Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals

In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete p -elliptic integrals.

Saved in:
Bibliographic Details
Published inComputational methods and function theory Vol. 21; no. 3; pp. 413 - 426
Main Authors Zhao, Tie-Hong, He, Zai-Yin, Chu, Yu-Ming
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1617-9447
2195-3724
DOI10.1007/s40315-020-00352-7

Cover

Abstract In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete p -elliptic integrals.
AbstractList In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete p -elliptic integrals.
In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete p-elliptic integrals.
Author Zhao, Tie-Hong
Chu, Yu-Ming
He, Zai-Yin
Author_xml – sequence: 1
  givenname: Tie-Hong
  surname: Zhao
  fullname: Zhao, Tie-Hong
  organization: Department of Mathematics, Hangzhou Normal University
– sequence: 2
  givenname: Zai-Yin
  surname: He
  fullname: He, Zai-Yin
  organization: School of Mathematics, Hunan University
– sequence: 3
  givenname: Yu-Ming
  surname: Chu
  fullname: Chu, Yu-Ming
  email: chuyuming@zjhu.edu.cn
  organization: Department of Mathematics, Huzhou University, Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology
BookMark eNp9kM1qGzEUhUVJobabF-hKkLUa_YxGo2ViXCeQ0kUSAtkIWXNlT5hIE0letA_WF-iLRbULgS6yuhfO-e65nDk6CTEAQl8Y_cooVee5oYJJQjkllArJifqAZpxpSYTizQmasZYpoptGfULznJ8olY0WYoa2tzubJnwZ96HP2MeEyw7wAwzbXYEeX_35PfaQ8HewAUd_EB8hRXJpRxtcdawhQLLj8Kvuy_g8jVAAr8ZxmMrg8HUosK1y_ow--jrg9N9coPtvq7vlFbn5sb5eXtwQJ5guRHpmqfd-A31nteh6sZHOKpDCirZjbcOFAt4LqTe2kz1ocK5tWq0a32vKnVigs-PdKcWXPeRinuI-hRppuGwZ1bzlbXXxo8ulmHMCb6Y0PNv00zBq_hZqjoWaWqg5FGpUhbr_IDcUW4YYSrLD-D4qjmiuOWEL6e2rd6hXRYmNSA
CitedBy_id crossref_primary_10_1016_j_comptc_2022_113729
crossref_primary_10_1007_s13204_021_02319_z
crossref_primary_10_1016_j_physleta_2022_128236
crossref_primary_10_1007_s00706_022_02926_8
crossref_primary_10_1016_j_ast_2021_107299
crossref_primary_10_3934_math_2021524
crossref_primary_10_1007_s00339_022_05789_2
crossref_primary_10_1016_j_ijhydene_2022_04_228
crossref_primary_10_3934_math_2022697
crossref_primary_10_1016_j_ijhydene_2022_07_161
crossref_primary_10_3390_axioms12040365
crossref_primary_10_3934_math_2022583
crossref_primary_10_3389_fenrg_2021_789316
crossref_primary_10_1007_s10971_022_05859_0
crossref_primary_10_20964_2022_07_11
crossref_primary_10_3390_axioms11110622
crossref_primary_10_3390_axioms12020195
crossref_primary_10_3390_axioms12100910
crossref_primary_10_1016_j_molliq_2022_118796
crossref_primary_10_1016_j_est_2022_105505
crossref_primary_10_1016_j_rinp_2022_105589
crossref_primary_10_1007_s00894_022_05127_6
crossref_primary_10_3390_sym14091901
crossref_primary_10_1140_epjp_s13360_022_02848_8
crossref_primary_10_1007_s13204_021_02183_x
crossref_primary_10_1016_j_bulsci_2023_103316
crossref_primary_10_1016_j_ijhydene_2022_05_046
crossref_primary_10_1016_j_ast_2022_107689
crossref_primary_10_1016_j_inoche_2022_109309
crossref_primary_10_3390_math11132851
crossref_primary_10_1007_s11766_023_4223_9
crossref_primary_10_1007_s13204_021_02168_w
crossref_primary_10_1016_j_actaastro_2022_03_002
crossref_primary_10_1016_j_ijhydene_2022_04_241
crossref_primary_10_1515_dema_2022_0225
crossref_primary_10_1142_S0217979223501072
crossref_primary_10_1088_1361_6641_ac7b9f
crossref_primary_10_1016_j_comptc_2022_113721
crossref_primary_10_1016_j_rinp_2022_105475
crossref_primary_10_1515_math_2021_0067
crossref_primary_10_1007_s00025_022_01799_x
crossref_primary_10_1016_j_ast_2021_107193
crossref_primary_10_3390_fractalfract7030223
crossref_primary_10_1007_s13398_023_01429_3
crossref_primary_10_1016_j_csite_2022_102190
crossref_primary_10_3390_math11030656
crossref_primary_10_1007_s00289_022_04626_z
crossref_primary_10_1140_epjp_s13360_021_02106_3
crossref_primary_10_1016_j_icheatmasstransfer_2021_105625
crossref_primary_10_1007_s13398_021_01197_y
crossref_primary_10_1016_j_ast_2021_107236
crossref_primary_10_1016_j_inoche_2023_111264
crossref_primary_10_3390_fractalfract7070567
crossref_primary_10_1016_j_comptc_2022_113792
crossref_primary_10_1007_s00894_022_05410_6
crossref_primary_10_3934_math_2023374
crossref_primary_10_1016_j_csite_2022_101827
crossref_primary_10_1007_s13204_021_02285_6
crossref_primary_10_1016_j_est_2021_103427
crossref_primary_10_1038_s41598_022_18714_7
crossref_primary_10_1080_10652469_2024_2392281
crossref_primary_10_1142_S0129183122500954
crossref_primary_10_1016_j_csite_2022_102114
crossref_primary_10_1016_j_molliq_2022_119147
crossref_primary_10_1007_s10473_022_0204_y
crossref_primary_10_1155_2022_6285367
crossref_primary_10_1007_s10904_022_02467_x
crossref_primary_10_1016_j_est_2021_103652
crossref_primary_10_1142_S0217979223500911
crossref_primary_10_1186_s13660_022_02768_2
crossref_primary_10_1007_s12668_022_01048_z
crossref_primary_10_1016_j_enganabound_2022_03_012
crossref_primary_10_1088_1402_4896_ac6382
crossref_primary_10_3934_math_2022444
crossref_primary_10_1007_s12633_022_02008_8
crossref_primary_10_1007_s00706_022_02912_0
crossref_primary_10_1016_j_molliq_2022_119658
crossref_primary_10_1142_S0129183122500309
crossref_primary_10_3390_fractalfract6080415
crossref_primary_10_1016_j_matpr_2022_08_176
crossref_primary_10_3390_math11030550
crossref_primary_10_1016_j_csite_2022_102171
crossref_primary_10_1142_S0217984922500026
crossref_primary_10_1016_j_rinp_2022_105385
crossref_primary_10_1007_s00706_022_02906_y
crossref_primary_10_3390_math10203851
crossref_primary_10_1007_s11082_022_03879_2
crossref_primary_10_1515_math_2022_0045
crossref_primary_10_1216_rmj_2024_54_1213
crossref_primary_10_3390_buildings12030356
crossref_primary_10_3390_fractalfract6110679
crossref_primary_10_1038_s41598_022_13692_2
crossref_primary_10_1007_s13204_021_02139_1
crossref_primary_10_2166_wst_2022_318
crossref_primary_10_1007_s13538_022_01073_z
crossref_primary_10_1007_s00894_022_05102_1
crossref_primary_10_3390_su14073989
crossref_primary_10_1016_j_cplett_2021_139162
crossref_primary_10_1007_s13398_021_01117_0
crossref_primary_10_1016_j_csite_2022_102178
crossref_primary_10_3390_su14084770
crossref_primary_10_1016_j_est_2021_103763
crossref_primary_10_3390_axioms13070471
crossref_primary_10_1142_S0129183123500195
crossref_primary_10_1007_s42452_024_06359_2
crossref_primary_10_1016_j_rinp_2022_105430
crossref_primary_10_3390_fractalfract7020171
crossref_primary_10_1007_s13369_022_07140_6
crossref_primary_10_3390_sym15040862
crossref_primary_10_1021_acsomega_2c03634
crossref_primary_10_3390_math10183251
crossref_primary_10_1002_jemt_24207
crossref_primary_10_1080_17455030_2022_2111477
crossref_primary_10_3390_sym14081639
crossref_primary_10_1016_j_enganabound_2022_04_035
crossref_primary_10_1080_08927022_2022_2036338
crossref_primary_10_3390_nano12071152
crossref_primary_10_1007_s40315_021_00415_3
crossref_primary_10_1088_1402_4896_ac51c7
crossref_primary_10_1140_epjp_s13360_021_02327_6
crossref_primary_10_1007_s00894_022_05151_6
crossref_primary_10_1007_s13398_021_01162_9
crossref_primary_10_1016_j_est_2021_103878
crossref_primary_10_1007_s13398_022_01211_x
crossref_primary_10_1016_j_rinp_2022_105316
crossref_primary_10_1155_2022_3830324
crossref_primary_10_3390_math10203753
crossref_primary_10_1016_j_ssc_2022_114741
crossref_primary_10_1007_s12210_022_01065_w
crossref_primary_10_1016_j_icheatmasstransfer_2021_105787
crossref_primary_10_1016_j_rinp_2022_105683
crossref_primary_10_1007_s00706_022_02907_x
crossref_primary_10_1007_s13204_022_02363_3
crossref_primary_10_3390_en15061986
crossref_primary_10_3390_math11061356
crossref_primary_10_1007_s00449_022_02736_6
crossref_primary_10_3390_math10152756
crossref_primary_10_1016_j_inoche_2022_109652
crossref_primary_10_1007_s13398_023_01472_0
crossref_primary_10_1016_j_petrol_2021_109734
crossref_primary_10_2298_AADM230417005Z
crossref_primary_10_1007_s13204_021_02136_4
crossref_primary_10_1007_s13398_023_01453_3
crossref_primary_10_3390_sym14112322
crossref_primary_10_1007_s11082_023_06218_1
crossref_primary_10_1016_j_est_2022_105408
crossref_primary_10_1080_17455030_2022_2096945
crossref_primary_10_1016_j_rinp_2022_105842
crossref_primary_10_1016_j_est_2021_103452
crossref_primary_10_1007_s12210_022_01079_4
crossref_primary_10_1016_j_est_2022_104683
crossref_primary_10_3390_fractalfract7120856
crossref_primary_10_1002_zamm_202100204
crossref_primary_10_1016_j_seta_2022_102650
crossref_primary_10_1016_j_seta_2022_102534
crossref_primary_10_1142_S0217984922500932
crossref_primary_10_1515_ntrev_2022_0143
crossref_primary_10_1016_j_rinp_2022_105738
crossref_primary_10_3934_math_2024553
crossref_primary_10_1007_s40840_023_01523_0
crossref_primary_10_1007_s12633_022_01781_w
crossref_primary_10_1016_j_inoche_2022_109644
crossref_primary_10_1007_s13226_021_00016_9
crossref_primary_10_1016_j_physleta_2022_128145
crossref_primary_10_1016_j_rinp_2022_105457
crossref_primary_10_1088_1402_4896_ac3877
Cites_doi 10.1186/s13660-017-1484-y
10.1155/2010/493058
10.2140/pjm.2000.192.1
10.1007/s13398-020-00784-9
10.1155/2011/896483
10.1186/s13660-018-1828-2
10.7153/jca-09-04
10.1007/s00209-007-0111-x
10.1007/s11139-018-0061-4
10.1016/j.aml.2010.12.044
10.1090/proc/13337
10.1007/s12044-012-0062-y
10.1017/S0305004198002692
10.1186/s13660-020-02327-7
10.1007/s00025-010-0090-9
10.2298/AADM190924020W
10.2996/kmj/1458651700
10.1007/s40315-020-00298-w
10.1007/BF03321716
10.1016/j.jmaa.2015.04.035
10.2298/AADM171015001Y
10.1016/j.jmaa.2015.03.043
10.1007/s11139-018-9993-y
10.1016/j.jmaa.2019.123388
10.1007/s13398-020-00825-3
10.1016/j.cam.2018.08.027
10.3934/math.2020290
10.3934/math.2020418
10.1186/s13660-018-1711-1
10.1016/j.jmaa.2018.03.005
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40315-020-00352-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2195-3724
EndPage 426
ExternalDocumentID 10_1007_s40315_020_00352_7
GroupedDBID -EM
06D
0R~
199
203
2LR
30V
4.4
406
95.
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AM4
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARMRJ
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
KOV
L7B
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
ROL
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
VH1
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
JQ2
ID FETCH-LOGICAL-c319t-5f1a0fffbed8a938d3b5ca7e53a368164237e2d359ba85de9ecc646974fd902c3
IEDL.DBID AGYKE
ISSN 1617-9447
IngestDate Wed Sep 17 23:55:03 EDT 2025
Tue Jul 01 01:53:28 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Fri Feb 21 02:47:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Complete elliptic integrals
Weighted Hölder mean
33E05
Gaussian hypergeometric function
Zero-balanced
33C05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5f1a0fffbed8a938d3b5ca7e53a368164237e2d359ba85de9ecc646974fd902c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2561092626
PQPubID 2043941
PageCount 14
ParticipantIDs proquest_journals_2561092626
crossref_primary_10_1007_s40315_020_00352_7
crossref_citationtrail_10_1007_s40315_020_00352_7
springer_journals_10_1007_s40315_020_00352_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational methods and function theory
PublicationTitleAbbrev Comput. Methods Funct. Theory
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AlzerHSharp inequalities for the complete elliptic integral of the first kindMath. Proc. Camb. Philos. Soc.19881242309314163113510.1017/S0305004198002692
BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x
AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPacific J. Math.20001921137174103110.2140/pjm.2000.192.1
YangZ-HTianJ-FSharp inequalities for the generalized elliptic integrals of the first kindRamanujan J.201948191116390249710.1007/s11139-018-0061-4
YangZ-HChuY-MWangM-KMonotonicity criterion for the quotient of power series with applicationsJ. Math. Anal. Appl.20154281587604332700510.1016/j.jmaa.2015.03.043
AndersonGDVamanamurthyMKVuorinenMConformal invariants, inequalities, and quasiconformal maps1997New YorkWiley0885.30012
ZhaoT-HWangM-KChuY-MA sharp double inequality involving generalized complete elliptic integral of the first kindAIMS Math.20205545124528414746210.3934/math.2020290
Qi, F.: Bounds for the ratio of two gamma functions. J. Inequal. Appl., 2010, Article ID 493058, 84 pages (2010)
WangM-KChuH-HLiY-MChuY-MAnswers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kindAppl. Anal. Discrete Math.2020141255271409341710.2298/AADM190924020W
WangM-KChuY-MQiuS-LSharp bounds for generalized elliptic integrals of the first kindJ. Math. Anal. Appl.20154292744757334249010.1016/j.jmaa.2015.04.035
YangZ-HChuY-MZhangWHigh accuracy asymptotic bounds for the complete elliptic integral of the second kindAppl. Math. Comput.2019348552564389417910.1016/j.cam.2018.08.027
TakeuchiSLegendre-type relations for generalized complete elliptic integralsJ. Class. Anal.2016913542358008410.7153/jca-09-04
Qian, W.-M., He, Z.-Y., Chu, Y.-M.: Approximation for the complete elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114(2), Article ID 57, 12 pages (2020)
Zhao, T.-H., Chu, Y.-M., Wang, H.: Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011, Article ID 896483, 13 pages (2011)
Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function, J. Inequal. Appl., 2017, Article ID 210, 17 pages (2017)
Hai, G.-J., Zhao, T.-H.: Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function. J. Inequal. Appl., 2020, Article ID 66, 17 pages (2020)
WangM-MChuY-MQiuY-FQiuS-LAn optimal power mean inequality for the complete elliptic integralsAppl. Math. Lett.2011246887890277615510.1016/j.aml.2010.12.044
WangM-KHeZ-YChuY-MSharp power mean inequalities for the generalized elliptic integral of the first KindComput. Methods Funct. Theory2020201111124407186510.1007/s40315-020-00298-w
ShenJ-MYangZ-HQianW-MZhangWChuY-MSharp rational bounds for the gamma functionMath. Inequal. Appl.202023384385341289561455.33002
WangM-KChuY-MJiangY-PRamanujan’s cubic transformation inequalities for zero-balanced hypergeometric functionsRocky Mountain J. Math.201646267969135290871350.33007
Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals. J. Inequal. Appl., 2018, Article ID 239, 11 pages (2018)
ChuY-MWangM-KQiuS-LOptimal combinations bounds of root-square and arithmetic means for Toader meanProc. Indian Acad. Sci. Math. Sci.201212214151290958210.1007/s12044-012-0062-y
TakeuchiSA new form of the generalized complete elliptic integralsKodai Math. J.2016391202226347827910.2996/kmj/1458651700
YangZ-HQianW-MChuY-MZhangWOn approximating the arithmetic-geometric mean and complete elliptic integral of the first kindJ. Math. Anal. Appl.2018462217141726377431310.1016/j.jmaa.2018.03.005
YangZ-HQianW-MZhangWChuY-MNotes on the complete elliptic integral of the first kindMath. Inequal. Appl.2020231779340615261440.33020
ChuY-MWangM-KOptimal Lehmer mean bounds for the Toader meanResults. Math.2012613–4223229292511710.1007/s00025-010-0090-9
AlzerHRichardsKInequalities for the ratio of complete elliptic integralsProc. Am. Math. Soc.2017145416611670360155710.1090/proc/13337
Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler-Mascheroni constant. J. Inequal. Appl., 2018, Article ID 118, 9 pages (2018)
Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals, J. Math. Anal. Appl., 480(2), Article ID 123388, 9 pages (2019)
YangZ-HTianJ-FConvexity and monotonicity for elliptic integrals of the first kind and applicationsAppl. Anal. Discrete Math.2019131240260394805410.2298/AADM171015001Y
ZhaoT-HHeZ-YChuY-MOn some refinements for inequalities involving zero-balanced hypergeometric functionAIMS Math.20205664796495414896210.3934/math.2020418
TakeuchiSComplete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals and a computation formula of πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _p$$\end{document} for p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document}Ramanujan J.2018462309321380396210.1007/s11139-018-9993-y
Zhao, T.-H., Shi, L., Chu, Y.-M.: Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 114(2), Article ID 96, 14 pages (2020)
AbramowitzMStegunIAHandbook of mathematical functions with formulas, graphs, and mathematical tables1964WashingtonU. S. Government Printing Office0171.38503
WangM-KChuY-MLiY-MZhangWAsymptotic expansion and bounds for complete elliptic integralsMath. Inequal. Appl.202023382184141289551455.33013
HeikkalaVVamanamurthyMKVuorinenMGeneralized elliptic integralsComput. Methods Funct. Theory20099175109247826510.1007/BF03321716
GD Anderson (352_CR4) 2000; 192
352_CR9
Z-H Yang (352_CR30) 2020; 23
H Alzer (352_CR2) 1988; 124
Á Baricz (352_CR6) 2007; 256
T-H Zhao (352_CR34) 2020; 5
GD Anderson (352_CR5) 1997
Z-H Yang (352_CR29) 2018; 462
352_CR13
352_CR35
T-H Zhao (352_CR36) 2020; 5
352_CR14
S Takeuchi (352_CR17) 2016; 9
352_CR19
Z-H Yang (352_CR32) 2019; 48
M Abramowitz (352_CR1) 1964
Y-M Chu (352_CR7) 2012; 61
H Alzer (352_CR3) 2017; 145
Y-M Chu (352_CR8) 2012; 122
V Heikkala (352_CR10) 2009; 9
M-K Wang (352_CR22) 2020; 23
Z-H Yang (352_CR26) 2019; 348
M-K Wang (352_CR23) 2015; 429
J-M Shen (352_CR15) 2020; 23
352_CR11
352_CR33
352_CR12
Z-H Yang (352_CR31) 2019; 13
M-K Wang (352_CR27) 2020; 20
M-K Wang (352_CR21) 2020; 14
Z-H Yang (352_CR25) 2015; 428
352_CR28
S Takeuchi (352_CR16) 2016; 39
M-K Wang (352_CR20) 2016; 46
S Takeuchi (352_CR18) 2018; 46
M-M Wang (352_CR24) 2011; 24
References_xml – reference: YangZ-HTianJ-FSharp inequalities for the generalized elliptic integrals of the first kindRamanujan J.201948191116390249710.1007/s11139-018-0061-4
– reference: ZhaoT-HWangM-KChuY-MA sharp double inequality involving generalized complete elliptic integral of the first kindAIMS Math.20205545124528414746210.3934/math.2020290
– reference: BariczÁTurán type inequalities for generalized complete elliptic integralsMath. Z.20072564895911230889610.1007/s00209-007-0111-x
– reference: ChuY-MWangM-KOptimal Lehmer mean bounds for the Toader meanResults. Math.2012613–4223229292511710.1007/s00025-010-0090-9
– reference: AbramowitzMStegunIAHandbook of mathematical functions with formulas, graphs, and mathematical tables1964WashingtonU. S. Government Printing Office0171.38503
– reference: YangZ-HChuY-MWangM-KMonotonicity criterion for the quotient of power series with applicationsJ. Math. Anal. Appl.20154281587604332700510.1016/j.jmaa.2015.03.043
– reference: YangZ-HQianW-MZhangWChuY-MNotes on the complete elliptic integral of the first kindMath. Inequal. Appl.2020231779340615261440.33020
– reference: AndersonGDQiuS-LVamanamurthyMKVuorinenMGeneralized elliptic integrals and modular equationsPacific J. Math.20001921137174103110.2140/pjm.2000.192.1
– reference: Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals, J. Math. Anal. Appl., 480(2), Article ID 123388, 9 pages (2019)
– reference: WangM-KChuY-MQiuS-LSharp bounds for generalized elliptic integrals of the first kindJ. Math. Anal. Appl.20154292744757334249010.1016/j.jmaa.2015.04.035
– reference: WangM-KHeZ-YChuY-MSharp power mean inequalities for the generalized elliptic integral of the first KindComput. Methods Funct. Theory2020201111124407186510.1007/s40315-020-00298-w
– reference: Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function, J. Inequal. Appl., 2017, Article ID 210, 17 pages (2017)
– reference: Hai, G.-J., Zhao, T.-H.: Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function. J. Inequal. Appl., 2020, Article ID 66, 17 pages (2020)
– reference: AndersonGDVamanamurthyMKVuorinenMConformal invariants, inequalities, and quasiconformal maps1997New YorkWiley0885.30012
– reference: TakeuchiSLegendre-type relations for generalized complete elliptic integralsJ. Class. Anal.2016913542358008410.7153/jca-09-04
– reference: Zhao, T.-H., Shi, L., Chu, Y.-M.: Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 114(2), Article ID 96, 14 pages (2020)
– reference: Qi, F.: Bounds for the ratio of two gamma functions. J. Inequal. Appl., 2010, Article ID 493058, 84 pages (2010)
– reference: YangZ-HChuY-MZhangWHigh accuracy asymptotic bounds for the complete elliptic integral of the second kindAppl. Math. Comput.2019348552564389417910.1016/j.cam.2018.08.027
– reference: AlzerHRichardsKInequalities for the ratio of complete elliptic integralsProc. Am. Math. Soc.2017145416611670360155710.1090/proc/13337
– reference: TakeuchiSA new form of the generalized complete elliptic integralsKodai Math. J.2016391202226347827910.2996/kmj/1458651700
– reference: AlzerHSharp inequalities for the complete elliptic integral of the first kindMath. Proc. Camb. Philos. Soc.19881242309314163113510.1017/S0305004198002692
– reference: WangM-KChuY-MJiangY-PRamanujan’s cubic transformation inequalities for zero-balanced hypergeometric functionsRocky Mountain J. Math.201646267969135290871350.33007
– reference: ShenJ-MYangZ-HQianW-MZhangWChuY-MSharp rational bounds for the gamma functionMath. Inequal. Appl.202023384385341289561455.33002
– reference: YangZ-HQianW-MChuY-MZhangWOn approximating the arithmetic-geometric mean and complete elliptic integral of the first kindJ. Math. Anal. Appl.2018462217141726377431310.1016/j.jmaa.2018.03.005
– reference: WangM-KChuH-HLiY-MChuY-MAnswers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kindAppl. Anal. Discrete Math.2020141255271409341710.2298/AADM190924020W
– reference: ChuY-MWangM-KQiuS-LOptimal combinations bounds of root-square and arithmetic means for Toader meanProc. Indian Acad. Sci. Math. Sci.201212214151290958210.1007/s12044-012-0062-y
– reference: ZhaoT-HHeZ-YChuY-MOn some refinements for inequalities involving zero-balanced hypergeometric functionAIMS Math.20205664796495414896210.3934/math.2020418
– reference: Zhao, T.-H., Chu, Y.-M., Wang, H.: Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011, Article ID 896483, 13 pages (2011)
– reference: WangM-MChuY-MQiuY-FQiuS-LAn optimal power mean inequality for the complete elliptic integralsAppl. Math. Lett.2011246887890277615510.1016/j.aml.2010.12.044
– reference: Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals. J. Inequal. Appl., 2018, Article ID 239, 11 pages (2018)
– reference: TakeuchiSComplete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integrals and a computation formula of πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _p$$\end{document} for p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document}Ramanujan J.2018462309321380396210.1007/s11139-018-9993-y
– reference: WangM-KChuY-MLiY-MZhangWAsymptotic expansion and bounds for complete elliptic integralsMath. Inequal. Appl.202023382184141289551455.33013
– reference: YangZ-HTianJ-FConvexity and monotonicity for elliptic integrals of the first kind and applicationsAppl. Anal. Discrete Math.2019131240260394805410.2298/AADM171015001Y
– reference: Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler-Mascheroni constant. J. Inequal. Appl., 2018, Article ID 118, 9 pages (2018)
– reference: HeikkalaVVamanamurthyMKVuorinenMGeneralized elliptic integralsComput. Methods Funct. Theory20099175109247826510.1007/BF03321716
– reference: Qian, W.-M., He, Z.-Y., Chu, Y.-M.: Approximation for the complete elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114(2), Article ID 57, 12 pages (2020)
– ident: 352_CR28
  doi: 10.1186/s13660-017-1484-y
– ident: 352_CR13
  doi: 10.1155/2010/493058
– volume: 192
  start-page: 1
  issue: 1
  year: 2000
  ident: 352_CR4
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.2000.192.1
– ident: 352_CR14
  doi: 10.1007/s13398-020-00784-9
– ident: 352_CR33
  doi: 10.1155/2011/896483
– ident: 352_CR12
  doi: 10.1186/s13660-018-1828-2
– volume: 9
  start-page: 35
  issue: 1
  year: 2016
  ident: 352_CR17
  publication-title: J. Class. Anal.
  doi: 10.7153/jca-09-04
– volume-title: Conformal invariants, inequalities, and quasiconformal maps
  year: 1997
  ident: 352_CR5
– volume: 256
  start-page: 895
  issue: 4
  year: 2007
  ident: 352_CR6
  publication-title: Math. Z.
  doi: 10.1007/s00209-007-0111-x
– volume: 46
  start-page: 679
  issue: 2
  year: 2016
  ident: 352_CR20
  publication-title: Rocky Mountain J. Math.
– volume: 48
  start-page: 91
  issue: 1
  year: 2019
  ident: 352_CR32
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-018-0061-4
– volume: 24
  start-page: 887
  issue: 6
  year: 2011
  ident: 352_CR24
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.12.044
– volume: 145
  start-page: 1661
  issue: 4
  year: 2017
  ident: 352_CR3
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/13337
– volume: 122
  start-page: 41
  issue: 1
  year: 2012
  ident: 352_CR8
  publication-title: Proc. Indian Acad. Sci. Math. Sci.
  doi: 10.1007/s12044-012-0062-y
– volume: 124
  start-page: 309
  issue: 2
  year: 1988
  ident: 352_CR2
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004198002692
– ident: 352_CR9
  doi: 10.1186/s13660-020-02327-7
– volume: 61
  start-page: 223
  issue: 3–4
  year: 2012
  ident: 352_CR7
  publication-title: Results. Math.
  doi: 10.1007/s00025-010-0090-9
– volume: 14
  start-page: 255
  issue: 1
  year: 2020
  ident: 352_CR21
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM190924020W
– volume: 23
  start-page: 77
  issue: 1
  year: 2020
  ident: 352_CR30
  publication-title: Math. Inequal. Appl.
– volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables
  year: 1964
  ident: 352_CR1
– volume: 39
  start-page: 202
  issue: 1
  year: 2016
  ident: 352_CR16
  publication-title: Kodai Math. J.
  doi: 10.2996/kmj/1458651700
– volume: 20
  start-page: 111
  issue: 1
  year: 2020
  ident: 352_CR27
  publication-title: Comput. Methods Funct. Theory
  doi: 10.1007/s40315-020-00298-w
– volume: 9
  start-page: 75
  issue: 1
  year: 2009
  ident: 352_CR10
  publication-title: Comput. Methods Funct. Theory
  doi: 10.1007/BF03321716
– volume: 429
  start-page: 744
  issue: 2
  year: 2015
  ident: 352_CR23
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.04.035
– volume: 13
  start-page: 240
  issue: 1
  year: 2019
  ident: 352_CR31
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM171015001Y
– volume: 23
  start-page: 843
  issue: 3
  year: 2020
  ident: 352_CR15
  publication-title: Math. Inequal. Appl.
– volume: 428
  start-page: 587
  issue: 1
  year: 2015
  ident: 352_CR25
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.03.043
– volume: 46
  start-page: 309
  issue: 2
  year: 2018
  ident: 352_CR18
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-018-9993-y
– ident: 352_CR19
  doi: 10.1016/j.jmaa.2019.123388
– volume: 23
  start-page: 821
  issue: 3
  year: 2020
  ident: 352_CR22
  publication-title: Math. Inequal. Appl.
– ident: 352_CR35
  doi: 10.1007/s13398-020-00825-3
– volume: 348
  start-page: 552
  year: 2019
  ident: 352_CR26
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.cam.2018.08.027
– volume: 5
  start-page: 4512
  issue: 5
  year: 2020
  ident: 352_CR36
  publication-title: AIMS Math.
  doi: 10.3934/math.2020290
– volume: 5
  start-page: 6479
  issue: 6
  year: 2020
  ident: 352_CR34
  publication-title: AIMS Math.
  doi: 10.3934/math.2020418
– ident: 352_CR11
  doi: 10.1186/s13660-018-1711-1
– volume: 462
  start-page: 1714
  issue: 2
  year: 2018
  ident: 352_CR29
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.03.005
SSID ssj0054933
Score 2.5707738
Snippet In the article, we present the best possible bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals of the first and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 413
SubjectTerms Analysis
Computational Mathematics and Numerical Analysis
Elliptic functions
Functions of a Complex Variable
Integrals
Mathematics
Mathematics and Statistics
Title Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals
URI https://link.springer.com/article/10.1007/s40315-020-00352-7
https://www.proquest.com/docview/2561092626
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELaALjDwjyg_lQc2cNXEdpyMBFEKqJ2oKCyRndgIUbWIlIUH4wV4Mc5O0ooKkLpFsnNKzufzffb5O4ROAtYyVIgWCanyCZNCEmXcgSONDA0CoxzjTbcXdPrsZsAH5aWwvMp2r44knaeeXnZjtiABsXDHkXgSsYxqHAAKTMfa-dXD7WXlgQHyuBLyNnQnEWOivCzzu5SfC9Isypw7GHXrTXsD9asvLdJMXprvE9VMP-ZIHBf9lU20Xgag-LywmC20pEfbaK07ZW_Nd9CTZXF-xbGtuJRjiGoxNOJ7t4mqM9z5-rSlvXFXyxEeG9f4qN_GJLZpkin0KLmsnz_g2TocsA2NbXYI-KcUXxcMFcN8F_Xbl3cXHVIWZCApzNQJ4caTLWOM0lkoIxpmVPFUCs2ppEEIwMunQvsZ5ZGSIc90BPYRAP4WzGRRy0_pHloZjUd6H-GMeRachhaeMilBFuNGp57yPM19wevIq0YlSUu2cls0Y5hMeZadEhNQYuKUmIg6Op2-81pwdfzb-6ga7KSct3ni23DSUigGdXRWjd2s-W9pB4t1P0Srvk2OcclqR2hl8vaujyG6magGGHM7jnuN0qi_AagL7xI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5emADoya242RsEdBSykTFY4nsxEaIqkUkXfrD-AP8MWw3aQUCJLZI51iJfT7fZ999B3AU0LomnNdxSKSPqeACS-0uHEmkSRBo6RhvujdBq0ev7tl9kRSWldHu5ZWks9TTZDdqCxJgC3cciSfm81ClXhiyClQblw-d89ICG8jjSshb1x1HlPIiWebnXr5uSDMv89vFqNtvLlagV37pJMzk5XSUy9Nk_I3E8b-_sgrLhQOKGhONWYM5NViHpe6UvTXbgCfL4vyKmrbiUoaMV4uMEN25Q1SVotbHuy3tjbpKDNBQO-Gjehvipg2TTEyLgsv6eWyercExuqGQjQ4x9ilB7QlDRT_bhN7F-e1ZCxcFGXBiVmqOmfZEXWstVRqKiIQpkSwRXDEiSBAa4OUTrvyUsEiKkKUqMvoRGPzNqU6jup-QLagMhgO1DSilngWnoYWnVAjTF2VaJZ70PMV8zmrglbMSJwVbuS2a0Y-nPMtuEGMziLEbxJjX4Hj6zuuEq-PP1nvlZMfFus1i37qTlkIxqMFJOXcz8e-97fyv-SEstG671_F1-6azC4u-DZRxgWt7UMnfRmrfeDq5PCgU-xOOKPCH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRarKgUdbxPL0gVsxbGI7To68luWxqAdQaS-RndgIgbIrNlz4YfwB_hgeJ1keaishbpHsWIln7MzE33wfwHrEO5ZJ2aEx0yHlSiqqrT9wZIllUWS1Z7zpn0a9c350IS5eVPF7tHtzJFnVNCBLU1FuDXO7NS584yhOQDH18YSeVH6CSY4aEi2Y3D74fbzf7MYu_fFy8hjG04RzWRfO_H2U1x-n54jzzSGp__Z0Z0A1T11BTq4370q9md2_IXT8yGvNwnQdmJLtypPmYMIUX2GqP2Z1HX2DS2R3HpIdVGIaERftEtdIfvmfqyYnvccHlPwmfaMKMrC-8Y-5HdAdhE9mrkfNcX11765xI3I-YwiiRty-lZHDirniZvQdzrv7Z7s9Wgs10Myt4JIKG6iOtVabPFYJi3OmRaakEUyxyBkFoTcmzJlItIpFbhLnN5HLyyW3edIJMzYPrWJQmAUgOQ8waY0xbeVKubG4sCYLdBAYEUrRhqCxUJrVLOYopnGTjvmX_SSmbhJTP4mpbMOP8T3DisPjv72XG8On9XoepSGGmUitGLVho7Hjc_O_R1t8X_c1-Pxzr5ueHJ4eL8GXEPEzHs-2DK3y9s6suACo1Ku1jz8BmOj5Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+Bounds+for+the+Weighted+H%C3%B6lder+Mean+of+the+Zero-Balanced+Generalized+Complete+Elliptic+Integrals&rft.jtitle=Computational+methods+and+function+theory&rft.au=Tie-Hong%2C+Zhao&rft.au=Zai-Yin%2C+He&rft.au=Yu-Ming%2C+Chu&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=21&rft.issue=3&rft.spage=413&rft.epage=426&rft_id=info:doi/10.1007%2Fs40315-020-00352-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon