYxJLESd8vlOiPDeNzGYvayXE2z1_kxGnfuR-0uKV9MIKldShkJA-FQLWxKR6XFbsxPNRfGBNbknCnJFaWaqTDwjJJSaeEIahu-RdghD5QJvRPUWCwX-hRhQbXNhCLH9kv90OiI-SLylVYpdxxpvCaileGStJQTh1ctZkkthAzGTqyxk9zYidNEN59j3goxjT97typ_JOXCWicusxkRt3HkNtFt5aP68--znf2v-xXa7o76vaT3MHg6RztuHjLALGuhRrZ61xcWimTyMo-8DxxD038
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uIF7cxXHNwZsGmzZtmuO4DO7MwQEvUpIm0QGdEa3_3_e6WBUVvAWa5vAW8r3k-14I2Y105FOpJQtzPK2yVjEluGcmhfLZGy9Tj2rkq-vkdCDOb-PbTyr-ku3eXElWmgbs0jQqDp6tP2iFbzwMJUMmOkASPN6fJNMCGyVARA_CbquMjKo7ZgVFUhqLsJbN_LzG162pxZvfrkjLnae3QOZqyEi7lY8XyYQbLZH55jkGWmfnMrlDzgaz2K6_arVBh08GmYu5s7SS2aNHKJJCaY6oGWlCpWcobmaWwqDPulYfjsevBet3B0dUP96PX4bFw9MKGfRObo5OWf16AsshrQqWxDrgTkN5xw3gOClyp7T3MZhfSWuU5dxJm8SRt8ZYpwPNYSAAbScqtj6JVsnUaDxya4Rq7qAqSgOYl4vEu1QKnQrrbK6CwPioQ3hjuCyvW4vjCxePWdsUGY2dgbGz0thZ0CF7H_88V401_py92fgjq5PsNQslVEcKYirskP3GR-3n31db_9_0HTLTP-5ll2fXFxtkNiwjBklmm2SqeHlzW4BKCrNdBt47iTvXuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-dimensional+imbalanced+biomedical+data+classification+based+on+P-AdaBoost-PAUC+algorithm&rft.jtitle=The+Journal+of+supercomputing&rft.au=Li%2C+Xiao&rft.au=Li%2C+Kewen&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=14&rft.spage=16581&rft.epage=16604&rft_id=info:doi/10.1007%2Fs11227-022-04509-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon