High-dimensional imbalanced biomedical data classification based on P-AdaBoost-PAUC algorithm
High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification accuracy by filtering out low-dimensional feature subsets that are highly correlated with the classification target and have minimal mutual...
Saved in:
| Published in | The Journal of supercomputing Vol. 78; no. 14; pp. 16581 - 16604 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.09.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-8542 1573-0484 |
| DOI | 10.1007/s11227-022-04509-0 |
Cover
| Abstract | High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification accuracy by filtering out low-dimensional feature subsets that are highly correlated with the classification target and have minimal mutual redundancy. However, traditional feature selection algorithms tend to select the feature subset that is favorable to class with large sample size, resulting in poor classification performance for minority samples. In response to the above problems, the P-AdaBoost-PAUC algorithm is proposed to be applied to high-dimensional imbalanced biomedical data classification. The idea of P-AdaBoost-PAUC algorithm has two major contributions. The first is that an improved decision tree attribute optimization algorithm (DT-P) is proposed, which pays more attention to the correlation among attributes. The second is that an improved AdaBoost algorithm based on probabilistic AUC (AdaBoost-PAUC) is proposed, which comprehensively considers misclassification probability and AUC to pay more attention to minority samples. An ensemble algorithm for high-dimensional imbalanced biomedical data classification is formed, which is conducive to improve classification performance. Experimental results show that Recall, Specificity, F1, and AUC values of P-AdaBoost-PAUC ensemble algorithm have reached the highest values on datasets with different imbalance rate. Especially when the proportion of minority samples is only 12.6
%
, Recall, Specificity, F1 and AUC values all reached above 0.95. And algorithm stability experiments show that P-AdaBoost-PAUC algorithm is more stable than other algorithms. Therefore, the P-AdaBoost-PAUC ensemble algorithm proposed in this paper improves classification performance of minority samples on high-dimensional imbalanced biomedical data to a certain extent. |
|---|---|
| AbstractList | High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification accuracy by filtering out low-dimensional feature subsets that are highly correlated with the classification target and have minimal mutual redundancy. However, traditional feature selection algorithms tend to select the feature subset that is favorable to class with large sample size, resulting in poor classification performance for minority samples. In response to the above problems, the P-AdaBoost-PAUC algorithm is proposed to be applied to high-dimensional imbalanced biomedical data classification. The idea of P-AdaBoost-PAUC algorithm has two major contributions. The first is that an improved decision tree attribute optimization algorithm (DT-P) is proposed, which pays more attention to the correlation among attributes. The second is that an improved AdaBoost algorithm based on probabilistic AUC (AdaBoost-PAUC) is proposed, which comprehensively considers misclassification probability and AUC to pay more attention to minority samples. An ensemble algorithm for high-dimensional imbalanced biomedical data classification is formed, which is conducive to improve classification performance. Experimental results show that Recall, Specificity, F1, and AUC values of P-AdaBoost-PAUC ensemble algorithm have reached the highest values on datasets with different imbalance rate. Especially when the proportion of minority samples is only 12.6
%
, Recall, Specificity, F1 and AUC values all reached above 0.95. And algorithm stability experiments show that P-AdaBoost-PAUC algorithm is more stable than other algorithms. Therefore, the P-AdaBoost-PAUC ensemble algorithm proposed in this paper improves classification performance of minority samples on high-dimensional imbalanced biomedical data to a certain extent. High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification accuracy by filtering out low-dimensional feature subsets that are highly correlated with the classification target and have minimal mutual redundancy. However, traditional feature selection algorithms tend to select the feature subset that is favorable to class with large sample size, resulting in poor classification performance for minority samples. In response to the above problems, the P-AdaBoost-PAUC algorithm is proposed to be applied to high-dimensional imbalanced biomedical data classification. The idea of P-AdaBoost-PAUC algorithm has two major contributions. The first is that an improved decision tree attribute optimization algorithm (DT-P) is proposed, which pays more attention to the correlation among attributes. The second is that an improved AdaBoost algorithm based on probabilistic AUC (AdaBoost-PAUC) is proposed, which comprehensively considers misclassification probability and AUC to pay more attention to minority samples. An ensemble algorithm for high-dimensional imbalanced biomedical data classification is formed, which is conducive to improve classification performance. Experimental results show that Recall, Specificity, F1, and AUC values of P-AdaBoost-PAUC ensemble algorithm have reached the highest values on datasets with different imbalance rate. Especially when the proportion of minority samples is only 12.6%, Recall, Specificity, F1 and AUC values all reached above 0.95. And algorithm stability experiments show that P-AdaBoost-PAUC algorithm is more stable than other algorithms. Therefore, the P-AdaBoost-PAUC ensemble algorithm proposed in this paper improves classification performance of minority samples on high-dimensional imbalanced biomedical data to a certain extent. |
| Author | Li, Xiao Li, Kewen |
| Author_xml | – sequence: 1 givenname: Xiao surname: Li fullname: Li, Xiao organization: College of Computer Science and Technology, China University of Petroleum Huadong – sequence: 2 givenname: Kewen surname: Li fullname: Li, Kewen email: likw@upc.edu.cn organization: College of Computer Science and Technology, China University of Petroleum Huadong |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnqOT7Ec2x1rUCgV7sEcJs5tsm7K7qcn24L83toLgoadMhucZZt4JGfWuN4TcMrhnAOIhMMa5oMA5hSwHSeGCjFku0vgtsxEZg-RAyzzjV2QSwg4AslSkY_KxsJst1bYzfbCuxzaxXYUt9rXRSWVdZ7StY1fjgEndYgi2iY0hskmFIUKxWNGZxkfnwkBXs_U8wXbjvB223TW5bLAN5ub3nZL189P7fEGXby-v89mS1imTAy1yBGaQgWAVMCmy2khsmrwRpRS6kpoxI3SRp42uKm0QkMUiE4IXMtdNkU7J3Wnu3rvPgwmD2rmDj9cExQVjpQSZ8kiVJ6r2LgRvGlXb4XjK4NG2ioH6CVOdwlQxTHUMU0FU-T91722H_uu8lJ6kEOF-Y_zfVmesb7qAiXE |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07053_9 crossref_primary_10_1007_s00521_024_09713_y crossref_primary_10_1007_s11227_022_05037_7 crossref_primary_10_1007_s11227_024_05951_y crossref_primary_10_1016_j_bspc_2024_107447 |
| Cites_doi | 10.1109/TPAMI.2019.2891760 10.1016/j.neucom.2017.08.050 10.1007/s13042-018-0797-6 10.1007/s00726-011-0835-0 10.1109/TNNLS.2017.2732482 10.1016/j.neucom.2017.05.098 10.1016/j.compbiomed.2017.10.002 10.1007/s10115-018-1201-2 10.1111/j.1467-9868.2007.00607.x 10.1016/j.knosys.2017.09.006 10.1016/j.eswa.2016.12.035 10.1109/TNB.2005.853657 10.1016/j.bspc.2021.102610 10.1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO;2 10.1016/j.eswa.2007.11.051 10.1109/TIP.2017.2781298 10.1006/jcss.1997.1504 10.1016/j.ins.2014.07.015 10.1109/TKDE.2007.44 10.1016/j.ipm.2020.102388 10.1016/j.ins.2020.05.077 10.1109/ISNCC.2019.8909140 10.1007/s12065-020-00498-2 10.1109/SPAC.2017.8304290 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-022-04509-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 16604 |
| ExternalDocumentID | 10_1007_s11227_022_04509_0 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2021MF082 funderid: http://dx.doi.org/10.13039/501100007129 – fundername: The major project of National Natural Science Foundation of China grantid: 51991365 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-65a01ea1071b01974ce9aff5f7897db9d11e7d653fdbbdea0a1dbb4772695df63 |
| IEDL.DBID | AGYKE |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:52:02 EDT 2025 Wed Oct 01 03:43:53 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Fri Feb 21 02:45:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Imbalanced data Feature selection Adaptive Boosting Pearson AUC |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-65a01ea1071b01974ce9aff5f7897db9d11e7d653fdbbdea0a1dbb4772695df63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2711890932 |
| PQPubID | 2043774 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2711890932 crossref_citationtrail_10_1007_s11227_022_04509_0 crossref_primary_10_1007_s11227_022_04509_0 springer_journals_10_1007_s11227_022_04509_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Cao, Liu, Yang (CR9) 2017; 91 Lu, Feng, Chen (CR18) 2020; 42 Gaddam, Phoha, Balagani (CR14) 2007; 19 Park, Hastie (CR24) 2007; 69 Viegas, Rocha, Gonalves (CR10) 2018; 273 CR12 Yang, Lin, Zhu (CR27) 2019; 46 CR31 CR30 Sysoev (CR26) 2019; 59 Liu, Xu, Luo (CR4) 2018; 27 Duan, Rajapakse, Wang (CR22) 2005; 4 Haro-García, Cerruela-García, García-Pedrajas (CR3) 2020; 540 Cheriguene, Azizi, Dey (CR21) 2019; 10 Yang, Yu, Wen (CR5) 2019; 99 Lan (CR2) 2015; 03 Maldonado, Weber, Famili (CR7) 2014; 286 CR28 Zhou, Hu, Li (CR8) 2017; 136 Liu, Wu, Feng (CR19) 2018; 277 Wen, Li, Zhu (CR13) 2021; 58 Burrows, Benjamin, Beauchamp (CR16) 2010; 34 Polat, Guenes (CR15) 2009; 36 Elsebakhi, Asparouhov, Al-Ali (CR6) 2015; 8 Haixiang, Yijing, Shang (CR1) 2017; 73 Cai, Tao, Hu (CR20) 2012; 42 Dhananjay, Jayaraman (CR29) 2021; 68 Freund, Schapire (CR17) 1997; 55 Wa Ng, Xiao, Wa Ng (CR23) 2019; 99 Mazza-Anthony, Mazoure, Coates (CR25) 2020; 99 Khan, Hayat, Bennamoun (CR11) 2018; 29 C Wa Ng (4509_CR23) 2019; 99 K Polat (4509_CR15) 2009; 36 C Mazza-Anthony (4509_CR25) 2020; 99 4509_CR28 F Viegas (4509_CR10) 2018; 273 B Dhananjay (4509_CR29) 2021; 68 G Wen (4509_CR13) 2021; 58 WR Burrows (4509_CR16) 2010; 34 Y Freund (4509_CR17) 1997; 55 P Zhou (4509_CR8) 2017; 136 PA Yang (4509_CR27) 2019; 46 SH Khan (4509_CR11) 2018; 29 KB Duan (4509_CR22) 2005; 4 K Yang (4509_CR5) 2019; 99 MY Park (4509_CR24) 2007; 69 E Elsebakhi (4509_CR6) 2015; 8 S Maldonado (4509_CR7) 2014; 286 C Lu (4509_CR18) 2020; 42 M Liu (4509_CR4) 2018; 27 4509_CR12 Y Cai (4509_CR20) 2012; 42 4509_CR31 S Liu (4509_CR19) 2018; 277 4509_CR30 AD Haro-García (4509_CR3) 2020; 540 SR Gaddam (4509_CR14) 2007; 19 F Lan (4509_CR2) 2015; 03 P Cao (4509_CR9) 2017; 91 Guo Haixiang (4509_CR1) 2017; 73 S Cheriguene (4509_CR21) 2019; 10 O Sysoev (4509_CR26) 2019; 59 |
| References_xml | – volume: 42 start-page: 925 issue: 4 year: 2020 end-page: 938 ident: CR18 article-title: Tensor robust principal component analysis with a new tensor nuclear norm publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2891760 – ident: CR12 – ident: CR30 – volume: 8 start-page: 203 issue: 4 year: 2015 end-page: 214 ident: CR6 article-title: Novel incremental ranking framework for biomedical data analytics and dimensionality reduction: big data challenges and opportunities publication-title: J Comput Sci Syst Biol – volume: 273 start-page: 554 year: 2018 end-page: 569 ident: CR10 article-title: A genetic programming approach for feature selection in highly dimensional skewed data publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.050 – volume: 10 start-page: 1189 issue: 5 year: 2019 end-page: 1204 ident: CR21 article-title: A new hybrid classifier selection model based on mRMR method and diversity measures publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-018-0797-6 – volume: 42 start-page: 1387 issue: 4 year: 2012 end-page: 1395 ident: CR20 article-title: Prediction of lysine ubiquitination with mRMR feature selection and analysis publication-title: Amino Acids doi: 10.1007/s00726-011-0835-0 – volume: 29 start-page: 3573 issue: 8 year: 2018 end-page: 3587 ident: CR11 article-title: Cost-sensitive learning of deep Feature representations from imbalanced data publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2732482 – volume: 277 start-page: 208 year: 2018 end-page: 217 ident: CR19 article-title: Quasi-curvature local linear projection and extreme learning machine for nonlinear dimensionality reduction publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.098 – volume: 91 start-page: 21 year: 2017 end-page: 37 ident: CR9 article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.10.002 – volume: 59 start-page: 197 issue: 1 year: 2019 end-page: 218 ident: CR26 article-title: A smoothed monotonic regression via L2 regularization publication-title: Knowl Inf Syst doi: 10.1007/s10115-018-1201-2 – volume: 69 start-page: 659 issue: 4 year: 2007 end-page: 677 ident: CR24 article-title: L1-regularization path algorithm for generalized linear models publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.1467-9868.2007.00607.x – volume: 136 start-page: 187 year: 2017 end-page: 199 ident: CR8 article-title: Online feature selection for high-dimensional class-imbalanced data publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.09.006 – volume: 73 start-page: 220 year: 2017 end-page: 239 ident: CR1 article-title: Learning from class-imbalanced data: review of methods and applications publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.12.035 – volume: 99 start-page: 1 year: 2020 end-page: 1 ident: CR25 article-title: Learning gaussian graphical models with ordered weighted L1 regularization publication-title: IEEE Trans Signal Process – volume: 99 start-page: 1 year: 2019 end-page: 14 ident: CR5 article-title: Hybrid classifier ensemble for imbalanced data publication-title: IEEE Trans Neural Netw Learn Syst – volume: 99 start-page: 1 year: 2019 end-page: 1 ident: CR23 article-title: Identification of autism based on SVM-RFE and stacked sparse Auto-Encoder publication-title: IEEE Access – ident: CR31 – volume: 4 start-page: 228 issue: 3 year: 2005 end-page: 234 ident: CR22 article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2005.853657 – volume: 46 start-page: 14 issue: 12 year: 2019 end-page: 18 ident: CR27 article-title: AdaBoostRS: integration of high-dimensional unbalanced data learning publication-title: Computer Science – volume: 68 issue: 16 year: 2021 ident: CR29 article-title: Analysis and classification of heart rate using CatBoost feature ranking model[J] publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102610 – volume: 34 start-page: 1848 issue: 8 year: 2010 end-page: 1862 ident: CR16 article-title: CART decision-tree statistical analysis and prediction of summer season maximum surface ozone for the Vancouver, Montreal, and Atlantic regions of Canada[J] publication-title: J Appl Meteorol doi: 10.1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO;2 – volume: 36 start-page: 1587 issue: 2–1 year: 2009 end-page: 1592 ident: CR15 article-title: A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.11.051 – volume: 27 start-page: 1323 issue: 3 year: 2018 end-page: 1335 ident: CR4 article-title: Cost-sensitive feature selection by optimizing F-measures publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2781298 – volume: 55 start-page: 119 issue: 1 year: 1997 end-page: 139 ident: CR17 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – volume: 286 start-page: 228 year: 2014 end-page: 246 ident: CR7 article-title: Feature selection for high-dimensional class-imbalanced data sets using support vector machines publication-title: Inf Sci doi: 10.1016/j.ins.2014.07.015 – volume: 03 start-page: 7 issue: 3 year: 2015 end-page: 13 ident: CR2 article-title: The discriminate analysis and dimension reduction methods of high dimension publication-title: Open J Soc Sci – volume: 19 start-page: 345 issue: 3 year: 2007 end-page: 354 ident: CR14 article-title: K-means+id3: a novel method for supervised anomaly detection by cascading k-Means clustering and id3 decision tree learning methods publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.44 – ident: CR28 – volume: 58 start-page: 102388 issue: 1 year: 2021 ident: CR13 article-title: One-step spectral rotation clustering for imbalanced high-dimensional data publication-title: Inf Process Manage doi: 10.1016/j.ipm.2020.102388 – volume: 540 start-page: 89 year: 2020 end-page: 116 ident: CR3 article-title: Ensembles of feature selectors for dealing with class-imbalanced datasets: a proposal and comparative study-ScienceDirect publication-title: Inf Sci doi: 10.1016/j.ins.2020.05.077 – volume: 58 start-page: 102388 issue: 1 year: 2021 ident: 4509_CR13 publication-title: Inf Process Manage doi: 10.1016/j.ipm.2020.102388 – volume: 19 start-page: 345 issue: 3 year: 2007 ident: 4509_CR14 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.44 – volume: 4 start-page: 228 issue: 3 year: 2005 ident: 4509_CR22 publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2005.853657 – volume: 273 start-page: 554 year: 2018 ident: 4509_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.050 – volume: 34 start-page: 1848 issue: 8 year: 2010 ident: 4509_CR16 publication-title: J Appl Meteorol doi: 10.1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO;2 – ident: 4509_CR12 doi: 10.1109/ISNCC.2019.8909140 – volume: 27 start-page: 1323 issue: 3 year: 2018 ident: 4509_CR4 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2781298 – volume: 46 start-page: 14 issue: 12 year: 2019 ident: 4509_CR27 publication-title: Computer Science – volume: 42 start-page: 1387 issue: 4 year: 2012 ident: 4509_CR20 publication-title: Amino Acids doi: 10.1007/s00726-011-0835-0 – ident: 4509_CR31 doi: 10.1007/s12065-020-00498-2 – volume: 10 start-page: 1189 issue: 5 year: 2019 ident: 4509_CR21 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-018-0797-6 – volume: 69 start-page: 659 issue: 4 year: 2007 ident: 4509_CR24 publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.1467-9868.2007.00607.x – volume: 36 start-page: 1587 issue: 2–1 year: 2009 ident: 4509_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.11.051 – volume: 99 start-page: 1 year: 2020 ident: 4509_CR25 publication-title: IEEE Trans Signal Process – volume: 99 start-page: 1 year: 2019 ident: 4509_CR5 publication-title: IEEE Trans Neural Netw Learn Syst – volume: 540 start-page: 89 year: 2020 ident: 4509_CR3 publication-title: Inf Sci doi: 10.1016/j.ins.2020.05.077 – volume: 03 start-page: 7 issue: 3 year: 2015 ident: 4509_CR2 publication-title: Open J Soc Sci – ident: 4509_CR28 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 4509_CR17 publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – volume: 99 start-page: 1 year: 2019 ident: 4509_CR23 publication-title: IEEE Access – volume: 59 start-page: 197 issue: 1 year: 2019 ident: 4509_CR26 publication-title: Knowl Inf Syst doi: 10.1007/s10115-018-1201-2 – volume: 8 start-page: 203 issue: 4 year: 2015 ident: 4509_CR6 publication-title: J Comput Sci Syst Biol – volume: 286 start-page: 228 year: 2014 ident: 4509_CR7 publication-title: Inf Sci doi: 10.1016/j.ins.2014.07.015 – volume: 91 start-page: 21 year: 2017 ident: 4509_CR9 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.10.002 – volume: 29 start-page: 3573 issue: 8 year: 2018 ident: 4509_CR11 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2732482 – volume: 68 issue: 16 year: 2021 ident: 4509_CR29 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102610 – ident: 4509_CR30 doi: 10.1109/SPAC.2017.8304290 – volume: 42 start-page: 925 issue: 4 year: 2020 ident: 4509_CR18 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2891760 – volume: 277 start-page: 208 year: 2018 ident: 4509_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.098 – volume: 73 start-page: 220 year: 2017 ident: 4509_CR1 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.12.035 – volume: 136 start-page: 187 year: 2017 ident: 4509_CR8 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.09.006 |
| SSID | ssj0004373 |
| Score | 2.348617 |
| Snippet | High-dimensional imbalanced biomedical data has dual characteristics of high-dimensional and imbalanced distribution. It is important to improve classification... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16581 |
| SubjectTerms | Algorithms Biomedical data Classification Compilers Computer Science Decision trees Interpreters Optimization Processor Architectures Programming Languages Recall Redundancy Statistical analysis |
| Title | High-dimensional imbalanced biomedical data classification based on P-AdaBoost-PAUC algorithm |
| URI | https://link.springer.com/article/10.1007/s11227-022-04509-0 https://www.proquest.com/docview/2711890932 |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-0484 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0484 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5cKllELVhe3KB27UKM7L8TGlPFSgQoJI9FBFfsIK2EVs9sKvZ5wHEYhW4mYptpV4xvE39jefAbYjGbmMS05D7XerjBFUxMxRlWH47JTjmfPZyKe_06Mi_nWZXLZJYfOO7d4dSdZ_6j7ZjYUhp559jjDEb-kvwXKttzWA5fzwz_F-nw8ZNSfLAkOjLInDNlnm7V5eLkg9ynx1MFqvNwerUHRv2tBMbnYXldrVj69EHN_7KZ_gYwtASd54zBp8sNPPsNpd7kDaub4Ofz0DhBov_t8Id5DJnfI8SG0NaZL2vX2Jp5gS7TG4Jx3VdiZ-aTQEC2c0N_LHbDav6Fle7BF5ezV7mFTXdxtQHOxf7B3R9i4GqnGSVjRNZMCsxGCRKUSFPNZWSOcSNKbgRgnDmOUmTSJnlDJWBpJhIUbsnorEuDT6AoPpbGq_ApHMYoyVBVhPx6mzGY9lFhtrtAgC5aIhsM4gpW6Fyv19GbdlL7Hsx6_E8Svr8SuDIew8t7lvZDr-W3vU2blsp-y8DDnGWgI9NBzC985s_eN_97b5vupbsBLWlvc8tREMqoeF_YbAplJj9OOfpyfn49afx7BUhPkTeu3wCA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECZaD3rxbaxW5eBNSZZ9sRzXxqZq2_TQJr2YDSygTfow7fr_ZfbhRqMm3kgWOMwMyzfwzQdC157wTMQEI24Kp1VKccJ9aoiMbPpspGGRgWrk_iDsjv3HSTApi8LWFdu9upLM_9R1sRt1XUaAfW5hCBzpb6ItELACxfyxG9fVkF5xr8xtYhQFvluWyvw8x9ftqMaY365F892ms492S5iI48KvB2hDLw7RXvUEAy5X5BF6Bp4GUSDRX8hr4OlcAlsx1QoXpfXgBQxEUJwCUgZqUO4NDBuYwrYxJLESd8vlOiPDeNzGYvayXE2z1_kxGnfuR-0uKV9MIKldShkJA-FQLWxKR6XFbsxPNRfGBNbknCnJFaWaqTDwjJJSaeEIahu-RdghD5QJvRPUWCwX-hRhQbXNhCLH9kv90OiI-SLylVYpdxxpvCaileGStJQTh1ctZkkthAzGTqyxk9zYidNEN59j3goxjT97typ_JOXCWicusxkRt3HkNtFt5aP68--znf2v-xXa7o76vaT3MHg6RztuHjLALGuhRrZ61xcWimTyMo-8DxxD038 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uIF7cxXHNwZsGmzZtmuO4DO7MwQEvUpIm0QGdEa3_3_e6WBUVvAWa5vAW8r3k-14I2Y105FOpJQtzPK2yVjEluGcmhfLZGy9Tj2rkq-vkdCDOb-PbTyr-ku3eXElWmgbs0jQqDp6tP2iFbzwMJUMmOkASPN6fJNMCGyVARA_CbquMjKo7ZgVFUhqLsJbN_LzG162pxZvfrkjLnae3QOZqyEi7lY8XyYQbLZH55jkGWmfnMrlDzgaz2K6_arVBh08GmYu5s7SS2aNHKJJCaY6oGWlCpWcobmaWwqDPulYfjsevBet3B0dUP96PX4bFw9MKGfRObo5OWf16AsshrQqWxDrgTkN5xw3gOClyp7T3MZhfSWuU5dxJm8SRt8ZYpwPNYSAAbScqtj6JVsnUaDxya4Rq7qAqSgOYl4vEu1QKnQrrbK6CwPioQ3hjuCyvW4vjCxePWdsUGY2dgbGz0thZ0CF7H_88V401_py92fgjq5PsNQslVEcKYirskP3GR-3n31db_9_0HTLTP-5ll2fXFxtkNiwjBklmm2SqeHlzW4BKCrNdBt47iTvXuw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-dimensional+imbalanced+biomedical+data+classification+based+on+P-AdaBoost-PAUC+algorithm&rft.jtitle=The+Journal+of+supercomputing&rft.au=Li%2C+Xiao&rft.au=Li%2C+Kewen&rft.date=2022-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=14&rft.spage=16581&rft.epage=16604&rft_id=info:doi/10.1007%2Fs11227-022-04509-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |