Dimensionality reduction for multivariate time-series data mining
A multivariate time series is one of the most important objects of research in data mining. Time and variables are two of its distinctive characteristics that add the complication of the algorithms applied to data mining. Reduction in the dimensionality is often regarded as an effective way to addre...
Saved in:
| Published in | The Journal of supercomputing Vol. 78; no. 7; pp. 9862 - 9878 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.05.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-8542 1573-0484 |
| DOI | 10.1007/s11227-021-04303-4 |
Cover
| Abstract | A multivariate time series is one of the most important objects of research in data mining. Time and variables are two of its distinctive characteristics that add the complication of the algorithms applied to data mining. Reduction in the dimensionality is often regarded as an effective way to address these issues. In this paper, we propose a method based on principal component analysis (PCA) to effectively reduce the dimensionality. We call it “piecewise representation based on PCA” (PPCA), which segments multivariate time series into several sequences, calculates the covariance matrix for each of them in terms of the variables, and employs PCA to obtain the principal components in an average covariance matrix. The results of the experiments, including retained information analysis, classification, and a comparison of the central processing unit time consumption, demonstrate that the PPCA method used to reduce the dimensionality in multivariate time series is superior to the prior methods. |
|---|---|
| AbstractList | A multivariate time series is one of the most important objects of research in data mining. Time and variables are two of its distinctive characteristics that add the complication of the algorithms applied to data mining. Reduction in the dimensionality is often regarded as an effective way to address these issues. In this paper, we propose a method based on principal component analysis (PCA) to effectively reduce the dimensionality. We call it “piecewise representation based on PCA” (PPCA), which segments multivariate time series into several sequences, calculates the covariance matrix for each of them in terms of the variables, and employs PCA to obtain the principal components in an average covariance matrix. The results of the experiments, including retained information analysis, classification, and a comparison of the central processing unit time consumption, demonstrate that the PPCA method used to reduce the dimensionality in multivariate time series is superior to the prior methods. |
| Author | Wu, Yenchun Jim Wan, Xiaoji Li, Hailin Zhang, Liping |
| Author_xml | – sequence: 1 givenname: Xiaoji surname: Wan fullname: Wan, Xiaoji organization: College of Business Administration, Huaqiao University, Oriental Enterprise Management Research Center, Huaqiao University – sequence: 2 givenname: Hailin surname: Li fullname: Li, Hailin organization: College of Business Administration, Huaqiao University, Oriental Enterprise Management Research Center, Huaqiao University – sequence: 3 givenname: Liping surname: Zhang fullname: Zhang, Liping organization: College of Business Administration, Huaqiao University – sequence: 4 givenname: Yenchun Jim orcidid: 0000-0001-5479-2873 surname: Wu fullname: Wu, Yenchun Jim email: wuyenchun@gmail.com organization: College of Humanities and Arts, National Taipei University of Education, Graduate Institute of Global Business and Strategy, National Taiwan Normal University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Lnldnkuxm91jqJxS86DnEJFtS9qMmWaH_3tQVBA89DS88zzDzLsisH3pLyDXCLQKIu4BIqciBYg6cAcv5GZljIViKFZ-ROdQU8qrg9IIsQtgBJEywOVndu872wQ29al08ZN6aUccUs2bwWTe20X0p71S0WUxkHqx3NmRGRZV1rnf99pKcN6oN9up3Lsn748Pb-jnfvD69rFebXDOsY16YGgTqQpcctCmx0cxSK7g2TPD6Q2ADygAaDVVT6doIy7hBZU2BBqEUbElupr17P3yONkS5G0afzg6SlgUtESjUiaomSvshBG8bqV1Ux4eiV66VCPJYmJwKk6kw-VOY5Eml_9S9d53yh9MSm6SQ4H5r_d9VJ6xvu1V_0A |
| CitedBy_id | crossref_primary_10_1088_1402_4896_acf008 crossref_primary_10_1111_exsy_13690 crossref_primary_10_1007_s10614_024_10813_z crossref_primary_10_1080_23742917_2022_2162195 crossref_primary_10_1007_s11227_022_04834_4 crossref_primary_10_1016_j_inffus_2023_102159 crossref_primary_10_1002_cpe_8395 crossref_primary_10_1016_j_jnlssr_2022_09_004 crossref_primary_10_1016_j_neucom_2023_02_048 |
| Cites_doi | 10.1016/j.jeconom.2020.01.017 10.1016/j.cie.2020.106345 10.1007/s10916-018-1093-4 10.1016/j.knosys.2017.07.021 10.1007/s11227-019-02991-7 10.1051/ro/2018089 10.1109/ACCESS.2019.2938212 10.1016/j.ins.2020.08.089 10.1016/j.eswa.2020.113868 10.1007/s10618-015-0425-y 10.1063/1.4979854 10.1016/j.physa.2016.10.062 10.1007/s11227-019-03098-9 10.1007/s11227-021-03643-5 10.1016/j.neucom.2015.07.010 10.1016/j.sftr.2019.100003 10.1016/S1474-6670(17)57305-X 10.1007/s11227-021-03899-x 10.1016/j.eswa.2013.10.019 10.1016/j.cie.2019.02.029 10.1016/j.ins.2010.03.023 10.1016/j.jmva.2020.104689 10.1016/j.egyai.2021.100057 10.1016/j.chaos.2021.110796 10.1016/j.asoc.2015.12.004 10.1016/j.tifs.2017.12.006 10.1016/j.jprocont.2019.09.005 10.1016/j.aca.2020.11.018 10.1002/cem.945 10.1007/s10044-014-0395-5 10.1016/j.neucom.2018.07.053 10.1016/j.eswa.2021.114649 10.1016/j.jretconser.2020.102431 10.1016/j.knosys.2008.03.014 10.1016/j.cie.2016.03.003 10.1016/j.solener.2017.05.072 10.1007/978-3-030-05054-2_19 10.1145/3212725.3212733 10.1145/1032604.1032616 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-021-04303-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 9878 |
| ExternalDocumentID | 10_1007_s11227_021_04303_4 |
| GrantInformation_xml | – fundername: national natural science foundation of china grantid: 71771094 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: huaqiao university’s high level talent research start-up funding projec grantid: 14SKBS205 – fundername: social science planning project of fujian province of china grantid: FJ2020B088 – fundername: ministry of science and technology, taiwan grantid: 109-2511-H-003-049-MY3 funderid: http://dx.doi.org/10.13039/501100004663 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-5d9071c5c640cd61fc3e2e74cd3749b71f0ad01dc08f8c9d7e34d1aed51d10673 |
| IEDL.DBID | AGYKE |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:52:02 EDT 2025 Thu Apr 24 22:54:31 EDT 2025 Wed Oct 01 03:43:52 EDT 2025 Fri Feb 21 02:46:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Piecewise representation Time-series data mining Covariance matrix Principal component analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5d9071c5c640cd61fc3e2e74cd3749b71f0ad01dc08f8c9d7e34d1aed51d10673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5479-2873 |
| PQID | 2652610209 |
| PQPubID | 2043774 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2652610209 crossref_citationtrail_10_1007_s11227_021_04303_4 crossref_primary_10_1007_s11227_021_04303_4 springer_journals_10_1007_s11227_021_04303_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Yang, Dong, Lim (CR3) 2017; 153 Karamitopoulos, Evangelidis, Dervos (CR28) 2010; 8 Ahn, Hur (CR7) 2020; 142 Li (CR16) 2017; 468 Oang, Yang, Muniyappan, Kim, Ihee (CR21) 2017; 4 CR39 Huang, Gertler, McAvoy (CR36) 1999; 32 Yen, Chang, Liao (CR5) 2020; 76 Xian, He, Wang, Lai (CR33) 2020; 2 Krzanowski (CR26) 1979; 74 Granato, Santos, Escher (CR23) 2018; 72 Xu, Hugelier, Zhu, Gowen (CR34) 2020; 1143 Weng, Shen (CR30) 2008; 21 Feng, Zhao, Huang (CR25) 2019; 84 Issoglio, Smith, Voss (CR32) 2021; 181 Davis, Song (CR1) 2020; 216 Ren, Liu, Li, Pedrycz (CR15) 2017; 135 Papadakis, Kaburlasos (CR13) 2010; 180 Li (CR38) 2016; 171 Sundarasekar, Thanjaivadivel, Manogaran, Kumar, Varatharajan, Chilamkurti, Hsu (CR10) 2018; 42 Wu, Yu (CR31) 2005; 8 Singhal, Seborg (CR27) 2005; 19 Li, Du (CR42) 2021; 173 Fotso, Nguifo, Vaslin (CR17) 2019; 53 Emmanuel, Giraldez (CR18) 2019; 7 Majumdar, Laha (CR2) 2020; 162 Li, Wu, Zhang, Zou (CR4) 2021; 60 Albertetti, Grossrieder, Ribaux, Stoffel (CR11) 2016; 40 Baydogan, Runger (CR8) 2016; 30 Müller (CR6) 2021; 4 Gezawa, Bello, Wang, Lei (CR12) 2021 Kousika, Premalatha (CR22) 2021; 77 CR29 Li (CR35) 2017; 468 Barragan, Fontes, Embirucu (CR37) 2016; 95 Kim, Kim, Kim, Park, Cho, Im, Ryu (CR44) 2019; 130 He, Shao, Xiong (CR19) 2016; 19 Yue, Zhang (CR24) 2020; 76 Li (CR45) 2014; 41 CR20 CR41 Si, Zheng, Zhou, Pan, Xiang, Kai, Zhang (CR14) 2018; 316 CR40 Tamanna, Rahman, Sultana, Haque, Parvez (CR9) 2021; 145 Li (CR43) 2021; 547 D Yang (4303_CR3) 2017; 153 X Weng (4303_CR30) 2008; 21 VSS Fotso (4303_CR17) 2019; 53 4303_CR20 4303_CR41 4303_CR40 H Li (4303_CR38) 2016; 171 X He (4303_CR19) 2016; 19 J Xu (4303_CR34) 2020; 1143 JF Barragan (4303_CR37) 2016; 95 H Kim (4303_CR44) 2019; 130 H Li (4303_CR42) 2021; 173 R Sundarasekar (4303_CR10) 2018; 42 Y Huang (4303_CR36) 1999; 32 E Issoglio (4303_CR32) 2021; 181 S Majumdar (4303_CR2) 2020; 162 M Emmanuel (4303_CR18) 2019; 7 SE Papadakis (4303_CR13) 2010; 180 F Albertetti (4303_CR11) 2016; 40 4303_CR29 H Ren (4303_CR15) 2017; 135 D Granato (4303_CR23) 2018; 72 W Krzanowski (4303_CR26) 1979; 74 L Karamitopoulos (4303_CR28) 2010; 8 T Tamanna (4303_CR9) 2021; 145 A Singhal (4303_CR27) 2005; 19 AS Gezawa (4303_CR12) 2021 E Wu (4303_CR31) 2005; 8 NY Yen (4303_CR5) 2020; 76 H Li (4303_CR45) 2014; 41 MG Baydogan (4303_CR8) 2016; 30 H Li (4303_CR43) 2021; 547 KY Oang (4303_CR21) 2017; 4 L Feng (4303_CR25) 2019; 84 X Yue (4303_CR24) 2020; 76 L Xian (4303_CR33) 2020; 2 H Li (4303_CR35) 2017; 468 IM Müller (4303_CR6) 2021; 4 RA Davis (4303_CR1) 2020; 216 H Li (4303_CR4) 2021; 60 GS Ahn (4303_CR7) 2020; 142 4303_CR39 H Li (4303_CR16) 2017; 468 G Si (4303_CR14) 2018; 316 N Kousika (4303_CR22) 2021; 77 |
| References_xml | – volume: 216 start-page: 246 issue: 1 year: 2020 end-page: 267 ident: CR1 article-title: Noncausal vector AR processes with application to economic time series publication-title: J Econ doi: 10.1016/j.jeconom.2020.01.017 – volume: 142 start-page: 106345 year: 2020 ident: CR7 article-title: Efficient genetic algorithm for feature selection for early time series classification publication-title: Comput & Ind Eng doi: 10.1016/j.cie.2020.106345 – volume: 42 start-page: 1 issue: 11 year: 2018 end-page: 13 ident: CR10 article-title: Internet of things with maximal overlap discrete wavelet transform for remote health monitoring of abnormal ECG signals publication-title: J Med Syst doi: 10.1007/s10916-018-1093-4 – volume: 135 start-page: 29 year: 2017 end-page: 39 ident: CR15 article-title: A piecewise aggregate pattern representation approach for anomaly detection in time series publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2017.07.021 – volume: 8 start-page: 474 year: 2005 end-page: 482 ident: CR31 article-title: Independent component analysis for clustering multivariate time series data publication-title: Adv Data Min Appl – volume: 76 start-page: 6475 year: 2020 end-page: 6500 ident: CR5 article-title: Analysis of interpolation algorithms for the missing values in IoT time series: a case of air quality in Taiwan publication-title: J Supercomput doi: 10.1007/s11227-019-02991-7 – volume: 53 start-page: 243 year: 2019 end-page: 259 ident: CR17 article-title: Grasp heuristic for time series compression with piecewise aggregate approximation publication-title: RAIRO-Op Res doi: 10.1051/ro/2018089 – volume: 7 start-page: 123689 year: 2019 end-page: 123697 ident: CR18 article-title: Net electricity clustering at different temporal resolutions using a sax-base method for integrated distribution system planning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2938212 – ident: CR39 – volume: 547 start-page: 592 year: 2021 end-page: 608 ident: CR43 article-title: Time works well: dynamic time warping based on time weighting for time series data mining publication-title: Inf Sci doi: 10.1016/j.ins.2020.08.089 – volume: 162 start-page: 113868 issue: 1 year: 2020 ident: CR2 article-title: Clustering and classification of time series using topological data analysis with applications to finance publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113868 – volume: 30 start-page: 476 issue: 2 year: 2016 end-page: 509 ident: CR8 article-title: Time series representation and similarity based on local auto patterns publication-title: Data Min Knowl Discov doi: 10.1007/s10618-015-0425-y – volume: 4 start-page: 044013 issue: 4 year: 2017 ident: CR21 article-title: SVD-aided pseudo principal-component analysis: a new method to speed up and improve determination of the optimum kinetic model from time-resolved data publication-title: Struct Dyn doi: 10.1063/1.4979854 – volume: 468 start-page: 622 issue: 1 year: 2017 end-page: 637 ident: CR35 article-title: Distance measure with improved lower bound for multivariate time series publication-title: Phys A Stat Mech Appl doi: 10.1016/j.physa.2016.10.062 – volume: 76 start-page: 5609 year: 2020 end-page: 5635 ident: CR24 article-title: Grasshopper optimization algorithm with principal component analysis for global optimization publication-title: J Supercomput doi: 10.1007/s11227-019-03098-9 – volume: 77 start-page: 10003 year: 2021 end-page: 10011 ident: CR22 article-title: An improved privacy-preserving data mining technique using singular value decomposition with three-dimensional rotation data perturbation publication-title: J Supercomput doi: 10.1007/s11227-021-03643-5 – ident: CR29 – volume: 171 start-page: 744 year: 2016 end-page: 753 ident: CR38 article-title: Accurate and efficient classification based on common principal components analysis for multivariate time series publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.010 – volume: 8 start-page: 255 year: 2010 end-page: 276 ident: CR28 article-title: PCA-based time series similarity search publication-title: Data Min Ann Inf Systems – ident: CR40 – volume: 2 start-page: 100003 year: 2020 ident: CR33 article-title: Factor analysis of financial time series using EEMD-ICA based approach publication-title: Sustain Futur doi: 10.1016/j.sftr.2019.100003 – volume: 32 start-page: 7647 issue: 2 year: 1999 end-page: 7652 ident: CR36 article-title: Fault isolation by partial PCA and partial NLPCA publication-title: IFAC Proc Vol doi: 10.1016/S1474-6670(17)57305-X – year: 2021 ident: CR12 article-title: A voxelized point clouds representation for object classification and segmentation on 3D data publication-title: J Supercomput doi: 10.1007/s11227-021-03899-x – volume: 74 start-page: 703 issue: 367 year: 1979 end-page: 707 ident: CR26 article-title: Between-groups comparison of principal components publication-title: J Acoust Soc Am – volume: 41 start-page: 2842 year: 2014 end-page: 2850 ident: CR45 article-title: Asynchronism-based principal component analysis for time series data mining publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.10.019 – volume: 130 start-page: 272 year: 2019 end-page: 281 ident: CR44 article-title: Representation learning for unsupervised heterogeneous multivariate time series segmentation and its application publication-title: Comput Ind Eng doi: 10.1016/j.cie.2019.02.029 – volume: 180 start-page: 5060 year: 2010 end-page: 5076 ident: CR13 article-title: Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals numbers (INs) publication-title: Inf Sci doi: 10.1016/j.ins.2010.03.023 – volume: 181 start-page: 104689 year: 2021 ident: CR32 article-title: On the estimation of entropy in the FastICA algorithm publication-title: J Multivar Anal doi: 10.1016/j.jmva.2020.104689 – volume: 4 start-page: 100057 year: 2021 ident: CR6 article-title: Feature selection for energy system modeling: identification of relevant time series information publication-title: Energy AI doi: 10.1016/j.egyai.2021.100057 – volume: 145 start-page: 110796 year: 2021 ident: CR9 article-title: Predicting seizure onset based on time-frequency analysis of EEG signals publication-title: Chaos Solitions & Fract doi: 10.1016/j.chaos.2021.110796 – volume: 40 start-page: 441 year: 2016 end-page: 454 ident: CR11 article-title: Change points detection in crime-related time series: an on-line fuzzy approach based on a shape space representation publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.12.004 – volume: 72 start-page: 83 year: 2018 end-page: 90 ident: CR23 article-title: Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: a critical perspective publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2017.12.006 – volume: 84 start-page: 1 year: 2019 end-page: 12 ident: CR25 article-title: A slow independent component analysis algorithm for time series feature extraction with the concurrent consideration of high-order statistic and slowness publication-title: J Process Control doi: 10.1016/j.jprocont.2019.09.005 – volume: 1143 start-page: 9 year: 2020 end-page: 20 ident: CR34 article-title: Deep learning for classification of time series spectral images using combined multi-temporal and spectral features publication-title: Anal Chim Acta doi: 10.1016/j.aca.2020.11.018 – volume: 19 start-page: 427 year: 2005 end-page: 438 ident: CR27 article-title: Clustering multivariate time-series data publication-title: J Chemom doi: 10.1002/cem.945 – volume: 19 start-page: 111 issue: 1 year: 2016 end-page: 127 ident: CR19 article-title: A non-parametric symbolic approximate representation for long time series publication-title: Pattern Anal Appl doi: 10.1007/s10044-014-0395-5 – volume: 468 start-page: 622 year: 2017 end-page: 637 ident: CR16 article-title: Distance measure with improved lower bound for multivariate time series publication-title: Physica A doi: 10.1016/j.physa.2016.10.062 – ident: CR41 – volume: 316 start-page: 78 year: 2018 end-page: 94 ident: CR14 article-title: Three-dimensional piecewise cloud representation for time series data mining publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.053 – volume: 173 start-page: 114649 year: 2021 ident: CR42 article-title: Multivariate time-series clustering based on component relationship networks publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114649 – volume: 60 start-page: 102431 year: 2021 ident: CR4 article-title: Temporary rules of retail product sales time series based on the matrix profile publication-title: J Retail Consum Serv doi: 10.1016/j.jretconser.2020.102431 – volume: 21 start-page: 535 issue: 7 year: 2008 end-page: 539 ident: CR30 article-title: Classification of multivariate time series using two-dimensional singular value decomposition publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2008.03.014 – volume: 95 start-page: 144 year: 2016 end-page: 155 ident: CR37 article-title: A wavelet-based clustering of multivariate time series using a multiscale SPCA approach publication-title: Comput Ind Eng doi: 10.1016/j.cie.2016.03.003 – ident: CR20 – volume: 153 start-page: 317 year: 2017 end-page: 328 ident: CR3 article-title: Analyzing big time series data in solar engineering using features and pca publication-title: Sol Energy doi: 10.1016/j.solener.2017.05.072 – ident: 4303_CR20 doi: 10.1007/978-3-030-05054-2_19 – volume: 1143 start-page: 9 year: 2020 ident: 4303_CR34 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2020.11.018 – volume: 468 start-page: 622 issue: 1 year: 2017 ident: 4303_CR35 publication-title: Phys A Stat Mech Appl doi: 10.1016/j.physa.2016.10.062 – volume: 145 start-page: 110796 year: 2021 ident: 4303_CR9 publication-title: Chaos Solitions & Fract doi: 10.1016/j.chaos.2021.110796 – volume: 40 start-page: 441 year: 2016 ident: 4303_CR11 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.12.004 – volume: 216 start-page: 246 issue: 1 year: 2020 ident: 4303_CR1 publication-title: J Econ doi: 10.1016/j.jeconom.2020.01.017 – volume: 42 start-page: 1 issue: 11 year: 2018 ident: 4303_CR10 publication-title: J Med Syst doi: 10.1007/s10916-018-1093-4 – volume: 468 start-page: 622 year: 2017 ident: 4303_CR16 publication-title: Physica A doi: 10.1016/j.physa.2016.10.062 – volume: 142 start-page: 106345 year: 2020 ident: 4303_CR7 publication-title: Comput & Ind Eng doi: 10.1016/j.cie.2020.106345 – volume: 316 start-page: 78 year: 2018 ident: 4303_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.053 – volume: 135 start-page: 29 year: 2017 ident: 4303_CR15 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2017.07.021 – volume: 8 start-page: 255 year: 2010 ident: 4303_CR28 publication-title: Data Min Ann Inf Systems – volume: 2 start-page: 100003 year: 2020 ident: 4303_CR33 publication-title: Sustain Futur doi: 10.1016/j.sftr.2019.100003 – volume: 32 start-page: 7647 issue: 2 year: 1999 ident: 4303_CR36 publication-title: IFAC Proc Vol doi: 10.1016/S1474-6670(17)57305-X – volume: 21 start-page: 535 issue: 7 year: 2008 ident: 4303_CR30 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2008.03.014 – volume: 19 start-page: 111 issue: 1 year: 2016 ident: 4303_CR19 publication-title: Pattern Anal Appl doi: 10.1007/s10044-014-0395-5 – volume: 7 start-page: 123689 year: 2019 ident: 4303_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2938212 – ident: 4303_CR41 – ident: 4303_CR29 doi: 10.1145/3212725.3212733 – volume: 153 start-page: 317 year: 2017 ident: 4303_CR3 publication-title: Sol Energy doi: 10.1016/j.solener.2017.05.072 – volume: 180 start-page: 5060 year: 2010 ident: 4303_CR13 publication-title: Inf Sci doi: 10.1016/j.ins.2010.03.023 – volume: 30 start-page: 476 issue: 2 year: 2016 ident: 4303_CR8 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-015-0425-y – volume: 41 start-page: 2842 year: 2014 ident: 4303_CR45 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.10.019 – volume: 76 start-page: 6475 year: 2020 ident: 4303_CR5 publication-title: J Supercomput doi: 10.1007/s11227-019-02991-7 – volume: 19 start-page: 427 year: 2005 ident: 4303_CR27 publication-title: J Chemom doi: 10.1002/cem.945 – volume: 547 start-page: 592 year: 2021 ident: 4303_CR43 publication-title: Inf Sci doi: 10.1016/j.ins.2020.08.089 – volume: 8 start-page: 474 year: 2005 ident: 4303_CR31 publication-title: Adv Data Min Appl – volume: 74 start-page: 703 issue: 367 year: 1979 ident: 4303_CR26 publication-title: J Acoust Soc Am – volume: 95 start-page: 144 year: 2016 ident: 4303_CR37 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2016.03.003 – year: 2021 ident: 4303_CR12 publication-title: J Supercomput doi: 10.1007/s11227-021-03899-x – volume: 53 start-page: 243 year: 2019 ident: 4303_CR17 publication-title: RAIRO-Op Res doi: 10.1051/ro/2018089 – volume: 77 start-page: 10003 year: 2021 ident: 4303_CR22 publication-title: J Supercomput doi: 10.1007/s11227-021-03643-5 – volume: 4 start-page: 044013 issue: 4 year: 2017 ident: 4303_CR21 publication-title: Struct Dyn doi: 10.1063/1.4979854 – volume: 181 start-page: 104689 year: 2021 ident: 4303_CR32 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2020.104689 – ident: 4303_CR40 doi: 10.1145/1032604.1032616 – volume: 162 start-page: 113868 issue: 1 year: 2020 ident: 4303_CR2 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113868 – volume: 171 start-page: 744 year: 2016 ident: 4303_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.010 – volume: 60 start-page: 102431 year: 2021 ident: 4303_CR4 publication-title: J Retail Consum Serv doi: 10.1016/j.jretconser.2020.102431 – volume: 4 start-page: 100057 year: 2021 ident: 4303_CR6 publication-title: Energy AI doi: 10.1016/j.egyai.2021.100057 – volume: 173 start-page: 114649 year: 2021 ident: 4303_CR42 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114649 – volume: 84 start-page: 1 year: 2019 ident: 4303_CR25 publication-title: J Process Control doi: 10.1016/j.jprocont.2019.09.005 – ident: 4303_CR39 – volume: 72 start-page: 83 year: 2018 ident: 4303_CR23 publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2017.12.006 – volume: 130 start-page: 272 year: 2019 ident: 4303_CR44 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2019.02.029 – volume: 76 start-page: 5609 year: 2020 ident: 4303_CR24 publication-title: J Supercomput doi: 10.1007/s11227-019-03098-9 |
| SSID | ssj0004373 |
| Score | 2.3482835 |
| Snippet | A multivariate time series is one of the most important objects of research in data mining. Time and variables are two of its distinctive characteristics that... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9862 |
| SubjectTerms | Algorithms Central processing units Compilers Computer Science Covariance matrix CPUs Data analysis Data mining Data Mining for IoT in Mobile Edge computing Information management Interpreters Multivariate analysis Principal components analysis Processor Architectures Programming Languages Reduction Sequences Time series |
| Title | Dimensionality reduction for multivariate time-series data mining |
| URI | https://link.springer.com/article/10.1007/s11227-021-04303-4 https://www.proquest.com/docview/2652610209 |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-0484 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-0484 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: ADMLS dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBPtF1YKE9RKJUHNnCV-BE3Y0RbKqAsEKlMUWI7C1BQmzLw67HzIKICpK6JbSXns30n330HcK4ts4STFJvDyMFMKIoTwQUmCZFUWfRkzi2Y3nuTkN3M-KxMCltW0e7VlWS-U9fJbi4hAtuQAsupopg1oJXztprQCq6fbkd1PiQtbpZ94xoNOCNlsszvo_w8kGorc-1iND9vxm0Iqy8twkye-6ss6cvPNYjjpr-yCzulAYqCQmP2YEvP96FdFXdA5Vo_gGBouf8Fs8NY6mhhGa92FpExc1Eeh_hh_GxjqiJbnx5bVdZLZCNO0WtedeIQwvHo8WqCy3oLWJqFmGGujKfsSi495kjluamkmmjBpKKC-YlwUydWjqukM0gH0ldCU6bcWCvuKkuio0fQnL_N9TEgS5WJ49RJzXOzRaSxx2Ljyknhk5h5knbArYQeyRJGbmtivEQ1RtnKKDIyinIZRawDF9993gsUx7-tu9VcRuWyXEbE48ZjNBay34HLamrq13-PdrJZ81PYJjZNIg-M7EIzW6z0mTFesqRndHU4vXvolTrbg0ZIgi84xeQS |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdPUAZYeCMKBTywgaX4FTdjBVQF2k6t1M1KbGeCgtrC58eXBxEIkFgTx8PZF_9PvvsdwKVHZoniOQ2HUUSldoJmWmnKM26FQ_RkwS0YjePBVD7M1KwqClvW2e71lWTxp26K3RjnmmJKAXKqBJXrsIEAKyTmT3mvqYYU5b1yEgKjrpK8KpX5eY6vx1GjMb9dixanTX8XtiuZSHrluu7Bmp_vw07dgoFUHnkAvVuk85dkjaCnyQJJrGhrEsQoKbIF30M0HAQlwS7yFDecXxLMCyXPRW-IQ5j27yY3A1p1RaA2uMuKKhfiWWaVjWVkXcxyKzz3WlontEwyzfIodRFzNurmXZs47YV0LPVOMYe8OHEErfnL3B8DQfZLmuZRHp4HR87TWKYh4LI64amMrWgDq41jbIUMx84VT6aBHaNBTTCoKQxqZBuuPr95LYEZf47u1DY3lfMsDY9ViOuCjk3acF2vQ_P699lO_jf8AjYHk9HQDO_Hj6ewxbGwoUhl7EBrtXjzZ0FurLLzYnd9AJ_Sx44 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctKBJi4Y0oFPDABhaJH3EzVpSqvCoGKnWzUj8mCFUb-Pz4nIQAAiTWxPZw9sn_k-9-h9CpBWaJoI74yygiXBpGplJIQqdUMwPoycAtuB8lwzG_mYjJpyr-kO1eP0mWNQ1AacqLi5lxF03hW0ypJJBeAMwqRvgyWuEASvAnekx7TWUkK9-YUx8kdQWnVdnMz2t8vZoavfntiTTcPINNtF5JRtwr93gLLdl8G23U7Rhw5Z07qNcHUn9J2fDaGs-Bygp2x16Y4pA5-OYjYy8uMXSUJ3D47AJDjih-Dn0idtF4cPV4OSRVhwSivesURBgf28Za6IRH2iSx08xSK7k2TPJ0KmMXZSaKjY66rqtTIy3jJs6sEbEBdhzbQ638Jbf7CAMHJstc5Px379QuS3jmgy8tU5rxRLM2imvjKF3hw6GLxZNqwMdgUOUNqoJBFW-js485sxKe8efoTm1zVTnSQtFE-BjPa9q0jc7rfWh-_77awf-Gn6DVh_5A3V2Pbg_RGoUah5DV2EGtYv5qj7zyKKbH4XC9A4kvy8o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality+reduction+for+multivariate+time-series+data+mining&rft.jtitle=The+Journal+of+supercomputing&rft.au=Wan+Xiaoji&rft.au=Li%2C+Hailin&rft.au=Zhang%2C+Liping&rft.au=Wu%2C+Yenchun+Jim&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=7&rft.spage=9862&rft.epage=9878&rft_id=info:doi/10.1007%2Fs11227-021-04303-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |