Dimensionality reduction for multivariate time-series data mining

A multivariate time series is one of the most important objects of research in data mining. Time and variables are two of its distinctive characteristics that add the complication of the algorithms applied to data mining. Reduction in the dimensionality is often regarded as an effective way to addre...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 78; no. 7; pp. 9862 - 9878
Main Authors Wan, Xiaoji, Li, Hailin, Zhang, Liping, Wu, Yenchun Jim
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-8542
1573-0484
DOI10.1007/s11227-021-04303-4

Cover

Abstract A multivariate time series is one of the most important objects of research in data mining. Time and variables are two of its distinctive characteristics that add the complication of the algorithms applied to data mining. Reduction in the dimensionality is often regarded as an effective way to address these issues. In this paper, we propose a method based on principal component analysis (PCA) to effectively reduce the dimensionality. We call it “piecewise representation based on PCA” (PPCA), which segments multivariate time series into several sequences, calculates the covariance matrix for each of them in terms of the variables, and employs PCA to obtain the principal components in an average covariance matrix. The results of the experiments, including retained information analysis, classification, and a comparison of the central processing unit time consumption, demonstrate that the PPCA method used to reduce the dimensionality in multivariate time series is superior to the prior methods.
AbstractList A multivariate time series is one of the most important objects of research in data mining. Time and variables are two of its distinctive characteristics that add the complication of the algorithms applied to data mining. Reduction in the dimensionality is often regarded as an effective way to address these issues. In this paper, we propose a method based on principal component analysis (PCA) to effectively reduce the dimensionality. We call it “piecewise representation based on PCA” (PPCA), which segments multivariate time series into several sequences, calculates the covariance matrix for each of them in terms of the variables, and employs PCA to obtain the principal components in an average covariance matrix. The results of the experiments, including retained information analysis, classification, and a comparison of the central processing unit time consumption, demonstrate that the PPCA method used to reduce the dimensionality in multivariate time series is superior to the prior methods.
Author Wu, Yenchun Jim
Wan, Xiaoji
Li, Hailin
Zhang, Liping
Author_xml – sequence: 1
  givenname: Xiaoji
  surname: Wan
  fullname: Wan, Xiaoji
  organization: College of Business Administration, Huaqiao University, Oriental Enterprise Management Research Center, Huaqiao University
– sequence: 2
  givenname: Hailin
  surname: Li
  fullname: Li, Hailin
  organization: College of Business Administration, Huaqiao University, Oriental Enterprise Management Research Center, Huaqiao University
– sequence: 3
  givenname: Liping
  surname: Zhang
  fullname: Zhang, Liping
  organization: College of Business Administration, Huaqiao University
– sequence: 4
  givenname: Yenchun Jim
  orcidid: 0000-0001-5479-2873
  surname: Wu
  fullname: Wu, Yenchun Jim
  email: wuyenchun@gmail.com
  organization: College of Humanities and Arts, National Taipei University of Education, Graduate Institute of Global Business and Strategy, National Taiwan Normal University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Lnldnkuxm91jqJxS86DnEJFtS9qMmWaH_3tQVBA89DS88zzDzLsisH3pLyDXCLQKIu4BIqciBYg6cAcv5GZljIViKFZ-ROdQU8qrg9IIsQtgBJEywOVndu872wQ29al08ZN6aUccUs2bwWTe20X0p71S0WUxkHqx3NmRGRZV1rnf99pKcN6oN9up3Lsn748Pb-jnfvD69rFebXDOsY16YGgTqQpcctCmx0cxSK7g2TPD6Q2ADygAaDVVT6doIy7hBZU2BBqEUbElupr17P3yONkS5G0afzg6SlgUtESjUiaomSvshBG8bqV1Ux4eiV66VCPJYmJwKk6kw-VOY5Eml_9S9d53yh9MSm6SQ4H5r_d9VJ6xvu1V_0A
CitedBy_id crossref_primary_10_1088_1402_4896_acf008
crossref_primary_10_1111_exsy_13690
crossref_primary_10_1007_s10614_024_10813_z
crossref_primary_10_1080_23742917_2022_2162195
crossref_primary_10_1007_s11227_022_04834_4
crossref_primary_10_1016_j_inffus_2023_102159
crossref_primary_10_1002_cpe_8395
crossref_primary_10_1016_j_jnlssr_2022_09_004
crossref_primary_10_1016_j_neucom_2023_02_048
Cites_doi 10.1016/j.jeconom.2020.01.017
10.1016/j.cie.2020.106345
10.1007/s10916-018-1093-4
10.1016/j.knosys.2017.07.021
10.1007/s11227-019-02991-7
10.1051/ro/2018089
10.1109/ACCESS.2019.2938212
10.1016/j.ins.2020.08.089
10.1016/j.eswa.2020.113868
10.1007/s10618-015-0425-y
10.1063/1.4979854
10.1016/j.physa.2016.10.062
10.1007/s11227-019-03098-9
10.1007/s11227-021-03643-5
10.1016/j.neucom.2015.07.010
10.1016/j.sftr.2019.100003
10.1016/S1474-6670(17)57305-X
10.1007/s11227-021-03899-x
10.1016/j.eswa.2013.10.019
10.1016/j.cie.2019.02.029
10.1016/j.ins.2010.03.023
10.1016/j.jmva.2020.104689
10.1016/j.egyai.2021.100057
10.1016/j.chaos.2021.110796
10.1016/j.asoc.2015.12.004
10.1016/j.tifs.2017.12.006
10.1016/j.jprocont.2019.09.005
10.1016/j.aca.2020.11.018
10.1002/cem.945
10.1007/s10044-014-0395-5
10.1016/j.neucom.2018.07.053
10.1016/j.eswa.2021.114649
10.1016/j.jretconser.2020.102431
10.1016/j.knosys.2008.03.014
10.1016/j.cie.2016.03.003
10.1016/j.solener.2017.05.072
10.1007/978-3-030-05054-2_19
10.1145/3212725.3212733
10.1145/1032604.1032616
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-021-04303-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 9878
ExternalDocumentID 10_1007_s11227_021_04303_4
GrantInformation_xml – fundername: national natural science foundation of china
  grantid: 71771094
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: huaqiao university’s high level talent research start-up funding projec
  grantid: 14SKBS205
– fundername: social science planning project of fujian province of china
  grantid: FJ2020B088
– fundername: ministry of science and technology, taiwan
  grantid: 109-2511-H-003-049-MY3
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-5d9071c5c640cd61fc3e2e74cd3749b71f0ad01dc08f8c9d7e34d1aed51d10673
IEDL.DBID AGYKE
ISSN 0920-8542
IngestDate Thu Sep 25 00:52:02 EDT 2025
Thu Apr 24 22:54:31 EDT 2025
Wed Oct 01 03:43:52 EDT 2025
Fri Feb 21 02:46:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Piecewise representation
Time-series data mining
Covariance matrix
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5d9071c5c640cd61fc3e2e74cd3749b71f0ad01dc08f8c9d7e34d1aed51d10673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5479-2873
PQID 2652610209
PQPubID 2043774
PageCount 17
ParticipantIDs proquest_journals_2652610209
crossref_citationtrail_10_1007_s11227_021_04303_4
crossref_primary_10_1007_s11227_021_04303_4
springer_journals_10_1007_s11227_021_04303_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yang, Dong, Lim (CR3) 2017; 153
Karamitopoulos, Evangelidis, Dervos (CR28) 2010; 8
Ahn, Hur (CR7) 2020; 142
Li (CR16) 2017; 468
Oang, Yang, Muniyappan, Kim, Ihee (CR21) 2017; 4
CR39
Huang, Gertler, McAvoy (CR36) 1999; 32
Yen, Chang, Liao (CR5) 2020; 76
Xian, He, Wang, Lai (CR33) 2020; 2
Krzanowski (CR26) 1979; 74
Granato, Santos, Escher (CR23) 2018; 72
Xu, Hugelier, Zhu, Gowen (CR34) 2020; 1143
Weng, Shen (CR30) 2008; 21
Feng, Zhao, Huang (CR25) 2019; 84
Issoglio, Smith, Voss (CR32) 2021; 181
Davis, Song (CR1) 2020; 216
Ren, Liu, Li, Pedrycz (CR15) 2017; 135
Papadakis, Kaburlasos (CR13) 2010; 180
Li (CR38) 2016; 171
Sundarasekar, Thanjaivadivel, Manogaran, Kumar, Varatharajan, Chilamkurti, Hsu (CR10) 2018; 42
Wu, Yu (CR31) 2005; 8
Singhal, Seborg (CR27) 2005; 19
Li, Du (CR42) 2021; 173
Fotso, Nguifo, Vaslin (CR17) 2019; 53
Emmanuel, Giraldez (CR18) 2019; 7
Majumdar, Laha (CR2) 2020; 162
Li, Wu, Zhang, Zou (CR4) 2021; 60
Albertetti, Grossrieder, Ribaux, Stoffel (CR11) 2016; 40
Baydogan, Runger (CR8) 2016; 30
Müller (CR6) 2021; 4
Gezawa, Bello, Wang, Lei (CR12) 2021
Kousika, Premalatha (CR22) 2021; 77
CR29
Li (CR35) 2017; 468
Barragan, Fontes, Embirucu (CR37) 2016; 95
Kim, Kim, Kim, Park, Cho, Im, Ryu (CR44) 2019; 130
He, Shao, Xiong (CR19) 2016; 19
Yue, Zhang (CR24) 2020; 76
Li (CR45) 2014; 41
CR20
CR41
Si, Zheng, Zhou, Pan, Xiang, Kai, Zhang (CR14) 2018; 316
CR40
Tamanna, Rahman, Sultana, Haque, Parvez (CR9) 2021; 145
Li (CR43) 2021; 547
D Yang (4303_CR3) 2017; 153
X Weng (4303_CR30) 2008; 21
VSS Fotso (4303_CR17) 2019; 53
4303_CR20
4303_CR41
4303_CR40
H Li (4303_CR38) 2016; 171
X He (4303_CR19) 2016; 19
J Xu (4303_CR34) 2020; 1143
JF Barragan (4303_CR37) 2016; 95
H Kim (4303_CR44) 2019; 130
H Li (4303_CR42) 2021; 173
R Sundarasekar (4303_CR10) 2018; 42
Y Huang (4303_CR36) 1999; 32
E Issoglio (4303_CR32) 2021; 181
S Majumdar (4303_CR2) 2020; 162
M Emmanuel (4303_CR18) 2019; 7
SE Papadakis (4303_CR13) 2010; 180
F Albertetti (4303_CR11) 2016; 40
4303_CR29
H Ren (4303_CR15) 2017; 135
D Granato (4303_CR23) 2018; 72
W Krzanowski (4303_CR26) 1979; 74
L Karamitopoulos (4303_CR28) 2010; 8
T Tamanna (4303_CR9) 2021; 145
A Singhal (4303_CR27) 2005; 19
AS Gezawa (4303_CR12) 2021
E Wu (4303_CR31) 2005; 8
NY Yen (4303_CR5) 2020; 76
H Li (4303_CR45) 2014; 41
MG Baydogan (4303_CR8) 2016; 30
H Li (4303_CR43) 2021; 547
KY Oang (4303_CR21) 2017; 4
L Feng (4303_CR25) 2019; 84
X Yue (4303_CR24) 2020; 76
L Xian (4303_CR33) 2020; 2
H Li (4303_CR35) 2017; 468
IM Müller (4303_CR6) 2021; 4
RA Davis (4303_CR1) 2020; 216
H Li (4303_CR4) 2021; 60
GS Ahn (4303_CR7) 2020; 142
4303_CR39
H Li (4303_CR16) 2017; 468
G Si (4303_CR14) 2018; 316
N Kousika (4303_CR22) 2021; 77
References_xml – volume: 216
  start-page: 246
  issue: 1
  year: 2020
  end-page: 267
  ident: CR1
  article-title: Noncausal vector AR processes with application to economic time series
  publication-title: J Econ
  doi: 10.1016/j.jeconom.2020.01.017
– volume: 142
  start-page: 106345
  year: 2020
  ident: CR7
  article-title: Efficient genetic algorithm for feature selection for early time series classification
  publication-title: Comput & Ind Eng
  doi: 10.1016/j.cie.2020.106345
– volume: 42
  start-page: 1
  issue: 11
  year: 2018
  end-page: 13
  ident: CR10
  article-title: Internet of things with maximal overlap discrete wavelet transform for remote health monitoring of abnormal ECG signals
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-1093-4
– volume: 135
  start-page: 29
  year: 2017
  end-page: 39
  ident: CR15
  article-title: A piecewise aggregate pattern representation approach for anomaly detection in time series
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.07.021
– volume: 8
  start-page: 474
  year: 2005
  end-page: 482
  ident: CR31
  article-title: Independent component analysis for clustering multivariate time series data
  publication-title: Adv Data Min Appl
– volume: 76
  start-page: 6475
  year: 2020
  end-page: 6500
  ident: CR5
  article-title: Analysis of interpolation algorithms for the missing values in IoT time series: a case of air quality in Taiwan
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-02991-7
– volume: 53
  start-page: 243
  year: 2019
  end-page: 259
  ident: CR17
  article-title: Grasp heuristic for time series compression with piecewise aggregate approximation
  publication-title: RAIRO-Op Res
  doi: 10.1051/ro/2018089
– volume: 7
  start-page: 123689
  year: 2019
  end-page: 123697
  ident: CR18
  article-title: Net electricity clustering at different temporal resolutions using a sax-base method for integrated distribution system planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938212
– ident: CR39
– volume: 547
  start-page: 592
  year: 2021
  end-page: 608
  ident: CR43
  article-title: Time works well: dynamic time warping based on time weighting for time series data mining
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.08.089
– volume: 162
  start-page: 113868
  issue: 1
  year: 2020
  ident: CR2
  article-title: Clustering and classification of time series using topological data analysis with applications to finance
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113868
– volume: 30
  start-page: 476
  issue: 2
  year: 2016
  end-page: 509
  ident: CR8
  article-title: Time series representation and similarity based on local auto patterns
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-015-0425-y
– volume: 4
  start-page: 044013
  issue: 4
  year: 2017
  ident: CR21
  article-title: SVD-aided pseudo principal-component analysis: a new method to speed up and improve determination of the optimum kinetic model from time-resolved data
  publication-title: Struct Dyn
  doi: 10.1063/1.4979854
– volume: 468
  start-page: 622
  issue: 1
  year: 2017
  end-page: 637
  ident: CR35
  article-title: Distance measure with improved lower bound for multivariate time series
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2016.10.062
– volume: 76
  start-page: 5609
  year: 2020
  end-page: 5635
  ident: CR24
  article-title: Grasshopper optimization algorithm with principal component analysis for global optimization
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-03098-9
– volume: 77
  start-page: 10003
  year: 2021
  end-page: 10011
  ident: CR22
  article-title: An improved privacy-preserving data mining technique using singular value decomposition with three-dimensional rotation data perturbation
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03643-5
– ident: CR29
– volume: 171
  start-page: 744
  year: 2016
  end-page: 753
  ident: CR38
  article-title: Accurate and efficient classification based on common principal components analysis for multivariate time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.010
– volume: 8
  start-page: 255
  year: 2010
  end-page: 276
  ident: CR28
  article-title: PCA-based time series similarity search
  publication-title: Data Min Ann Inf Systems
– ident: CR40
– volume: 2
  start-page: 100003
  year: 2020
  ident: CR33
  article-title: Factor analysis of financial time series using EEMD-ICA based approach
  publication-title: Sustain Futur
  doi: 10.1016/j.sftr.2019.100003
– volume: 32
  start-page: 7647
  issue: 2
  year: 1999
  end-page: 7652
  ident: CR36
  article-title: Fault isolation by partial PCA and partial NLPCA
  publication-title: IFAC Proc Vol
  doi: 10.1016/S1474-6670(17)57305-X
– year: 2021
  ident: CR12
  article-title: A voxelized point clouds representation for object classification and segmentation on 3D data
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03899-x
– volume: 74
  start-page: 703
  issue: 367
  year: 1979
  end-page: 707
  ident: CR26
  article-title: Between-groups comparison of principal components
  publication-title: J Acoust Soc Am
– volume: 41
  start-page: 2842
  year: 2014
  end-page: 2850
  ident: CR45
  article-title: Asynchronism-based principal component analysis for time series data mining
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.10.019
– volume: 130
  start-page: 272
  year: 2019
  end-page: 281
  ident: CR44
  article-title: Representation learning for unsupervised heterogeneous multivariate time series segmentation and its application
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.02.029
– volume: 180
  start-page: 5060
  year: 2010
  end-page: 5076
  ident: CR13
  article-title: Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals numbers (INs)
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2010.03.023
– volume: 181
  start-page: 104689
  year: 2021
  ident: CR32
  article-title: On the estimation of entropy in the FastICA algorithm
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2020.104689
– volume: 4
  start-page: 100057
  year: 2021
  ident: CR6
  article-title: Feature selection for energy system modeling: identification of relevant time series information
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2021.100057
– volume: 145
  start-page: 110796
  year: 2021
  ident: CR9
  article-title: Predicting seizure onset based on time-frequency analysis of EEG signals
  publication-title: Chaos Solitions & Fract
  doi: 10.1016/j.chaos.2021.110796
– volume: 40
  start-page: 441
  year: 2016
  end-page: 454
  ident: CR11
  article-title: Change points detection in crime-related time series: an on-line fuzzy approach based on a shape space representation
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.12.004
– volume: 72
  start-page: 83
  year: 2018
  end-page: 90
  ident: CR23
  article-title: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: a critical perspective
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2017.12.006
– volume: 84
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR25
  article-title: A slow independent component analysis algorithm for time series feature extraction with the concurrent consideration of high-order statistic and slowness
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2019.09.005
– volume: 1143
  start-page: 9
  year: 2020
  end-page: 20
  ident: CR34
  article-title: Deep learning for classification of time series spectral images using combined multi-temporal and spectral features
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2020.11.018
– volume: 19
  start-page: 427
  year: 2005
  end-page: 438
  ident: CR27
  article-title: Clustering multivariate time-series data
  publication-title: J Chemom
  doi: 10.1002/cem.945
– volume: 19
  start-page: 111
  issue: 1
  year: 2016
  end-page: 127
  ident: CR19
  article-title: A non-parametric symbolic approximate representation for long time series
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-014-0395-5
– volume: 468
  start-page: 622
  year: 2017
  end-page: 637
  ident: CR16
  article-title: Distance measure with improved lower bound for multivariate time series
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.10.062
– ident: CR41
– volume: 316
  start-page: 78
  year: 2018
  end-page: 94
  ident: CR14
  article-title: Three-dimensional piecewise cloud representation for time series data mining
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.053
– volume: 173
  start-page: 114649
  year: 2021
  ident: CR42
  article-title: Multivariate time-series clustering based on component relationship networks
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114649
– volume: 60
  start-page: 102431
  year: 2021
  ident: CR4
  article-title: Temporary rules of retail product sales time series based on the matrix profile
  publication-title: J Retail Consum Serv
  doi: 10.1016/j.jretconser.2020.102431
– volume: 21
  start-page: 535
  issue: 7
  year: 2008
  end-page: 539
  ident: CR30
  article-title: Classification of multivariate time series using two-dimensional singular value decomposition
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2008.03.014
– volume: 95
  start-page: 144
  year: 2016
  end-page: 155
  ident: CR37
  article-title: A wavelet-based clustering of multivariate time series using a multiscale SPCA approach
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2016.03.003
– ident: CR20
– volume: 153
  start-page: 317
  year: 2017
  end-page: 328
  ident: CR3
  article-title: Analyzing big time series data in solar engineering using features and pca
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.05.072
– ident: 4303_CR20
  doi: 10.1007/978-3-030-05054-2_19
– volume: 1143
  start-page: 9
  year: 2020
  ident: 4303_CR34
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2020.11.018
– volume: 468
  start-page: 622
  issue: 1
  year: 2017
  ident: 4303_CR35
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2016.10.062
– volume: 145
  start-page: 110796
  year: 2021
  ident: 4303_CR9
  publication-title: Chaos Solitions & Fract
  doi: 10.1016/j.chaos.2021.110796
– volume: 40
  start-page: 441
  year: 2016
  ident: 4303_CR11
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.12.004
– volume: 216
  start-page: 246
  issue: 1
  year: 2020
  ident: 4303_CR1
  publication-title: J Econ
  doi: 10.1016/j.jeconom.2020.01.017
– volume: 42
  start-page: 1
  issue: 11
  year: 2018
  ident: 4303_CR10
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-1093-4
– volume: 468
  start-page: 622
  year: 2017
  ident: 4303_CR16
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.10.062
– volume: 142
  start-page: 106345
  year: 2020
  ident: 4303_CR7
  publication-title: Comput & Ind Eng
  doi: 10.1016/j.cie.2020.106345
– volume: 316
  start-page: 78
  year: 2018
  ident: 4303_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.053
– volume: 135
  start-page: 29
  year: 2017
  ident: 4303_CR15
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.07.021
– volume: 8
  start-page: 255
  year: 2010
  ident: 4303_CR28
  publication-title: Data Min Ann Inf Systems
– volume: 2
  start-page: 100003
  year: 2020
  ident: 4303_CR33
  publication-title: Sustain Futur
  doi: 10.1016/j.sftr.2019.100003
– volume: 32
  start-page: 7647
  issue: 2
  year: 1999
  ident: 4303_CR36
  publication-title: IFAC Proc Vol
  doi: 10.1016/S1474-6670(17)57305-X
– volume: 21
  start-page: 535
  issue: 7
  year: 2008
  ident: 4303_CR30
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2008.03.014
– volume: 19
  start-page: 111
  issue: 1
  year: 2016
  ident: 4303_CR19
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-014-0395-5
– volume: 7
  start-page: 123689
  year: 2019
  ident: 4303_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938212
– ident: 4303_CR41
– ident: 4303_CR29
  doi: 10.1145/3212725.3212733
– volume: 153
  start-page: 317
  year: 2017
  ident: 4303_CR3
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.05.072
– volume: 180
  start-page: 5060
  year: 2010
  ident: 4303_CR13
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2010.03.023
– volume: 30
  start-page: 476
  issue: 2
  year: 2016
  ident: 4303_CR8
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-015-0425-y
– volume: 41
  start-page: 2842
  year: 2014
  ident: 4303_CR45
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.10.019
– volume: 76
  start-page: 6475
  year: 2020
  ident: 4303_CR5
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-02991-7
– volume: 19
  start-page: 427
  year: 2005
  ident: 4303_CR27
  publication-title: J Chemom
  doi: 10.1002/cem.945
– volume: 547
  start-page: 592
  year: 2021
  ident: 4303_CR43
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.08.089
– volume: 8
  start-page: 474
  year: 2005
  ident: 4303_CR31
  publication-title: Adv Data Min Appl
– volume: 74
  start-page: 703
  issue: 367
  year: 1979
  ident: 4303_CR26
  publication-title: J Acoust Soc Am
– volume: 95
  start-page: 144
  year: 2016
  ident: 4303_CR37
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2016.03.003
– year: 2021
  ident: 4303_CR12
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03899-x
– volume: 53
  start-page: 243
  year: 2019
  ident: 4303_CR17
  publication-title: RAIRO-Op Res
  doi: 10.1051/ro/2018089
– volume: 77
  start-page: 10003
  year: 2021
  ident: 4303_CR22
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03643-5
– volume: 4
  start-page: 044013
  issue: 4
  year: 2017
  ident: 4303_CR21
  publication-title: Struct Dyn
  doi: 10.1063/1.4979854
– volume: 181
  start-page: 104689
  year: 2021
  ident: 4303_CR32
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2020.104689
– ident: 4303_CR40
  doi: 10.1145/1032604.1032616
– volume: 162
  start-page: 113868
  issue: 1
  year: 2020
  ident: 4303_CR2
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113868
– volume: 171
  start-page: 744
  year: 2016
  ident: 4303_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.010
– volume: 60
  start-page: 102431
  year: 2021
  ident: 4303_CR4
  publication-title: J Retail Consum Serv
  doi: 10.1016/j.jretconser.2020.102431
– volume: 4
  start-page: 100057
  year: 2021
  ident: 4303_CR6
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2021.100057
– volume: 173
  start-page: 114649
  year: 2021
  ident: 4303_CR42
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114649
– volume: 84
  start-page: 1
  year: 2019
  ident: 4303_CR25
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2019.09.005
– ident: 4303_CR39
– volume: 72
  start-page: 83
  year: 2018
  ident: 4303_CR23
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2017.12.006
– volume: 130
  start-page: 272
  year: 2019
  ident: 4303_CR44
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.02.029
– volume: 76
  start-page: 5609
  year: 2020
  ident: 4303_CR24
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-03098-9
SSID ssj0004373
Score 2.3482835
Snippet A multivariate time series is one of the most important objects of research in data mining. Time and variables are two of its distinctive characteristics that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9862
SubjectTerms Algorithms
Central processing units
Compilers
Computer Science
Covariance matrix
CPUs
Data analysis
Data mining
Data Mining for IoT in Mobile Edge computing
Information management
Interpreters
Multivariate analysis
Principal components analysis
Processor Architectures
Programming Languages
Reduction
Sequences
Time series
Title Dimensionality reduction for multivariate time-series data mining
URI https://link.springer.com/article/10.1007/s11227-021-04303-4
https://www.proquest.com/docview/2652610209
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-0484
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: ADMLS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBPtF1YKE9RKJUHNnCV-BE3Y0RbKqAsEKlMUWI7C1BQmzLw67HzIKICpK6JbSXns30n330HcK4ts4STFJvDyMFMKIoTwQUmCZFUWfRkzi2Y3nuTkN3M-KxMCltW0e7VlWS-U9fJbi4hAtuQAsupopg1oJXztprQCq6fbkd1PiQtbpZ94xoNOCNlsszvo_w8kGorc-1iND9vxm0Iqy8twkye-6ss6cvPNYjjpr-yCzulAYqCQmP2YEvP96FdFXdA5Vo_gGBouf8Fs8NY6mhhGa92FpExc1Eeh_hh_GxjqiJbnx5bVdZLZCNO0WtedeIQwvHo8WqCy3oLWJqFmGGujKfsSi495kjluamkmmjBpKKC-YlwUydWjqukM0gH0ldCU6bcWCvuKkuio0fQnL_N9TEgS5WJ49RJzXOzRaSxx2Ljyknhk5h5knbArYQeyRJGbmtivEQ1RtnKKDIyinIZRawDF9993gsUx7-tu9VcRuWyXEbE48ZjNBay34HLamrq13-PdrJZ81PYJjZNIg-M7EIzW6z0mTFesqRndHU4vXvolTrbg0ZIgi84xeQS
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdPUAZYeCMKBTywgaX4FTdjBVQF2k6t1M1KbGeCgtrC58eXBxEIkFgTx8PZF_9PvvsdwKVHZoniOQ2HUUSldoJmWmnKM26FQ_RkwS0YjePBVD7M1KwqClvW2e71lWTxp26K3RjnmmJKAXKqBJXrsIEAKyTmT3mvqYYU5b1yEgKjrpK8KpX5eY6vx1GjMb9dixanTX8XtiuZSHrluu7Bmp_vw07dgoFUHnkAvVuk85dkjaCnyQJJrGhrEsQoKbIF30M0HAQlwS7yFDecXxLMCyXPRW-IQ5j27yY3A1p1RaA2uMuKKhfiWWaVjWVkXcxyKzz3WlontEwyzfIodRFzNurmXZs47YV0LPVOMYe8OHEErfnL3B8DQfZLmuZRHp4HR87TWKYh4LI64amMrWgDq41jbIUMx84VT6aBHaNBTTCoKQxqZBuuPr95LYEZf47u1DY3lfMsDY9ViOuCjk3acF2vQ_P699lO_jf8AjYHk9HQDO_Hj6ewxbGwoUhl7EBrtXjzZ0FurLLzYnd9AJ_Sx44
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctKBJi4Y0oFPDABhaJH3EzVpSqvCoGKnWzUj8mCFUb-Pz4nIQAAiTWxPZw9sn_k-9-h9CpBWaJoI74yygiXBpGplJIQqdUMwPoycAtuB8lwzG_mYjJpyr-kO1eP0mWNQ1AacqLi5lxF03hW0ypJJBeAMwqRvgyWuEASvAnekx7TWUkK9-YUx8kdQWnVdnMz2t8vZoavfntiTTcPINNtF5JRtwr93gLLdl8G23U7Rhw5Z07qNcHUn9J2fDaGs-Bygp2x16Y4pA5-OYjYy8uMXSUJ3D47AJDjih-Dn0idtF4cPV4OSRVhwSivesURBgf28Za6IRH2iSx08xSK7k2TPJ0KmMXZSaKjY66rqtTIy3jJs6sEbEBdhzbQ638Jbf7CAMHJstc5Px379QuS3jmgy8tU5rxRLM2imvjKF3hw6GLxZNqwMdgUOUNqoJBFW-js485sxKe8efoTm1zVTnSQtFE-BjPa9q0jc7rfWh-_77awf-Gn6DVh_5A3V2Pbg_RGoUah5DV2EGtYv5qj7zyKKbH4XC9A4kvy8o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality+reduction+for+multivariate+time-series+data+mining&rft.jtitle=The+Journal+of+supercomputing&rft.au=Wan+Xiaoji&rft.au=Li%2C+Hailin&rft.au=Zhang%2C+Liping&rft.au=Wu%2C+Yenchun+Jim&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=7&rft.spage=9862&rft.epage=9878&rft_id=info:doi/10.1007%2Fs11227-021-04303-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon