Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals
In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete p -elliptic integrals.
Saved in:
Published in | Computational methods and function theory Vol. 21; no. 3; pp. 413 - 426 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1617-9447 2195-3724 |
DOI | 10.1007/s40315-020-00352-7 |
Cover
Abstract | In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete
p
-elliptic integrals. |
---|---|
AbstractList | In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete
p
-elliptic integrals. In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete p-elliptic integrals. |
Author | Zhao, Tie-Hong Chu, Yu-Ming He, Zai-Yin |
Author_xml | – sequence: 1 givenname: Tie-Hong surname: Zhao fullname: Zhao, Tie-Hong organization: Department of Mathematics, Hangzhou Normal University – sequence: 2 givenname: Zai-Yin surname: He fullname: He, Zai-Yin organization: School of Mathematics, Hunan University – sequence: 3 givenname: Yu-Ming surname: Chu fullname: Chu, Yu-Ming email: chuyuming@zjhu.edu.cn organization: Department of Mathematics, Huzhou University, Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology |
BookMark | eNp9kM1qGzEUhUVJobabF-hKkLUa_YxGo2ViXCeQ0kUSAtkIWXNlT5hIE0letA_WF-iLRbULgS6yuhfO-e65nDk6CTEAQl8Y_cooVee5oYJJQjkllArJifqAZpxpSYTizQmasZYpoptGfULznJ8olY0WYoa2tzubJnwZ96HP2MeEyw7wAwzbXYEeX_35PfaQ8HewAUd_EB8hRXJpRxtcdawhQLLj8Kvuy_g8jVAAr8ZxmMrg8HUosK1y_ow--jrg9N9coPtvq7vlFbn5sb5eXtwQJ5guRHpmqfd-A31nteh6sZHOKpDCirZjbcOFAt4LqTe2kz1ocK5tWq0a32vKnVigs-PdKcWXPeRinuI-hRppuGwZ1bzlbXXxo8ulmHMCb6Y0PNv00zBq_hZqjoWaWqg5FGpUhbr_IDcUW4YYSrLD-D4qjmiuOWEL6e2rd6hXRYmNSA |
CitedBy_id | crossref_primary_10_1016_j_comptc_2022_113729 crossref_primary_10_1007_s13204_021_02319_z crossref_primary_10_1016_j_physleta_2022_128236 crossref_primary_10_1007_s00706_022_02926_8 crossref_primary_10_1016_j_ast_2021_107299 crossref_primary_10_3934_math_2021524 crossref_primary_10_1007_s00339_022_05789_2 crossref_primary_10_1016_j_ijhydene_2022_04_228 crossref_primary_10_3934_math_2022697 crossref_primary_10_1016_j_ijhydene_2022_07_161 crossref_primary_10_3390_axioms12040365 crossref_primary_10_3934_math_2022583 crossref_primary_10_3389_fenrg_2021_789316 crossref_primary_10_1007_s10971_022_05859_0 crossref_primary_10_20964_2022_07_11 crossref_primary_10_3390_axioms11110622 crossref_primary_10_3390_axioms12020195 crossref_primary_10_3390_axioms12100910 crossref_primary_10_1016_j_molliq_2022_118796 crossref_primary_10_1016_j_est_2022_105505 crossref_primary_10_1016_j_rinp_2022_105589 crossref_primary_10_1007_s00894_022_05127_6 crossref_primary_10_3390_sym14091901 crossref_primary_10_1140_epjp_s13360_022_02848_8 crossref_primary_10_1007_s13204_021_02183_x crossref_primary_10_1016_j_bulsci_2023_103316 crossref_primary_10_1016_j_ijhydene_2022_05_046 crossref_primary_10_1016_j_ast_2022_107689 crossref_primary_10_1016_j_inoche_2022_109309 crossref_primary_10_3390_math11132851 crossref_primary_10_1007_s11766_023_4223_9 crossref_primary_10_1007_s13204_021_02168_w crossref_primary_10_1016_j_actaastro_2022_03_002 crossref_primary_10_1016_j_ijhydene_2022_04_241 crossref_primary_10_1515_dema_2022_0225 crossref_primary_10_1142_S0217979223501072 crossref_primary_10_1088_1361_6641_ac7b9f crossref_primary_10_1016_j_comptc_2022_113721 crossref_primary_10_1016_j_rinp_2022_105475 crossref_primary_10_1515_math_2021_0067 crossref_primary_10_1007_s00025_022_01799_x crossref_primary_10_1016_j_ast_2021_107193 crossref_primary_10_3390_fractalfract7030223 crossref_primary_10_1007_s13398_023_01429_3 crossref_primary_10_1016_j_csite_2022_102190 crossref_primary_10_3390_math11030656 crossref_primary_10_1007_s00289_022_04626_z crossref_primary_10_1140_epjp_s13360_021_02106_3 crossref_primary_10_1016_j_icheatmasstransfer_2021_105625 crossref_primary_10_1007_s13398_021_01197_y crossref_primary_10_1016_j_ast_2021_107236 crossref_primary_10_1016_j_inoche_2023_111264 crossref_primary_10_3390_fractalfract7070567 crossref_primary_10_1016_j_comptc_2022_113792 crossref_primary_10_1007_s00894_022_05410_6 crossref_primary_10_3934_math_2023374 crossref_primary_10_1016_j_csite_2022_101827 crossref_primary_10_1007_s13204_021_02285_6 crossref_primary_10_1016_j_est_2021_103427 crossref_primary_10_1038_s41598_022_18714_7 crossref_primary_10_1080_10652469_2024_2392281 crossref_primary_10_1142_S0129183122500954 crossref_primary_10_1016_j_csite_2022_102114 crossref_primary_10_1016_j_molliq_2022_119147 crossref_primary_10_1007_s10473_022_0204_y crossref_primary_10_1155_2022_6285367 crossref_primary_10_1007_s10904_022_02467_x crossref_primary_10_1016_j_est_2021_103652 crossref_primary_10_1142_S0217979223500911 crossref_primary_10_1186_s13660_022_02768_2 crossref_primary_10_1007_s12668_022_01048_z crossref_primary_10_1016_j_enganabound_2022_03_012 crossref_primary_10_1088_1402_4896_ac6382 crossref_primary_10_3934_math_2022444 crossref_primary_10_1007_s12633_022_02008_8 crossref_primary_10_1007_s00706_022_02912_0 crossref_primary_10_1016_j_molliq_2022_119658 crossref_primary_10_1142_S0129183122500309 crossref_primary_10_3390_fractalfract6080415 crossref_primary_10_1016_j_matpr_2022_08_176 crossref_primary_10_3390_math11030550 crossref_primary_10_1016_j_csite_2022_102171 crossref_primary_10_1142_S0217984922500026 crossref_primary_10_1016_j_rinp_2022_105385 crossref_primary_10_1007_s00706_022_02906_y crossref_primary_10_3390_math10203851 crossref_primary_10_1007_s11082_022_03879_2 crossref_primary_10_1515_math_2022_0045 crossref_primary_10_1216_rmj_2024_54_1213 crossref_primary_10_3390_buildings12030356 crossref_primary_10_3390_fractalfract6110679 crossref_primary_10_1038_s41598_022_13692_2 crossref_primary_10_1007_s13204_021_02139_1 crossref_primary_10_2166_wst_2022_318 crossref_primary_10_1007_s13538_022_01073_z crossref_primary_10_1007_s00894_022_05102_1 crossref_primary_10_3390_su14073989 crossref_primary_10_1016_j_cplett_2021_139162 crossref_primary_10_1007_s13398_021_01117_0 crossref_primary_10_1016_j_csite_2022_102178 crossref_primary_10_3390_su14084770 crossref_primary_10_1016_j_est_2021_103763 crossref_primary_10_3390_axioms13070471 crossref_primary_10_1142_S0129183123500195 crossref_primary_10_1007_s42452_024_06359_2 crossref_primary_10_1016_j_rinp_2022_105430 crossref_primary_10_3390_fractalfract7020171 crossref_primary_10_1007_s13369_022_07140_6 crossref_primary_10_3390_sym15040862 crossref_primary_10_1021_acsomega_2c03634 crossref_primary_10_3390_math10183251 crossref_primary_10_1002_jemt_24207 crossref_primary_10_1080_17455030_2022_2111477 crossref_primary_10_3390_sym14081639 crossref_primary_10_1016_j_enganabound_2022_04_035 crossref_primary_10_1080_08927022_2022_2036338 crossref_primary_10_3390_nano12071152 crossref_primary_10_1007_s40315_021_00415_3 crossref_primary_10_1088_1402_4896_ac51c7 crossref_primary_10_1140_epjp_s13360_021_02327_6 crossref_primary_10_1007_s00894_022_05151_6 crossref_primary_10_1007_s13398_021_01162_9 crossref_primary_10_1016_j_est_2021_103878 crossref_primary_10_1007_s13398_022_01211_x crossref_primary_10_1016_j_rinp_2022_105316 crossref_primary_10_1155_2022_3830324 crossref_primary_10_3390_math10203753 crossref_primary_10_1016_j_ssc_2022_114741 crossref_primary_10_1007_s12210_022_01065_w crossref_primary_10_1016_j_icheatmasstransfer_2021_105787 crossref_primary_10_1016_j_rinp_2022_105683 crossref_primary_10_1007_s00706_022_02907_x crossref_primary_10_1007_s13204_022_02363_3 crossref_primary_10_3390_en15061986 crossref_primary_10_3390_math11061356 crossref_primary_10_1007_s00449_022_02736_6 crossref_primary_10_3390_math10152756 crossref_primary_10_1016_j_inoche_2022_109652 crossref_primary_10_1007_s13398_023_01472_0 crossref_primary_10_1016_j_petrol_2021_109734 crossref_primary_10_2298_AADM230417005Z crossref_primary_10_1007_s13204_021_02136_4 crossref_primary_10_1007_s13398_023_01453_3 crossref_primary_10_3390_sym14112322 crossref_primary_10_1007_s11082_023_06218_1 crossref_primary_10_1016_j_est_2022_105408 crossref_primary_10_1080_17455030_2022_2096945 crossref_primary_10_1016_j_rinp_2022_105842 crossref_primary_10_1016_j_est_2021_103452 crossref_primary_10_1007_s12210_022_01079_4 crossref_primary_10_1016_j_est_2022_104683 crossref_primary_10_3390_fractalfract7120856 crossref_primary_10_1002_zamm_202100204 crossref_primary_10_1016_j_seta_2022_102650 crossref_primary_10_1016_j_seta_2022_102534 crossref_primary_10_1142_S0217984922500932 crossref_primary_10_1515_ntrev_2022_0143 crossref_primary_10_1016_j_rinp_2022_105738 crossref_primary_10_3934_math_2024553 crossref_primary_10_1007_s40840_023_01523_0 crossref_primary_10_1007_s12633_022_01781_w crossref_primary_10_1016_j_inoche_2022_109644 crossref_primary_10_1007_s13226_021_00016_9 crossref_primary_10_1016_j_physleta_2022_128145 crossref_primary_10_1016_j_rinp_2022_105457 crossref_primary_10_1088_1402_4896_ac3877 |
Cites_doi | 10.1186/s13660-017-1484-y 10.1155/2010/493058 10.2140/pjm.2000.192.1 10.1007/s13398-020-00784-9 10.1155/2011/896483 10.1186/s13660-018-1828-2 10.7153/jca-09-04 10.1007/s00209-007-0111-x 10.1007/s11139-018-0061-4 10.1016/j.aml.2010.12.044 10.1090/proc/13337 10.1007/s12044-012-0062-y 10.1017/S0305004198002692 10.1186/s13660-020-02327-7 10.1007/s00025-010-0090-9 10.2298/AADM190924020W 10.2996/kmj/1458651700 10.1007/s40315-020-00298-w 10.1007/BF03321716 10.1016/j.jmaa.2015.04.035 10.2298/AADM171015001Y 10.1016/j.jmaa.2015.03.043 10.1007/s11139-018-9993-y 10.1016/j.jmaa.2019.123388 10.1007/s13398-020-00825-3 10.1016/j.cam.2018.08.027 10.3934/math.2020290 10.3934/math.2020418 10.1186/s13660-018-1711-1 10.1016/j.jmaa.2018.03.005 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s40315-020-00352-7 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2195-3724 |
EndPage | 426 |
ExternalDocumentID | 10_1007_s40315_020_00352_7 |
GroupedDBID | -EM 06D 0R~ 199 203 2LR 30V 4.4 406 95. 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AM4 AMKLP AMXSW AMYLF AMYQR ANMIH ARMRJ ASPBG AUKKA AVWKF AXYYD AYJHY BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD HMJXF HRMNR HZ~ IKXTQ IWAJR IXD J-C J9A JBSCW JZLTJ KOV L7B LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9G O9J PT4 ROL RSV SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG UG4 UOJIU UTJUX UZXMN VFIZW VH1 W48 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ JQ2 |
ID | FETCH-LOGICAL-c319t-5f1a0fffbed8a938d3b5ca7e53a368164237e2d359ba85de9ecc646974fd902c3 |
IEDL.DBID | AGYKE |
ISSN | 1617-9447 |
IngestDate | Wed Sep 17 23:55:03 EDT 2025 Tue Jul 01 01:53:28 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Fri Feb 21 02:47:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Complete elliptic integrals Weighted Hölder mean 33E05 Gaussian hypergeometric function Zero-balanced 33C05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-5f1a0fffbed8a938d3b5ca7e53a368164237e2d359ba85de9ecc646974fd902c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2561092626 |
PQPubID | 2043941 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2561092626 crossref_primary_10_1007_s40315_020_00352_7 crossref_citationtrail_10_1007_s40315_020_00352_7 springer_journals_10_1007_s40315_020_00352_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Computational methods and function theory |
PublicationTitleAbbrev | Comput. Methods Funct. Theory |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | AlzerHSharp inequalities for the complete elliptic integral of the first kindMath. Proc. Camb. Philos. Soc.19881242309314163113510.1017/S0305004198002692 BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPacific J. Math.20001921137174103110.2140/pjm.2000.192.1 YangZ-HTianJ-FSharp inequalities for the generalized elliptic integrals of the first kindRamanujan J.201948191116390249710.1007/s11139-018-0061-4 YangZ-HChuY-MWangM-KMonotonicity criterion for the quotient of power series with applicationsJ. Math. Anal. Appl.20154281587604332700510.1016/j.jmaa.2015.03.043 AndersonGDVamanamurthyMKVuorinenMConformal invariants, inequalities, and quasiconformal maps1997New YorkWiley0885.30012 ZhaoT-HWangM-KChuY-MA sharp double inequality involving generalized complete elliptic integral of the first kindAIMS Math.20205545124528414746210.3934/math.2020290 Qi, F.: Bounds for the ratio of two gamma functions. J. Inequal. Appl., 2010, Article ID 493058, 84 pages (2010) WangM-KChuH-HLiY-MChuY-MAnswers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kindAppl. Anal. Discrete Math.2020141255271409341710.2298/AADM190924020W WangM-KChuY-MQiuS-LSharp bounds for generalized elliptic integrals of the first kindJ. Math. Anal. Appl.20154292744757334249010.1016/j.jmaa.2015.04.035 YangZ-HChuY-MZhangWHigh accuracy asymptotic bounds for the complete elliptic integral of the second kindAppl. Math. Comput.2019348552564389417910.1016/j.cam.2018.08.027 TakeuchiSLegendre-type relations for generalized complete elliptic integralsJ. Class. Anal.2016913542358008410.7153/jca-09-04 Qian, W.-M., He, Z.-Y., Chu, Y.-M.: Approximation for the complete elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114(2), Article ID 57, 12 pages (2020) Zhao, T.-H., Chu, Y.-M., Wang, H.: Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011, Article ID 896483, 13 pages (2011) Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function, J. Inequal. Appl., 2017, Article ID 210, 17 pages (2017) Hai, G.-J., Zhao, T.-H.: Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function. J. Inequal. Appl., 2020, Article ID 66, 17 pages (2020) WangM-MChuY-MQiuY-FQiuS-LAn optimal power mean inequality for the complete elliptic integralsAppl. Math. Lett.2011246887890277615510.1016/j.aml.2010.12.044 WangM-KHeZ-YChuY-MSharp power mean inequalities for the generalized elliptic integral of the first KindComput. Methods Funct. Theory2020201111124407186510.1007/s40315-020-00298-w ShenJ-MYangZ-HQianW-MZhangWChuY-MSharp rational bounds for the gamma functionMath. Inequal. Appl.202023384385341289561455.33002 WangM-KChuY-MJiangY-PRamanujan’s cubic transformation inequalities for zero-balanced hypergeometric functionsRocky Mountain J. Math.201646267969135290871350.33007 Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals. J. Inequal. Appl., 2018, Article ID 239, 11 pages (2018) ChuY-MWangM-KQiuS-LOptimal combinations bounds of root-square and arithmetic means for Toader meanProc. Indian Acad. Sci. Math. Sci.201212214151290958210.1007/s12044-012-0062-y TakeuchiSA new form of the generalized complete elliptic integralsKodai Math. J.2016391202226347827910.2996/kmj/1458651700 YangZ-HQianW-MChuY-MZhangWOn approximating the arithmetic-geometric mean and complete elliptic integral of the first kindJ. Math. Anal. Appl.2018462217141726377431310.1016/j.jmaa.2018.03.005 YangZ-HQianW-MZhangWChuY-MNotes on the complete elliptic integral of the first kindMath. Inequal. Appl.2020231779340615261440.33020 ChuY-MWangM-KOptimal Lehmer mean bounds for the Toader meanResults. Math.2012613–4223229292511710.1007/s00025-010-0090-9 AlzerHRichardsKInequalities for the ratio of complete elliptic integralsProc. Am. Math. Soc.2017145416611670360155710.1090/proc/13337 Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler-Mascheroni constant. J. Inequal. Appl., 2018, Article ID 118, 9 pages (2018) Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals, J. Math. Anal. Appl., 480(2), Article ID 123388, 9 pages (2019) YangZ-HTianJ-FConvexity and monotonicity for elliptic integrals of the first kind and applicationsAppl. Anal. Discrete Math.2019131240260394805410.2298/AADM171015001Y ZhaoT-HHeZ-YChuY-MOn some refinements for inequalities involving zero-balanced hypergeometric functionAIMS Math.20205664796495414896210.3934/math.2020418 TakeuchiSComplete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals and a computation formula of πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _p$$\end{document} for p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document}Ramanujan J.2018462309321380396210.1007/s11139-018-9993-y Zhao, T.-H., Shi, L., Chu, Y.-M.: Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 114(2), Article ID 96, 14 pages (2020) AbramowitzMStegunIAHandbook of mathematical functions with formulas, graphs, and mathematical tables1964WashingtonU. S. Government Printing Office0171.38503 WangM-KChuY-MLiY-MZhangWAsymptotic expansion and bounds for complete elliptic integralsMath. Inequal. Appl.202023382184141289551455.33013 HeikkalaVVamanamurthyMKVuorinenMGeneralized elliptic integralsComput. Methods Funct. Theory20099175109247826510.1007/BF03321716 GD Anderson (352_CR4) 2000; 192 352_CR9 Z-H Yang (352_CR30) 2020; 23 H Alzer (352_CR2) 1988; 124 Á Baricz (352_CR6) 2007; 256 T-H Zhao (352_CR34) 2020; 5 GD Anderson (352_CR5) 1997 Z-H Yang (352_CR29) 2018; 462 352_CR13 352_CR35 T-H Zhao (352_CR36) 2020; 5 352_CR14 S Takeuchi (352_CR17) 2016; 9 352_CR19 Z-H Yang (352_CR32) 2019; 48 M Abramowitz (352_CR1) 1964 Y-M Chu (352_CR7) 2012; 61 H Alzer (352_CR3) 2017; 145 Y-M Chu (352_CR8) 2012; 122 V Heikkala (352_CR10) 2009; 9 M-K Wang (352_CR22) 2020; 23 Z-H Yang (352_CR26) 2019; 348 M-K Wang (352_CR23) 2015; 429 J-M Shen (352_CR15) 2020; 23 352_CR11 352_CR33 352_CR12 Z-H Yang (352_CR31) 2019; 13 M-K Wang (352_CR27) 2020; 20 M-K Wang (352_CR21) 2020; 14 Z-H Yang (352_CR25) 2015; 428 352_CR28 S Takeuchi (352_CR16) 2016; 39 M-K Wang (352_CR20) 2016; 46 S Takeuchi (352_CR18) 2018; 46 M-M Wang (352_CR24) 2011; 24 |
References_xml | – reference: YangZ-HTianJ-FSharp inequalities for the generalized elliptic integrals of the first kindRamanujan J.201948191116390249710.1007/s11139-018-0061-4 – reference: ZhaoT-HWangM-KChuY-MA sharp double inequality involving generalized complete elliptic integral of the first kindAIMS Math.20205545124528414746210.3934/math.2020290 – reference: BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x – reference: ChuY-MWangM-KOptimal Lehmer mean bounds for the Toader meanResults. Math.2012613–4223229292511710.1007/s00025-010-0090-9 – reference: AbramowitzMStegunIAHandbook of mathematical functions with formulas, graphs, and mathematical tables1964WashingtonU. S. Government Printing Office0171.38503 – reference: YangZ-HChuY-MWangM-KMonotonicity criterion for the quotient of power series with applicationsJ. Math. Anal. Appl.20154281587604332700510.1016/j.jmaa.2015.03.043 – reference: YangZ-HQianW-MZhangWChuY-MNotes on the complete elliptic integral of the first kindMath. Inequal. Appl.2020231779340615261440.33020 – reference: AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPacific J. Math.20001921137174103110.2140/pjm.2000.192.1 – reference: Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals, J. Math. Anal. Appl., 480(2), Article ID 123388, 9 pages (2019) – reference: WangM-KChuY-MQiuS-LSharp bounds for generalized elliptic integrals of the first kindJ. Math. Anal. Appl.20154292744757334249010.1016/j.jmaa.2015.04.035 – reference: WangM-KHeZ-YChuY-MSharp power mean inequalities for the generalized elliptic integral of the first KindComput. Methods Funct. Theory2020201111124407186510.1007/s40315-020-00298-w – reference: Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function, J. Inequal. Appl., 2017, Article ID 210, 17 pages (2017) – reference: Hai, G.-J., Zhao, T.-H.: Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function. J. Inequal. Appl., 2020, Article ID 66, 17 pages (2020) – reference: AndersonGDVamanamurthyMKVuorinenMConformal invariants, inequalities, and quasiconformal maps1997New YorkWiley0885.30012 – reference: TakeuchiSLegendre-type relations for generalized complete elliptic integralsJ. Class. Anal.2016913542358008410.7153/jca-09-04 – reference: Zhao, T.-H., Shi, L., Chu, Y.-M.: Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 114(2), Article ID 96, 14 pages (2020) – reference: Qi, F.: Bounds for the ratio of two gamma functions. J. Inequal. Appl., 2010, Article ID 493058, 84 pages (2010) – reference: YangZ-HChuY-MZhangWHigh accuracy asymptotic bounds for the complete elliptic integral of the second kindAppl. Math. Comput.2019348552564389417910.1016/j.cam.2018.08.027 – reference: AlzerHRichardsKInequalities for the ratio of complete elliptic integralsProc. Am. Math. Soc.2017145416611670360155710.1090/proc/13337 – reference: TakeuchiSA new form of the generalized complete elliptic integralsKodai Math. J.2016391202226347827910.2996/kmj/1458651700 – reference: AlzerHSharp inequalities for the complete elliptic integral of the first kindMath. Proc. Camb. Philos. Soc.19881242309314163113510.1017/S0305004198002692 – reference: WangM-KChuY-MJiangY-PRamanujan’s cubic transformation inequalities for zero-balanced hypergeometric functionsRocky Mountain J. Math.201646267969135290871350.33007 – reference: ShenJ-MYangZ-HQianW-MZhangWChuY-MSharp rational bounds for the gamma functionMath. Inequal. Appl.202023384385341289561455.33002 – reference: YangZ-HQianW-MChuY-MZhangWOn approximating the arithmetic-geometric mean and complete elliptic integral of the first kindJ. Math. Anal. Appl.2018462217141726377431310.1016/j.jmaa.2018.03.005 – reference: WangM-KChuH-HLiY-MChuY-MAnswers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kindAppl. Anal. Discrete Math.2020141255271409341710.2298/AADM190924020W – reference: ChuY-MWangM-KQiuS-LOptimal combinations bounds of root-square and arithmetic means for Toader meanProc. Indian Acad. Sci. Math. Sci.201212214151290958210.1007/s12044-012-0062-y – reference: ZhaoT-HHeZ-YChuY-MOn some refinements for inequalities involving zero-balanced hypergeometric functionAIMS Math.20205664796495414896210.3934/math.2020418 – reference: Zhao, T.-H., Chu, Y.-M., Wang, H.: Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011, Article ID 896483, 13 pages (2011) – reference: WangM-MChuY-MQiuY-FQiuS-LAn optimal power mean inequality for the complete elliptic integralsAppl. Math. Lett.2011246887890277615510.1016/j.aml.2010.12.044 – reference: Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals. J. Inequal. Appl., 2018, Article ID 239, 11 pages (2018) – reference: TakeuchiSComplete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals and a computation formula of πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _p$$\end{document} for p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document}Ramanujan J.2018462309321380396210.1007/s11139-018-9993-y – reference: WangM-KChuY-MLiY-MZhangWAsymptotic expansion and bounds for complete elliptic integralsMath. Inequal. Appl.202023382184141289551455.33013 – reference: YangZ-HTianJ-FConvexity and monotonicity for elliptic integrals of the first kind and applicationsAppl. Anal. Discrete Math.2019131240260394805410.2298/AADM171015001Y – reference: Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler-Mascheroni constant. J. Inequal. Appl., 2018, Article ID 118, 9 pages (2018) – reference: HeikkalaVVamanamurthyMKVuorinenMGeneralized elliptic integralsComput. Methods Funct. Theory20099175109247826510.1007/BF03321716 – reference: Qian, W.-M., He, Z.-Y., Chu, Y.-M.: Approximation for the complete elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114(2), Article ID 57, 12 pages (2020) – ident: 352_CR28 doi: 10.1186/s13660-017-1484-y – ident: 352_CR13 doi: 10.1155/2010/493058 – volume: 192 start-page: 1 issue: 1 year: 2000 ident: 352_CR4 publication-title: Pacific J. Math. doi: 10.2140/pjm.2000.192.1 – ident: 352_CR14 doi: 10.1007/s13398-020-00784-9 – ident: 352_CR33 doi: 10.1155/2011/896483 – ident: 352_CR12 doi: 10.1186/s13660-018-1828-2 – volume: 9 start-page: 35 issue: 1 year: 2016 ident: 352_CR17 publication-title: J. Class. Anal. doi: 10.7153/jca-09-04 – volume-title: Conformal invariants, inequalities, and quasiconformal maps year: 1997 ident: 352_CR5 – volume: 256 start-page: 895 issue: 4 year: 2007 ident: 352_CR6 publication-title: Math. Z. doi: 10.1007/s00209-007-0111-x – volume: 46 start-page: 679 issue: 2 year: 2016 ident: 352_CR20 publication-title: Rocky Mountain J. Math. – volume: 48 start-page: 91 issue: 1 year: 2019 ident: 352_CR32 publication-title: Ramanujan J. doi: 10.1007/s11139-018-0061-4 – volume: 24 start-page: 887 issue: 6 year: 2011 ident: 352_CR24 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.12.044 – volume: 145 start-page: 1661 issue: 4 year: 2017 ident: 352_CR3 publication-title: Proc. Am. Math. Soc. doi: 10.1090/proc/13337 – volume: 122 start-page: 41 issue: 1 year: 2012 ident: 352_CR8 publication-title: Proc. Indian Acad. Sci. Math. Sci. doi: 10.1007/s12044-012-0062-y – volume: 124 start-page: 309 issue: 2 year: 1988 ident: 352_CR2 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004198002692 – ident: 352_CR9 doi: 10.1186/s13660-020-02327-7 – volume: 61 start-page: 223 issue: 3–4 year: 2012 ident: 352_CR7 publication-title: Results. Math. doi: 10.1007/s00025-010-0090-9 – volume: 14 start-page: 255 issue: 1 year: 2020 ident: 352_CR21 publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM190924020W – volume: 23 start-page: 77 issue: 1 year: 2020 ident: 352_CR30 publication-title: Math. Inequal. Appl. – volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables year: 1964 ident: 352_CR1 – volume: 39 start-page: 202 issue: 1 year: 2016 ident: 352_CR16 publication-title: Kodai Math. J. doi: 10.2996/kmj/1458651700 – volume: 20 start-page: 111 issue: 1 year: 2020 ident: 352_CR27 publication-title: Comput. Methods Funct. Theory doi: 10.1007/s40315-020-00298-w – volume: 9 start-page: 75 issue: 1 year: 2009 ident: 352_CR10 publication-title: Comput. Methods Funct. Theory doi: 10.1007/BF03321716 – volume: 429 start-page: 744 issue: 2 year: 2015 ident: 352_CR23 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.04.035 – volume: 13 start-page: 240 issue: 1 year: 2019 ident: 352_CR31 publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM171015001Y – volume: 23 start-page: 843 issue: 3 year: 2020 ident: 352_CR15 publication-title: Math. Inequal. Appl. – volume: 428 start-page: 587 issue: 1 year: 2015 ident: 352_CR25 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.03.043 – volume: 46 start-page: 309 issue: 2 year: 2018 ident: 352_CR18 publication-title: Ramanujan J. doi: 10.1007/s11139-018-9993-y – ident: 352_CR19 doi: 10.1016/j.jmaa.2019.123388 – volume: 23 start-page: 821 issue: 3 year: 2020 ident: 352_CR22 publication-title: Math. Inequal. Appl. – ident: 352_CR35 doi: 10.1007/s13398-020-00825-3 – volume: 348 start-page: 552 year: 2019 ident: 352_CR26 publication-title: Appl. Math. Comput. doi: 10.1016/j.cam.2018.08.027 – volume: 5 start-page: 4512 issue: 5 year: 2020 ident: 352_CR36 publication-title: AIMS Math. doi: 10.3934/math.2020290 – volume: 5 start-page: 6479 issue: 6 year: 2020 ident: 352_CR34 publication-title: AIMS Math. doi: 10.3934/math.2020418 – ident: 352_CR11 doi: 10.1186/s13660-018-1711-1 – volume: 462 start-page: 1714 issue: 2 year: 2018 ident: 352_CR29 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2018.03.005 |
SSID | ssj0054933 |
Score | 2.5707738 |
Snippet | In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 413 |
SubjectTerms | Analysis Computational Mathematics and Numerical Analysis Elliptic functions Functions of a Complex Variable Integrals Mathematics Mathematics and Statistics |
Title | Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals |
URI | https://link.springer.com/article/10.1007/s40315-020-00352-7 https://www.proquest.com/docview/2561092626 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELaALjDwjyg_lQc2cNXEdpyMBFEKqJ2oKCyRndgIUbWIlIUH4wV4Mc5O0ooKkLpFsnNKzufzffb5O4ROAtYyVIgWCanyCZNCEmXcgSONDA0CoxzjTbcXdPrsZsAH5aWwvMp2r44knaeeXnZjtiABsXDHkXgSsYxqHAAKTMfa-dXD7WXlgQHyuBLyNnQnEWOivCzzu5SfC9Isypw7GHXrTXsD9asvLdJMXprvE9VMP-ZIHBf9lU20Xgag-LywmC20pEfbaK07ZW_Nd9CTZXF-xbGtuJRjiGoxNOJ7t4mqM9z5-rSlvXFXyxEeG9f4qN_GJLZpkin0KLmsnz_g2TocsA2NbXYI-KcUXxcMFcN8F_Xbl3cXHVIWZCApzNQJ4caTLWOM0lkoIxpmVPFUCs2ppEEIwMunQvsZ5ZGSIc90BPYRAP4WzGRRy0_pHloZjUd6H-GMeRachhaeMilBFuNGp57yPM19wevIq0YlSUu2cls0Y5hMeZadEhNQYuKUmIg6Op2-81pwdfzb-6ga7KSct3ni23DSUigGdXRWjd2s-W9pB4t1P0Srvk2OcclqR2hl8vaujyG6magGGHM7jnuN0qi_AagL7xI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5emADoya242RsEdBSykTFY4nsxEaIqkUkXfrD-AP8MWw3aQUCJLZI51iJfT7fZ999B3AU0LomnNdxSKSPqeACS-0uHEmkSRBo6RhvujdBq0ev7tl9kRSWldHu5ZWks9TTZDdqCxJgC3cciSfm81ClXhiyClQblw-d89ICG8jjSshb1x1HlPIiWebnXr5uSDMv89vFqNtvLlagV37pJMzk5XSUy9Nk_I3E8b-_sgrLhQOKGhONWYM5NViHpe6UvTXbgCfL4vyKmrbiUoaMV4uMEN25Q1SVotbHuy3tjbpKDNBQO-Gjehvipg2TTEyLgsv6eWyercExuqGQjQ4x9ilB7QlDRT_bhN7F-e1ZCxcFGXBiVmqOmfZEXWstVRqKiIQpkSwRXDEiSBAa4OUTrvyUsEiKkKUqMvoRGPzNqU6jup-QLagMhgO1DSilngWnoYWnVAjTF2VaJZ70PMV8zmrglbMSJwVbuS2a0Y-nPMtuEGMziLEbxJjX4Hj6zuuEq-PP1nvlZMfFus1i37qTlkIxqMFJOXcz8e-97fyv-SEstG671_F1-6azC4u-DZRxgWt7UMnfRmrfeDq5PCgU-xOOKPCH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRarKgUdbxPL0gVsxbGI7To68luWxqAdQaS-RndgIgbIrNlz4YfwB_hgeJ1keaishbpHsWIln7MzE33wfwHrEO5ZJ2aEx0yHlSiqqrT9wZIllUWS1Z7zpn0a9c350IS5eVPF7tHtzJFnVNCBLU1FuDXO7NS584yhOQDH18YSeVH6CSY4aEi2Y3D74fbzf7MYu_fFy8hjG04RzWRfO_H2U1x-n54jzzSGp__Z0Z0A1T11BTq4370q9md2_IXT8yGvNwnQdmJLtypPmYMIUX2GqP2Z1HX2DS2R3HpIdVGIaERftEtdIfvmfqyYnvccHlPwmfaMKMrC-8Y-5HdAdhE9mrkfNcX11765xI3I-YwiiRty-lZHDirniZvQdzrv7Z7s9Wgs10Myt4JIKG6iOtVabPFYJi3OmRaakEUyxyBkFoTcmzJlItIpFbhLnN5HLyyW3edIJMzYPrWJQmAUgOQ8waY0xbeVKubG4sCYLdBAYEUrRhqCxUJrVLOYopnGTjvmX_SSmbhJTP4mpbMOP8T3DisPjv72XG8On9XoepSGGmUitGLVho7Hjc_O_R1t8X_c1-Pxzr5ueHJ4eL8GXEPEzHs-2DK3y9s6suACo1Ku1jz8BmOj5Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+Bounds+for+the+Weighted+H%C3%B6lder+Mean+of+the+Zero-Balanced+Generalized+Complete+Elliptic+Integrals&rft.jtitle=Computational+methods+and+function+theory&rft.au=Tie-Hong%2C+Zhao&rft.au=Zai-Yin%2C+He&rft.au=Yu-Ming%2C+Chu&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=21&rft.issue=3&rft.spage=413&rft.epage=426&rft_id=info:doi/10.1007%2Fs40315-020-00352-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon |