Multi-view multi-label learning with double orders manifold preserving
In multi-view multi-label learning, each instance has multiple heterogeneous views and is marked with a collection of non-exclusive discrete labels. This type of data is usually subject to dimensional catastrophe. Previous multi-view multi-label works look for a low-dimensional shared subspace to ta...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 53; no. 12; pp. 14703 - 14716 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.06.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-022-04242-4 |
Cover
| Abstract | In multi-view multi-label learning, each instance has multiple heterogeneous views and is marked with a collection of non-exclusive discrete labels. This type of data is usually subject to dimensional catastrophe. Previous multi-view multi-label works look for a low-dimensional shared subspace to tackle this problem. However, these methods ignore the global structural information of the original feature space during dimension reduction. In this paper, we propose Multi-view Multi-label learning with Double Orders Manifold Preserving (MMDOM). MMDOM utilizes manifold preserving constraint to guide the formation of low-dimensional shared subspace. To obtain exact manifold preserving, the first-order and the second-order similarity matrices are both introduced to explore the local and global structural information of the original feature space. Experiments on various benchmark datasets demonstrate the superior effectiveness of MMDOM against state-of-the-art methods. |
|---|---|
| AbstractList | In multi-view multi-label learning, each instance has multiple heterogeneous views and is marked with a collection of non-exclusive discrete labels. This type of data is usually subject to dimensional catastrophe. Previous multi-view multi-label works look for a low-dimensional shared subspace to tackle this problem. However, these methods ignore the global structural information of the original feature space during dimension reduction. In this paper, we propose Multi-view Multi-label learning with Double Orders Manifold Preserving (MMDOM). MMDOM utilizes manifold preserving constraint to guide the formation of low-dimensional shared subspace. To obtain exact manifold preserving, the first-order and the second-order similarity matrices are both introduced to explore the local and global structural information of the original feature space. Experiments on various benchmark datasets demonstrate the superior effectiveness of MMDOM against state-of-the-art methods. |
| Author | Zhang, Wentao Yin, Jun |
| Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-9085-3925 surname: Yin fullname: Yin, Jun email: junyin@shmtu.edu.cn organization: College of Information Engineering, Shanghai Maritime University – sequence: 2 givenname: Wentao surname: Zhang fullname: Zhang, Wentao organization: College of Information Engineering, Shanghai Maritime University |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsB19GTyzSTpRSrQsWNgruQmWRqSjqpyUyLb--0Iwguujpn8X_n8k3QqAmNReiawC0BEHeJAC8kBkoxcMop5mdoTHLBsOBSjNAYJOV4NpMfF2iS0hoAGAMyRouXzrcO75zdZ5tj63Vpfeatjo1rVtnetZ-ZCV3pbRaisTFlG924OniTbaNNNu762CU6r7VP9uq3TtH74uFt_oSXr4_P8_slrhiRLc6NKU1tKikKa0TJCaVVOStFnsucgmWclhJyVnMiRVUTy0xhOWgQ_RdQ0ZpN0c0wdxvDV2dTq9ahi02_UtGCEtJLyHmfKoZUFUNK0daqcq1uXWjaqJ1XBNTBmhqsqd6aOlpTB5T-Q7fRbXT8Pg2xAUp9uFnZ-HfVCeoHlEKBiA |
| CitedBy_id | crossref_primary_10_1007_s10489_024_05779_2 crossref_primary_10_1364_OE_532126 crossref_primary_10_1016_j_asoc_2024_111400 crossref_primary_10_1016_j_ins_2024_121395 crossref_primary_10_1016_j_ins_2024_121215 crossref_primary_10_1016_j_neunet_2025_107349 crossref_primary_10_1016_j_patcog_2024_110888 |
| Cites_doi | 10.1109/TCSVT.2018.2848458 10.1016/j.knosys.2019.03.023 10.1016/j.cmpb.2020.105895 10.1016/j.neucom.2019.10.016 10.1007/s10489-020-01703-6 10.1109/TMM.2020.2966887 10.1016/j.asoc.2021.107120 10.1109/TMM.2019.2895511 10.1016/j.knosys.2018.07.003 10.1016/j.inffus.2017.02.007 10.1109/TNNLS.2019.2944664 10.1007/s11227-021-04087-7 10.1109/ACCESS.2019.2930468 10.1016/j.patcog.2019.06.003 10.3390/math10111871 10.1109/TBME.2019.2899222 10.1109/TCYB.2019.2950560 10.1109/TII.2021.3128240 10.1016/j.patcog.2006.12.019 10.1016/j.knosys.2018.10.001 10.48084/etasr.4597 10.1109/TIFS.2018.2878542 10.1007/s13748-012-0030-x 10.1007/s10489-020-01715-2 10.1109/TPAMI.2020.2974203 10.1109/TII.2022.3143605 10.1016/j.ins.2021.08.086 10.1016/j.neucom.2021.03.115 10.1109/SIPROCESS.2018.8600529 10.1609/aaai.v31i1.10488 10.1007/978-0-387-09823-4_34 10.1609/aaai.v30i1.10258 10.1109/TKDE.2021.3112114 10.1137/1.9781611975321.51 10.1609/aaai.v29i1.9547 10.1007/s10489-022-03600-6 10.24963/ijcai.2018/375 10.1017/CBO9780511804441 10.24963/ijcai.2019/539 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-022-04242-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 14716 |
| ExternalDocumentID | 10_1007_s10489_022_04242_4 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-5ddbdfdc978ed7b4122cb6b7559520e342b9053f4197cf1e3d8e40a077490c2f3 |
| IEDL.DBID | BENPR |
| ISSN | 0924-669X |
| IngestDate | Fri Jul 25 12:28:12 EDT 2025 Wed Oct 01 04:09:58 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Fri Feb 21 02:43:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Multi-label Manifold learning Multi-view Subspace learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5ddbdfdc978ed7b4122cb6b7559520e342b9053f4197cf1e3d8e40a077490c2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9085-3925 |
| PQID | 2821148954 |
| PQPubID | 326365 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2821148954 crossref_citationtrail_10_1007_s10489_022_04242_4 crossref_primary_10_1007_s10489_022_04242_4 springer_journals_10_1007_s10489_022_04242_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230600 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Cheng, Zeng (CR35) 2020; 50 Zhang, Wu, Cai, Philip (CR23) 2020; 22 CR18 CR39 Sun, Zong (CR14) 2021; 43 CR38 Zhang, Luo, Li, Zhou, Li (CR22) 2019; 95 CR36 CR12 Kuehlkamp, Pinto, Rocha, Bowyer, Czajka (CR16) 2018; 14 CR34 Lyu, Yang, Li (CR8) 2021; 580 CR32 Zhang, Yang, Li, Fujita (CR20) 2019; 163 Zhang, Yang, Li, Zhang, Wang, Fujita (CR10) 2021; 199 Huang, Qu, Li, Qin, Zheng, Huang (CR33) 2019; 7 Zhao, Zhang, Pedrycz (CR31) 2022; 10 Liu, Zheng, Li, Shen, Lin, Wang, Zhang, Zhang, Xiong (CR6) 2022; 18 Zhang, Luo, Chen, Guo (CR9) 2020; 50 Zhang, Zhou (CR28) 2007; 40 Luaces, Díez, Barranquero, Del Coz, Bahamonde (CR27) 2012; 1 Jain, Pamula, Yekun (CR1) 2022; 78 Liu, Liu, Zhang, Sangaiah, Yang, Li (CR5) 2022; 18 Zhang, Li, Cao, Lin, Su, Dai, Li (CR29) 2018; 159 Demšar (CR40) 2006; 7 CR7 CR26 Tahzeeb, Hasan (CR2) 2022; 12 Ke, Zou, Niu (CR4) 2019; 21 CR24 CR21 Xiao, Dai, Luo, Fujita (CR11) 2019; 175 Zhao, Xie, Xu, Sun (CR15) 2017; 38 Yin, Sun (CR17) 2020; 31 Tan, Yu, Wang, Domeniconi, Zhang (CR19) 2019; 51 Markatopoulou, Mezaris, Patras (CR3) 2018; 29 Weng, Chen, Chen, Wu, Liu (CR30) 2020; 377 Wei, Dai, Wong, Hu, Kankanhalli, Geng (CR13) 2019; 66 Zhao, Gao, Lu, Sun (CR37) 2021; 102 Zheng, Zhu, Ma, Li, Tian (CR25) 2021; 449 X Ke (4242_CR4) 2019; 21 4242_CR21 F Markatopoulou (4242_CR3) 2018; 29 4242_CR26 4242_CR24 H Liu (4242_CR6) 2022; 18 O Luaces (4242_CR27) 2012; 1 PK Jain (4242_CR1) 2022; 78 J Demšar (4242_CR40) 2006; 7 J Huang (4242_CR33) 2019; 7 Y Zhang (4242_CR20) 2019; 163 W Wei (4242_CR13) 2019; 66 S Sun (4242_CR14) 2021; 43 J Zhang (4242_CR22) 2019; 95 W Weng (4242_CR30) 2020; 377 Z Cheng (4242_CR35) 2020; 50 A Kuehlkamp (4242_CR16) 2018; 14 Q Tan (4242_CR19) 2019; 51 4242_CR12 4242_CR34 4242_CR32 D Zhao (4242_CR37) 2021; 102 4242_CR38 Q Zheng (4242_CR25) 2021; 449 4242_CR36 Z Lyu (4242_CR8) 2021; 580 H Liu (4242_CR5) 2022; 18 4242_CR39 4242_CR18 X Zhang (4242_CR9) 2020; 50 J Zhang (4242_CR29) 2018; 159 J Yin (4242_CR17) 2020; 31 T Zhao (4242_CR31) 2022; 10 X Zhang (4242_CR10) 2021; 199 S Tahzeeb (4242_CR2) 2022; 12 4242_CR7 Y Zhang (4242_CR23) 2020; 22 Q Xiao (4242_CR11) 2019; 175 M Zhang (4242_CR28) 2007; 40 J Zhao (4242_CR15) 2017; 38 |
| References_xml | – volume: 29 start-page: 1631 issue: 6 year: 2018 end-page: 1644 ident: CR3 article-title: Implicit and explicit concept relations in deep neural networks for multi-label video/image annotation publication-title: IEEE Trans Circuits Syst Vid Technol doi: 10.1109/TCSVT.2018.2848458 – ident: CR18 – volume: 175 start-page: 118 year: 2019 end-page: 129 ident: CR11 article-title: Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.03.023 – volume: 199 start-page: 105895 year: 2021 ident: CR10 article-title: CMC: a consensus multi-view clustering model for predicting Alzheimer’s disease progression publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2020.105895 – ident: CR39 – volume: 377 start-page: 85 year: 2020 end-page: 94 ident: CR30 article-title: Non-sparse label specific features selection for multi-label classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.016 – volume: 50 start-page: 2901 issue: 9 year: 2020 end-page: 2915 ident: CR9 article-title: Multi-view visual bayesian personalized ranking for restaurant recommendation publication-title: Appl Intell doi: 10.1007/s10489-020-01703-6 – ident: CR12 – volume: 22 start-page: 2844 issue: 11 year: 2020 end-page: 2857 ident: CR23 article-title: Multi-view multi-label learning with sparse feature selection for image annotation publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2020.2966887 – volume: 102 start-page: 107120 year: 2021 ident: CR37 article-title: Two-step multi-view and multi-label learning with missing label via subspace learning publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107120 – volume: 21 start-page: 2093 issue: 8 year: 2019 end-page: 2106 ident: CR4 article-title: End-to-end automatic image annotation based on deep CNN and multi-label data augmentation publication-title: IEEE Trans Multime doi: 10.1109/TMM.2019.2895511 – volume: 159 start-page: 148 year: 2018 end-page: 157 ident: CR29 article-title: Multi-label learning with label-specific features by resolving label correlations publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.07.003 – volume: 38 start-page: 43 year: 2017 end-page: 54 ident: CR15 article-title: Multi-view learning overview: Recent progress and new challenges publication-title: Inform Fusion doi: 10.1016/j.inffus.2017.02.007 – volume: 31 start-page: 3442 issue: 9 year: 2020 end-page: 3455 ident: CR17 article-title: Multiview uncorrelated locality preserving projection publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2944664 – volume: 78 start-page: 5203 issue: 4 year: 2022 end-page: 5220 ident: CR1 article-title: A multi-label ensemble predicting model to service recommendation from social media contents publication-title: J Supercomput doi: 10.1007/s11227-021-04087-7 – volume: 7 start-page: 100979 year: 2019 end-page: 100992 ident: CR33 article-title: Multi-view multi-label learning with view-label-specific features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930468 – volume: 95 start-page: 136 year: 2019 end-page: 150 ident: CR22 article-title: Manifold regularized discriminative feature selection for multi-label learning publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.06.003 – volume: 10 start-page: 1871 issue: 11 year: 2022 ident: CR31 article-title: Robust multi-label classification with enhanced global and local label correlation publication-title: Mathematics doi: 10.3390/math10111871 – volume: 66 start-page: 2964 issue: 10 year: 2019 end-page: 2973 ident: CR13 article-title: Surface-electromyography-based gesture recognition by multi-view deep learning publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2019.2899222 – ident: CR21 – volume: 51 start-page: 1716 issue: 3 year: 2019 end-page: 1727 ident: CR19 article-title: Individuality-and commonality-based multiview multilabel learning publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2950560 – volume: 18 start-page: 4361 issue: 7 year: 2022 end-page: 4371 ident: CR6 article-title: EDMF: efficient deep matrix factorization with review feature learning for industrial recommender system publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2021.3128240 – ident: CR38 – volume: 40 start-page: 2038 issue: 7 year: 2007 end-page: 2048 ident: CR28 article-title: ML-KNN: a lazy learning approach to multi-label learning publication-title: Pattern Recognit doi: 10.1016/j.patcog.2006.12.019 – volume: 7 start-page: 1 issue: 1 year: 2006 end-page: 30 ident: CR40 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 163 start-page: 776 year: 2019 end-page: 786 ident: CR20 article-title: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.10.001 – volume: 12 start-page: 7974 issue: 1 year: 2022 end-page: 7981 ident: CR2 article-title: A neural network-based multi-label classifier for protein function prediction publication-title: Eng Technol Appl Sci Res doi: 10.48084/etasr.4597 – volume: 14 start-page: 1419 issue: 6 year: 2018 end-page: 1431 ident: CR16 article-title: Ensemble of multi-view learning classifiers for cross-domain iris presentation attack detection publication-title: IEEE Trans Inform Forensics Secur doi: 10.1109/TIFS.2018.2878542 – volume: 1 start-page: 303 issue: 4 year: 2012 end-page: 313 ident: CR27 article-title: Binary relevance efficacy for multilabel classification publication-title: Prog Artif Intell doi: 10.1007/s13748-012-0030-x – ident: CR32 – ident: CR34 – ident: CR36 – volume: 50 start-page: 4029 issue: 11 year: 2020 end-page: 4049 ident: CR35 article-title: Joint label-specific features and label correlation for multi-label learning with missing label publication-title: Appl Intell doi: 10.1007/s10489-020-01715-2 – ident: CR7 – volume: 43 start-page: 2682 issue: 8 year: 2021 end-page: 2696 ident: CR14 article-title: Lcbm: a multi-view probabilistic model for multi-label classification publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2974203 – ident: CR26 – ident: CR24 – volume: 18 start-page: 7107 issue: 10 year: 2022 end-page: 7117 ident: CR5 article-title: ARHPE: asymmetric Relation-aware representation learning for head pose estimation in industrial human–computer interaction publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2022.3143605 – volume: 580 start-page: 495 year: 2021 end-page: 509 ident: CR8 article-title: Multi-view group representation learning for location-aware group recommendation publication-title: Inf Sci doi: 10.1016/j.ins.2021.08.086 – volume: 449 start-page: 15 year: 2021 end-page: 23 ident: CR25 article-title: Multi-view subspace clustering networks with local and global graph information publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.115 – volume: 12 start-page: 7974 issue: 1 year: 2022 ident: 4242_CR2 publication-title: Eng Technol Appl Sci Res doi: 10.48084/etasr.4597 – volume: 50 start-page: 2901 issue: 9 year: 2020 ident: 4242_CR9 publication-title: Appl Intell doi: 10.1007/s10489-020-01703-6 – ident: 4242_CR12 doi: 10.1109/SIPROCESS.2018.8600529 – volume: 40 start-page: 2038 issue: 7 year: 2007 ident: 4242_CR28 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2006.12.019 – volume: 21 start-page: 2093 issue: 8 year: 2019 ident: 4242_CR4 publication-title: IEEE Trans Multime doi: 10.1109/TMM.2019.2895511 – ident: 4242_CR24 doi: 10.1609/aaai.v31i1.10488 – volume: 38 start-page: 43 year: 2017 ident: 4242_CR15 publication-title: Inform Fusion doi: 10.1016/j.inffus.2017.02.007 – ident: 4242_CR26 doi: 10.1007/978-0-387-09823-4_34 – volume: 159 start-page: 148 year: 2018 ident: 4242_CR29 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.07.003 – volume: 31 start-page: 3442 issue: 9 year: 2020 ident: 4242_CR17 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2944664 – volume: 7 start-page: 100979 year: 2019 ident: 4242_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930468 – ident: 4242_CR21 doi: 10.1609/aaai.v30i1.10258 – ident: 4242_CR7 doi: 10.1109/TKDE.2021.3112114 – volume: 199 start-page: 105895 year: 2021 ident: 4242_CR10 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2020.105895 – volume: 43 start-page: 2682 issue: 8 year: 2021 ident: 4242_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2974203 – ident: 4242_CR34 doi: 10.1137/1.9781611975321.51 – volume: 50 start-page: 4029 issue: 11 year: 2020 ident: 4242_CR35 publication-title: Appl Intell doi: 10.1007/s10489-020-01715-2 – volume: 102 start-page: 107120 year: 2021 ident: 4242_CR37 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107120 – volume: 580 start-page: 495 year: 2021 ident: 4242_CR8 publication-title: Inf Sci doi: 10.1016/j.ins.2021.08.086 – volume: 163 start-page: 776 year: 2019 ident: 4242_CR20 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.10.001 – ident: 4242_CR18 doi: 10.1609/aaai.v29i1.9547 – volume: 29 start-page: 1631 issue: 6 year: 2018 ident: 4242_CR3 publication-title: IEEE Trans Circuits Syst Vid Technol doi: 10.1109/TCSVT.2018.2848458 – volume: 18 start-page: 7107 issue: 10 year: 2022 ident: 4242_CR5 publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2022.3143605 – volume: 18 start-page: 4361 issue: 7 year: 2022 ident: 4242_CR6 publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2021.3128240 – volume: 66 start-page: 2964 issue: 10 year: 2019 ident: 4242_CR13 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2019.2899222 – volume: 1 start-page: 303 issue: 4 year: 2012 ident: 4242_CR27 publication-title: Prog Artif Intell doi: 10.1007/s13748-012-0030-x – ident: 4242_CR36 doi: 10.1007/s10489-022-03600-6 – volume: 175 start-page: 118 year: 2019 ident: 4242_CR11 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.03.023 – volume: 14 start-page: 1419 issue: 6 year: 2018 ident: 4242_CR16 publication-title: IEEE Trans Inform Forensics Secur doi: 10.1109/TIFS.2018.2878542 – volume: 51 start-page: 1716 issue: 3 year: 2019 ident: 4242_CR19 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2950560 – volume: 95 start-page: 136 year: 2019 ident: 4242_CR22 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.06.003 – volume: 377 start-page: 85 year: 2020 ident: 4242_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.016 – volume: 10 start-page: 1871 issue: 11 year: 2022 ident: 4242_CR31 publication-title: Mathematics doi: 10.3390/math10111871 – ident: 4242_CR38 doi: 10.24963/ijcai.2018/375 – volume: 22 start-page: 2844 issue: 11 year: 2020 ident: 4242_CR23 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2020.2966887 – volume: 449 start-page: 15 year: 2021 ident: 4242_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.115 – ident: 4242_CR39 doi: 10.1017/CBO9780511804441 – ident: 4242_CR32 doi: 10.24963/ijcai.2019/539 – volume: 7 start-page: 1 issue: 1 year: 2006 ident: 4242_CR40 publication-title: J Mach Learn Res – volume: 78 start-page: 5203 issue: 4 year: 2022 ident: 4242_CR1 publication-title: J Supercomput doi: 10.1007/s11227-021-04087-7 |
| SSID | ssj0003301 |
| Score | 2.4033341 |
| Snippet | In multi-view multi-label learning, each instance has multiple heterogeneous views and is marked with a collection of non-exclusive discrete labels. This type... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14703 |
| SubjectTerms | Artificial Intelligence Classification Computer Science Learning Machine learning Machines Manifolds (mathematics) Manufacturing Mechanical Engineering Processes Semantics Social networks |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVgoT1EoyAMbuEoc10nGCrVUIDFRqUxR_OpAlCKaLvx6zo7TQgVIzHas5M5n3-W--w6ha80iIROlCUtMQFjEOUlzHhLFY7j8qAKfwQFkn_hkyh5mg5kvCls2aPcmJelO6i_FbszCeyB4suk6Stguaju-rRZqD-9fHkfrExhidNcpD2ILwnk688UyP6_y_ULaeJlbiVF334w7aNq8aQ0zee2vKtGXH1skjv_9lAO07x1QPKx3zCHa0eUR6jTNHbC39WM0dqW5xGYOsEMdEtgvusC-zcQc2z-4WC1WotDYEXguseXSMItCYYuutYdQOT9B0_Ho-W5CfNMFIsEaKzJQSiijJESXWsWChZRKwUUMkceABjpiVKRguIaFaSxNqCOVaBbkAbiRaSCpiU5Rq1yU-gxhGcQy0jnonsKUJEkNz2kocxPphKcm7qKwkXwmPSO5bYxRZBsuZSuoDASVOUFlrItu1s-81Xwcf87uNQrNvG0uMwgybRCYDmD4ttHPZvj31c7_N_0C7dne9DWurIda1ftKX4IHU4krv2E_AULb5JQ priority: 102 providerName: Springer Nature |
| Title | Multi-view multi-label learning with double orders manifold preserving |
| URI | https://link.springer.com/article/10.1007/s10489-022-04242-4 https://www.proquest.com/docview/2821148954 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be-GyvLWFUvnAbbFIHNdJDgi1qAGBVK0QlcopSvzgUrXsUv4_M67TCiQ45WDHUmY845l45vsAzq1Map0Zy2XmIi4TpXheqZgbleLhJwzGDL5AdqzuJvJ-2p9uwbjphaGyysYnekdtFpr-kV9iakChe96X16__OLFG0e1qQ6FRBWoFc-UhxrahLQgZqwXt4Wj893HtmzF79xx6mHVwpfJpaKMJzXSSyocwOaPrQMHl56NqE39-uTL1J1GxB79CCMkGK53vw5adH8BuQ8_AgrUeQuGbazl9F_N1gxw1bmcsEEW8MPoHy8zivZ5Z5iE43xihYbjFzDCqjyU3Mn85gkkxerq544E2gWu0pyXvG1MbZzTmh9aktYyF0LWqU8wd-iKyiRR1jqbnZJyn2sU2MZmVURVhIJhHWrjkGFrzxdz-BqajVCe2Qu0JnJJluVOViHXlEpup3KUdiBsJlTpgihO1xazcoCGTVEuUaumlWsoO_Fm_87pC1PhxdrcRfBms663c7IUOXDTK2Ax_v9rJz6udwg6xya8qwbrQWv5_t2cYcyzrHmxnxW0P2oNiOBzT8_b5YdQL2wtHJ2LwAcPY1ho |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-MwFH5iOcBlhlWUYfEBTmCR2K4TH9BoWKqyVQiB1FtIvHCpWoYWjebP8dt4dh0qkODGOY4PX768xX7vfQA7VvBK58ZSkbuECi4lVaVMqZEZOj9mMGYIBbId2b4T591mdwpe6l4YX1ZZ28RgqM1A-zPyA0wNfOiumuL341_qVaP87WotoVFGaQVzGEaMxcaOC_v_H6Zww8OzE_zeu4y1Tm-P2zSqDFCN9BvRpjGVcUZjOmVNVomUMV3JKsNQu8kSywWrFDLViVRl2qWWm9yKpEwwblKJZo7jvtMwK7hQmPzNHp12rm_efAHnQYA5wSyHSqm6sW0nNu8JX66EyaC_fmRUvHeNk3j3wxVt8HytBfgRQ1byZ8yxRZiy_SX4WctBkGgdlqEVmnmpx5GEOkWKDLM9EoUpHog_8yVm8Fz1LAkjP4fET99wg54hvh7Xm63-wwrcfQuAqzDTH_TtGhCdZJrbEtnCcEmeKydLlurScZtL5bIGpDVChY4zzL2URq-YTF_2qBaIahFQLUQD9t7eeRxP8Phy9UYNfBH_5mEx4V4D9uuPMXn8-W7rX--2DXPt26vL4vKsc_EL5r2S_bgKbQNmRk_PdhPjnVG1FUlF4P67efwK4hoOFg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0tVEJcoIUiFratD3CiFontdZIDQqg05UuIQ5H2FhJ_cFnt0u4ixF_j1zHjdVhRqdw4x_Fh8jLzxp6ZB7DjlGxMbh1XuU-4klrzotYptzrD4CcscoZQIHupT67V2aA_6MBT2wtDZZWtTwyO2o4NnZHvY2pA1L3oq30fyyKujsvDuz-cFKToprWV05hB5Nw9PmD6Njk4PcZvvStE-fP3jxMeFQa4QehNed_axnprMJVyNmtUKoRpdJMhze6LxEklmgJR6lVaZManTtrcqaROkDMViRFe4r4L8CGjKe7UpV7-eokCUgbp5QTzG651MYgNO7FtT1GhEqaBdPEouHodFOdM95_L2RDzyo-wEskqO5qh6xN03GgNVlshCBb9wjqUoY2XkwVZqFDkiC03ZFGS4pbRaS-z4_tm6FgY9jlhNHfDj4eWUSUuOazR7We4fhfzbcDiaDxym8BMkhnpasSJwCV5Xnhdi9TUXrpcFz7rQtpaqDJxejmJaAyr-dxlsmqFVq2CVSvVhb2Xd-5mszveXN1rDV_F_3hSzVHXhe_tx5g__v9uW2_v9g2WEL3Vxenl-TYsk4T9rPysB4vTv_fuCxKdafM1IIrBzXtD-Blwhguw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-view+multi-label+learning+with+double+orders+manifold+preserving&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Yin%2C+Jun&rft.au=Zhang%2C+Wentao&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=12&rft.spage=14703&rft.epage=14716&rft_id=info:doi/10.1007%2Fs10489-022-04242-4&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |