Anti-dendriform algebras, new splitting of operations and Novikov-type algebras

We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two multiplications giving their left and right multiplication operators, respectively, such that the opposites of these operators define a bimodule structu...

Full description

Saved in:
Bibliographic Details
Published inJournal of algebraic combinatorics Vol. 59; no. 3; pp. 661 - 696
Main Authors Gao, Dongfang, Liu, Guilai, Bai, Chengming
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-9899
1572-9192
DOI10.1007/s10801-024-01303-4

Cover

Abstract We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two multiplications giving their left and right multiplication operators, respectively, such that the opposites of these operators define a bimodule structure on the sum of these two multiplications, which is associative. This justifies the terminology due to a closely analogous characterization of a dendriform algebra. The notions of anti- O -operators and anti-Rota–Baxter operators on associative algebras are introduced to interpret anti-dendriform algebras. In particular, there are compatible anti-dendriform algebra structures on associative algebras with nondegenerate commutative Connes cocycles. There is an important observation that there are correspondences between certain subclasses of dendriform and anti-dendriform algebras in terms of q -algebras. As a direct consequence, we give the notion of Novikov-type dendriform algebras as an analogue of Novikov algebras for dendriform algebras, whose relationship with Novikov algebras is consistent with the one between dendriform and pre-Lie algebras. Finally, we extend to provide a general framework of introducing the notions of analogues of anti-dendriform algebras, which interprets a new splitting of operations.
AbstractList We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two multiplications giving their left and right multiplication operators, respectively, such that the opposites of these operators define a bimodule structure on the sum of these two multiplications, which is associative. This justifies the terminology due to a closely analogous characterization of a dendriform algebra. The notions of anti- O -operators and anti-Rota–Baxter operators on associative algebras are introduced to interpret anti-dendriform algebras. In particular, there are compatible anti-dendriform algebra structures on associative algebras with nondegenerate commutative Connes cocycles. There is an important observation that there are correspondences between certain subclasses of dendriform and anti-dendriform algebras in terms of q -algebras. As a direct consequence, we give the notion of Novikov-type dendriform algebras as an analogue of Novikov algebras for dendriform algebras, whose relationship with Novikov algebras is consistent with the one between dendriform and pre-Lie algebras. Finally, we extend to provide a general framework of introducing the notions of analogues of anti-dendriform algebras, which interprets a new splitting of operations.
We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two multiplications giving their left and right multiplication operators, respectively, such that the opposites of these operators define a bimodule structure on the sum of these two multiplications, which is associative. This justifies the terminology due to a closely analogous characterization of a dendriform algebra. The notions of anti-O-operators and anti-Rota–Baxter operators on associative algebras are introduced to interpret anti-dendriform algebras. In particular, there are compatible anti-dendriform algebra structures on associative algebras with nondegenerate commutative Connes cocycles. There is an important observation that there are correspondences between certain subclasses of dendriform and anti-dendriform algebras in terms of q-algebras. As a direct consequence, we give the notion of Novikov-type dendriform algebras as an analogue of Novikov algebras for dendriform algebras, whose relationship with Novikov algebras is consistent with the one between dendriform and pre-Lie algebras. Finally, we extend to provide a general framework of introducing the notions of analogues of anti-dendriform algebras, which interprets a new splitting of operations.
Author Gao, Dongfang
Liu, Guilai
Bai, Chengming
Author_xml – sequence: 1
  givenname: Dongfang
  surname: Gao
  fullname: Gao, Dongfang
  organization: Chern Institute of Mathematics and LPMC, Nankai University
– sequence: 2
  givenname: Guilai
  surname: Liu
  fullname: Liu, Guilai
  organization: Chern Institute of Mathematics and LPMC, Nankai University
– sequence: 3
  givenname: Chengming
  orcidid: 0000-0002-9242-5887
  surname: Bai
  fullname: Bai, Chengming
  email: baicm@nankai.edu.cn
  organization: Chern Institute of Mathematics and LPMC, Nankai University
BookMark eNp9kE1PAyEQhompiW31D3jaxKsoA_vFsWn8Shp70TOhCzTULayANf33rl2jiYee5vI-78w8EzRy3mmELoHcACHVbQRSE8CE5pgAIwznJ2gMRUUxB05HaEw4LTCvOT9Dkxg3hBBeQzFGy5lLFivtVLDGh20m27VeBRmvM6c_s9i1NiXr1pk3me90kMl6FzPpVPbsd_bN73Dad_oXO0enRrZRX_zMKXq9v3uZP-LF8uFpPlvghgFPuCRaleWKl1ADNVI3nK5qYHlZFKzIOTFUUQ4aVF3lNTeNUYpLUIyq3MhKF2yKrobeLvj3Dx2T2PiP4PqVgtEiL_taYH2qHlJN8DEGbURj0-GFFKRtBRDxrU8M-kSvTxz0ibxH6T-0C3Yrw_44xAYo9mG31uHvqiPUFzvfhCs
CitedBy_id crossref_primary_10_1080_00927872_2024_2426037
crossref_primary_10_1007_s13398_024_01663_3
Cites_doi 10.2478/s11533-006-0014-9
10.1007/s00013-003-0796-y
10.1016/S0764-4442(97)84587-9
10.2140/pjm.1960.10.731
10.1007/s10958-009-9532-x
10.1093/imrn/rnr266
10.2140/pjm.2012.256.257
10.1016/j.aim.2005.12.004
10.1016/j.jpaa.2004.01.002
10.1007/3-540-45328-8_4
10.1016/j.jalgebra.2010.04.030
10.1007/BF02698807
10.1016/j.jalgebra.2022.07.004
10.1016/S0021-8693(02)00097-2
10.4171/jncg/64
10.1016/j.jalgebra.2004.06.022
10.1016/S0007-4497(02)01113-2
10.1016/S0022-4049(01)00052-4
10.1007/BF01078363
10.1007/3-540-45328-8_2
10.1023/A:1015064508594
10.1007/s11005-008-0259-2
10.1142/S0219498813500278
10.1002/9781119818175.ch7
10.1006/aima.1998.1759
10.1090/conm/346/06296
10.1016/S0021-8693(02)00510-0
10.1016/S0022-4049(97)00066-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10801-024-01303-4
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1572-9192
EndPage 696
ExternalDocumentID 10_1007_s10801_024_01303_4
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M711708
– fundername: Nankai Zhide Foundation
  funderid: http://dx.doi.org/10.13039/501100018769
– fundername: National Postdoctoral Program for Innovative Talents of China
  grantid: 20220158
– fundername: National Natural Science Foundation of China
  grantid: 11931009; 12271265
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~9
-~C
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z81
Z8U
ZMTXR
ZWQNP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ID FETCH-LOGICAL-c319t-60ed66b961812faec92b813465535490f2d291e1d87489fcfdd9a1d32d4fa7e53
IEDL.DBID BENPR
ISSN 0925-9899
IngestDate Sat Sep 27 04:20:47 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Wed Oct 01 01:00:18 EDT 2025
Fri Feb 21 02:40:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Dendriform algebra
Commutative Connes cocycle
17A36
17B40
17B63
Associative algebra
17B10
17B60
17A40
Anti-dendriform algebra
17D25
Novikov algebra
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-60ed66b961812faec92b813465535490f2d291e1d87489fcfdd9a1d32d4fa7e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9242-5887
PQID 3254681213
PQPubID 2043735
PageCount 36
ParticipantIDs proquest_journals_3254681213
crossref_citationtrail_10_1007_s10801_024_01303_4
crossref_primary_10_1007_s10801_024_01303_4
springer_journals_10_1007_s10801_024_01303_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Journal of algebraic combinatorics
PublicationTitleAbbrev J Algebr Comb
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Dzhumadil’daevAAlgebras with skew-symmetric identity of degree 3J. Math. Sci.20091611130267625510.1007/s10958-009-9532-x
Aguiar, M., Loday, J.-L.: Quadri-algebras. J. Pure Appl. Algebra 191, 205–221 (2004)
BaxterGAn analytic problem whose solution follows from a simple algebraic identityPac. J. Math.19601073174211922410.2140/pjm.1960.10.731
HoltkampROn Hopf algebra structures over free operadsAdv. Math.2006207544565227101610.1016/j.aim.2005.12.004
Dzhumadil’daevAZusmanovichPCommutative 2-cocycles on Lie algebrasJ. Algebra2010324732748265156510.1016/j.jalgebra.2010.04.030
Rota, G.-C.: Baxter operators, an introduction. In Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, Birkhäuser, Boston (1995)
HoltkampRComparison of Hopf algebras on treesArch. Math. (Basel)200380368383198283710.1007/s00013-003-0796-y
BalinskiiAANovikovSPPoisson brackets of hydrodynamic type, Frobenius algebras and Lie algebrasSoviet Math. Dokl.198532228231
BaiCMengDThe classification of left-symmetric algebras in dimension 2Chin. Sci. Bull.1996412207[in Chinese]
FrabettiADialgebra homology of associative algebrasC. R. Acad. Sci. Paris Sér. I Math1997325135140146706510.1016/S0764-4442(97)84587-9
BaiCDouble constructions of Frobenius algebras, Connes cocycles and their dualityJ. Noncommut. Geom.20104475530271880010.4171/jncg/64
BurdeDLeft-symmetric algebras and pre-Lie algebras in geometry and physicsCent. Eur. J. Math.20064323357223385410.2478/s11533-006-0014-9
LodayJ-LRoncoMOrder structure on the algebra of permutations and of planar binary treesJ. Algebraic Combin.200215253270190062710.1023/A:1015064508594
ChapotonFUn théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres bracesJ. Pure Appl. Algebra2002168118187992710.1016/S0022-4049(01)00052-4
GuoLAn Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics 42012Somerville, BeijingInternational Press, Higher Education Press
LiuGBaiCAnti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebrasJ. Algebra2022609337379445539810.1016/j.jalgebra.2022.07.004
Loday, J.-L.: Dialgebras, in: Dialgebras and related operads. Lecture Notes in Math. 1763, Springer, Berlin 7-66 (2001)
LodayJ-LRoncoMHopf algebra of the planar binary treesAdv. Math.1998139293309165417310.1006/aima.1998.1759
Gel’fandIMDorfmanI. Ya.Hamiltonian operators and algebraic structures related to themFunct. Anal. Appl.19791324826210.1007/BF01078363
BaiCGuoLNiXO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{O} }$$\end{document}-operators on associative algebras and associative Yang-Baxter equationsPac. J. Math.2012256257289294497610.2140/pjm.2012.256.257
BurdeDSimple left-symmetric algebras with solvable Lie algebraManuscr. Math.1998953974111612015
LodayJ-LArithmetreeJ. Algebra2002258275309195890710.1016/S0021-8693(02)00510-0
Chapoton, F.: Un endofoncteur de la catégorie des opérades. Dialgebras and related operads, 105–110, Lecture Notes in Math. 1763, Springer, Berlin (2001)
GubarevVKolesnikovPEmbedding of dendriform algebras into Rota-Baxter algebrasCent. Eur. J. Math.2013112262453000640
Leroux, P.: On some remarkable operads constructed from Baxter operators. arXiv: math.QA/0311214
UchinoKQuantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operatorsLett. Math. Phys.20088591109244393210.1007/s11005-008-0259-2
FrabettiALeibniz homology of dialgebras of matricesJ. Pure Appl. Algebra1998129123141162444610.1016/S0022-4049(97)00066-2
RoncoMEulerian idempotents and Milnor–Moore theorem for certain non-cocommutative Hopf algebrasJ. Algebra2002254152172192743610.1016/S0021-8693(02)00097-2
Loday, J.-L., Ronco, M.: Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Comtep. Math. 346, pp. 369–398 (2004)
Bai, C., Bellier, O., Guo, L., Ni, X.: Splitting of operations, Manin products and Rota-Baxter operators, Int. Math. Res. Not. IMRN. 485–524 (2013)
BaiCGuoLNiXRelative Rota-Baxter operators and tridendriform algebrasJ. Algebra Appl.2013121350027306346610.1142/S0219498813500278
LerouxPEnnea-algebrasJ. Algebra2004281287302209197210.1016/j.jalgebra.2004.06.022
Bai, C.: An introduction to pre-Lie algebras. In: Algebra and Applications 1: Nonssociative Algebras and Categories, Wiley Online Library 245–273 (2021)
ConnesANoncommutative differential geometryInst. Hautes Études Sci. Publ. Math.19856225736082317610.1007/BF02698807
Loday, J.-L.: Scindement d’associativité et algèbres de Hopf, Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr. 9, Soc. Math. France, Paris 155–172 (2004)
FoissyLLes algèbres de Hopf des arbres enracinés décorés IIBull. Sci. Math.2002126249288190946110.1016/S0007-4497(02)01113-2
A Dzhumadil’daev (1303_CR16) 2010; 324
1303_CR26
L Guo (1303_CR22) 2012
1303_CR28
C Bai (1303_CR6) 2013; 12
1303_CR3
1303_CR4
AA Balinskii (1303_CR8) 1985; 32
1303_CR1
D Burde (1303_CR10) 1998; 95
K Uchino (1303_CR36) 2008; 85
D Burde (1303_CR11) 2006; 4
F Chapoton (1303_CR13) 2002; 168
L Foissy (1303_CR17) 2002; 126
A Frabetti (1303_CR18) 1997; 325
IM Gel’fand (1303_CR20) 1979; 13
C Bai (1303_CR2) 2010; 4
G Baxter (1303_CR9) 1960; 10
A Connes (1303_CR14) 1985; 62
C Bai (1303_CR7) 1996; 41
R Holtkamp (1303_CR24) 2006; 207
J-L Loday (1303_CR31) 1998; 139
G Liu (1303_CR27) 2022; 609
P Leroux (1303_CR25) 2004; 281
1303_CR30
1303_CR33
J-L Loday (1303_CR29) 2002; 258
1303_CR35
1303_CR12
A Dzhumadil’daev (1303_CR15) 2009; 161
R Holtkamp (1303_CR23) 2003; 80
J-L Loday (1303_CR32) 2002; 15
M Ronco (1303_CR34) 2002; 254
A Frabetti (1303_CR19) 1998; 129
C Bai (1303_CR5) 2012; 256
V Gubarev (1303_CR21) 2013; 11
References_xml – reference: Bai, C.: An introduction to pre-Lie algebras. In: Algebra and Applications 1: Nonssociative Algebras and Categories, Wiley Online Library 245–273 (2021)
– reference: FrabettiALeibniz homology of dialgebras of matricesJ. Pure Appl. Algebra1998129123141162444610.1016/S0022-4049(97)00066-2
– reference: HoltkampRComparison of Hopf algebras on treesArch. Math. (Basel)200380368383198283710.1007/s00013-003-0796-y
– reference: Loday, J.-L., Ronco, M.: Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory, Comtep. Math. 346, pp. 369–398 (2004)
– reference: Loday, J.-L.: Scindement d’associativité et algèbres de Hopf, Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr. 9, Soc. Math. France, Paris 155–172 (2004)
– reference: Aguiar, M., Loday, J.-L.: Quadri-algebras. J. Pure Appl. Algebra 191, 205–221 (2004)
– reference: BurdeDLeft-symmetric algebras and pre-Lie algebras in geometry and physicsCent. Eur. J. Math.20064323357223385410.2478/s11533-006-0014-9
– reference: LerouxPEnnea-algebrasJ. Algebra2004281287302209197210.1016/j.jalgebra.2004.06.022
– reference: ChapotonFUn théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres bracesJ. Pure Appl. Algebra2002168118187992710.1016/S0022-4049(01)00052-4
– reference: BaiCGuoLNiXO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{O} }$$\end{document}-operators on associative algebras and associative Yang-Baxter equationsPac. J. Math.2012256257289294497610.2140/pjm.2012.256.257
– reference: LodayJ-LArithmetreeJ. Algebra2002258275309195890710.1016/S0021-8693(02)00510-0
– reference: Gel’fandIMDorfmanI. Ya.Hamiltonian operators and algebraic structures related to themFunct. Anal. Appl.19791324826210.1007/BF01078363
– reference: BaiCMengDThe classification of left-symmetric algebras in dimension 2Chin. Sci. Bull.1996412207[in Chinese]
– reference: Rota, G.-C.: Baxter operators, an introduction. In Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, Birkhäuser, Boston (1995)
– reference: FrabettiADialgebra homology of associative algebrasC. R. Acad. Sci. Paris Sér. I Math1997325135140146706510.1016/S0764-4442(97)84587-9
– reference: BurdeDSimple left-symmetric algebras with solvable Lie algebraManuscr. Math.1998953974111612015
– reference: BaiCDouble constructions of Frobenius algebras, Connes cocycles and their dualityJ. Noncommut. Geom.20104475530271880010.4171/jncg/64
– reference: ConnesANoncommutative differential geometryInst. Hautes Études Sci. Publ. Math.19856225736082317610.1007/BF02698807
– reference: GubarevVKolesnikovPEmbedding of dendriform algebras into Rota-Baxter algebrasCent. Eur. J. Math.2013112262453000640
– reference: Dzhumadil’daevAAlgebras with skew-symmetric identity of degree 3J. Math. Sci.20091611130267625510.1007/s10958-009-9532-x
– reference: LodayJ-LRoncoMHopf algebra of the planar binary treesAdv. Math.1998139293309165417310.1006/aima.1998.1759
– reference: Dzhumadil’daevAZusmanovichPCommutative 2-cocycles on Lie algebrasJ. Algebra2010324732748265156510.1016/j.jalgebra.2010.04.030
– reference: LiuGBaiCAnti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebrasJ. Algebra2022609337379445539810.1016/j.jalgebra.2022.07.004
– reference: RoncoMEulerian idempotents and Milnor–Moore theorem for certain non-cocommutative Hopf algebrasJ. Algebra2002254152172192743610.1016/S0021-8693(02)00097-2
– reference: BaxterGAn analytic problem whose solution follows from a simple algebraic identityPac. J. Math.19601073174211922410.2140/pjm.1960.10.731
– reference: UchinoKQuantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operatorsLett. Math. Phys.20088591109244393210.1007/s11005-008-0259-2
– reference: Bai, C., Bellier, O., Guo, L., Ni, X.: Splitting of operations, Manin products and Rota-Baxter operators, Int. Math. Res. Not. IMRN. 485–524 (2013)
– reference: GuoLAn Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics 42012Somerville, BeijingInternational Press, Higher Education Press
– reference: FoissyLLes algèbres de Hopf des arbres enracinés décorés IIBull. Sci. Math.2002126249288190946110.1016/S0007-4497(02)01113-2
– reference: LodayJ-LRoncoMOrder structure on the algebra of permutations and of planar binary treesJ. Algebraic Combin.200215253270190062710.1023/A:1015064508594
– reference: HoltkampROn Hopf algebra structures over free operadsAdv. Math.2006207544565227101610.1016/j.aim.2005.12.004
– reference: BaiCGuoLNiXRelative Rota-Baxter operators and tridendriform algebrasJ. Algebra Appl.2013121350027306346610.1142/S0219498813500278
– reference: Leroux, P.: On some remarkable operads constructed from Baxter operators. arXiv: math.QA/0311214
– reference: BalinskiiAANovikovSPPoisson brackets of hydrodynamic type, Frobenius algebras and Lie algebrasSoviet Math. Dokl.198532228231
– reference: Chapoton, F.: Un endofoncteur de la catégorie des opérades. Dialgebras and related operads, 105–110, Lecture Notes in Math. 1763, Springer, Berlin (2001)
– reference: Loday, J.-L.: Dialgebras, in: Dialgebras and related operads. Lecture Notes in Math. 1763, Springer, Berlin 7-66 (2001)
– volume: 4
  start-page: 323
  year: 2006
  ident: 1303_CR11
  publication-title: Cent. Eur. J. Math.
  doi: 10.2478/s11533-006-0014-9
– volume: 80
  start-page: 368
  year: 2003
  ident: 1303_CR23
  publication-title: Arch. Math. (Basel)
  doi: 10.1007/s00013-003-0796-y
– ident: 1303_CR35
– volume-title: An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics 4
  year: 2012
  ident: 1303_CR22
– volume: 32
  start-page: 228
  year: 1985
  ident: 1303_CR8
  publication-title: Soviet Math. Dokl.
– volume: 325
  start-page: 135
  year: 1997
  ident: 1303_CR18
  publication-title: C. R. Acad. Sci. Paris Sér. I Math
  doi: 10.1016/S0764-4442(97)84587-9
– volume: 10
  start-page: 731
  year: 1960
  ident: 1303_CR9
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1960.10.731
– volume: 161
  start-page: 11
  year: 2009
  ident: 1303_CR15
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-009-9532-x
– ident: 1303_CR4
  doi: 10.1093/imrn/rnr266
– volume: 256
  start-page: 257
  year: 2012
  ident: 1303_CR5
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.2012.256.257
– volume: 207
  start-page: 544
  year: 2006
  ident: 1303_CR24
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2005.12.004
– ident: 1303_CR1
  doi: 10.1016/j.jpaa.2004.01.002
– ident: 1303_CR12
  doi: 10.1007/3-540-45328-8_4
– volume: 324
  start-page: 732
  year: 2010
  ident: 1303_CR16
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2010.04.030
– volume: 62
  start-page: 257
  year: 1985
  ident: 1303_CR14
  publication-title: Inst. Hautes Études Sci. Publ. Math.
  doi: 10.1007/BF02698807
– volume: 609
  start-page: 337
  year: 2022
  ident: 1303_CR27
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2022.07.004
– volume: 254
  start-page: 152
  year: 2002
  ident: 1303_CR34
  publication-title: J. Algebra
  doi: 10.1016/S0021-8693(02)00097-2
– volume: 11
  start-page: 226
  year: 2013
  ident: 1303_CR21
  publication-title: Cent. Eur. J. Math.
– volume: 4
  start-page: 475
  year: 2010
  ident: 1303_CR2
  publication-title: J. Noncommut. Geom.
  doi: 10.4171/jncg/64
– ident: 1303_CR26
– volume: 281
  start-page: 287
  year: 2004
  ident: 1303_CR25
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2004.06.022
– volume: 126
  start-page: 249
  year: 2002
  ident: 1303_CR17
  publication-title: Bull. Sci. Math.
  doi: 10.1016/S0007-4497(02)01113-2
– volume: 168
  start-page: 1
  year: 2002
  ident: 1303_CR13
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(01)00052-4
– volume: 13
  start-page: 248
  year: 1979
  ident: 1303_CR20
  publication-title: Funct. Anal. Appl.
  doi: 10.1007/BF01078363
– ident: 1303_CR28
  doi: 10.1007/3-540-45328-8_2
– volume: 41
  start-page: 2207
  year: 1996
  ident: 1303_CR7
  publication-title: Chin. Sci. Bull.
– volume: 15
  start-page: 253
  year: 2002
  ident: 1303_CR32
  publication-title: J. Algebraic Combin.
  doi: 10.1023/A:1015064508594
– volume: 85
  start-page: 91
  year: 2008
  ident: 1303_CR36
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-008-0259-2
– volume: 12
  start-page: 1350027
  year: 2013
  ident: 1303_CR6
  publication-title: J. Algebra Appl.
  doi: 10.1142/S0219498813500278
– ident: 1303_CR30
– ident: 1303_CR3
  doi: 10.1002/9781119818175.ch7
– volume: 139
  start-page: 293
  year: 1998
  ident: 1303_CR31
  publication-title: Adv. Math.
  doi: 10.1006/aima.1998.1759
– ident: 1303_CR33
  doi: 10.1090/conm/346/06296
– volume: 95
  start-page: 397
  year: 1998
  ident: 1303_CR10
  publication-title: Manuscr. Math.
– volume: 258
  start-page: 275
  year: 2002
  ident: 1303_CR29
  publication-title: J. Algebra
  doi: 10.1016/S0021-8693(02)00510-0
– volume: 129
  start-page: 123
  year: 1998
  ident: 1303_CR19
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(97)00066-2
SSID ssj0009815
Score 2.394486
Snippet We introduce the notion of an anti-dendriform algebra as a new approach of splitting the associativity. It is characterized as the algebra with two...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 661
SubjectTerms Algebra
Associativity
Combinatorics
Computer Science
Convex and Discrete Geometry
Group Theory and Generalizations
Lattices
Lie groups
Mathematics
Mathematics and Statistics
Multiplication
Multiplication & division
Operators (mathematics)
Order
Ordered Algebraic Structures
Splitting
Vector space
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwKCAKBXlgo5ZiO07ssUJUFVLLQqVukeOHVAFJ1YT-fuw8WkCAxBzbw53vfJe7-z4AbuNYKmpi5YvuAQq5JCg1JkKxotJozqnUflB4Mo3Gs_BxzubNUFjRdru3JcnKU38aduM-9SW-a8I5XhTugj3m4bzcLZ6R4RZql9e8BYIwJFw60YzK_HzG1-doG2N-K4tWr83oGBw2YSIc1no9ATsm64KjloIBNhbZBQeTDexqcQqehlm5QM6T6JUfuHqDnsTDpcPFALroGRYu4KzanGFuYb40tfILKDMNp_l68ZKvkf8lu9l2Bmajh-f7MWoYE5ByplSiKDA6ilLP4oKJlUYJknJMPUYadYlgYIkmAhusuQedscpqLSTWlOjQytgweg46WZ6ZCwC1soqkLAisy9BwyGRIuRLMYqOYUIHoAdwKLlENnLhntXhNtkDIXtiJE3ZSCTsJe-Bus2dZg2n8ubrf6iNpDKtIqMfv5x6HrgcGrY62n38_7fJ_y6_APqmuiW9t7INOuXo31y78KNOb6rZ9AFXAz3g
  priority: 102
  providerName: Springer Nature
Title Anti-dendriform algebras, new splitting of operations and Novikov-type algebras
URI https://link.springer.com/article/10.1007/s10801-024-01303-4
https://www.proquest.com/docview/3254681213
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9192
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009815
  issn: 0925-9899
  databaseCode: AFBBN
  dateStart: 19920501
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9192
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009815
  issn: 0925-9899
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9192
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009815
  issn: 0925-9899
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu8AB8RTjMeXADSLapI_0gNBAGwjEQIhJcKrSPCQErIMOfj9x164CCa5tE1WO49ix_X0AB3EsFTexwqS7RwMhGc2MiWisuDRaCC41NgrfDKPLUXD1GD4uwLDuhcGyytomloZa5wrvyI85ArcLBCA7nbxTZI3C7GpNoSEragV9UkKMLUKbITJWC9pn_eHdfQPDK2acBgkLaeJCjaqNpmqmExhaM6zKcIadBj-Pqsb__JUyLU-iwSqsVC4k6c3WfA0WzHgdlm_m-KvFBtz23F9SZ1L0B3ZevRFk83BxcXFEnBtNCud5lvXOJLckn5iZFhREjjUZ5l_PL_kXxbvZ-bBNGA36D-eXtKJOoMrtqSmNPKOjKEM6F59ZaVTCMuFzBEvjLiL0LNMs8Y2vBaLPWGW1TqSvOdOBlbEJ-Ra0xvnYbAPRyiqWhZ5nXajmB6EMuFBJaH2jwkR5SQf8WkqpqnDFkd7iNW0QkVGyqZNsWko2DTpwOB8zmaFq_Pv1Xi38tNphRdroQweO6gVpXv89287_s-3CEit1AGsa96A1_fg0-87vmGZdWBSDiy60exdP1_1upVru6Yj1vgG0e9ZB
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH4hcFAPRgTjKmIPeILGmbYz0x6IAYQswi7GQMJt7PRHYtSdlVkx_nP-bfbNdnYCCdw4z7SHr69977XvfR_AVlFow11h8NE9oUJqRivncloYrp2VkmuLjcKjcT68EJ8us8sl-Nf1wmBZZXcmtge1rQ3ekb_nSNwukYDsw_QXRdUofF3tJDR0lFawuy3FWGzsOHF__4QUrtk9_hjW-x1jR4fnB0MaVQaoCeY3o3nibJ5XqHySMq-dUaySKUdeMR6Sp8Qzy1TqUiuRqMUbb63SqeXMCq8Lh6oRwQWsCC5USP5W9g_Hn7_0tL9yrqGgWEZVSG1i205s3pOYyjOsAgmOhIqbrrGPd2890bae7-gZPI0hK9mb29gqLLnJc3gyWvC9NmtwthdQoeEIs1fY6fWToHpIyMObHRLCdtKESLetrya1J_XUza2uIXpiybi-_va9vqZ4F7wYtg4XDwLiC1ie1BP3Eog13rAqSxIfUsNUZFpwaVTmU2cyZRI1gLRDqTSRxxzlNH6UPQMzIlsGZMsW2VIMYHsxZjpn8bj3740O_DLu6Kbs7W8AO92C9J_vnu3V_bO9hUfD89FpeXo8PnkNj1lrD1hPuQHLs6vf7k2IeWbVZjQsAl8f2pb_A0y7D3c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5BkBAcSkuLSIGyB27NCnvXj_UxokTQkpQDkXKz1vuQEGBH2M3v744fSYoKEmfv7mEeuzOe-b4BOItjqbiJFRbdPRoIyWhmTERjxaXRQnCpESg8nkRX0-DnLJytofjrbveuJNlgGpClKa_O59qerwHfBKbBDDso3CVMg03YCpAowVn0lA1XtLuimWGQsJAmLrVoYTP_P-Pfp2kVb74okdYvz-gjfGhDRjJsdPwJNky-D3vdOAbSeuc-7I6XFKzlZ_g9zKt76m4V_YzgqyeCAz1calwOiIukSemCz7rlmRSWFHPTGEJJZK7JpFjcPxQLir9nl9u-wHR0eXdxRdvpCVQ5t6po5BkdRRlOdPGZlUYlLBM-R7407pJCzzLNEt_4WiABjVVW60T6mjMdWBmbkB9ALy9ycwhEK6tYFnqeddmaH4Qy4EIlofWNChPlJX3wO8GlqqUWxwkXj-mKFBmFnTphp7Ww06AP35d75g2xxpurjzt9pK2TlSlHLn-BnHR9GHQ6Wn1-_bSv71t-Ctu3P0bpzfXk1xHssNpisOPxGHrV8x9z4qKSKvtWG95fqEbWoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-dendriform+algebras%2C+new+splitting+of+operations+and+Novikov-type+algebras&rft.jtitle=Journal+of+algebraic+combinatorics&rft.au=Gao%2C+Dongfang&rft.au=Liu%2C+Guilai&rft.au=Bai%2C+Chengming&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-9899&rft.eissn=1572-9192&rft.volume=59&rft.issue=3&rft.spage=661&rft.epage=696&rft_id=info:doi/10.1007%2Fs10801-024-01303-4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9899&client=summon