Anti-dendriform algebras, new splitting of operations and Novikov-type algebras
We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two multiplications giving their left and right multiplication operators, respectively, such that the opposites of these operators define a bimodule structu...
        Saved in:
      
    
          | Published in | Journal of algebraic combinatorics Vol. 59; no. 3; pp. 661 - 696 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.05.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0925-9899 1572-9192  | 
| DOI | 10.1007/s10801-024-01303-4 | 
Cover
| Abstract | We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two multiplications giving their left and right multiplication operators, respectively, such that the opposites of these operators define a bimodule structure on the sum of these two multiplications, which is associative. This justifies the terminology due to a closely analogous characterization of a dendriform algebra. The notions of anti-
O
-operators and anti-Rota–Baxter operators on associative algebras are introduced to interpret anti-dendriform algebras. In particular, there are compatible anti-dendriform algebra structures on associative algebras with nondegenerate commutative Connes cocycles. There is an important observation that there are correspondences between certain subclasses of dendriform and anti-dendriform algebras in terms of
q
-algebras. As a direct consequence, we give the notion of Novikov-type dendriform algebras as an analogue of Novikov algebras for dendriform algebras, whose relationship with Novikov algebras is consistent with the one between dendriform and pre-Lie algebras. Finally, we extend to provide a general framework of introducing the notions of analogues of anti-dendriform algebras, which interprets a new splitting of operations. | 
    
|---|---|
| AbstractList | We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two multiplications giving their left and right multiplication operators, respectively, such that the opposites of these operators define a bimodule structure on the sum of these two multiplications, which is associative. This justifies the terminology due to a closely analogous characterization of a dendriform algebra. The notions of anti-
O
-operators and anti-Rota–Baxter operators on associative algebras are introduced to interpret anti-dendriform algebras. In particular, there are compatible anti-dendriform algebra structures on associative algebras with nondegenerate commutative Connes cocycles. There is an important observation that there are correspondences between certain subclasses of dendriform and anti-dendriform algebras in terms of
q
-algebras. As a direct consequence, we give the notion of Novikov-type dendriform algebras as an analogue of Novikov algebras for dendriform algebras, whose relationship with Novikov algebras is consistent with the one between dendriform and pre-Lie algebras. Finally, we extend to provide a general framework of introducing the notions of analogues of anti-dendriform algebras, which interprets a new splitting of operations. We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two multiplications giving their left and right multiplication operators, respectively, such that the opposites of these operators define a bimodule structure on the sum of these two multiplications, which is associative. This justifies the terminology due to a closely analogous characterization of a dendriform algebra. The notions of anti-O-operators and anti-Rota–Baxter operators on associative algebras are introduced to interpret anti-dendriform algebras. In particular, there are compatible anti-dendriform algebra structures on associative algebras with nondegenerate commutative Connes cocycles. There is an important observation that there are correspondences between certain subclasses of dendriform and anti-dendriform algebras in terms of q-algebras. As a direct consequence, we give the notion of Novikov-type dendriform algebras as an analogue of Novikov algebras for dendriform algebras, whose relationship with Novikov algebras is consistent with the one between dendriform and pre-Lie algebras. Finally, we extend to provide a general framework of introducing the notions of analogues of anti-dendriform algebras, which interprets a new splitting of operations.  | 
    
| Author | Gao, Dongfang Liu, Guilai Bai, Chengming  | 
    
| Author_xml | – sequence: 1 givenname: Dongfang surname: Gao fullname: Gao, Dongfang organization: Chern Institute of Mathematics and LPMC, Nankai University – sequence: 2 givenname: Guilai surname: Liu fullname: Liu, Guilai organization: Chern Institute of Mathematics and LPMC, Nankai University – sequence: 3 givenname: Chengming orcidid: 0000-0002-9242-5887 surname: Bai fullname: Bai, Chengming email: baicm@nankai.edu.cn organization: Chern Institute of Mathematics and LPMC, Nankai University  | 
    
| BookMark | eNp9kE1PAyEQhompiW31D3jaxKsoA_vFsWn8Shp70TOhCzTULayANf33rl2jiYee5vI-78w8EzRy3mmELoHcACHVbQRSE8CE5pgAIwznJ2gMRUUxB05HaEw4LTCvOT9Dkxg3hBBeQzFGy5lLFivtVLDGh20m27VeBRmvM6c_s9i1NiXr1pk3me90kMl6FzPpVPbsd_bN73Dad_oXO0enRrZRX_zMKXq9v3uZP-LF8uFpPlvghgFPuCRaleWKl1ADNVI3nK5qYHlZFKzIOTFUUQ4aVF3lNTeNUYpLUIyq3MhKF2yKrobeLvj3Dx2T2PiP4PqVgtEiL_taYH2qHlJN8DEGbURj0-GFFKRtBRDxrU8M-kSvTxz0ibxH6T-0C3Yrw_44xAYo9mG31uHvqiPUFzvfhCs | 
    
| CitedBy_id | crossref_primary_10_1080_00927872_2024_2426037 crossref_primary_10_1007_s13398_024_01663_3  | 
    
| Cites_doi | 10.2478/s11533-006-0014-9 10.1007/s00013-003-0796-y 10.1016/S0764-4442(97)84587-9 10.2140/pjm.1960.10.731 10.1007/s10958-009-9532-x 10.1093/imrn/rnr266 10.2140/pjm.2012.256.257 10.1016/j.aim.2005.12.004 10.1016/j.jpaa.2004.01.002 10.1007/3-540-45328-8_4 10.1016/j.jalgebra.2010.04.030 10.1007/BF02698807 10.1016/j.jalgebra.2022.07.004 10.1016/S0021-8693(02)00097-2 10.4171/jncg/64 10.1016/j.jalgebra.2004.06.022 10.1016/S0007-4497(02)01113-2 10.1016/S0022-4049(01)00052-4 10.1007/BF01078363 10.1007/3-540-45328-8_2 10.1023/A:1015064508594 10.1007/s11005-008-0259-2 10.1142/S0219498813500278 10.1002/9781119818175.ch7 10.1006/aima.1998.1759 10.1090/conm/346/06296 10.1016/S0021-8693(02)00510-0 10.1016/S0022-4049(97)00066-2  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.  | 
    
| DBID | AAYXX CITATION 7XB 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M2P M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| DOI | 10.1007/s10801-024-01303-4 | 
    
| DatabaseName | CrossRef ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Science Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Computer Science  | 
    
| EISSN | 1572-9192 | 
    
| EndPage | 696 | 
    
| ExternalDocumentID | 10_1007_s10801_024_01303_4 | 
    
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: http://dx.doi.org/10.13039/501100012226 – fundername: China Postdoctoral Science Foundation grantid: 2022M711708 – fundername: Nankai Zhide Foundation funderid: http://dx.doi.org/10.13039/501100018769 – fundername: National Postdoctoral Program for Innovative Talents of China grantid: 20220158 – fundername: National Natural Science Foundation of China grantid: 11931009; 12271265 funderid: http://dx.doi.org/10.13039/501100001809  | 
    
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~9 -~C .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAK LLZTM M4Y MA- MQGED N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 OVD P19 P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z81 Z8U ZMTXR ZWQNP AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7XB 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M2P M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-60ed66b961812faec92b813465535490f2d291e1d87489fcfdd9a1d32d4fa7e53 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0925-9899 | 
    
| IngestDate | Sat Sep 27 04:20:47 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Wed Oct 01 01:00:18 EDT 2025 Fri Feb 21 02:40:49 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Dendriform algebra Commutative Connes cocycle 17A36 17B40 17B63 Associative algebra 17B10 17B60 17A40 Anti-dendriform algebra 17D25 Novikov algebra  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-60ed66b961812faec92b813465535490f2d291e1d87489fcfdd9a1d32d4fa7e53 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9242-5887 | 
    
| PQID | 3254681213 | 
    
| PQPubID | 2043735 | 
    
| PageCount | 36 | 
    
| ParticipantIDs | proquest_journals_3254681213 crossref_citationtrail_10_1007_s10801_024_01303_4 crossref_primary_10_1007_s10801_024_01303_4 springer_journals_10_1007_s10801_024_01303_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240500 2024-05-00 20240501  | 
    
| PublicationDateYYYYMMDD | 2024-05-01 | 
    
| PublicationDate_xml | – month: 5 year: 2024 text: 20240500  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Journal of algebraic combinatorics | 
    
| PublicationTitleAbbrev | J Algebr Comb | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Dzhumadil’daevAAlgebras with skew-symmetric identity of degree 3J. Math. Sci.20091611130267625510.1007/s10958-009-9532-x Aguiar, M., Loday, J.-L.: Quadri-algebras. J. Pure Appl. Algebra 191, 205–221 (2004) BaxterGAn analytic problem whose solution follows from a simple algebraic identityPac. J. Math.19601073174211922410.2140/pjm.1960.10.731 HoltkampROn Hopf algebra structures over free operadsAdv. Math.2006207544565227101610.1016/j.aim.2005.12.004 Dzhumadil’daevAZusmanovichPCommutative 2-cocycles on Lie algebrasJ. Algebra2010324732748265156510.1016/j.jalgebra.2010.04.030 Rota, G.-C.: Baxter operators, an introduction. In Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, Birkhäuser, Boston (1995) HoltkampRComparison of Hopf algebras on treesArch. Math. (Basel)200380368383198283710.1007/s00013-003-0796-y BalinskiiAANovikovSPPoisson brackets of hydrodynamic type, Frobenius algebras and Lie algebrasSoviet Math. Dokl.198532228231 BaiCMengDThe classification of left-symmetric algebras in dimension 2Chin. Sci. Bull.1996412207[in Chinese] FrabettiADialgebra homology of associative algebrasC. R. Acad. Sci. Paris Sér. I Math1997325135140146706510.1016/S0764-4442(97)84587-9 BaiCDouble constructions of Frobenius algebras, Connes cocycles and their dualityJ. Noncommut. Geom.20104475530271880010.4171/jncg/64 BurdeDLeft-symmetric algebras and pre-Lie algebras in geometry and physicsCent. Eur. J. Math.20064323357223385410.2478/s11533-006-0014-9 LodayJ-LRoncoMOrder structure on the algebra of permutations and of planar binary treesJ. Algebraic Combin.200215253270190062710.1023/A:1015064508594 ChapotonFUn théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres bracesJ. Pure Appl. Algebra2002168118187992710.1016/S0022-4049(01)00052-4 GuoLAn Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics 42012Somerville, BeijingInternational Press, Higher Education Press LiuGBaiCAnti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebrasJ. Algebra2022609337379445539810.1016/j.jalgebra.2022.07.004 Loday, J.-L.: Dialgebras, in: Dialgebras and related operads. Lecture Notes in Math. 1763, Springer, Berlin 7-66 (2001) LodayJ-LRoncoMHopf algebra of the planar binary treesAdv. Math.1998139293309165417310.1006/aima.1998.1759 Gel’fandIMDorfmanI. Ya.Hamiltonian operators and algebraic structures related to themFunct. Anal. Appl.19791324826210.1007/BF01078363 BaiCGuoLNiXO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{O} }$$\end{document}-operators on associative algebras and associative Yang-Baxter equationsPac. J. Math.2012256257289294497610.2140/pjm.2012.256.257 BurdeDSimple left-symmetric algebras with solvable Lie algebraManuscr. Math.1998953974111612015 LodayJ-LArithmetreeJ. Algebra2002258275309195890710.1016/S0021-8693(02)00510-0 Chapoton, F.: Un endofoncteur de la catégorie des opérades. Dialgebras and related operads, 105–110, Lecture Notes in Math. 1763, Springer, Berlin (2001) GubarevVKolesnikovPEmbedding of dendriform algebras into Rota-Baxter algebrasCent. Eur. J. Math.2013112262453000640 Leroux, P.: On some remarkable operads constructed from Baxter operators. arXiv: math.QA/0311214 UchinoKQuantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operatorsLett. Math. Phys.20088591109244393210.1007/s11005-008-0259-2 FrabettiALeibniz homology of dialgebras of matricesJ. Pure Appl. Algebra1998129123141162444610.1016/S0022-4049(97)00066-2 RoncoMEulerian idempotents and Milnor–Moore theorem for certain non-cocommutative Hopf algebrasJ. Algebra2002254152172192743610.1016/S0021-8693(02)00097-2 Loday, J.-L., Ronco, M.: Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Comtep. Math. 346, pp. 369–398 (2004) Bai, C., Bellier, O., Guo, L., Ni, X.: Splitting of operations, Manin products and Rota-Baxter operators, Int. Math. Res. Not. IMRN. 485–524 (2013) BaiCGuoLNiXRelative Rota-Baxter operators and tridendriform algebrasJ. Algebra Appl.2013121350027306346610.1142/S0219498813500278 LerouxPEnnea-algebrasJ. Algebra2004281287302209197210.1016/j.jalgebra.2004.06.022 Bai, C.: An introduction to pre-Lie algebras. In: Algebra and Applications 1: Nonssociative Algebras and Categories, Wiley Online Library 245–273 (2021) ConnesANoncommutative differential geometryInst. Hautes Études Sci. Publ. Math.19856225736082317610.1007/BF02698807 Loday, J.-L.: Scindement d’associativité et algèbres de Hopf, Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr. 9, Soc. Math. France, Paris 155–172 (2004) FoissyLLes algèbres de Hopf des arbres enracinés décorés IIBull. Sci. Math.2002126249288190946110.1016/S0007-4497(02)01113-2 A Dzhumadil’daev (1303_CR16) 2010; 324 1303_CR26 L Guo (1303_CR22) 2012 1303_CR28 C Bai (1303_CR6) 2013; 12 1303_CR3 1303_CR4 AA Balinskii (1303_CR8) 1985; 32 1303_CR1 D Burde (1303_CR10) 1998; 95 K Uchino (1303_CR36) 2008; 85 D Burde (1303_CR11) 2006; 4 F Chapoton (1303_CR13) 2002; 168 L Foissy (1303_CR17) 2002; 126 A Frabetti (1303_CR18) 1997; 325 IM Gel’fand (1303_CR20) 1979; 13 C Bai (1303_CR2) 2010; 4 G Baxter (1303_CR9) 1960; 10 A Connes (1303_CR14) 1985; 62 C Bai (1303_CR7) 1996; 41 R Holtkamp (1303_CR24) 2006; 207 J-L Loday (1303_CR31) 1998; 139 G Liu (1303_CR27) 2022; 609 P Leroux (1303_CR25) 2004; 281 1303_CR30 1303_CR33 J-L Loday (1303_CR29) 2002; 258 1303_CR35 1303_CR12 A Dzhumadil’daev (1303_CR15) 2009; 161 R Holtkamp (1303_CR23) 2003; 80 J-L Loday (1303_CR32) 2002; 15 M Ronco (1303_CR34) 2002; 254 A Frabetti (1303_CR19) 1998; 129 C Bai (1303_CR5) 2012; 256 V Gubarev (1303_CR21) 2013; 11  | 
    
| References_xml | – reference: Bai, C.: An introduction to pre-Lie algebras. In: Algebra and Applications 1: Nonssociative Algebras and Categories, Wiley Online Library 245–273 (2021) – reference: FrabettiALeibniz homology of dialgebras of matricesJ. Pure Appl. Algebra1998129123141162444610.1016/S0022-4049(97)00066-2 – reference: HoltkampRComparison of Hopf algebras on treesArch. Math. (Basel)200380368383198283710.1007/s00013-003-0796-y – reference: Loday, J.-L., Ronco, M.: Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Comtep. Math. 346, pp. 369–398 (2004) – reference: Loday, J.-L.: Scindement d’associativité et algèbres de Hopf, Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr. 9, Soc. Math. France, Paris 155–172 (2004) – reference: Aguiar, M., Loday, J.-L.: Quadri-algebras. J. Pure Appl. Algebra 191, 205–221 (2004) – reference: BurdeDLeft-symmetric algebras and pre-Lie algebras in geometry and physicsCent. Eur. J. Math.20064323357223385410.2478/s11533-006-0014-9 – reference: LerouxPEnnea-algebrasJ. Algebra2004281287302209197210.1016/j.jalgebra.2004.06.022 – reference: ChapotonFUn théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres bracesJ. Pure Appl. Algebra2002168118187992710.1016/S0022-4049(01)00052-4 – reference: BaiCGuoLNiXO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{O} }$$\end{document}-operators on associative algebras and associative Yang-Baxter equationsPac. J. Math.2012256257289294497610.2140/pjm.2012.256.257 – reference: LodayJ-LArithmetreeJ. Algebra2002258275309195890710.1016/S0021-8693(02)00510-0 – reference: Gel’fandIMDorfmanI. Ya.Hamiltonian operators and algebraic structures related to themFunct. Anal. Appl.19791324826210.1007/BF01078363 – reference: BaiCMengDThe classification of left-symmetric algebras in dimension 2Chin. Sci. Bull.1996412207[in Chinese] – reference: Rota, G.-C.: Baxter operators, an introduction. In Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, Birkhäuser, Boston (1995) – reference: FrabettiADialgebra homology of associative algebrasC. R. Acad. Sci. Paris Sér. I Math1997325135140146706510.1016/S0764-4442(97)84587-9 – reference: BurdeDSimple left-symmetric algebras with solvable Lie algebraManuscr. Math.1998953974111612015 – reference: BaiCDouble constructions of Frobenius algebras, Connes cocycles and their dualityJ. Noncommut. Geom.20104475530271880010.4171/jncg/64 – reference: ConnesANoncommutative differential geometryInst. Hautes Études Sci. Publ. Math.19856225736082317610.1007/BF02698807 – reference: GubarevVKolesnikovPEmbedding of dendriform algebras into Rota-Baxter algebrasCent. Eur. J. Math.2013112262453000640 – reference: Dzhumadil’daevAAlgebras with skew-symmetric identity of degree 3J. Math. Sci.20091611130267625510.1007/s10958-009-9532-x – reference: LodayJ-LRoncoMHopf algebra of the planar binary treesAdv. Math.1998139293309165417310.1006/aima.1998.1759 – reference: Dzhumadil’daevAZusmanovichPCommutative 2-cocycles on Lie algebrasJ. Algebra2010324732748265156510.1016/j.jalgebra.2010.04.030 – reference: LiuGBaiCAnti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebrasJ. Algebra2022609337379445539810.1016/j.jalgebra.2022.07.004 – reference: RoncoMEulerian idempotents and Milnor–Moore theorem for certain non-cocommutative Hopf algebrasJ. Algebra2002254152172192743610.1016/S0021-8693(02)00097-2 – reference: BaxterGAn analytic problem whose solution follows from a simple algebraic identityPac. J. Math.19601073174211922410.2140/pjm.1960.10.731 – reference: UchinoKQuantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operatorsLett. Math. Phys.20088591109244393210.1007/s11005-008-0259-2 – reference: Bai, C., Bellier, O., Guo, L., Ni, X.: Splitting of operations, Manin products and Rota-Baxter operators, Int. Math. Res. Not. IMRN. 485–524 (2013) – reference: GuoLAn Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics 42012Somerville, BeijingInternational Press, Higher Education Press – reference: FoissyLLes algèbres de Hopf des arbres enracinés décorés IIBull. Sci. Math.2002126249288190946110.1016/S0007-4497(02)01113-2 – reference: LodayJ-LRoncoMOrder structure on the algebra of permutations and of planar binary treesJ. Algebraic Combin.200215253270190062710.1023/A:1015064508594 – reference: HoltkampROn Hopf algebra structures over free operadsAdv. Math.2006207544565227101610.1016/j.aim.2005.12.004 – reference: BaiCGuoLNiXRelative Rota-Baxter operators and tridendriform algebrasJ. Algebra Appl.2013121350027306346610.1142/S0219498813500278 – reference: Leroux, P.: On some remarkable operads constructed from Baxter operators. arXiv: math.QA/0311214 – reference: BalinskiiAANovikovSPPoisson brackets of hydrodynamic type, Frobenius algebras and Lie algebrasSoviet Math. Dokl.198532228231 – reference: Chapoton, F.: Un endofoncteur de la catégorie des opérades. Dialgebras and related operads, 105–110, Lecture Notes in Math. 1763, Springer, Berlin (2001) – reference: Loday, J.-L.: Dialgebras, in: Dialgebras and related operads. Lecture Notes in Math. 1763, Springer, Berlin 7-66 (2001) – volume: 4 start-page: 323 year: 2006 ident: 1303_CR11 publication-title: Cent. Eur. J. Math. doi: 10.2478/s11533-006-0014-9 – volume: 80 start-page: 368 year: 2003 ident: 1303_CR23 publication-title: Arch. Math. (Basel) doi: 10.1007/s00013-003-0796-y – ident: 1303_CR35 – volume-title: An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics 4 year: 2012 ident: 1303_CR22 – volume: 32 start-page: 228 year: 1985 ident: 1303_CR8 publication-title: Soviet Math. Dokl. – volume: 325 start-page: 135 year: 1997 ident: 1303_CR18 publication-title: C. R. Acad. Sci. Paris Sér. I Math doi: 10.1016/S0764-4442(97)84587-9 – volume: 10 start-page: 731 year: 1960 ident: 1303_CR9 publication-title: Pac. J. Math. doi: 10.2140/pjm.1960.10.731 – volume: 161 start-page: 11 year: 2009 ident: 1303_CR15 publication-title: J. Math. Sci. doi: 10.1007/s10958-009-9532-x – ident: 1303_CR4 doi: 10.1093/imrn/rnr266 – volume: 256 start-page: 257 year: 2012 ident: 1303_CR5 publication-title: Pac. J. Math. doi: 10.2140/pjm.2012.256.257 – volume: 207 start-page: 544 year: 2006 ident: 1303_CR24 publication-title: Adv. Math. doi: 10.1016/j.aim.2005.12.004 – ident: 1303_CR1 doi: 10.1016/j.jpaa.2004.01.002 – ident: 1303_CR12 doi: 10.1007/3-540-45328-8_4 – volume: 324 start-page: 732 year: 2010 ident: 1303_CR16 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2010.04.030 – volume: 62 start-page: 257 year: 1985 ident: 1303_CR14 publication-title: Inst. Hautes Études Sci. Publ. Math. doi: 10.1007/BF02698807 – volume: 609 start-page: 337 year: 2022 ident: 1303_CR27 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2022.07.004 – volume: 254 start-page: 152 year: 2002 ident: 1303_CR34 publication-title: J. Algebra doi: 10.1016/S0021-8693(02)00097-2 – volume: 11 start-page: 226 year: 2013 ident: 1303_CR21 publication-title: Cent. Eur. J. Math. – volume: 4 start-page: 475 year: 2010 ident: 1303_CR2 publication-title: J. Noncommut. Geom. doi: 10.4171/jncg/64 – ident: 1303_CR26 – volume: 281 start-page: 287 year: 2004 ident: 1303_CR25 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2004.06.022 – volume: 126 start-page: 249 year: 2002 ident: 1303_CR17 publication-title: Bull. Sci. Math. doi: 10.1016/S0007-4497(02)01113-2 – volume: 168 start-page: 1 year: 2002 ident: 1303_CR13 publication-title: J. Pure Appl. Algebra doi: 10.1016/S0022-4049(01)00052-4 – volume: 13 start-page: 248 year: 1979 ident: 1303_CR20 publication-title: Funct. Anal. Appl. doi: 10.1007/BF01078363 – ident: 1303_CR28 doi: 10.1007/3-540-45328-8_2 – volume: 41 start-page: 2207 year: 1996 ident: 1303_CR7 publication-title: Chin. Sci. Bull. – volume: 15 start-page: 253 year: 2002 ident: 1303_CR32 publication-title: J. Algebraic Combin. doi: 10.1023/A:1015064508594 – volume: 85 start-page: 91 year: 2008 ident: 1303_CR36 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-008-0259-2 – volume: 12 start-page: 1350027 year: 2013 ident: 1303_CR6 publication-title: J. Algebra Appl. doi: 10.1142/S0219498813500278 – ident: 1303_CR30 – ident: 1303_CR3 doi: 10.1002/9781119818175.ch7 – volume: 139 start-page: 293 year: 1998 ident: 1303_CR31 publication-title: Adv. Math. doi: 10.1006/aima.1998.1759 – ident: 1303_CR33 doi: 10.1090/conm/346/06296 – volume: 95 start-page: 397 year: 1998 ident: 1303_CR10 publication-title: Manuscr. Math. – volume: 258 start-page: 275 year: 2002 ident: 1303_CR29 publication-title: J. Algebra doi: 10.1016/S0021-8693(02)00510-0 – volume: 129 start-page: 123 year: 1998 ident: 1303_CR19 publication-title: J. Pure Appl. Algebra doi: 10.1016/S0022-4049(97)00066-2  | 
    
| SSID | ssj0009815 | 
    
| Score | 2.394486 | 
    
| Snippet | We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 661 | 
    
| SubjectTerms | Algebra Associativity Combinatorics Computer Science Convex and Discrete Geometry Group Theory and Generalizations Lattices Lie groups Mathematics Mathematics and Statistics Multiplication Multiplication & division Operators (mathematics) Order Ordered Algebraic Structures Splitting Vector space  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCAKBXlgo5ZiO07ssUJUFVLLQqVukeOHVAFJ1YT-fuw8WkCAxBzbw53vfJe7-z4AbuNYKmpi5YvuAQq5JCg1JkKxotJozqnUflB4Mo3Gs_BxzubNUFjRdru3JcnKU38aduM-9SW-a8I5XhTugj3m4bzcLZ6R4RZql9e8BYIwJFw60YzK_HzG1-doG2N-K4tWr83oGBw2YSIc1no9ATsm64KjloIBNhbZBQeTDexqcQqehlm5QM6T6JUfuHqDnsTDpcPFALroGRYu4KzanGFuYb40tfILKDMNp_l68ZKvkf8lu9l2Bmajh-f7MWoYE5ByplSiKDA6ilLP4oKJlUYJknJMPUYadYlgYIkmAhusuQedscpqLSTWlOjQytgweg46WZ6ZCwC1soqkLAisy9BwyGRIuRLMYqOYUIHoAdwKLlENnLhntXhNtkDIXtiJE3ZSCTsJe-Bus2dZg2n8ubrf6iNpDKtIqMfv5x6HrgcGrY62n38_7fJ_y6_APqmuiW9t7INOuXo31y78KNOb6rZ9AFXAz3g priority: 102 providerName: Springer Nature  | 
    
| Title | Anti-dendriform algebras, new splitting of operations and Novikov-type algebras | 
    
| URI | https://link.springer.com/article/10.1007/s10801-024-01303-4 https://www.proquest.com/docview/3254681213  | 
    
| Volume | 59 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-9192 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009815 issn: 0925-9899 databaseCode: AFBBN dateStart: 19920501 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-9192 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009815 issn: 0925-9899 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-9192 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009815 issn: 0925-9899 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8AB8RTjMeXADSLapI_0gNBAGwjEQIhJcKrSPCQErIMOfj9x164CCa5tE1WO49ix_X0AB3EsFTexwqS7RwMhGc2MiWisuDRaCC41NgrfDKPLUXD1GD4uwLDuhcGyytomloZa5wrvyI85ArcLBCA7nbxTZI3C7GpNoSEragV9UkKMLUKbITJWC9pn_eHdfQPDK2acBgkLaeJCjaqNpmqmExhaM6zKcIadBj-Pqsb__JUyLU-iwSqsVC4k6c3WfA0WzHgdlm_m-KvFBtz23F9SZ1L0B3ZevRFk83BxcXFEnBtNCud5lvXOJLckn5iZFhREjjUZ5l_PL_kXxbvZ-bBNGA36D-eXtKJOoMrtqSmNPKOjKEM6F59ZaVTCMuFzBEvjLiL0LNMs8Y2vBaLPWGW1TqSvOdOBlbEJ-Ra0xvnYbAPRyiqWhZ5nXajmB6EMuFBJaH2jwkR5SQf8WkqpqnDFkd7iNW0QkVGyqZNsWko2DTpwOB8zmaFq_Pv1Xi38tNphRdroQweO6gVpXv89287_s-3CEit1AGsa96A1_fg0-87vmGZdWBSDiy60exdP1_1upVru6Yj1vgG0e9ZB | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH4hcFAPRgTjKmIPeILGmbYz0x6IAYQswi7GQMJt7PRHYtSdlVkx_nP-bfbNdnYCCdw4z7SHr69977XvfR_AVlFow11h8NE9oUJqRivncloYrp2VkmuLjcKjcT68EJ8us8sl-Nf1wmBZZXcmtge1rQ3ekb_nSNwukYDsw_QXRdUofF3tJDR0lFawuy3FWGzsOHF__4QUrtk9_hjW-x1jR4fnB0MaVQaoCeY3o3nibJ5XqHySMq-dUaySKUdeMR6Sp8Qzy1TqUiuRqMUbb63SqeXMCq8Lh6oRwQWsCC5USP5W9g_Hn7_0tL9yrqGgWEZVSG1i205s3pOYyjOsAgmOhIqbrrGPd2890bae7-gZPI0hK9mb29gqLLnJc3gyWvC9NmtwthdQoeEIs1fY6fWToHpIyMObHRLCdtKESLetrya1J_XUza2uIXpiybi-_va9vqZ4F7wYtg4XDwLiC1ie1BP3Eog13rAqSxIfUsNUZFpwaVTmU2cyZRI1gLRDqTSRxxzlNH6UPQMzIlsGZMsW2VIMYHsxZjpn8bj3740O_DLu6Kbs7W8AO92C9J_vnu3V_bO9hUfD89FpeXo8PnkNj1lrD1hPuQHLs6vf7k2IeWbVZjQsAl8f2pb_A0y7D3c | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5BkBAcSkuLSIGyB27NCnvXj_UxokTQkpQDkXKz1vuQEGBH2M3v744fSYoKEmfv7mEeuzOe-b4BOItjqbiJFRbdPRoIyWhmTERjxaXRQnCpESg8nkRX0-DnLJytofjrbveuJNlgGpClKa_O59qerwHfBKbBDDso3CVMg03YCpAowVn0lA1XtLuimWGQsJAmLrVoYTP_P-Pfp2kVb74okdYvz-gjfGhDRjJsdPwJNky-D3vdOAbSeuc-7I6XFKzlZ_g9zKt76m4V_YzgqyeCAz1calwOiIukSemCz7rlmRSWFHPTGEJJZK7JpFjcPxQLir9nl9u-wHR0eXdxRdvpCVQ5t6po5BkdRRlOdPGZlUYlLBM-R7407pJCzzLNEt_4WiABjVVW60T6mjMdWBmbkB9ALy9ycwhEK6tYFnqeddmaH4Qy4EIlofWNChPlJX3wO8GlqqUWxwkXj-mKFBmFnTphp7Ww06AP35d75g2xxpurjzt9pK2TlSlHLn-BnHR9GHQ6Wn1-_bSv71t-Ctu3P0bpzfXk1xHssNpisOPxGHrV8x9z4qKSKvtWG95fqEbWoA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-dendriform+algebras%2C+new+splitting+of+operations+and+Novikov-type+algebras&rft.jtitle=Journal+of+algebraic+combinatorics&rft.au=Gao%2C+Dongfang&rft.au=Liu%2C+Guilai&rft.au=Bai%2C+Chengming&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-9899&rft.eissn=1572-9192&rft.volume=59&rft.issue=3&rft.spage=661&rft.epage=696&rft_id=info:doi/10.1007%2Fs10801-024-01303-4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9899&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9899&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9899&client=summon |