Multi-view multi-label learning with double orders manifold preserving

In multi-view multi-label learning, each instance has multiple heterogeneous views and is marked with a collection of non-exclusive discrete labels. This type of data is usually subject to dimensional catastrophe. Previous multi-view multi-label works look for a low-dimensional shared subspace to ta...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 53; no. 12; pp. 14703 - 14716
Main Authors Yin, Jun, Zhang, Wentao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-022-04242-4

Cover

Abstract In multi-view multi-label learning, each instance has multiple heterogeneous views and is marked with a collection of non-exclusive discrete labels. This type of data is usually subject to dimensional catastrophe. Previous multi-view multi-label works look for a low-dimensional shared subspace to tackle this problem. However, these methods ignore the global structural information of the original feature space during dimension reduction. In this paper, we propose Multi-view Multi-label learning with Double Orders Manifold Preserving (MMDOM). MMDOM utilizes manifold preserving constraint to guide the formation of low-dimensional shared subspace. To obtain exact manifold preserving, the first-order and the second-order similarity matrices are both introduced to explore the local and global structural information of the original feature space. Experiments on various benchmark datasets demonstrate the superior effectiveness of MMDOM against state-of-the-art methods.
AbstractList In multi-view multi-label learning, each instance has multiple heterogeneous views and is marked with a collection of non-exclusive discrete labels. This type of data is usually subject to dimensional catastrophe. Previous multi-view multi-label works look for a low-dimensional shared subspace to tackle this problem. However, these methods ignore the global structural information of the original feature space during dimension reduction. In this paper, we propose Multi-view Multi-label learning with Double Orders Manifold Preserving (MMDOM). MMDOM utilizes manifold preserving constraint to guide the formation of low-dimensional shared subspace. To obtain exact manifold preserving, the first-order and the second-order similarity matrices are both introduced to explore the local and global structural information of the original feature space. Experiments on various benchmark datasets demonstrate the superior effectiveness of MMDOM against state-of-the-art methods.
Author Zhang, Wentao
Yin, Jun
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-9085-3925
  surname: Yin
  fullname: Yin, Jun
  email: junyin@shmtu.edu.cn
  organization: College of Information Engineering, Shanghai Maritime University
– sequence: 2
  givenname: Wentao
  surname: Zhang
  fullname: Zhang, Wentao
  organization: College of Information Engineering, Shanghai Maritime University
BookMark eNp9kMtKAzEUhoNUsK2-gKsB19GTyzSTpRSrQsWNgruQmWRqSjqpyUyLb--0Iwguujpn8X_n8k3QqAmNReiawC0BEHeJAC8kBkoxcMop5mdoTHLBsOBSjNAYJOV4NpMfF2iS0hoAGAMyRouXzrcO75zdZ5tj63Vpfeatjo1rVtnetZ-ZCV3pbRaisTFlG924OniTbaNNNu762CU6r7VP9uq3TtH74uFt_oSXr4_P8_slrhiRLc6NKU1tKikKa0TJCaVVOStFnsucgmWclhJyVnMiRVUTy0xhOWgQ_RdQ0ZpN0c0wdxvDV2dTq9ahi02_UtGCEtJLyHmfKoZUFUNK0daqcq1uXWjaqJ1XBNTBmhqsqd6aOlpTB5T-Q7fRbXT8Pg2xAUp9uFnZ-HfVCeoHlEKBiA
CitedBy_id crossref_primary_10_1007_s10489_024_05779_2
crossref_primary_10_1364_OE_532126
crossref_primary_10_1016_j_asoc_2024_111400
crossref_primary_10_1016_j_ins_2024_121395
crossref_primary_10_1016_j_ins_2024_121215
crossref_primary_10_1016_j_neunet_2025_107349
crossref_primary_10_1016_j_patcog_2024_110888
Cites_doi 10.1109/TCSVT.2018.2848458
10.1016/j.knosys.2019.03.023
10.1016/j.cmpb.2020.105895
10.1016/j.neucom.2019.10.016
10.1007/s10489-020-01703-6
10.1109/TMM.2020.2966887
10.1016/j.asoc.2021.107120
10.1109/TMM.2019.2895511
10.1016/j.knosys.2018.07.003
10.1016/j.inffus.2017.02.007
10.1109/TNNLS.2019.2944664
10.1007/s11227-021-04087-7
10.1109/ACCESS.2019.2930468
10.1016/j.patcog.2019.06.003
10.3390/math10111871
10.1109/TBME.2019.2899222
10.1109/TCYB.2019.2950560
10.1109/TII.2021.3128240
10.1016/j.patcog.2006.12.019
10.1016/j.knosys.2018.10.001
10.48084/etasr.4597
10.1109/TIFS.2018.2878542
10.1007/s13748-012-0030-x
10.1007/s10489-020-01715-2
10.1109/TPAMI.2020.2974203
10.1109/TII.2022.3143605
10.1016/j.ins.2021.08.086
10.1016/j.neucom.2021.03.115
10.1109/SIPROCESS.2018.8600529
10.1609/aaai.v31i1.10488
10.1007/978-0-387-09823-4_34
10.1609/aaai.v30i1.10258
10.1109/TKDE.2021.3112114
10.1137/1.9781611975321.51
10.1609/aaai.v29i1.9547
10.1007/s10489-022-03600-6
10.24963/ijcai.2018/375
10.1017/CBO9780511804441
10.24963/ijcai.2019/539
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-022-04242-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 14716
ExternalDocumentID 10_1007_s10489_022_04242_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-5ddbdfdc978ed7b4122cb6b7559520e342b9053f4197cf1e3d8e40a077490c2f3
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Fri Jul 25 12:28:12 EDT 2025
Wed Oct 01 04:09:58 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Fri Feb 21 02:43:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Multi-label
Manifold learning
Multi-view
Subspace learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5ddbdfdc978ed7b4122cb6b7559520e342b9053f4197cf1e3d8e40a077490c2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9085-3925
PQID 2821148954
PQPubID 326365
PageCount 14
ParticipantIDs proquest_journals_2821148954
crossref_citationtrail_10_1007_s10489_022_04242_4
crossref_primary_10_1007_s10489_022_04242_4
springer_journals_10_1007_s10489_022_04242_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cheng, Zeng (CR35) 2020; 50
Zhang, Wu, Cai, Philip (CR23) 2020; 22
CR18
CR39
Sun, Zong (CR14) 2021; 43
CR38
Zhang, Luo, Li, Zhou, Li (CR22) 2019; 95
CR36
CR12
Kuehlkamp, Pinto, Rocha, Bowyer, Czajka (CR16) 2018; 14
CR34
Lyu, Yang, Li (CR8) 2021; 580
CR32
Zhang, Yang, Li, Fujita (CR20) 2019; 163
Zhang, Yang, Li, Zhang, Wang, Fujita (CR10) 2021; 199
Huang, Qu, Li, Qin, Zheng, Huang (CR33) 2019; 7
Zhao, Zhang, Pedrycz (CR31) 2022; 10
Liu, Zheng, Li, Shen, Lin, Wang, Zhang, Zhang, Xiong (CR6) 2022; 18
Zhang, Luo, Chen, Guo (CR9) 2020; 50
Zhang, Zhou (CR28) 2007; 40
Luaces, Díez, Barranquero, Del Coz, Bahamonde (CR27) 2012; 1
Jain, Pamula, Yekun (CR1) 2022; 78
Liu, Liu, Zhang, Sangaiah, Yang, Li (CR5) 2022; 18
Zhang, Li, Cao, Lin, Su, Dai, Li (CR29) 2018; 159
Demšar (CR40) 2006; 7
CR7
CR26
Tahzeeb, Hasan (CR2) 2022; 12
Ke, Zou, Niu (CR4) 2019; 21
CR24
CR21
Xiao, Dai, Luo, Fujita (CR11) 2019; 175
Zhao, Xie, Xu, Sun (CR15) 2017; 38
Yin, Sun (CR17) 2020; 31
Tan, Yu, Wang, Domeniconi, Zhang (CR19) 2019; 51
Markatopoulou, Mezaris, Patras (CR3) 2018; 29
Weng, Chen, Chen, Wu, Liu (CR30) 2020; 377
Wei, Dai, Wong, Hu, Kankanhalli, Geng (CR13) 2019; 66
Zhao, Gao, Lu, Sun (CR37) 2021; 102
Zheng, Zhu, Ma, Li, Tian (CR25) 2021; 449
X Ke (4242_CR4) 2019; 21
4242_CR21
F Markatopoulou (4242_CR3) 2018; 29
4242_CR26
4242_CR24
H Liu (4242_CR6) 2022; 18
O Luaces (4242_CR27) 2012; 1
PK Jain (4242_CR1) 2022; 78
J Demšar (4242_CR40) 2006; 7
J Huang (4242_CR33) 2019; 7
Y Zhang (4242_CR20) 2019; 163
W Wei (4242_CR13) 2019; 66
S Sun (4242_CR14) 2021; 43
J Zhang (4242_CR22) 2019; 95
W Weng (4242_CR30) 2020; 377
Z Cheng (4242_CR35) 2020; 50
A Kuehlkamp (4242_CR16) 2018; 14
Q Tan (4242_CR19) 2019; 51
4242_CR12
4242_CR34
4242_CR32
D Zhao (4242_CR37) 2021; 102
4242_CR38
Q Zheng (4242_CR25) 2021; 449
4242_CR36
Z Lyu (4242_CR8) 2021; 580
H Liu (4242_CR5) 2022; 18
4242_CR39
4242_CR18
X Zhang (4242_CR9) 2020; 50
J Zhang (4242_CR29) 2018; 159
J Yin (4242_CR17) 2020; 31
T Zhao (4242_CR31) 2022; 10
X Zhang (4242_CR10) 2021; 199
S Tahzeeb (4242_CR2) 2022; 12
4242_CR7
Y Zhang (4242_CR23) 2020; 22
Q Xiao (4242_CR11) 2019; 175
M Zhang (4242_CR28) 2007; 40
J Zhao (4242_CR15) 2017; 38
References_xml – volume: 29
  start-page: 1631
  issue: 6
  year: 2018
  end-page: 1644
  ident: CR3
  article-title: Implicit and explicit concept relations in deep neural networks for multi-label video/image annotation
  publication-title: IEEE Trans Circuits Syst Vid Technol
  doi: 10.1109/TCSVT.2018.2848458
– ident: CR18
– volume: 175
  start-page: 118
  year: 2019
  end-page: 129
  ident: CR11
  article-title: Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.03.023
– volume: 199
  start-page: 105895
  year: 2021
  ident: CR10
  article-title: CMC: a consensus multi-view clustering model for predicting Alzheimer’s disease progression
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2020.105895
– ident: CR39
– volume: 377
  start-page: 85
  year: 2020
  end-page: 94
  ident: CR30
  article-title: Non-sparse label specific features selection for multi-label classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.016
– volume: 50
  start-page: 2901
  issue: 9
  year: 2020
  end-page: 2915
  ident: CR9
  article-title: Multi-view visual bayesian personalized ranking for restaurant recommendation
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01703-6
– ident: CR12
– volume: 22
  start-page: 2844
  issue: 11
  year: 2020
  end-page: 2857
  ident: CR23
  article-title: Multi-view multi-label learning with sparse feature selection for image annotation
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.2966887
– volume: 102
  start-page: 107120
  year: 2021
  ident: CR37
  article-title: Two-step multi-view and multi-label learning with missing label via subspace learning
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107120
– volume: 21
  start-page: 2093
  issue: 8
  year: 2019
  end-page: 2106
  ident: CR4
  article-title: End-to-end automatic image annotation based on deep CNN and multi-label data augmentation
  publication-title: IEEE Trans Multime
  doi: 10.1109/TMM.2019.2895511
– volume: 159
  start-page: 148
  year: 2018
  end-page: 157
  ident: CR29
  article-title: Multi-label learning with label-specific features by resolving label correlations
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.07.003
– volume: 38
  start-page: 43
  year: 2017
  end-page: 54
  ident: CR15
  article-title: Multi-view learning overview: Recent progress and new challenges
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2017.02.007
– volume: 31
  start-page: 3442
  issue: 9
  year: 2020
  end-page: 3455
  ident: CR17
  article-title: Multiview uncorrelated locality preserving projection
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2944664
– volume: 78
  start-page: 5203
  issue: 4
  year: 2022
  end-page: 5220
  ident: CR1
  article-title: A multi-label ensemble predicting model to service recommendation from social media contents
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04087-7
– volume: 7
  start-page: 100979
  year: 2019
  end-page: 100992
  ident: CR33
  article-title: Multi-view multi-label learning with view-label-specific features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930468
– volume: 95
  start-page: 136
  year: 2019
  end-page: 150
  ident: CR22
  article-title: Manifold regularized discriminative feature selection for multi-label learning
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.06.003
– volume: 10
  start-page: 1871
  issue: 11
  year: 2022
  ident: CR31
  article-title: Robust multi-label classification with enhanced global and local label correlation
  publication-title: Mathematics
  doi: 10.3390/math10111871
– volume: 66
  start-page: 2964
  issue: 10
  year: 2019
  end-page: 2973
  ident: CR13
  article-title: Surface-electromyography-based gesture recognition by multi-view deep learning
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2019.2899222
– ident: CR21
– volume: 51
  start-page: 1716
  issue: 3
  year: 2019
  end-page: 1727
  ident: CR19
  article-title: Individuality-and commonality-based multiview multilabel learning
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2950560
– volume: 18
  start-page: 4361
  issue: 7
  year: 2022
  end-page: 4371
  ident: CR6
  article-title: EDMF: efficient deep matrix factorization with review feature learning for industrial recommender system
  publication-title: IEEE Trans Industr Inform
  doi: 10.1109/TII.2021.3128240
– ident: CR38
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  end-page: 2048
  ident: CR28
  article-title: ML-KNN: a lazy learning approach to multi-label learning
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2006.12.019
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  end-page: 30
  ident: CR40
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 163
  start-page: 776
  year: 2019
  end-page: 786
  ident: CR20
  article-title: A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.10.001
– volume: 12
  start-page: 7974
  issue: 1
  year: 2022
  end-page: 7981
  ident: CR2
  article-title: A neural network-based multi-label classifier for protein function prediction
  publication-title: Eng Technol Appl Sci Res
  doi: 10.48084/etasr.4597
– volume: 14
  start-page: 1419
  issue: 6
  year: 2018
  end-page: 1431
  ident: CR16
  article-title: Ensemble of multi-view learning classifiers for cross-domain iris presentation attack detection
  publication-title: IEEE Trans Inform Forensics Secur
  doi: 10.1109/TIFS.2018.2878542
– volume: 1
  start-page: 303
  issue: 4
  year: 2012
  end-page: 313
  ident: CR27
  article-title: Binary relevance efficacy for multilabel classification
  publication-title: Prog Artif Intell
  doi: 10.1007/s13748-012-0030-x
– ident: CR32
– ident: CR34
– ident: CR36
– volume: 50
  start-page: 4029
  issue: 11
  year: 2020
  end-page: 4049
  ident: CR35
  article-title: Joint label-specific features and label correlation for multi-label learning with missing label
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01715-2
– ident: CR7
– volume: 43
  start-page: 2682
  issue: 8
  year: 2021
  end-page: 2696
  ident: CR14
  article-title: Lcbm: a multi-view probabilistic model for multi-label classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2974203
– ident: CR26
– ident: CR24
– volume: 18
  start-page: 7107
  issue: 10
  year: 2022
  end-page: 7117
  ident: CR5
  article-title: ARHPE: asymmetric Relation-aware representation learning for head pose estimation in industrial human–computer interaction
  publication-title: IEEE Trans Industr Inform
  doi: 10.1109/TII.2022.3143605
– volume: 580
  start-page: 495
  year: 2021
  end-page: 509
  ident: CR8
  article-title: Multi-view group representation learning for location-aware group recommendation
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.08.086
– volume: 449
  start-page: 15
  year: 2021
  end-page: 23
  ident: CR25
  article-title: Multi-view subspace clustering networks with local and global graph information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.115
– volume: 12
  start-page: 7974
  issue: 1
  year: 2022
  ident: 4242_CR2
  publication-title: Eng Technol Appl Sci Res
  doi: 10.48084/etasr.4597
– volume: 50
  start-page: 2901
  issue: 9
  year: 2020
  ident: 4242_CR9
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01703-6
– ident: 4242_CR12
  doi: 10.1109/SIPROCESS.2018.8600529
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  ident: 4242_CR28
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2006.12.019
– volume: 21
  start-page: 2093
  issue: 8
  year: 2019
  ident: 4242_CR4
  publication-title: IEEE Trans Multime
  doi: 10.1109/TMM.2019.2895511
– ident: 4242_CR24
  doi: 10.1609/aaai.v31i1.10488
– volume: 38
  start-page: 43
  year: 2017
  ident: 4242_CR15
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2017.02.007
– ident: 4242_CR26
  doi: 10.1007/978-0-387-09823-4_34
– volume: 159
  start-page: 148
  year: 2018
  ident: 4242_CR29
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.07.003
– volume: 31
  start-page: 3442
  issue: 9
  year: 2020
  ident: 4242_CR17
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2944664
– volume: 7
  start-page: 100979
  year: 2019
  ident: 4242_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930468
– ident: 4242_CR21
  doi: 10.1609/aaai.v30i1.10258
– ident: 4242_CR7
  doi: 10.1109/TKDE.2021.3112114
– volume: 199
  start-page: 105895
  year: 2021
  ident: 4242_CR10
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2020.105895
– volume: 43
  start-page: 2682
  issue: 8
  year: 2021
  ident: 4242_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2974203
– ident: 4242_CR34
  doi: 10.1137/1.9781611975321.51
– volume: 50
  start-page: 4029
  issue: 11
  year: 2020
  ident: 4242_CR35
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01715-2
– volume: 102
  start-page: 107120
  year: 2021
  ident: 4242_CR37
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107120
– volume: 580
  start-page: 495
  year: 2021
  ident: 4242_CR8
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.08.086
– volume: 163
  start-page: 776
  year: 2019
  ident: 4242_CR20
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.10.001
– ident: 4242_CR18
  doi: 10.1609/aaai.v29i1.9547
– volume: 29
  start-page: 1631
  issue: 6
  year: 2018
  ident: 4242_CR3
  publication-title: IEEE Trans Circuits Syst Vid Technol
  doi: 10.1109/TCSVT.2018.2848458
– volume: 18
  start-page: 7107
  issue: 10
  year: 2022
  ident: 4242_CR5
  publication-title: IEEE Trans Industr Inform
  doi: 10.1109/TII.2022.3143605
– volume: 18
  start-page: 4361
  issue: 7
  year: 2022
  ident: 4242_CR6
  publication-title: IEEE Trans Industr Inform
  doi: 10.1109/TII.2021.3128240
– volume: 66
  start-page: 2964
  issue: 10
  year: 2019
  ident: 4242_CR13
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2019.2899222
– volume: 1
  start-page: 303
  issue: 4
  year: 2012
  ident: 4242_CR27
  publication-title: Prog Artif Intell
  doi: 10.1007/s13748-012-0030-x
– ident: 4242_CR36
  doi: 10.1007/s10489-022-03600-6
– volume: 175
  start-page: 118
  year: 2019
  ident: 4242_CR11
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.03.023
– volume: 14
  start-page: 1419
  issue: 6
  year: 2018
  ident: 4242_CR16
  publication-title: IEEE Trans Inform Forensics Secur
  doi: 10.1109/TIFS.2018.2878542
– volume: 51
  start-page: 1716
  issue: 3
  year: 2019
  ident: 4242_CR19
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2950560
– volume: 95
  start-page: 136
  year: 2019
  ident: 4242_CR22
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.06.003
– volume: 377
  start-page: 85
  year: 2020
  ident: 4242_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.016
– volume: 10
  start-page: 1871
  issue: 11
  year: 2022
  ident: 4242_CR31
  publication-title: Mathematics
  doi: 10.3390/math10111871
– ident: 4242_CR38
  doi: 10.24963/ijcai.2018/375
– volume: 22
  start-page: 2844
  issue: 11
  year: 2020
  ident: 4242_CR23
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.2966887
– volume: 449
  start-page: 15
  year: 2021
  ident: 4242_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.115
– ident: 4242_CR39
  doi: 10.1017/CBO9780511804441
– ident: 4242_CR32
  doi: 10.24963/ijcai.2019/539
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  ident: 4242_CR40
  publication-title: J Mach Learn Res
– volume: 78
  start-page: 5203
  issue: 4
  year: 2022
  ident: 4242_CR1
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04087-7
SSID ssj0003301
Score 2.4033341
Snippet In multi-view multi-label learning, each instance has multiple heterogeneous views and is marked with a collection of non-exclusive discrete labels. This type...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14703
SubjectTerms Artificial Intelligence
Classification
Computer Science
Learning
Machine learning
Machines
Manifolds (mathematics)
Manufacturing
Mechanical Engineering
Processes
Semantics
Social networks
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVgoT1EoyAMbuEoc10nGCrVUIDFRqUxR_OpAlCKaLvx6zo7TQgVIzHas5M5n3-W--w6ha80iIROlCUtMQFjEOUlzHhLFY7j8qAKfwQFkn_hkyh5mg5kvCls2aPcmJelO6i_FbszCeyB4suk6Stguaju-rRZqD-9fHkfrExhidNcpD2ILwnk688UyP6_y_ULaeJlbiVF334w7aNq8aQ0zee2vKtGXH1skjv_9lAO07x1QPKx3zCHa0eUR6jTNHbC39WM0dqW5xGYOsEMdEtgvusC-zcQc2z-4WC1WotDYEXguseXSMItCYYuutYdQOT9B0_Ho-W5CfNMFIsEaKzJQSiijJESXWsWChZRKwUUMkceABjpiVKRguIaFaSxNqCOVaBbkAbiRaSCpiU5Rq1yU-gxhGcQy0jnonsKUJEkNz2kocxPphKcm7qKwkXwmPSO5bYxRZBsuZSuoDASVOUFlrItu1s-81Xwcf87uNQrNvG0uMwgybRCYDmD4ttHPZvj31c7_N_0C7dne9DWurIda1ftKX4IHU4krv2E_AULb5JQ
  priority: 102
  providerName: Springer Nature
Title Multi-view multi-label learning with double orders manifold preserving
URI https://link.springer.com/article/10.1007/s10489-022-04242-4
https://www.proquest.com/docview/2821148954
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be-GyvLWFUvnAbbFIHNdJDgi1qAGBVK0QlcopSvzgUrXsUv4_M67TCiQ45WDHUmY845l45vsAzq1Map0Zy2XmIi4TpXheqZgbleLhJwzGDL5AdqzuJvJ-2p9uwbjphaGyysYnekdtFpr-kV9iakChe96X16__OLFG0e1qQ6FRBWoFc-UhxrahLQgZqwXt4Wj893HtmzF79xx6mHVwpfJpaKMJzXSSyocwOaPrQMHl56NqE39-uTL1J1GxB79CCMkGK53vw5adH8BuQ8_AgrUeQuGbazl9F_N1gxw1bmcsEEW8MPoHy8zivZ5Z5iE43xihYbjFzDCqjyU3Mn85gkkxerq544E2gWu0pyXvG1MbZzTmh9aktYyF0LWqU8wd-iKyiRR1jqbnZJyn2sU2MZmVURVhIJhHWrjkGFrzxdz-BqajVCe2Qu0JnJJluVOViHXlEpup3KUdiBsJlTpgihO1xazcoCGTVEuUaumlWsoO_Fm_87pC1PhxdrcRfBms663c7IUOXDTK2Ax_v9rJz6udwg6xya8qwbrQWv5_t2cYcyzrHmxnxW0P2oNiOBzT8_b5YdQL2wtHJ2LwAcPY1ho
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-MwFH5iOcBlhlWUYfEBTmCR2K4TH9BoWKqyVQiB1FtIvHCpWoYWjebP8dt4dh0qkODGOY4PX768xX7vfQA7VvBK58ZSkbuECi4lVaVMqZEZOj9mMGYIBbId2b4T591mdwpe6l4YX1ZZ28RgqM1A-zPyA0wNfOiumuL341_qVaP87WotoVFGaQVzGEaMxcaOC_v_H6Zww8OzE_zeu4y1Tm-P2zSqDFCN9BvRpjGVcUZjOmVNVomUMV3JKsNQu8kSywWrFDLViVRl2qWWm9yKpEwwblKJZo7jvtMwK7hQmPzNHp12rm_efAHnQYA5wSyHSqm6sW0nNu8JX66EyaC_fmRUvHeNk3j3wxVt8HytBfgRQ1byZ8yxRZiy_SX4WctBkGgdlqEVmnmpx5GEOkWKDLM9EoUpHog_8yVm8Fz1LAkjP4fET99wg54hvh7Xm63-wwrcfQuAqzDTH_TtGhCdZJrbEtnCcEmeKydLlurScZtL5bIGpDVChY4zzL2URq-YTF_2qBaIahFQLUQD9t7eeRxP8Phy9UYNfBH_5mEx4V4D9uuPMXn8-W7rX--2DXPt26vL4vKsc_EL5r2S_bgKbQNmRk_PdhPjnVG1FUlF4P67efwK4hoOFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0tVEJcoIUiFratD3CiFontdZIDQqg05UuIQ5H2FhJ_cFnt0u4ixF_j1zHjdVhRqdw4x_Fh8jLzxp6ZB7DjlGxMbh1XuU-4klrzotYptzrD4CcscoZQIHupT67V2aA_6MBT2wtDZZWtTwyO2o4NnZHvY2pA1L3oq30fyyKujsvDuz-cFKToprWV05hB5Nw9PmD6Njk4PcZvvStE-fP3jxMeFQa4QehNed_axnprMJVyNmtUKoRpdJMhze6LxEklmgJR6lVaZManTtrcqaROkDMViRFe4r4L8CGjKe7UpV7-eokCUgbp5QTzG651MYgNO7FtT1GhEqaBdPEouHodFOdM95_L2RDzyo-wEskqO5qh6xN03GgNVlshCBb9wjqUoY2XkwVZqFDkiC03ZFGS4pbRaS-z4_tm6FgY9jlhNHfDj4eWUSUuOazR7We4fhfzbcDiaDxym8BMkhnpasSJwCV5Xnhdi9TUXrpcFz7rQtpaqDJxejmJaAyr-dxlsmqFVq2CVSvVhb2Xd-5mszveXN1rDV_F_3hSzVHXhe_tx5g__v9uW2_v9g2WEL3Vxenl-TYsk4T9rPysB4vTv_fuCxKdafM1IIrBzXtD-Blwhguw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-view+multi-label+learning+with+double+orders+manifold+preserving&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Yin%2C+Jun&rft.au=Zhang%2C+Wentao&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=12&rft.spage=14703&rft.epage=14716&rft_id=info:doi/10.1007%2Fs10489-022-04242-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon