The use of new intelligent techniques in designing retaining walls

The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall height, wall thickness, soil friction angle, soil density, and stone cement mixture density were varied and 2000 cases were considered in develop...

Full description

Saved in:
Bibliographic Details
Published inEngineering with computers Vol. 36; no. 1; pp. 283 - 294
Main Authors Koopialipoor, Mohammadreza, Murlidhar, Bhatawdekar Ramesh, Hedayat, Ahmadreza, Armaghani, Danial Jahed, Gordan, Behrouz, Mohamad, Edy Tonnizam
Format Journal Article
LanguageEnglish
Published London Springer London 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0177-0667
1435-5663
DOI10.1007/s00366-018-00700-1

Cover

Abstract The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall height, wall thickness, soil friction angle, soil density, and stone cement mixture density were varied and 2000 cases were considered in developing the predictive models. Using the artificial neural network (ANN) method, eight prediction models were developed and evaluated based on the coefficient of determination ( R 2 ) and the root mean square error. R 2 values of 0.9740 and 0.9824 for training and testing datasets, respectively (for the best model), indicate the level of ANN capability in predicting safety factor (SF) of retaining walls. After developing the ANN model, the ant colony optimization (ACO) algorithm was used to maximize the safety factor of the wall by varying the input parameters. In fact, the best ANN model was selected to be used as a modeling function in ACO algorithm. The SF result from optimization section was obtained as 3.057 which show a significant difference from the mean SF values used in the modeling. It can be concluded that ACO may be used as a powerful optimization algorithm in optimizing SF results of retaining walls.
AbstractList The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall height, wall thickness, soil friction angle, soil density, and stone cement mixture density were varied and 2000 cases were considered in developing the predictive models. Using the artificial neural network (ANN) method, eight prediction models were developed and evaluated based on the coefficient of determination ( R 2 ) and the root mean square error. R 2 values of 0.9740 and 0.9824 for training and testing datasets, respectively (for the best model), indicate the level of ANN capability in predicting safety factor (SF) of retaining walls. After developing the ANN model, the ant colony optimization (ACO) algorithm was used to maximize the safety factor of the wall by varying the input parameters. In fact, the best ANN model was selected to be used as a modeling function in ACO algorithm. The SF result from optimization section was obtained as 3.057 which show a significant difference from the mean SF values used in the modeling. It can be concluded that ACO may be used as a powerful optimization algorithm in optimizing SF results of retaining walls.
The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall height, wall thickness, soil friction angle, soil density, and stone cement mixture density were varied and 2000 cases were considered in developing the predictive models. Using the artificial neural network (ANN) method, eight prediction models were developed and evaluated based on the coefficient of determination (R2) and the root mean square error. R2 values of 0.9740 and 0.9824 for training and testing datasets, respectively (for the best model), indicate the level of ANN capability in predicting safety factor (SF) of retaining walls. After developing the ANN model, the ant colony optimization (ACO) algorithm was used to maximize the safety factor of the wall by varying the input parameters. In fact, the best ANN model was selected to be used as a modeling function in ACO algorithm. The SF result from optimization section was obtained as 3.057 which show a significant difference from the mean SF values used in the modeling. It can be concluded that ACO may be used as a powerful optimization algorithm in optimizing SF results of retaining walls.
Author Hedayat, Ahmadreza
Gordan, Behrouz
Koopialipoor, Mohammadreza
Armaghani, Danial Jahed
Murlidhar, Bhatawdekar Ramesh
Mohamad, Edy Tonnizam
Author_xml – sequence: 1
  givenname: Mohammadreza
  surname: Koopialipoor
  fullname: Koopialipoor, Mohammadreza
  email: Mr.koopialipoor@aut.ac.ir
  organization: Faculty of Civil and Environmental Engineering, Amirkabir University of Technology
– sequence: 2
  givenname: Bhatawdekar Ramesh
  surname: Murlidhar
  fullname: Murlidhar, Bhatawdekar Ramesh
  organization: Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia
– sequence: 3
  givenname: Ahmadreza
  surname: Hedayat
  fullname: Hedayat, Ahmadreza
  organization: Faculty of Civil and Environmental Engineering, Colorado School of Mines
– sequence: 4
  givenname: Danial Jahed
  surname: Armaghani
  fullname: Armaghani, Danial Jahed
  email: danialarmaghani@gmail.com
  organization: Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia
– sequence: 5
  givenname: Behrouz
  surname: Gordan
  fullname: Gordan, Behrouz
  organization: Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM)
– sequence: 6
  givenname: Edy Tonnizam
  surname: Mohamad
  fullname: Mohamad, Edy Tonnizam
  organization: Centre of Tropical Geoengineering (GEOTROPIK), Faculty of Civil Engineering, Universiti Teknologi Malaysia
BookMark eNp9kEtLAzEUhYMo2Fb_gKsB19GbyUySWWrxBQU3dR0yM3emKWOmJinFf2_aCoKLru6D8917OFNy7kaHhNwwuGMA8j4AcCEoMEXTCEDZGZmwgpe0FIKfkwkwKSkIIS_JNIQ1AOMA1YQ8LleYbQNmY5c53GXWRRwG26OLWcRm5ezXFkNaZy0G2zvr-sxjNPbQ7cwwhCty0Zkh4PVvnZGP56fl_JUu3l_e5g8L2nBWRSqYbFVR1BJVVXOuoDEFli1yIY2QZVuBLExTC8xNpVTNsWFMmK5SHBSAQD4jt8e7Gz_uTUW9HrfepZc65wXPk4qJpFJHVePHEDx2urHRRDu66I0dNAO9T0wfE9MpMX1ITLOE5v_Qjbefxn-fhvgRCknsevR_rk5QP9krfvM
CitedBy_id crossref_primary_10_1007_s00366_019_00808_y
crossref_primary_10_3390_app9061042
crossref_primary_10_1155_2020_8855069
crossref_primary_10_1007_s00366_019_00768_3
crossref_primary_10_1007_s10706_020_01536_7
crossref_primary_10_1007_s11053_020_09730_3
crossref_primary_10_1155_2022_4219524
crossref_primary_10_1007_s10462_023_10636_8
crossref_primary_10_1007_s40515_023_00298_y
crossref_primary_10_1080_10589759_2019_1623214
crossref_primary_10_1007_s40996_022_00912_y
crossref_primary_10_1007_s41062_022_00962_1
crossref_primary_10_3390_app10030869
crossref_primary_10_1016_j_jobe_2021_102469
crossref_primary_10_1007_s00366_019_00868_0
crossref_primary_10_1007_s00366_020_01014_x
crossref_primary_10_1007_s00366_019_00754_9
crossref_primary_10_3390_geosciences13060156
crossref_primary_10_1007_s00366_021_01305_x
crossref_primary_10_1007_s00366_019_00731_2
crossref_primary_10_1016_j_istruc_2020_10_044
crossref_primary_10_1007_s12665_024_11443_2
crossref_primary_10_1007_s00366_021_01294_x
crossref_primary_10_3390_app9245372
crossref_primary_10_1007_s13762_022_04170_3
crossref_primary_10_1007_s00366_019_00875_1
crossref_primary_10_1007_s11053_021_09914_5
crossref_primary_10_1016_j_compgeo_2024_107007
crossref_primary_10_1007_s12205_022_0961_0
crossref_primary_10_3390_app10020472
crossref_primary_10_3390_min11070743
crossref_primary_10_1007_s00603_022_03046_9
crossref_primary_10_3390_ma13173902
crossref_primary_10_1007_s00366_019_00932_9
crossref_primary_10_1016_j_measurement_2019_07_054
crossref_primary_10_1007_s10064_020_01788_w
crossref_primary_10_1016_j_jobe_2025_112061
crossref_primary_10_1038_s41598_020_76569_2
crossref_primary_10_1007_s40996_023_01069_y
crossref_primary_10_1007_s00366_019_00726_z
crossref_primary_10_1007_s10064_020_01834_7
crossref_primary_10_1007_s00366_019_00711_6
crossref_primary_10_1007_s12517_022_10711_4
crossref_primary_10_3390_su141912950
crossref_primary_10_1007_s00366_019_00816_y
crossref_primary_10_1016_j_trgeo_2021_100579
crossref_primary_10_3390_app10051761
crossref_primary_10_1007_s11053_019_09548_8
crossref_primary_10_2174_1874836802014010084
crossref_primary_10_3390_app10072364
crossref_primary_10_1007_s00366_019_00770_9
crossref_primary_10_1007_s11053_021_09826_4
crossref_primary_10_1007_s00366_020_01281_8
crossref_primary_10_1007_s00521_022_07591_w
crossref_primary_10_1108_EC_10_2020_0576
crossref_primary_10_1007_s00366_019_00855_5
crossref_primary_10_1007_s00366_019_00908_9
crossref_primary_10_3390_app10041486
crossref_primary_10_1007_s00366_019_00872_4
crossref_primary_10_1109_ACCESS_2019_2927632
Cites_doi 10.1109/3477.484436
10.1007/s00366-017-0545-7
10.1016/S0016-0032(57)90626-9
10.1139/t97-016
10.1016/j.ejor.2014.07.040
10.1061/(ASCE)0887-3801(1994)8:2(129)
10.12989/sem.2013.46.6.853
10.1007/s10064-018-1349-8
10.1007/s00366-018-0658-7
10.1007/978-1-4615-5775-3_20
10.1007/s00366-018-0642-2
10.1139/t11-033
10.1016/j.sandf.2013.08.003
10.1016/j.ejor.2006.06.046
10.1007/s00500-018-3253-3
10.1016/j.petrol.2011.02.005
10.1117/3.633187
10.1002/9780470172766
10.1016/j.ijrmms.2009.03.004
10.1007/s00366-015-0415-0
10.1016/j.proeps.2009.09.219
10.1007/s12517-015-1908-2
10.1007/s00366-016-0453-2
10.1007/BF02478259
10.1007/s10064-017-1116-2
10.1016/j.measurement.2015.07.019
10.1007/s13762-016-0979-2
10.1007/s00158-016-1521-3
10.1007/BF01706095
10.1007/s00366-018-0596-4
10.1007/s10706-015-9970-9
10.1191/0142331206tm165oa
10.1016/S0303-2647(97)01708-5
10.1007/s11069-014-1561-1
10.1016/j.endm.2004.06.029
10.1007/s00366-018-0625-3
10.1109/4235.585892
10.1016/0893-6080(89)90020-8
10.1007/s13762-017-1395-y
10.1016/j.future.2003.07.015
10.1007/s10064-015-0720-2
10.1007/s00521-017-2990-z
10.1007/s00521-016-2359-8
10.12989/scs.2016.21.3.679
10.1007/s00521-016-2434-1
10.1016/j.ijrmms.2016.03.018
10.1016/j.enggeo.2007.10.009
10.1109/ISMS.2013.20
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
2019© Springer-Verlag London Ltd., part of Springer Nature 2019
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: 2019© Springer-Verlag London Ltd., part of Springer Nature 2019
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00366-018-00700-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 294
ExternalDocumentID 10_1007_s00366_018_00700_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-617d844b7e89b3380ca4e5de367a675d9074acb6e2a988b3ec116af98308006e3
IEDL.DBID U2A
ISSN 0177-0667
IngestDate Wed Aug 13 06:49:19 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Wed Oct 01 04:55:34 EDT 2025
Fri Feb 21 02:35:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stone masonry retaining wall
ANN
Safety factor
Optimization algorithm
ACO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-617d844b7e89b3380ca4e5de367a675d9074acb6e2a988b3ec116af98308006e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2343280016
PQPubID 326339
PageCount 12
ParticipantIDs proquest_journals_2343280016
crossref_citationtrail_10_1007_s00366_018_00700_1
crossref_primary_10_1007_s00366_018_00700_1
springer_journals_10_1007_s00366_018_00700_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Zorlu, Gokceoglu, Ocakoglu (CR54) 2008; 96
Mazzeo, Loiseau (CR35) 2004; 18
Peck, Hanson, Thornburn (CR41) 1974
Hasanipanah, Shahnazar, Amnieh (CR25) 2017
Haykin, Network (CR47) 2004; 2
Bullnheimer, Hartl, Strauss (CR33) 1999
Dorigo, Gambardella (CR32) 1997; 1
Socha, Dorigo (CR57) 2008; 185
Safa, Shariati, Ibrahim (CR19) 2016; 21
Iskander, Chen, Omidvar (CR10) 2013; 53
Gordan, Koopialipoor, Clementking (CR11) 2018
Rankine (CR2) 1857; 63
Gandomi, Kashani, Roke, Mousavi (CR28) 2017; 55
Tsagareli (CR7) 1965; 2
Ghaleini, Koopialipoor, Momenzadeh (CR15) 2018
Chang (CR8) 1997; 34
Mohamad, Faradonbeh, Armaghani (CR16) 2017; 28
Jahed Armaghani, Hajihassani, Monjezi (CR50) 2015; 8
Yu, Bai, Sheng, Guo (CR4) 2009; 19
Koopialipoor, Armaghani, Hedayat (CR44) 2018
Koopialipoor, Ghaleini, Haghighi (CR53) 2018
CR49
Khandelwal, Singh (CR27) 2009; 46
Dorigo, Gambardella (CR31) 1997; 43
Zhu, Xiao-ping (CR39) 2009; 1
McCulloch, Pitts (CR42) 1943; 5
Koopialipoor, Armaghani, Haghighi, Ghaleini (CR13) 2017
Mohammadhassani, Nezamabadi-Pour, Suhatril, Shariati (CR20) 2013; 46
Ebrahimi, Monjezi, Khalesi, Armaghani (CR14) 2016; 75
Hasanipanah, Jahed Armaghani, Bakhshandeh Amnieh (CR23) 2016
Saghatforoush, Monjezi, Faradonbeh, Armaghani (CR29) 2016; 32
Zhang, Hu, Tan (CR34) 2006; 28
Terzaghi (CR3) 1943
Koopialipoor, Nikouei, Marto (CR48) 2018
Hasanipanah, Amnieh, Khamesi (CR26) 2018; 15
Dréo, Siarry (CR36) 2004; 20
Gao (CR40) 2015; 76
CR58
Moayedi, Jahed Armaghani (CR22) 2017
CR55
Garrett (CR46) 1994; 8
Hornik, Stinchcombe, White (CR52) 1989; 2
Moayedi, Rezaei (CR21) 2017
Rankine (CR6) 1857; 1
Jahed Armaghani, Mohd Amin, Yagiz (CR18) 2016; 85
Chan (CR5) 1996
Fausett, Fausett (CR51) 1994
Khandelwal, Armaghani (CR17) 2016; 34
Hasanipanah, Monjezi, Shahnazar (CR24) 2015; 75
Hajizadeh, Christie, Demyanov (CR56) 2011; 77
Coulomb (CR1) 1776; 1793
Shishvan, Sattarvand (CR38) 2015; 240
Koopialipoor, Fallah, Armaghani (CR45) 2018
Dorigo, Maniezzo, Colorni (CR30) 1996; 26
Priddy, Keller (CR43) 2005
Kong, Tian (CR37) 2006
Faradonbeh, Armaghani, Majid (CR12) 2016; 13
O’Neal, Hagerty (CR9) 2011; 48
M Koopialipoor (700_CR48) 2018
D Jahed Armaghani (700_CR50) 2015; 8
RS Faradonbeh (700_CR12) 2016; 13
J Zhu (700_CR39) 2009; 1
K Hornik (700_CR52) 1989; 2
M Hasanipanah (700_CR25) 2017
Min Kong (700_CR37) 2006
B Gordan (700_CR11) 2018
K Zorlu (700_CR54) 2008; 96
L Fausett (700_CR51) 1994
E Ebrahimi (700_CR14) 2016; 75
M Koopialipoor (700_CR45) 2018
M Safa (700_CR19) 2016; 21
WJM Rankine (700_CR6) 1857; 1
M Iskander (700_CR10) 2013; 53
RB Peck (700_CR41) 1974
CA Coulomb (700_CR1) 1776; 1793
Bernd Bullnheimer (700_CR33) 1999
ET Mohamad (700_CR16) 2017; 28
S Haykin (700_CR47) 2004; 2
700_CR49
M Hasanipanah (700_CR26) 2018; 15
G-Y Yu (700_CR4) 2009; 19
H Moayedi (700_CR21) 2017
YC Chan (700_CR5) 1996
M Hasanipanah (700_CR23) 2016
A Saghatforoush (700_CR29) 2016; 32
H Moayedi (700_CR22) 2017
S Mazzeo (700_CR35) 2004; 18
W Gao (700_CR40) 2015; 76
M Koopialipoor (700_CR13) 2017
M Dorigo (700_CR30) 1996; 26
M Dorigo (700_CR32) 1997; 1
WS McCulloch (700_CR42) 1943; 5
M Dorigo (700_CR31) 1997; 43
ZV Tsagareli (700_CR7) 1965; 2
AH Gandomi (700_CR28) 2017; 55
700_CR58
JH Garrett (700_CR46) 1994; 8
M Koopialipoor (700_CR53) 2018
700_CR55
EN Ghaleini (700_CR15) 2018
Y Hajizadeh (700_CR56) 2011; 77
J Dréo (700_CR36) 2004; 20
K Socha (700_CR57) 2008; 185
J Zhang (700_CR34) 2006; 28
D Jahed Armaghani (700_CR18) 2016; 85
MS Shishvan (700_CR38) 2015; 240
M Hasanipanah (700_CR24) 2015; 75
TS O’Neal (700_CR9) 2011; 48
K Terzaghi (700_CR3) 1943
M Khandelwal (700_CR27) 2009; 46
M Mohammadhassani (700_CR20) 2013; 46
KL Priddy (700_CR43) 2005
M-F Chang (700_CR8) 1997; 34
M Khandelwal (700_CR17) 2016; 34
WJM Rankine (700_CR2) 1857; 63
M Koopialipoor (700_CR44) 2018
References_xml – volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: CR30
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/3477.484436
– year: 1974
  ident: CR41
  publication-title: Foundation engineering
– volume: 1793
  start-page: 343
  year: 1776
  end-page: 382
  ident: CR1
  article-title: “Essai sur une Application des Règles de Maximis et Minimis à Quelques Problèmes de Statique Relatifs à L’Architecture,” Mèmoires de la Mathèmatique et de Phisique, présentés à l’Académie Royale des Sciences, par divers savans, et lûs dans sés Assemblées
  publication-title: Annee
– ident: CR49
– year: 2017
  ident: CR22
  article-title: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0545-7
– volume: 63
  start-page: 84
  year: 1857
  end-page: 85
  ident: CR2
  article-title: On the mathematical theory of the stability of earthwork and masonry
  publication-title: J Franklin Inst
  doi: 10.1016/S0016-0032(57)90626-9
– volume: 34
  start-page: 498
  year: 1997
  end-page: 509
  ident: CR8
  article-title: Lateral earth pressures behind rotating walls
  publication-title: Can Geotech J
  doi: 10.1139/t97-016
– volume: 240
  start-page: 825
  year: 2015
  end-page: 836
  ident: CR38
  article-title: Long term production planning of open pit mines by ant colony optimization
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2014.07.040
– volume: 8
  start-page: 129
  year: 1994
  end-page: 130
  ident: CR46
  article-title: Where and why artificial neural networks are applicable in civil engineering
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(1994)8:2(129)
– volume: 46
  start-page: 853
  year: 2013
  end-page: 868
  ident: CR20
  article-title: Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2013.46.6.853
– year: 2018
  ident: CR48
  article-title: Predicting tunnel boring machine performance through a new model based on the group method of data handling
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1349-8
– year: 2018
  ident: CR53
  article-title: Overbreak prediction and optimization in tunnel using neural network and bee colony techniques
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0658-7
– start-page: 285
  year: 1999
  end-page: 296
  ident: CR33
  article-title: Applying the ANT System to the Vehicle Routing Problem
  publication-title: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization
  doi: 10.1007/978-1-4615-5775-3_20
– year: 2018
  ident: CR11
  article-title: Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0642-2
– volume: 48
  start-page: 1188
  year: 2011
  end-page: 1197
  ident: CR9
  article-title: Earth pressures in confined cohesionless backfill against tall rigid walls—a case history
  publication-title: Can Geotech J
  doi: 10.1139/t11-033
– ident: CR58
– volume: 53
  start-page: 639
  year: 2013
  end-page: 652
  ident: CR10
  article-title: Active static and seismic earth pressure for c–ϕ soils
  publication-title: Soils Found
  doi: 10.1016/j.sandf.2013.08.003
– volume: 185
  start-page: 1155
  year: 2008
  end-page: 1173
  ident: CR57
  article-title: Ant colony optimization for continuous domains
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.06.046
– year: 2018
  ident: CR44
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3253-3
– volume: 77
  start-page: 78
  year: 2011
  end-page: 92
  ident: CR56
  article-title: Ant colony optimization for history matching and uncertainty quantification of reservoir models
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2011.02.005
– year: 2005
  ident: CR43
  publication-title: Artificial neural networks: an introduction
  doi: 10.1117/3.633187
– year: 1943
  ident: CR3
  publication-title: Theoretical soil mechanics
  doi: 10.1002/9780470172766
– volume: 46
  start-page: 1214
  year: 2009
  end-page: 1222
  ident: CR27
  article-title: Prediction of blast-induced ground vibration using artificial neural network
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.03.004
– volume: 32
  start-page: 255
  year: 2016
  end-page: 266
  ident: CR29
  article-title: Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0415-0
– volume: 1
  start-page: 1418
  year: 2009
  end-page: 1424
  ident: CR39
  article-title: Safety evaluation of human accidents in coal mine based on ant colony optimization and SVM
  publication-title: Procedia Earth Planet Sci
  doi: 10.1016/j.proeps.2009.09.219
– year: 1996
  ident: CR5
  publication-title: Study of old masonry retaining walls in Hong Kong
– volume: 8
  start-page: 9647
  year: 2015
  end-page: 9665
  ident: CR50
  article-title: Application of two intelligent systems in predicting environmental impacts of quarry blasting
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1908-2
– year: 2017
  ident: CR25
  article-title: Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0453-2
– volume: 1
  start-page: 9
  year: 1857
  end-page: 27
  ident: CR6
  article-title: On the stability of loose earth
  publication-title: Philos Trans R Soc Lond
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: CR42
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– year: 2017
  ident: CR13
  article-title: A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-017-1116-2
– volume: 75
  start-page: 289
  year: 2015
  end-page: 297
  ident: CR24
  article-title: Feasibility of indirect determination of blast induced ground vibration based on support vector machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.07.019
– volume: 13
  start-page: 1453
  year: 2016
  end-page: 1464
  ident: CR12
  article-title: Prediction of ground vibration due to quarry blasting based on gene expression programming: a new model for peak particle velocity prediction
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-016-0979-2
– volume: 55
  start-page: 809
  year: 2017
  end-page: 825
  ident: CR28
  article-title: Optimization of retaining wall design using evolutionary algorithms
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1521-3
– volume: 2
  start-page: 197
  year: 1965
  end-page: 200
  ident: CR7
  article-title: Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface
  publication-title: Soil Mech Found Eng
  doi: 10.1007/BF01706095
– year: 2018
  ident: CR45
  article-title: Three hybrid intelligent models in estimating flyrock distance resulting from blasting
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0596-4
– volume: 34
  start-page: 605
  year: 2016
  end-page: 620
  ident: CR17
  article-title: Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-015-9970-9
– volume: 2
  start-page: 41
  year: 2004
  ident: CR47
  article-title: A comprehensive foundation
  publication-title: Neural Netw
– volume: 28
  start-page: 93
  year: 2006
  end-page: 108
  ident: CR34
  article-title: Implementation of an ant colony optimization technique for job shop scheduling problem
  publication-title: Trans Inst Meas Control
  doi: 10.1191/0142331206tm165oa
– volume: 43
  start-page: 73
  year: 1997
  end-page: 81
  ident: CR31
  article-title: Ant colonies for the travelling salesman problem
  publication-title: Biosystems
  doi: 10.1016/S0303-2647(97)01708-5
– volume: 76
  start-page: 1625
  year: 2015
  end-page: 1649
  ident: CR40
  article-title: Forecasting of rockbursts in deep underground engineering based on abstraction ant colony clustering algorithm
  publication-title: Nat Hazards
  doi: 10.1007/s11069-014-1561-1
– volume: 18
  start-page: 181
  year: 2004
  end-page: 186
  ident: CR35
  article-title: An ant colony algorithm for the capacitated vehicle routing
  publication-title: Electron Notes Discrete Math
  doi: 10.1016/j.endm.2004.06.029
– year: 2018
  ident: CR15
  article-title: A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0625-3
– year: 1994
  ident: CR51
  publication-title: Fundamentals of neural networks: architectures, algorithms, and applications
– volume: 1
  start-page: 53
  year: 1997
  end-page: 66
  ident: CR32
  article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585892
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: CR52
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 15
  start-page: 551
  year: 2018
  end-page: 560
  ident: CR26
  article-title: Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-017-1395-y
– volume: 20
  start-page: 841
  year: 2004
  end-page: 856
  ident: CR36
  article-title: Continuous interacting ant colony algorithm based on dense heterarchy
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2003.07.015
– volume: 75
  start-page: 27
  year: 2016
  end-page: 36
  ident: CR14
  article-title: Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0720-2
– year: 2017
  ident: CR21
  article-title: An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2990-z
– ident: CR55
– volume: 19
  start-page: 36
  year: 2009
  end-page: 39
  ident: CR4
  article-title: Mechanical performance of a double-face reinforced retaining wall in an area disturbed by mining
  publication-title: Min Sci Technol
– volume: 28
  start-page: 393
  issue: Suppl 1
  year: 2017
  ident: CR16
  article-title: An optimized ANN model based on genetic algorithm for predicting ripping production
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2359-8
– start-page: 126
  year: 2006
  end-page: 135
  ident: CR37
  article-title: Application of ACO in Continuous Domain
  publication-title: Lecture Notes in Computer Science
– volume: 21
  start-page: 679
  year: 2016
  end-page: 688
  ident: CR19
  article-title: Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength
  publication-title: Steel Compos Struct
  doi: 10.12989/scs.2016.21.3.679
– year: 2016
  ident: CR23
  article-title: Application of PSO to develop a powerful equation for prediction of flyrock due to blasting
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2434-1
– volume: 85
  start-page: 174
  year: 2016
  end-page: 186
  ident: CR18
  article-title: Prediction of the uniaxial compressive strength of sandstone using various modeling techniques
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2016.03.018
– volume: 96
  start-page: 141
  year: 2008
  end-page: 158
  ident: CR54
  article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2007.10.009
– volume: 2
  start-page: 359
  year: 1989
  ident: 700_CR52
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 1
  start-page: 9
  year: 1857
  ident: 700_CR6
  publication-title: Philos Trans R Soc Lond
– volume: 76
  start-page: 1625
  year: 2015
  ident: 700_CR40
  publication-title: Nat Hazards
  doi: 10.1007/s11069-014-1561-1
– volume: 5
  start-page: 115
  year: 1943
  ident: 700_CR42
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– volume: 13
  start-page: 1453
  year: 2016
  ident: 700_CR12
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-016-0979-2
– volume: 19
  start-page: 36
  year: 2009
  ident: 700_CR4
  publication-title: Min Sci Technol
– volume: 34
  start-page: 498
  year: 1997
  ident: 700_CR8
  publication-title: Can Geotech J
  doi: 10.1139/t97-016
– volume: 1793
  start-page: 343
  year: 1776
  ident: 700_CR1
  publication-title: Annee
– ident: 700_CR49
– volume: 21
  start-page: 679
  year: 2016
  ident: 700_CR19
  publication-title: Steel Compos Struct
  doi: 10.12989/scs.2016.21.3.679
– volume: 1
  start-page: 1418
  year: 2009
  ident: 700_CR39
  publication-title: Procedia Earth Planet Sci
  doi: 10.1016/j.proeps.2009.09.219
– volume-title: Theoretical soil mechanics
  year: 1943
  ident: 700_CR3
  doi: 10.1002/9780470172766
– volume: 48
  start-page: 1188
  year: 2011
  ident: 700_CR9
  publication-title: Can Geotech J
  doi: 10.1139/t11-033
– volume: 8
  start-page: 129
  year: 1994
  ident: 700_CR46
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(1994)8:2(129)
– volume: 8
  start-page: 9647
  year: 2015
  ident: 700_CR50
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1908-2
– volume: 2
  start-page: 197
  year: 1965
  ident: 700_CR7
  publication-title: Soil Mech Found Eng
  doi: 10.1007/BF01706095
– year: 2017
  ident: 700_CR13
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-017-1116-2
– volume: 185
  start-page: 1155
  year: 2008
  ident: 700_CR57
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.06.046
– year: 2017
  ident: 700_CR25
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0453-2
– volume-title: Foundation engineering
  year: 1974
  ident: 700_CR41
– year: 2018
  ident: 700_CR53
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0658-7
– year: 2018
  ident: 700_CR48
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1349-8
– volume: 53
  start-page: 639
  year: 2013
  ident: 700_CR10
  publication-title: Soils Found
  doi: 10.1016/j.sandf.2013.08.003
– volume: 28
  start-page: 93
  year: 2006
  ident: 700_CR34
  publication-title: Trans Inst Meas Control
  doi: 10.1191/0142331206tm165oa
– volume: 26
  start-page: 29
  year: 1996
  ident: 700_CR30
  publication-title: IEEE Trans Syst Man Cybern Part B
  doi: 10.1109/3477.484436
– start-page: 285
  volume-title: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization
  year: 1999
  ident: 700_CR33
  doi: 10.1007/978-1-4615-5775-3_20
– year: 2018
  ident: 700_CR11
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0642-2
– volume: 34
  start-page: 605
  year: 2016
  ident: 700_CR17
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-015-9970-9
– volume: 85
  start-page: 174
  year: 2016
  ident: 700_CR18
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2016.03.018
– volume: 63
  start-page: 84
  year: 1857
  ident: 700_CR2
  publication-title: J Franklin Inst
  doi: 10.1016/S0016-0032(57)90626-9
– year: 2016
  ident: 700_CR23
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2434-1
– volume: 28
  start-page: 393
  issue: Suppl 1
  year: 2017
  ident: 700_CR16
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2359-8
– volume: 55
  start-page: 809
  year: 2017
  ident: 700_CR28
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1521-3
– year: 2017
  ident: 700_CR22
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0545-7
– volume: 2
  start-page: 41
  year: 2004
  ident: 700_CR47
  publication-title: Neural Netw
– volume: 43
  start-page: 73
  year: 1997
  ident: 700_CR31
  publication-title: Biosystems
  doi: 10.1016/S0303-2647(97)01708-5
– volume: 20
  start-page: 841
  year: 2004
  ident: 700_CR36
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2003.07.015
– volume: 46
  start-page: 853
  year: 2013
  ident: 700_CR20
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2013.46.6.853
– volume: 75
  start-page: 289
  year: 2015
  ident: 700_CR24
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.07.019
– year: 2018
  ident: 700_CR44
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3253-3
– volume: 46
  start-page: 1214
  year: 2009
  ident: 700_CR27
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.03.004
– year: 2017
  ident: 700_CR21
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2990-z
– volume: 18
  start-page: 181
  year: 2004
  ident: 700_CR35
  publication-title: Electron Notes Discrete Math
  doi: 10.1016/j.endm.2004.06.029
– volume-title: Fundamentals of neural networks: architectures, algorithms, and applications
  year: 1994
  ident: 700_CR51
– year: 2018
  ident: 700_CR15
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0625-3
– volume-title: Artificial neural networks: an introduction
  year: 2005
  ident: 700_CR43
  doi: 10.1117/3.633187
– volume: 96
  start-page: 141
  year: 2008
  ident: 700_CR54
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2007.10.009
– ident: 700_CR58
  doi: 10.1109/ISMS.2013.20
– volume: 1
  start-page: 53
  year: 1997
  ident: 700_CR32
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585892
– volume: 77
  start-page: 78
  year: 2011
  ident: 700_CR56
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2011.02.005
– start-page: 126
  volume-title: Lecture Notes in Computer Science
  year: 2006
  ident: 700_CR37
– volume: 240
  start-page: 825
  year: 2015
  ident: 700_CR38
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2014.07.040
– volume: 32
  start-page: 255
  year: 2016
  ident: 700_CR29
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0415-0
– volume: 75
  start-page: 27
  year: 2016
  ident: 700_CR14
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0720-2
– volume: 15
  start-page: 551
  year: 2018
  ident: 700_CR26
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-017-1395-y
– ident: 700_CR55
– volume-title: Study of old masonry retaining walls in Hong Kong
  year: 1996
  ident: 700_CR5
– year: 2018
  ident: 700_CR45
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0596-4
SSID ssj0013009
Score 2.4491239
Snippet The stability of retaining walls against overturning is analyzed in this study using artificial intelligence methods. Five input parameters including wall...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 283
SubjectTerms Algorithms
Ant colony optimization
Artificial intelligence
Artificial neural networks
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Density
Math. Applications in Chemistry
Mathematical and Computational Engineering
Mathematical models
Modelling
Optimization
Original Article
Parameters
Prediction models
Retaining walls
Safety factors
Soils
Stability analysis
Systems Theory
Wall thickness
Title The use of new intelligent techniques in designing retaining walls
URI https://link.springer.com/article/10.1007/s00366-018-00700-1
https://www.proquest.com/docview/2343280016
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1435-5663
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: 8FG
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vejBR1Ws1pKDN13ovpLssZU-UCwiFuppySYpCKUVd4t_30ma3aqo4Gkhm81h8phvNvN9A3CZodtmjCceFYaSwzX3uKLco4n0NVMRm2nDRr4f09Ekup3GU0cKy8ts9_JK0p7UFdnNSKeY6Jd7RqOm42HMU4-NnBeu4knQ3dwddNaJHT4ziV2UOarMz2N8dUcbjPntWtR6m8EB7DmYSLrreT2ELb1owL6DjMRtyBybyqoMZVsDdj9JDB5BD9cBWeWaLGcEETR5qSQ4C1Lpt-bYTJTN5cCPiElBtHUjyLuYz_NjmAz6Tzcjz9VN8CRuqMKw_hSPooxpnmQYgnakiHSsdEiZwPhAmXhYyIzqQCScZ6GWvk_FLOGhgY9UhydQWywX-hSIVsEsVr7AAULjxniAYDyMOJV4Lkghm-CX5kulExU3tS3maSWHbE2eoslTa_LUb8JV9c3rWlLjz96tclZSt73yNDB0WG7gahOuy5navP59tLP_dT-HncDE1_aXSwtqxdtKXyAIKbI2bPPBsA317vD5ro_PXn_88Ni2K_EDZzXThQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8xcFAPoqgRRe3Bm46wD9ruiEZE-ThBgqema0tiJGDciIl_ve3WDSVqwrVrm61f7_fW9_s9gKtIm21CaOhgbig5VFGHSkwdHApXERmQqTJs5MEQd8fB06Q1saSwOI92z68k05O6ILsZ6RTj_VLHaNQ0He3zlAPtoHglKLcfnnv3q9uDZhba4RIT2oWJJcv83stPg7RCmWsXo6m96VRgnL9pFmby2lgmUUN8rok4bvop-7BnAShqZyvmALbUvAoVC0aR3eqxLsrzPeRlVdj9Jl54CLd6haFlrNBiijQ2Ry-FuGeCCmXYWBcjmUaJ6EbIBDemGSnQB5_N4iMYd-5Hd13HZmRwhN6qieETShoEEVE0jLRz2xQ8UC2pfEy49jyk8bS5iLDyeEhp5CvhuphPQ-obYIqVfwyl-WKuTgAp6U1b0uW6A98YSOppmO8HFAt94gguauDm08KElSs3WTNmrBBaTkeR6VFk6SgytwbXRZu3TKzj39r1fLaZ3bgx8wzRlhogXIObfPJWj__u7XSz6pew3R0N-qz_OOydwY5nvPj0x04dSsn7Up1rqJNEF3ZlfwEsvO9F
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hIiE4sBQQhQI-cIOozVLbOZalKlvFgUq9RY7tSEhVWpFU_D4eZ2lBgMTVsX0YL_MmnvcG4CI2bpsxHjpUICWHa-5wRblDQ-lqpgKWaGQjP4_ocBw8THqTFRa_zXavniQLTgOqNKV5Z66STk18QxkVjIS5g3o1XcfEP-sBCiWYHT32-st3hG6R5OEyTPKirKTN_DzHV9e0xJvfnkit5xnswnYJGUm_WOM9WNNpE3ZK-EjKw5mZpqpCQ9XWhK0VucF9uDZ7giwyTWYJMWiavNVynDmptVwz00yUzeswgwimI9oaEuRDTKfZAYwHd683Q6esoeBIc7hyZAAqHgQx0zyMTTjalSLQPaV9yoSJFRTGxkLGVHsi5Dz2tXRdKpKQ-wglqfYPoZHOUn0ERCsv6SlXmAl8dGncM8DcDziV5o6QQrbArcwXyVJgHOtcTKNaGtmaPDImj6zJI7cFl_WYeSGv8WfvdrUqUXnUsshDaixH6NqCq2qllp9_n-34f93PYePldhA93Y8eT2DTw7Db_olpQyN_X-hTg03y-Mxuv0_LDNaZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+new+intelligent+techniques+in+designing+retaining+walls&rft.jtitle=Engineering+with+computers&rft.au=Koopialipoor+Mohammadreza&rft.au=Ramesh%2C+Murlidhar+Bhatawdekar&rft.au=Hedayat+Ahmadreza&rft.au=Jahed%2C+Armaghani+Danial&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=36&rft.issue=1&rft.spage=283&rft.epage=294&rft_id=info:doi/10.1007%2Fs00366-018-00700-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon