The use of new intelligent techniques in designing retaining walls
The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall height, wall thickness, soil friction angle, soil density, and stone cement mixture density were varied and 2000 cases were considered in develop...
Saved in:
| Published in | Engineering with computers Vol. 36; no. 1; pp. 283 - 294 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.01.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0177-0667 1435-5663 |
| DOI | 10.1007/s00366-018-00700-1 |
Cover
| Abstract | The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall height, wall thickness, soil friction angle, soil density, and stone cement mixture density were varied and 2000 cases were considered in developing the predictive models. Using the artificial neural network (ANN) method, eight prediction models were developed and evaluated based on the coefficient of determination (
R
2
) and the root mean square error.
R
2
values of 0.9740 and 0.9824 for training and testing datasets, respectively (for the best model), indicate the level of ANN capability in predicting safety factor (SF) of retaining walls. After developing the ANN model, the ant colony optimization (ACO) algorithm was used to maximize the safety factor of the wall by varying the input parameters. In fact, the best ANN model was selected to be used as a modeling function in ACO algorithm. The SF result from optimization section was obtained as 3.057 which show a significant difference from the mean SF values used in the modeling. It can be concluded that ACO may be used as a powerful optimization algorithm in optimizing SF results of retaining walls. |
|---|---|
| AbstractList | The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall height, wall thickness, soil friction angle, soil density, and stone cement mixture density were varied and 2000 cases were considered in developing the predictive models. Using the artificial neural network (ANN) method, eight prediction models were developed and evaluated based on the coefficient of determination (
R
2
) and the root mean square error.
R
2
values of 0.9740 and 0.9824 for training and testing datasets, respectively (for the best model), indicate the level of ANN capability in predicting safety factor (SF) of retaining walls. After developing the ANN model, the ant colony optimization (ACO) algorithm was used to maximize the safety factor of the wall by varying the input parameters. In fact, the best ANN model was selected to be used as a modeling function in ACO algorithm. The SF result from optimization section was obtained as 3.057 which show a significant difference from the mean SF values used in the modeling. It can be concluded that ACO may be used as a powerful optimization algorithm in optimizing SF results of retaining walls. The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall height, wall thickness, soil friction angle, soil density, and stone cement mixture density were varied and 2000 cases were considered in developing the predictive models. Using the artificial neural network (ANN) method, eight prediction models were developed and evaluated based on the coefficient of determination (R2) and the root mean square error. R2 values of 0.9740 and 0.9824 for training and testing datasets, respectively (for the best model), indicate the level of ANN capability in predicting safety factor (SF) of retaining walls. After developing the ANN model, the ant colony optimization (ACO) algorithm was used to maximize the safety factor of the wall by varying the input parameters. In fact, the best ANN model was selected to be used as a modeling function in ACO algorithm. The SF result from optimization section was obtained as 3.057 which show a significant difference from the mean SF values used in the modeling. It can be concluded that ACO may be used as a powerful optimization algorithm in optimizing SF results of retaining walls. |
| Author | Hedayat, Ahmadreza Gordan, Behrouz Koopialipoor, Mohammadreza Armaghani, Danial Jahed Murlidhar, Bhatawdekar Ramesh Mohamad, Edy Tonnizam |
| Author_xml | – sequence: 1 givenname: Mohammadreza surname: Koopialipoor fullname: Koopialipoor, Mohammadreza email: Mr.koopialipoor@aut.ac.ir organization: Faculty of Civil and Environmental Engineering, Amirkabir University of Technology – sequence: 2 givenname: Bhatawdekar Ramesh surname: Murlidhar fullname: Murlidhar, Bhatawdekar Ramesh organization: Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia – sequence: 3 givenname: Ahmadreza surname: Hedayat fullname: Hedayat, Ahmadreza organization: Faculty of Civil and Environmental Engineering, Colorado School of Mines – sequence: 4 givenname: Danial Jahed surname: Armaghani fullname: Armaghani, Danial Jahed email: danialarmaghani@gmail.com organization: Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia – sequence: 5 givenname: Behrouz surname: Gordan fullname: Gordan, Behrouz organization: Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM) – sequence: 6 givenname: Edy Tonnizam surname: Mohamad fullname: Mohamad, Edy Tonnizam organization: Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia |
| BookMark | eNp9kEtLAzEUhYMo2Fb_gKsB19GbyUySWWrxBQU3dR0yM3emKWOmJinFf2_aCoKLru6D8917OFNy7kaHhNwwuGMA8j4AcCEoMEXTCEDZGZmwgpe0FIKfkwkwKSkIIS_JNIQ1AOMA1YQ8LleYbQNmY5c53GXWRRwG26OLWcRm5ezXFkNaZy0G2zvr-sxjNPbQ7cwwhCty0Zkh4PVvnZGP56fl_JUu3l_e5g8L2nBWRSqYbFVR1BJVVXOuoDEFli1yIY2QZVuBLExTC8xNpVTNsWFMmK5SHBSAQD4jt8e7Gz_uTUW9HrfepZc65wXPk4qJpFJHVePHEDx2urHRRDu66I0dNAO9T0wfE9MpMX1ITLOE5v_Qjbefxn-fhvgRCknsevR_rk5QP9krfvM |
| CitedBy_id | crossref_primary_10_1007_s00366_019_00808_y crossref_primary_10_3390_app9061042 crossref_primary_10_1155_2020_8855069 crossref_primary_10_1007_s00366_019_00768_3 crossref_primary_10_1007_s10706_020_01536_7 crossref_primary_10_1007_s11053_020_09730_3 crossref_primary_10_1155_2022_4219524 crossref_primary_10_1007_s10462_023_10636_8 crossref_primary_10_1007_s40515_023_00298_y crossref_primary_10_1080_10589759_2019_1623214 crossref_primary_10_1007_s40996_022_00912_y crossref_primary_10_1007_s41062_022_00962_1 crossref_primary_10_3390_app10030869 crossref_primary_10_1016_j_jobe_2021_102469 crossref_primary_10_1007_s00366_019_00868_0 crossref_primary_10_1007_s00366_020_01014_x crossref_primary_10_1007_s00366_019_00754_9 crossref_primary_10_3390_geosciences13060156 crossref_primary_10_1007_s00366_021_01305_x crossref_primary_10_1007_s00366_019_00731_2 crossref_primary_10_1016_j_istruc_2020_10_044 crossref_primary_10_1007_s12665_024_11443_2 crossref_primary_10_1007_s00366_021_01294_x crossref_primary_10_3390_app9245372 crossref_primary_10_1007_s13762_022_04170_3 crossref_primary_10_1007_s00366_019_00875_1 crossref_primary_10_1007_s11053_021_09914_5 crossref_primary_10_1016_j_compgeo_2024_107007 crossref_primary_10_1007_s12205_022_0961_0 crossref_primary_10_3390_app10020472 crossref_primary_10_3390_min11070743 crossref_primary_10_1007_s00603_022_03046_9 crossref_primary_10_3390_ma13173902 crossref_primary_10_1007_s00366_019_00932_9 crossref_primary_10_1016_j_measurement_2019_07_054 crossref_primary_10_1007_s10064_020_01788_w crossref_primary_10_1016_j_jobe_2025_112061 crossref_primary_10_1038_s41598_020_76569_2 crossref_primary_10_1007_s40996_023_01069_y crossref_primary_10_1007_s00366_019_00726_z crossref_primary_10_1007_s10064_020_01834_7 crossref_primary_10_1007_s00366_019_00711_6 crossref_primary_10_1007_s12517_022_10711_4 crossref_primary_10_3390_su141912950 crossref_primary_10_1007_s00366_019_00816_y crossref_primary_10_1016_j_trgeo_2021_100579 crossref_primary_10_3390_app10051761 crossref_primary_10_1007_s11053_019_09548_8 crossref_primary_10_2174_1874836802014010084 crossref_primary_10_3390_app10072364 crossref_primary_10_1007_s00366_019_00770_9 crossref_primary_10_1007_s11053_021_09826_4 crossref_primary_10_1007_s00366_020_01281_8 crossref_primary_10_1007_s00521_022_07591_w crossref_primary_10_1108_EC_10_2020_0576 crossref_primary_10_1007_s00366_019_00855_5 crossref_primary_10_1007_s00366_019_00908_9 crossref_primary_10_3390_app10041486 crossref_primary_10_1007_s00366_019_00872_4 crossref_primary_10_1109_ACCESS_2019_2927632 |
| Cites_doi | 10.1109/3477.484436 10.1007/s00366-017-0545-7 10.1016/S0016-0032(57)90626-9 10.1139/t97-016 10.1016/j.ejor.2014.07.040 10.1061/(ASCE)0887-3801(1994)8:2(129) 10.12989/sem.2013.46.6.853 10.1007/s10064-018-1349-8 10.1007/s00366-018-0658-7 10.1007/978-1-4615-5775-3_20 10.1007/s00366-018-0642-2 10.1139/t11-033 10.1016/j.sandf.2013.08.003 10.1016/j.ejor.2006.06.046 10.1007/s00500-018-3253-3 10.1016/j.petrol.2011.02.005 10.1117/3.633187 10.1002/9780470172766 10.1016/j.ijrmms.2009.03.004 10.1007/s00366-015-0415-0 10.1016/j.proeps.2009.09.219 10.1007/s12517-015-1908-2 10.1007/s00366-016-0453-2 10.1007/BF02478259 10.1007/s10064-017-1116-2 10.1016/j.measurement.2015.07.019 10.1007/s13762-016-0979-2 10.1007/s00158-016-1521-3 10.1007/BF01706095 10.1007/s00366-018-0596-4 10.1007/s10706-015-9970-9 10.1191/0142331206tm165oa 10.1016/S0303-2647(97)01708-5 10.1007/s11069-014-1561-1 10.1016/j.endm.2004.06.029 10.1007/s00366-018-0625-3 10.1109/4235.585892 10.1016/0893-6080(89)90020-8 10.1007/s13762-017-1395-y 10.1016/j.future.2003.07.015 10.1007/s10064-015-0720-2 10.1007/s00521-017-2990-z 10.1007/s00521-016-2359-8 10.12989/scs.2016.21.3.679 10.1007/s00521-016-2434-1 10.1016/j.ijrmms.2016.03.018 10.1016/j.enggeo.2007.10.009 10.1109/ISMS.2013.20 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 2019© Springer-Verlag London Ltd., part of Springer Nature 2019 |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: 2019© Springer-Verlag London Ltd., part of Springer Nature 2019 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s00366-018-00700-1 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1435-5663 |
| EndPage | 294 |
| ExternalDocumentID | 10_1007_s00366_018_00700_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c319t-617d844b7e89b3380ca4e5de367a675d9074acb6e2a988b3ec116af98308006e3 |
| IEDL.DBID | U2A |
| ISSN | 0177-0667 |
| IngestDate | Wed Aug 13 06:49:19 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Wed Oct 01 04:55:34 EDT 2025 Fri Feb 21 02:35:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Stone masonry retaining wall ANN Safety factor Optimization algorithm ACO |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-617d844b7e89b3380ca4e5de367a675d9074acb6e2a988b3ec116af98308006e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2343280016 |
| PQPubID | 326339 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2343280016 crossref_citationtrail_10_1007_s00366_018_00700_1 crossref_primary_10_1007_s00366_018_00700_1 springer_journals_10_1007_s00366_018_00700_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200100 2020-1-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationSubtitle | An International Journal for Simulation-Based Engineering |
| PublicationTitle | Engineering with computers |
| PublicationTitleAbbrev | Engineering with Computers |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Zorlu, Gokceoglu, Ocakoglu (CR54) 2008; 96 Mazzeo, Loiseau (CR35) 2004; 18 Peck, Hanson, Thornburn (CR41) 1974 Hasanipanah, Shahnazar, Amnieh (CR25) 2017 Haykin, Network (CR47) 2004; 2 Bullnheimer, Hartl, Strauss (CR33) 1999 Dorigo, Gambardella (CR32) 1997; 1 Socha, Dorigo (CR57) 2008; 185 Safa, Shariati, Ibrahim (CR19) 2016; 21 Iskander, Chen, Omidvar (CR10) 2013; 53 Gordan, Koopialipoor, Clementking (CR11) 2018 Rankine (CR2) 1857; 63 Gandomi, Kashani, Roke, Mousavi (CR28) 2017; 55 Tsagareli (CR7) 1965; 2 Ghaleini, Koopialipoor, Momenzadeh (CR15) 2018 Chang (CR8) 1997; 34 Mohamad, Faradonbeh, Armaghani (CR16) 2017; 28 Jahed Armaghani, Hajihassani, Monjezi (CR50) 2015; 8 Yu, Bai, Sheng, Guo (CR4) 2009; 19 Koopialipoor, Armaghani, Hedayat (CR44) 2018 Koopialipoor, Ghaleini, Haghighi (CR53) 2018 CR49 Khandelwal, Singh (CR27) 2009; 46 Dorigo, Gambardella (CR31) 1997; 43 Zhu, Xiao-ping (CR39) 2009; 1 McCulloch, Pitts (CR42) 1943; 5 Koopialipoor, Armaghani, Haghighi, Ghaleini (CR13) 2017 Mohammadhassani, Nezamabadi-Pour, Suhatril, Shariati (CR20) 2013; 46 Ebrahimi, Monjezi, Khalesi, Armaghani (CR14) 2016; 75 Hasanipanah, Jahed Armaghani, Bakhshandeh Amnieh (CR23) 2016 Saghatforoush, Monjezi, Faradonbeh, Armaghani (CR29) 2016; 32 Zhang, Hu, Tan (CR34) 2006; 28 Terzaghi (CR3) 1943 Koopialipoor, Nikouei, Marto (CR48) 2018 Hasanipanah, Amnieh, Khamesi (CR26) 2018; 15 Dréo, Siarry (CR36) 2004; 20 Gao (CR40) 2015; 76 CR58 Moayedi, Jahed Armaghani (CR22) 2017 CR55 Garrett (CR46) 1994; 8 Hornik, Stinchcombe, White (CR52) 1989; 2 Moayedi, Rezaei (CR21) 2017 Rankine (CR6) 1857; 1 Jahed Armaghani, Mohd Amin, Yagiz (CR18) 2016; 85 Chan (CR5) 1996 Fausett, Fausett (CR51) 1994 Khandelwal, Armaghani (CR17) 2016; 34 Hasanipanah, Monjezi, Shahnazar (CR24) 2015; 75 Hajizadeh, Christie, Demyanov (CR56) 2011; 77 Coulomb (CR1) 1776; 1793 Shishvan, Sattarvand (CR38) 2015; 240 Koopialipoor, Fallah, Armaghani (CR45) 2018 Dorigo, Maniezzo, Colorni (CR30) 1996; 26 Priddy, Keller (CR43) 2005 Kong, Tian (CR37) 2006 Faradonbeh, Armaghani, Majid (CR12) 2016; 13 O’Neal, Hagerty (CR9) 2011; 48 M Koopialipoor (700_CR48) 2018 D Jahed Armaghani (700_CR50) 2015; 8 RS Faradonbeh (700_CR12) 2016; 13 J Zhu (700_CR39) 2009; 1 K Hornik (700_CR52) 1989; 2 M Hasanipanah (700_CR25) 2017 Min Kong (700_CR37) 2006 B Gordan (700_CR11) 2018 K Zorlu (700_CR54) 2008; 96 L Fausett (700_CR51) 1994 E Ebrahimi (700_CR14) 2016; 75 M Koopialipoor (700_CR45) 2018 M Safa (700_CR19) 2016; 21 WJM Rankine (700_CR6) 1857; 1 M Iskander (700_CR10) 2013; 53 RB Peck (700_CR41) 1974 CA Coulomb (700_CR1) 1776; 1793 Bernd Bullnheimer (700_CR33) 1999 ET Mohamad (700_CR16) 2017; 28 S Haykin (700_CR47) 2004; 2 700_CR49 M Hasanipanah (700_CR26) 2018; 15 G-Y Yu (700_CR4) 2009; 19 H Moayedi (700_CR21) 2017 YC Chan (700_CR5) 1996 M Hasanipanah (700_CR23) 2016 A Saghatforoush (700_CR29) 2016; 32 H Moayedi (700_CR22) 2017 S Mazzeo (700_CR35) 2004; 18 W Gao (700_CR40) 2015; 76 M Koopialipoor (700_CR13) 2017 M Dorigo (700_CR30) 1996; 26 M Dorigo (700_CR32) 1997; 1 WS McCulloch (700_CR42) 1943; 5 M Dorigo (700_CR31) 1997; 43 ZV Tsagareli (700_CR7) 1965; 2 AH Gandomi (700_CR28) 2017; 55 700_CR58 JH Garrett (700_CR46) 1994; 8 M Koopialipoor (700_CR53) 2018 700_CR55 EN Ghaleini (700_CR15) 2018 Y Hajizadeh (700_CR56) 2011; 77 J Dréo (700_CR36) 2004; 20 K Socha (700_CR57) 2008; 185 J Zhang (700_CR34) 2006; 28 D Jahed Armaghani (700_CR18) 2016; 85 MS Shishvan (700_CR38) 2015; 240 M Hasanipanah (700_CR24) 2015; 75 TS O’Neal (700_CR9) 2011; 48 K Terzaghi (700_CR3) 1943 M Khandelwal (700_CR27) 2009; 46 M Mohammadhassani (700_CR20) 2013; 46 KL Priddy (700_CR43) 2005 M-F Chang (700_CR8) 1997; 34 M Khandelwal (700_CR17) 2016; 34 WJM Rankine (700_CR2) 1857; 63 M Koopialipoor (700_CR44) 2018 |
| References_xml | – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: CR30 article-title: Ant system: optimization by a colony of cooperating agents publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/3477.484436 – year: 1974 ident: CR41 publication-title: Foundation engineering – volume: 1793 start-page: 343 year: 1776 end-page: 382 ident: CR1 article-title: “Essai sur une Application des Règles de Maximis et Minimis à Quelques Problèmes de Statique Relatifs à L’Architecture,” Mèmoires de la Mathèmatique et de Phisique, présentés à l’Académie Royale des Sciences, par divers savans, et lûs dans sés Assemblées publication-title: Annee – ident: CR49 – year: 2017 ident: CR22 article-title: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil publication-title: Eng Comput doi: 10.1007/s00366-017-0545-7 – volume: 63 start-page: 84 year: 1857 end-page: 85 ident: CR2 article-title: On the mathematical theory of the stability of earthwork and masonry publication-title: J Franklin Inst doi: 10.1016/S0016-0032(57)90626-9 – volume: 34 start-page: 498 year: 1997 end-page: 509 ident: CR8 article-title: Lateral earth pressures behind rotating walls publication-title: Can Geotech J doi: 10.1139/t97-016 – volume: 240 start-page: 825 year: 2015 end-page: 836 ident: CR38 article-title: Long term production planning of open pit mines by ant colony optimization publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2014.07.040 – volume: 8 start-page: 129 year: 1994 end-page: 130 ident: CR46 article-title: Where and why artificial neural networks are applicable in civil engineering publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(1994)8:2(129) – volume: 46 start-page: 853 year: 2013 end-page: 868 ident: CR20 article-title: Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams publication-title: Struct Eng Mech doi: 10.12989/sem.2013.46.6.853 – year: 2018 ident: CR48 article-title: Predicting tunnel boring machine performance through a new model based on the group method of data handling publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1349-8 – year: 2018 ident: CR53 article-title: Overbreak prediction and optimization in tunnel using neural network and bee colony techniques publication-title: Eng Comput doi: 10.1007/s00366-018-0658-7 – start-page: 285 year: 1999 end-page: 296 ident: CR33 article-title: Applying the ANT System to the Vehicle Routing Problem publication-title: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization doi: 10.1007/978-1-4615-5775-3_20 – year: 2018 ident: CR11 article-title: Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques publication-title: Eng Comput doi: 10.1007/s00366-018-0642-2 – volume: 48 start-page: 1188 year: 2011 end-page: 1197 ident: CR9 article-title: Earth pressures in confined cohesionless backfill against tall rigid walls—a case history publication-title: Can Geotech J doi: 10.1139/t11-033 – ident: CR58 – volume: 53 start-page: 639 year: 2013 end-page: 652 ident: CR10 article-title: Active static and seismic earth pressure for c–ϕ soils publication-title: Soils Found doi: 10.1016/j.sandf.2013.08.003 – volume: 185 start-page: 1155 year: 2008 end-page: 1173 ident: CR57 article-title: Ant colony optimization for continuous domains publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.06.046 – year: 2018 ident: CR44 article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions publication-title: Soft Comput doi: 10.1007/s00500-018-3253-3 – volume: 77 start-page: 78 year: 2011 end-page: 92 ident: CR56 article-title: Ant colony optimization for history matching and uncertainty quantification of reservoir models publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2011.02.005 – year: 2005 ident: CR43 publication-title: Artificial neural networks: an introduction doi: 10.1117/3.633187 – year: 1943 ident: CR3 publication-title: Theoretical soil mechanics doi: 10.1002/9780470172766 – volume: 46 start-page: 1214 year: 2009 end-page: 1222 ident: CR27 article-title: Prediction of blast-induced ground vibration using artificial neural network publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.03.004 – volume: 32 start-page: 255 year: 2016 end-page: 266 ident: CR29 article-title: Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting publication-title: Eng Comput doi: 10.1007/s00366-015-0415-0 – volume: 1 start-page: 1418 year: 2009 end-page: 1424 ident: CR39 article-title: Safety evaluation of human accidents in coal mine based on ant colony optimization and SVM publication-title: Procedia Earth Planet Sci doi: 10.1016/j.proeps.2009.09.219 – year: 1996 ident: CR5 publication-title: Study of old masonry retaining walls in Hong Kong – volume: 8 start-page: 9647 year: 2015 end-page: 9665 ident: CR50 article-title: Application of two intelligent systems in predicting environmental impacts of quarry blasting publication-title: Arab J Geosci doi: 10.1007/s12517-015-1908-2 – year: 2017 ident: CR25 article-title: Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model publication-title: Eng Comput doi: 10.1007/s00366-016-0453-2 – volume: 1 start-page: 9 year: 1857 end-page: 27 ident: CR6 article-title: On the stability of loose earth publication-title: Philos Trans R Soc Lond – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: CR42 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – year: 2017 ident: CR13 article-title: A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-017-1116-2 – volume: 75 start-page: 289 year: 2015 end-page: 297 ident: CR24 article-title: Feasibility of indirect determination of blast induced ground vibration based on support vector machine publication-title: Measurement doi: 10.1016/j.measurement.2015.07.019 – volume: 13 start-page: 1453 year: 2016 end-page: 1464 ident: CR12 article-title: Prediction of ground vibration due to quarry blasting based on gene expression programming: a new model for peak particle velocity prediction publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-016-0979-2 – volume: 55 start-page: 809 year: 2017 end-page: 825 ident: CR28 article-title: Optimization of retaining wall design using evolutionary algorithms publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1521-3 – volume: 2 start-page: 197 year: 1965 end-page: 200 ident: CR7 article-title: Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface publication-title: Soil Mech Found Eng doi: 10.1007/BF01706095 – year: 2018 ident: CR45 article-title: Three hybrid intelligent models in estimating flyrock distance resulting from blasting publication-title: Eng Comput doi: 10.1007/s00366-018-0596-4 – volume: 34 start-page: 605 year: 2016 end-page: 620 ident: CR17 article-title: Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique publication-title: Geotech Geol Eng doi: 10.1007/s10706-015-9970-9 – volume: 2 start-page: 41 year: 2004 ident: CR47 article-title: A comprehensive foundation publication-title: Neural Netw – volume: 28 start-page: 93 year: 2006 end-page: 108 ident: CR34 article-title: Implementation of an ant colony optimization technique for job shop scheduling problem publication-title: Trans Inst Meas Control doi: 10.1191/0142331206tm165oa – volume: 43 start-page: 73 year: 1997 end-page: 81 ident: CR31 article-title: Ant colonies for the travelling salesman problem publication-title: Biosystems doi: 10.1016/S0303-2647(97)01708-5 – volume: 76 start-page: 1625 year: 2015 end-page: 1649 ident: CR40 article-title: Forecasting of rockbursts in deep underground engineering based on abstraction ant colony clustering algorithm publication-title: Nat Hazards doi: 10.1007/s11069-014-1561-1 – volume: 18 start-page: 181 year: 2004 end-page: 186 ident: CR35 article-title: An ant colony algorithm for the capacitated vehicle routing publication-title: Electron Notes Discrete Math doi: 10.1016/j.endm.2004.06.029 – year: 2018 ident: CR15 article-title: A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls publication-title: Eng Comput doi: 10.1007/s00366-018-0625-3 – year: 1994 ident: CR51 publication-title: Fundamentals of neural networks: architectures, algorithms, and applications – volume: 1 start-page: 53 year: 1997 end-page: 66 ident: CR32 article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585892 – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: CR52 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 15 start-page: 551 year: 2018 end-page: 560 ident: CR26 article-title: Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-017-1395-y – volume: 20 start-page: 841 year: 2004 end-page: 856 ident: CR36 article-title: Continuous interacting ant colony algorithm based on dense heterarchy publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2003.07.015 – volume: 75 start-page: 27 year: 2016 end-page: 36 ident: CR14 article-title: Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0720-2 – year: 2017 ident: CR21 article-title: An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2990-z – ident: CR55 – volume: 19 start-page: 36 year: 2009 end-page: 39 ident: CR4 article-title: Mechanical performance of a double-face reinforced retaining wall in an area disturbed by mining publication-title: Min Sci Technol – volume: 28 start-page: 393 issue: Suppl 1 year: 2017 ident: CR16 article-title: An optimized ANN model based on genetic algorithm for predicting ripping production publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2359-8 – start-page: 126 year: 2006 end-page: 135 ident: CR37 article-title: Application of ACO in Continuous Domain publication-title: Lecture Notes in Computer Science – volume: 21 start-page: 679 year: 2016 end-page: 688 ident: CR19 article-title: Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength publication-title: Steel Compos Struct doi: 10.12989/scs.2016.21.3.679 – year: 2016 ident: CR23 article-title: Application of PSO to develop a powerful equation for prediction of flyrock due to blasting publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2434-1 – volume: 85 start-page: 174 year: 2016 end-page: 186 ident: CR18 article-title: Prediction of the uniaxial compressive strength of sandstone using various modeling techniques publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2016.03.018 – volume: 96 start-page: 141 year: 2008 end-page: 158 ident: CR54 article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models publication-title: Eng Geol doi: 10.1016/j.enggeo.2007.10.009 – volume: 2 start-page: 359 year: 1989 ident: 700_CR52 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 1 start-page: 9 year: 1857 ident: 700_CR6 publication-title: Philos Trans R Soc Lond – volume: 76 start-page: 1625 year: 2015 ident: 700_CR40 publication-title: Nat Hazards doi: 10.1007/s11069-014-1561-1 – volume: 5 start-page: 115 year: 1943 ident: 700_CR42 publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – volume: 13 start-page: 1453 year: 2016 ident: 700_CR12 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-016-0979-2 – volume: 19 start-page: 36 year: 2009 ident: 700_CR4 publication-title: Min Sci Technol – volume: 34 start-page: 498 year: 1997 ident: 700_CR8 publication-title: Can Geotech J doi: 10.1139/t97-016 – volume: 1793 start-page: 343 year: 1776 ident: 700_CR1 publication-title: Annee – ident: 700_CR49 – volume: 21 start-page: 679 year: 2016 ident: 700_CR19 publication-title: Steel Compos Struct doi: 10.12989/scs.2016.21.3.679 – volume: 1 start-page: 1418 year: 2009 ident: 700_CR39 publication-title: Procedia Earth Planet Sci doi: 10.1016/j.proeps.2009.09.219 – volume-title: Theoretical soil mechanics year: 1943 ident: 700_CR3 doi: 10.1002/9780470172766 – volume: 48 start-page: 1188 year: 2011 ident: 700_CR9 publication-title: Can Geotech J doi: 10.1139/t11-033 – volume: 8 start-page: 129 year: 1994 ident: 700_CR46 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(1994)8:2(129) – volume: 8 start-page: 9647 year: 2015 ident: 700_CR50 publication-title: Arab J Geosci doi: 10.1007/s12517-015-1908-2 – volume: 2 start-page: 197 year: 1965 ident: 700_CR7 publication-title: Soil Mech Found Eng doi: 10.1007/BF01706095 – year: 2017 ident: 700_CR13 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-017-1116-2 – volume: 185 start-page: 1155 year: 2008 ident: 700_CR57 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.06.046 – year: 2017 ident: 700_CR25 publication-title: Eng Comput doi: 10.1007/s00366-016-0453-2 – volume-title: Foundation engineering year: 1974 ident: 700_CR41 – year: 2018 ident: 700_CR53 publication-title: Eng Comput doi: 10.1007/s00366-018-0658-7 – year: 2018 ident: 700_CR48 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1349-8 – volume: 53 start-page: 639 year: 2013 ident: 700_CR10 publication-title: Soils Found doi: 10.1016/j.sandf.2013.08.003 – volume: 28 start-page: 93 year: 2006 ident: 700_CR34 publication-title: Trans Inst Meas Control doi: 10.1191/0142331206tm165oa – volume: 26 start-page: 29 year: 1996 ident: 700_CR30 publication-title: IEEE Trans Syst Man Cybern Part B doi: 10.1109/3477.484436 – start-page: 285 volume-title: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization year: 1999 ident: 700_CR33 doi: 10.1007/978-1-4615-5775-3_20 – year: 2018 ident: 700_CR11 publication-title: Eng Comput doi: 10.1007/s00366-018-0642-2 – volume: 34 start-page: 605 year: 2016 ident: 700_CR17 publication-title: Geotech Geol Eng doi: 10.1007/s10706-015-9970-9 – volume: 85 start-page: 174 year: 2016 ident: 700_CR18 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2016.03.018 – volume: 63 start-page: 84 year: 1857 ident: 700_CR2 publication-title: J Franklin Inst doi: 10.1016/S0016-0032(57)90626-9 – year: 2016 ident: 700_CR23 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2434-1 – volume: 28 start-page: 393 issue: Suppl 1 year: 2017 ident: 700_CR16 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2359-8 – volume: 55 start-page: 809 year: 2017 ident: 700_CR28 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1521-3 – year: 2017 ident: 700_CR22 publication-title: Eng Comput doi: 10.1007/s00366-017-0545-7 – volume: 2 start-page: 41 year: 2004 ident: 700_CR47 publication-title: Neural Netw – volume: 43 start-page: 73 year: 1997 ident: 700_CR31 publication-title: Biosystems doi: 10.1016/S0303-2647(97)01708-5 – volume: 20 start-page: 841 year: 2004 ident: 700_CR36 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2003.07.015 – volume: 46 start-page: 853 year: 2013 ident: 700_CR20 publication-title: Struct Eng Mech doi: 10.12989/sem.2013.46.6.853 – volume: 75 start-page: 289 year: 2015 ident: 700_CR24 publication-title: Measurement doi: 10.1016/j.measurement.2015.07.019 – year: 2018 ident: 700_CR44 publication-title: Soft Comput doi: 10.1007/s00500-018-3253-3 – volume: 46 start-page: 1214 year: 2009 ident: 700_CR27 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.03.004 – year: 2017 ident: 700_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2990-z – volume: 18 start-page: 181 year: 2004 ident: 700_CR35 publication-title: Electron Notes Discrete Math doi: 10.1016/j.endm.2004.06.029 – volume-title: Fundamentals of neural networks: architectures, algorithms, and applications year: 1994 ident: 700_CR51 – year: 2018 ident: 700_CR15 publication-title: Eng Comput doi: 10.1007/s00366-018-0625-3 – volume-title: Artificial neural networks: an introduction year: 2005 ident: 700_CR43 doi: 10.1117/3.633187 – volume: 96 start-page: 141 year: 2008 ident: 700_CR54 publication-title: Eng Geol doi: 10.1016/j.enggeo.2007.10.009 – ident: 700_CR58 doi: 10.1109/ISMS.2013.20 – volume: 1 start-page: 53 year: 1997 ident: 700_CR32 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585892 – volume: 77 start-page: 78 year: 2011 ident: 700_CR56 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2011.02.005 – start-page: 126 volume-title: Lecture Notes in Computer Science year: 2006 ident: 700_CR37 – volume: 240 start-page: 825 year: 2015 ident: 700_CR38 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2014.07.040 – volume: 32 start-page: 255 year: 2016 ident: 700_CR29 publication-title: Eng Comput doi: 10.1007/s00366-015-0415-0 – volume: 75 start-page: 27 year: 2016 ident: 700_CR14 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0720-2 – volume: 15 start-page: 551 year: 2018 ident: 700_CR26 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-017-1395-y – ident: 700_CR55 – volume-title: Study of old masonry retaining walls in Hong Kong year: 1996 ident: 700_CR5 – year: 2018 ident: 700_CR45 publication-title: Eng Comput doi: 10.1007/s00366-018-0596-4 |
| SSID | ssj0013009 |
| Score | 2.4491239 |
| Snippet | The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 283 |
| SubjectTerms | Algorithms Ant colony optimization Artificial intelligence Artificial neural networks CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Density Math. Applications in Chemistry Mathematical and Computational Engineering Mathematical models Modelling Optimization Original Article Parameters Prediction models Retaining walls Safety factors Soils Stability analysis Systems Theory Wall thickness |
| Title | The use of new intelligent techniques in designing retaining walls |
| URI | https://link.springer.com/article/10.1007/s00366-018-00700-1 https://www.proquest.com/docview/2343280016 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1435-5663 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1435-5663 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: 8FG dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vejBR1Ws1pKDN13ovpLssZU-UCwiFuppySYpCKUVd4t_30ma3aqo4Gkhm81h8phvNvN9A3CZodtmjCceFYaSwzX3uKLco4n0NVMRm2nDRr4f09Ekup3GU0cKy8ts9_JK0p7UFdnNSKeY6Jd7RqOm42HMU4-NnBeu4knQ3dwddNaJHT4ziV2UOarMz2N8dUcbjPntWtR6m8EB7DmYSLrreT2ELb1owL6DjMRtyBybyqoMZVsDdj9JDB5BD9cBWeWaLGcEETR5qSQ4C1Lpt-bYTJTN5cCPiElBtHUjyLuYz_NjmAz6Tzcjz9VN8CRuqMKw_hSPooxpnmQYgnakiHSsdEiZwPhAmXhYyIzqQCScZ6GWvk_FLOGhgY9UhydQWywX-hSIVsEsVr7AAULjxniAYDyMOJV4Lkghm-CX5kulExU3tS3maSWHbE2eoslTa_LUb8JV9c3rWlLjz96tclZSt73yNDB0WG7gahOuy5navP59tLP_dT-HncDE1_aXSwtqxdtKXyAIKbI2bPPBsA317vD5ro_PXn_88Ni2K_EDZzXThQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8xcFAPoqgRRe3Bm46wD9ruiEZE-ThBgqema0tiJGDciIl_ve3WDSVqwrVrm61f7_fW9_s9gKtIm21CaOhgbig5VFGHSkwdHApXERmQqTJs5MEQd8fB06Q1saSwOI92z68k05O6ILsZ6RTj_VLHaNQ0He3zlAPtoHglKLcfnnv3q9uDZhba4RIT2oWJJcv83stPg7RCmWsXo6m96VRgnL9pFmby2lgmUUN8rok4bvop-7BnAShqZyvmALbUvAoVC0aR3eqxLsrzPeRlVdj9Jl54CLd6haFlrNBiijQ2Ry-FuGeCCmXYWBcjmUaJ6EbIBDemGSnQB5_N4iMYd-5Hd13HZmRwhN6qieETShoEEVE0jLRz2xQ8UC2pfEy49jyk8bS5iLDyeEhp5CvhuphPQ-obYIqVfwyl-WKuTgAp6U1b0uW6A98YSOppmO8HFAt94gguauDm08KElSs3WTNmrBBaTkeR6VFk6SgytwbXRZu3TKzj39r1fLaZ3bgx8wzRlhogXIObfPJWj__u7XSz6pew3R0N-qz_OOydwY5nvPj0x04dSsn7Up1rqJNEF3ZlfwEsvO9F |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hIiE4sBQQhQI-cIOozVLbOZalKlvFgUq9RY7tSEhVWpFU_D4eZ2lBgMTVsX0YL_MmnvcG4CI2bpsxHjpUICWHa-5wRblDQ-lqpgKWaGQjP4_ocBw8THqTFRa_zXavniQLTgOqNKV5Z66STk18QxkVjIS5g3o1XcfEP-sBCiWYHT32-st3hG6R5OEyTPKirKTN_DzHV9e0xJvfnkit5xnswnYJGUm_WOM9WNNpE3ZK-EjKw5mZpqpCQ9XWhK0VucF9uDZ7giwyTWYJMWiavNVynDmptVwz00yUzeswgwimI9oaEuRDTKfZAYwHd683Q6esoeBIc7hyZAAqHgQx0zyMTTjalSLQPaV9yoSJFRTGxkLGVHsi5Dz2tXRdKpKQ-wglqfYPoZHOUn0ERCsv6SlXmAl8dGncM8DcDziV5o6QQrbArcwXyVJgHOtcTKNaGtmaPDImj6zJI7cFl_WYeSGv8WfvdrUqUXnUsshDaixH6NqCq2qllp9_n-34f93PYePldhA93Y8eT2DTw7Db_olpQyN_X-hTg03y-Mxuv0_LDNaZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+new+intelligent+techniques+in+designing+retaining+walls&rft.jtitle=Engineering+with+computers&rft.au=Koopialipoor+Mohammadreza&rft.au=Ramesh%2C+Murlidhar+Bhatawdekar&rft.au=Hedayat+Ahmadreza&rft.au=Jahed%2C+Armaghani+Danial&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=36&rft.issue=1&rft.spage=283&rft.epage=294&rft_id=info:doi/10.1007%2Fs00366-018-00700-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |