Deep non-negative matrix factorization with edge generator for link prediction in complex networks
Link prediction aims to infer missing links or predict future links based on observed topology or attribute information in the network. Many link prediction methods based on non-negative matrix factorization (NMF) have been proposed to solve prediction problem. However, due to the sparsity of real n...
Saved in:
Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 54; no. 1; pp. 592 - 613 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-669X 1573-7497 |
DOI | 10.1007/s10489-023-05211-1 |
Cover
Abstract | Link prediction aims to infer missing links or predict future links based on observed topology or attribute information in the network. Many link prediction methods based on non-negative matrix factorization (NMF) have been proposed to solve prediction problem. However, due to the sparsity of real networks, the observed topology information is probably very limited, which affects the performance of existing link prediction methods. In this paper, we utilize Deep Non-negative Matrix Factorization (DNMF) models with Edge Generator to address the network sparsity problem and propose link prediction methods EG-DNMF and EG-FDNMF. Under the framework of DNMF, several representative potential edges are incorporated so as to reconstruct the original network for link prediction. Specifically, in order to explore the potential structural features of the network in a more fine-grained manner, we first divide the original network into three sub-networks. Then, the DNMF models are employed to mine complex and nonlinear interaction relationships in sub-networks, thereby guiding the network reconstruction process. Finally, the NMF algorithm is applied on the reconstructed original network for link prediction. Experiment results on 12 different networks show that our methods have comparable performance with respect to 13 representative link prediction methods which include 6 NMF/DNMF-based approaches and 7 heuristic-based approaches. In addition, experiments also show that the sub-networks after partitioning are beneficial for capturing the underlying features of the network. Codes are available at
https://github.com/yabingyao/EGDNMF4LinkPrediction
Graphical abstract |
---|---|
AbstractList | Link prediction aims to infer missing links or predict future links based on observed topology or attribute information in the network. Many link prediction methods based on non-negative matrix factorization (NMF) have been proposed to solve prediction problem. However, due to the sparsity of real networks, the observed topology information is probably very limited, which affects the performance of existing link prediction methods. In this paper, we utilize Deep Non-negative Matrix Factorization (DNMF) models with Edge Generator to address the network sparsity problem and propose link prediction methods EG-DNMF and EG-FDNMF. Under the framework of DNMF, several representative potential edges are incorporated so as to reconstruct the original network for link prediction. Specifically, in order to explore the potential structural features of the network in a more fine-grained manner, we first divide the original network into three sub-networks. Then, the DNMF models are employed to mine complex and nonlinear interaction relationships in sub-networks, thereby guiding the network reconstruction process. Finally, the NMF algorithm is applied on the reconstructed original network for link prediction. Experiment results on 12 different networks show that our methods have comparable performance with respect to 13 representative link prediction methods which include 6 NMF/DNMF-based approaches and 7 heuristic-based approaches. In addition, experiments also show that the sub-networks after partitioning are beneficial for capturing the underlying features of the network. Codes are available at
https://github.com/yabingyao/EGDNMF4LinkPrediction
Graphical abstract Link prediction aims to infer missing links or predict future links based on observed topology or attribute information in the network. Many link prediction methods based on non-negative matrix factorization (NMF) have been proposed to solve prediction problem. However, due to the sparsity of real networks, the observed topology information is probably very limited, which affects the performance of existing link prediction methods. In this paper, we utilize Deep Non-negative Matrix Factorization (DNMF) models with Edge Generator to address the network sparsity problem and propose link prediction methods EG-DNMF and EG-FDNMF. Under the framework of DNMF, several representative potential edges are incorporated so as to reconstruct the original network for link prediction. Specifically, in order to explore the potential structural features of the network in a more fine-grained manner, we first divide the original network into three sub-networks. Then, the DNMF models are employed to mine complex and nonlinear interaction relationships in sub-networks, thereby guiding the network reconstruction process. Finally, the NMF algorithm is applied on the reconstructed original network for link prediction. Experiment results on 12 different networks show that our methods have comparable performance with respect to 13 representative link prediction methods which include 6 NMF/DNMF-based approaches and 7 heuristic-based approaches. In addition, experiments also show that the sub-networks after partitioning are beneficial for capturing the underlying features of the network. Codes are available at https://github.com/yabingyao/EGDNMF4LinkPrediction |
Author | Yao, Yabing Xu, Zhipeng Huang, Zhentian Yang, Fan Tang, Jianxin He, Yangyang Gao, Kai |
Author_xml | – sequence: 1 givenname: Yabing surname: Yao fullname: Yao, Yabing organization: School of Computer and Communication, Lanzhou University of Technology – sequence: 2 givenname: Yangyang surname: He fullname: He, Yangyang organization: School of Computer and Communication, Lanzhou University of Technology – sequence: 3 givenname: Zhentian surname: Huang fullname: Huang, Zhentian organization: School of Computer and Communication, Lanzhou University of Technology – sequence: 4 givenname: Zhipeng surname: Xu fullname: Xu, Zhipeng organization: School of Computer and Communication, Lanzhou University of Technology – sequence: 5 givenname: Fan surname: Yang fullname: Yang, Fan email: 100002022@gxust.edu.cn organization: School of Computer Science and Technology, Guangxi University of Science and Technology – sequence: 6 givenname: Jianxin surname: Tang fullname: Tang, Jianxin organization: School of Computer and Communication, Lanzhou University of Technology – sequence: 7 givenname: Kai surname: Gao fullname: Gao, Kai organization: School of Computer and Communication, Lanzhou University of Technology |
BookMark | eNp9kMtqHDEQRUWwIeOxfyArgddKqlqt0WhpHMcOGLJxwDuhVldPNA91R5If8ddbmQkEvPCiKCjdc0t1T9hRHCMx9gnhMwLoLxmhXRoBjRSgGkSBH9gMlZZCt0YfsRmYphWLhbn_yE5yXgOAlIAz1n0lmnh1E5FWroRH4jtXUnjmg_NlTOGlDsfIn0L5xalfEV9RpOTqEx9qbUPc8ClRH_xeFyL3427a0jOPVJ7GtMmn7Hhw20xn__qc_fx2dXd5I25_XH-_vLgVXqIpQvnWqBY7VCS9l4PChR40NKZVWpteS2UQfQtD1zkgUo30rl0scQm9643s5JydH3ynNP5-oFzsenxIsa60jUGpq6GCqloeVD6NOScarA9lf2NJLmwtgv2bqD0kamuidp-oxYo2b9AphZ1Lf96H5AHKVRxXlP7_6h3qFcQ_i4g |
CitedBy_id | crossref_primary_10_1007_s10489_025_06367_8 crossref_primary_10_1177_09544054251322556 crossref_primary_10_1007_s10489_025_06394_5 |
Cites_doi | 10.26599/BDMA.2017.9020002 10.1016/j.isci.2021.103217 10.1145/3269206.3271697 10.1145/964725.633039 10.1016/j.physa.2019.122882 10.1016/j.physa.2023.128546 10.1038/nature06830 10.1007/978-1-4614-6170-8_310 10.1145/2939672.2939754 10.1103/PhysRevE.64.025102 10.1148/radiology.143.1.7063747 10.1016/j.eswa.2021.116033 10.1109/TPAMI.2019.2962679 10.1016/j.compbiomed.2018.09.019 10.1016/j.physa.2022.128428 10.1016/S0378-8733(03)00009-1 10.1016/j.neucom.2019.01.028 10.1145/3097983.3097996 10.1016/j.jnca.2020.102716 10.1145/1134271.1134277 10.1016/j.physa.2020.125154 10.1016/j.compbiomed.2021.104772 10.1016/j.eswa.2021.115991 10.1016/j.physa.2020.124980 10.1109/TKDE.2021.3117274 10.1098/rstb.1986.0056 10.1016/j.physa.2019.04.246 10.1109/ASONAM.2018.8508272 10.1145/3511808.3557430 10.1209/0295-5075/89/58007 10.1038/s41598-016-0001-8 10.1609/icwsm.v15i1.18067 10.1145/963770.963772 10.1609/aaai.v29i1.9277 10.1016/j.eswa.2019.112839 10.1109/TKDE.2023.3238360 10.1145/2623330.2623732 10.24963/ijcai.2020/168 10.1016/j.eswa.2018.11.003 10.1016/j.physa.2021.125783 10.1016/j.neucom.2021.08.152 10.1016/j.physa.2020.124289 10.1016/j.physa.2010.11.027 10.1016/j.physa.2019.122950 10.1109/INFOCOM.2019.8737631 10.1103/PhysRevE.104.024301 10.1093/bib/bbac597 10.1109/JSEN.2023.3257867 10.1109/MC.2009.263 10.1007/s41109-019-0170-z 10.1016/j.neuroimage.2018.03.007 10.1073/pnas.0908366106 10.1145/3229543.3229546 10.1109/TPAMI.2022.3169734 10.1016/j.patcog.2019.01.016 10.7717/peerj-cs.357 10.1155/2019/1439415 10.1145/3491206 10.1016/j.knosys.2021.107431 10.1016/j.aej.2021.04.081 10.1109/TNNLS.2020.3015896 10.1145/3336191.3371800 10.1145/2882903.2915215 10.1145/3038912.3052569 10.1016/j.physa.2017.02.078 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
DOI | 10.1007/s10489-023-05211-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7497 |
EndPage | 613 |
ExternalDocumentID | 10_1007_s10489_023_05211_1 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: N0.62366030; No. 62062010 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: the Higher Education Innovation Fund project of Gansu grantid: No. 2022A-022 – fundername: Science and Technology Planning Project of Guangxi grantid: No. AD19245101 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-5c49541b15e3cc3f5167f702945779d735911c40fbba0ee523ca468180dad93b3 |
IEDL.DBID | 8FG |
ISSN | 0924-669X |
IngestDate | Fri Sep 12 11:51:27 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Wed Oct 01 04:10:03 EDT 2025 Fri Feb 21 02:41:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Link prediction Network reconstruction Sub-network Deep non-negative matrix factorization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-5c49541b15e3cc3f5167f702945779d735911c40fbba0ee523ca468180dad93b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2913751650 |
PQPubID | 326365 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2913751650 crossref_citationtrail_10_1007_s10489_023_05211_1 crossref_primary_10_1007_s10489_023_05211_1 springer_journals_10_1007_s10489_023_05211_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240100 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Boston |
PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
PublicationTitleAbbrev | Appl Intell |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Adamic, Adar (CR14) 2003; 25 Rafiee, Salavati, Abdollahpouri (CR20) 2020; 539 Varikuti, Genon, Sotiras, Schwender, Hoffstaedter, Patil, Jockwitz, Caspers, Moebus, Amunts (CR60) 2018; 173 Wang, Li, Su (CR54) 2021; 232 Chen, Shi, Qi (CR59) 2019; 91 Kumar, Singh, Singh, Biswas (CR10) 2020; 553 CR39 Samy, Kefato, Girdzijauskas (CR28) 2023; 2023 CR37 Stanley, Bonacci, Kwitt, Niethammer, Mucha (CR46) 2019; 4 Wang, Lei, Li (CR53) 2020; 32 Lü, Zhou (CR4) 2011; 390 CR34 Chen, Zeng, Pan (CR36) 2022; 491 CR30 Zhao, Wang, Pei (CR35) 2019; 43 Nasiri, Berahmand, Rostami, Dabiri (CR8) 2021; 137 Clauset, Moore, Newman (CR21) 2008; 453 Yuliansyah, Othman, Bakar (CR45) 2023; 616 Daud, Ab Hamid, Saadoon, Sahran, Anuar (CR12) 2020; 166 Koren, Bell, Volinsky (CR56) 2009; 42 Kuang, Scoglio (CR47) 2021; 104 Martinez, Berzal, Cubero (CR70) 2019; 2019 White, Southgate, Thomson, Brenner (CR65) 1986; 314 Zhang, Zhang, Wang, Chen (CR38) 2019; 334 Liang, Gurukar, Parthasarathy (CR58) 2021; 15 Chen, Xu, Wang, Feng, Feng (CR33) 2020; 539 Yao, Cheng, Li, He, Yang, Li, Liu, Xu (CR2) 2023; 610 Wang, Cai, Jiao, Pan (CR32) 2016; 6 Zhou (CR3) 2021; 24 CR9 CR48 Liu, Ji, Liu, Bai (CR15) 2017; 479 Liu, Lü (CR17) 2010; 89 CR43 CR42 CR41 Su, Zheng, Ai, Shen, Zhang (CR6) 2020; 560 CR40 Liu, Yuan, Fu, Jiang, Hayashi, Neubig (CR50) 2023; 55 Liu (CR7) 2022; 61 CR55 Aziz, Gul, Muhammad, Uddin (CR19) 2020; 557 Zhao, Gou, Du, Ma, Li, Zhang (CR31) 2022; 188 CR52 CR51 Li, Song, Lu, Zeng, Shi, Liu (CR5) 2020; 139 Ahmed, Chen, Wang, Li, Li, Liu (CR57) 2018; 1 Wahid-Ul-Ashraf, Budka, Musial (CR1) 2019; 523 Guimerà, Sales-Pardo (CR22) 2009; 106 Makarov, Kiselev, Nikitinsky, Subelj (CR49) 2021; 7 Zhou, Wu, Tan (CR18) 2021; 570 Vural, Kaya (CR16) 2018; 102 CR29 Zhou, Liu, Wei, Fan (CR23) 2022; 55 Newman (CR13) 2001; 64 CR27 CR26 CR25 CR69 CR24 CR68 Herlocker, Konstan, Terveen, Riedl (CR62) 2004; 22 CR67 CR66 CR64 CR63 Zhu, Huang, Deng, Ye, Huang, Chen, Zhu, Yang, Du, Lu (CR44) 2022; 45 Chen, Wang, Fang, Jiang (CR11) 2022; 188 Hanley, McNeil (CR61) 1982; 143 5211_CR41 5211_CR42 5211_CR40 G Chen (5211_CR33) 2020; 539 I Makarov (5211_CR49) 2021; 7 P Liu (5211_CR50) 2023; 55 Y Zhao (5211_CR35) 2019; 43 S Liu (5211_CR15) 2017; 479 W Wang (5211_CR32) 2016; 6 F Aziz (5211_CR19) 2020; 557 AE Samy (5211_CR28) 2023; 2023 5211_CR48 G Chen (5211_CR11) 2022; 188 G Liu (5211_CR7) 2022; 61 5211_CR43 5211_CR30 R Guimerà (5211_CR22) 2009; 106 J Liang (5211_CR58) 2021; 15 W Zhang (5211_CR38) 2019; 334 LA Adamic (5211_CR14) 2003; 25 JA Hanley (5211_CR61) 1982; 143 ME Newman (5211_CR13) 2001; 64 J Kuang (5211_CR47) 2021; 104 Y Zhou (5211_CR18) 2021; 570 A Wahid-Ul-Ashraf (5211_CR1) 2019; 523 S Rafiee (5211_CR20) 2020; 539 5211_CR39 Z Chen (5211_CR59) 2019; 91 5211_CR37 5211_CR34 A Clauset (5211_CR21) 2008; 453 Z Wang (5211_CR53) 2020; 32 5211_CR63 5211_CR64 JG White (5211_CR65) 1986; 314 Y Yao (5211_CR2) 2023; 610 A Kumar (5211_CR10) 2020; 553 N Stanley (5211_CR46) 2019; 4 Y Koren (5211_CR56) 2009; 42 NN Daud (5211_CR12) 2020; 166 J Zhou (5211_CR23) 2022; 55 5211_CR29 5211_CR27 5211_CR25 5211_CR69 5211_CR26 DP Varikuti (5211_CR60) 2018; 173 5211_CR67 S Li (5211_CR5) 2020; 139 5211_CR24 5211_CR68 5211_CR66 5211_CR52 5211_CR51 L Lü (5211_CR4) 2011; 390 Z Wang (5211_CR54) 2021; 232 W Liu (5211_CR17) 2010; 89 H Yuliansyah (5211_CR45) 2023; 616 JL Herlocker (5211_CR62) 2004; 22 V Martinez (5211_CR70) 2019; 2019 Z Zhao (5211_CR31) 2022; 188 H Vural (5211_CR16) 2018; 102 NM Ahmed (5211_CR57) 2018; 1 E Nasiri (5211_CR8) 2021; 137 Z Su (5211_CR6) 2020; 560 5211_CR9 W-S Chen (5211_CR36) 2022; 491 T Zhou (5211_CR3) 2021; 24 Z Zhu (5211_CR44) 2022; 45 5211_CR55 |
References_xml | – volume: 24 start-page: 103217 issue: 11 year: 2021 ident: CR3 article-title: Progresses and challenges in link prediction publication-title: Iscience – volume: 42 start-page: 30 issue: 8 year: 2009 end-page: 37 ident: CR56 article-title: Matrix factorization techniques for recommender systems publication-title: Computer – volume: 25 start-page: 211 issue: 3 year: 2003 end-page: 230 ident: CR14 article-title: Friends and neighbors on the web publication-title: Social networks – volume: 45 start-page: 2627 issue: 2 year: 2022 end-page: 2644 ident: CR44 article-title: Webface260m: A benchmark for million-scale deep face recognition publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 491 start-page: 305 year: 2022 end-page: 320 ident: CR36 article-title: A survey of deep nonnegative matrix factorization publication-title: Neurocomputing – ident: CR68 – ident: CR39 – volume: 137 start-page: 104772 year: 2021 ident: CR8 article-title: A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding publication-title: Comput Biol Med – volume: 91 start-page: 13 year: 2019 end-page: 24 ident: CR59 article-title: Constrained matrix factorization for semi-weakly learning with label proportions publication-title: Pattern Recogn – volume: 539 start-page: 122882 year: 2020 ident: CR33 article-title: Robust non-negative matrix factorization for link prediction in complex networks using manifold regularization and sparse learning publication-title: Physica A – ident: CR51 – volume: 64 start-page: 025102 issue: 2 year: 2001 ident: CR13 article-title: Clustering and preferential attachment in growing networks publication-title: Phys Rev E – volume: 106 start-page: 22073 issue: 52 year: 2009 end-page: 22078 ident: CR22 article-title: Missing and spurious interactions and the reconstruction of complex networks publication-title: Proc Natl Acad Sci – ident: CR29 – volume: 232 start-page: 107431 year: 2021 ident: CR54 article-title: Hierarchical attention link prediction neural network publication-title: Knowl-Based Syst – ident: CR25 – ident: CR42 – volume: 553 start-page: 124289 year: 2020 ident: CR10 article-title: Link prediction techniques, applications, and performance: A survey publication-title: Physica A – volume: 4 start-page: 1 issue: 1 year: 2019 end-page: 22 ident: CR46 article-title: Stochastic block models with multiple continuous attributes publication-title: Applied Netw Sci – ident: CR67 – volume: 15 start-page: 361 year: 2021 end-page: 372 ident: CR58 article-title: Mile: A multi-level framework for scalable graph embedding publication-title: Proceedings of the International AAAI Conference on Web and Social Media – volume: 1 start-page: 19 issue: 1 year: 2018 end-page: 33 ident: CR57 article-title: Deepeye: link prediction in dynamic networks based on non-negative matrix factorization publication-title: Big Data Mining and Analytics – volume: 188 start-page: 115991 year: 2022 ident: CR11 article-title: Link prediction by deep non-negative matrix factorization publication-title: Expert Syst Appl – volume: 616 start-page: 128546 year: 2023 ident: CR45 article-title: A new link prediction method to alleviate the cold-start problem based on extending common neighbor and degree centrality publication-title: Physica A – volume: 479 start-page: 174 year: 2017 end-page: 183 ident: CR15 article-title: Extended resource allocation index for link prediction of complex network publication-title: Physica A – volume: 7 start-page: 357 year: 2021 ident: CR49 article-title: Survey on graph embeddings and their applications to machine learning problems on graphs publication-title: PeerJ Comput Sci – ident: CR9 – volume: 523 start-page: 1110 year: 2019 end-page: 1129 ident: CR1 article-title: How to predict social relationships-physics-inspired approach to link prediction publication-title: Physica A – volume: 173 start-page: 394 year: 2018 end-page: 410 ident: CR60 article-title: Evaluation of non-negative matrix factorization of grey matter in age prediction publication-title: Neuroimage – volume: 55 start-page: 1 issue: 2 year: 2022 end-page: 35 ident: CR23 article-title: Network representation learning: from preprocessing, feature extraction to node embedding publication-title: ACM Computing Surveys (CSUR) – volume: 104 start-page: 024301 issue: 2 year: 2021 ident: CR47 article-title: Layer reconstruction and missing link prediction of a multilayer network with maximum a posteriori estimation publication-title: Phys Rev E – volume: 166 start-page: 102716 year: 2020 ident: CR12 article-title: Applications of link prediction in social networks: A review publication-title: J Netw Comput Appl – ident: CR64 – volume: 6 start-page: 1 issue: 1 year: 2016 end-page: 11 ident: CR32 article-title: A perturbation-based framework for link prediction via non-negative matrix factorization publication-title: Sci Rep – ident: CR26 – volume: 610 start-page: 128428 year: 2023 ident: CR2 article-title: Link prediction based on the mutual information with high-order clustering structure of nodes in complex networks publication-title: Physica A – ident: CR43 – volume: 334 start-page: 206 year: 2019 end-page: 218 ident: CR38 article-title: A deep variational matrix factorization method for recommendation on large scale sparse dataset publication-title: Neurocomputing – ident: CR66 – volume: 61 start-page: 905 issue: 1 year: 2022 end-page: 910 ident: CR7 article-title: An ecommerce recommendation algorithm based on link prediction publication-title: Alex Eng J – ident: CR37 – volume: 390 start-page: 1150 issue: 6 year: 2011 end-page: 1170 ident: CR4 article-title: Link prediction in complex networks: A survey publication-title: Physica A – ident: CR30 – volume: 55 start-page: 1 issue: 9 year: 2023 end-page: 35 ident: CR50 article-title: Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing publication-title: ACM Comput Surv – volume: 560 start-page: 125154 year: 2020 ident: CR6 article-title: Link prediction in recommender systems based on vector similarity publication-title: Physica A – volume: 539 start-page: 122950 year: 2020 ident: CR20 article-title: Cndp: Link prediction based on common neighbors degree penalization publication-title: Physica A – volume: 188 start-page: 116033 year: 2022 ident: CR31 article-title: A novel link prediction algorithm based on inductive matrix completion publication-title: Expert Syst Appl – volume: 139 start-page: 112839 year: 2020 ident: CR5 article-title: Friend recommendation for cross marketing in online brand community based on intelligent attention allocation link prediction algorithm publication-title: Expert Syst Appl – ident: CR40 – ident: CR63 – volume: 557 start-page: 124980 year: 2020 ident: CR19 article-title: Link prediction using node information on local paths publication-title: Physica A – ident: CR27 – volume: 143 start-page: 29 issue: 1 year: 1982 end-page: 36 ident: CR61 article-title: The meaning and use of the area under a receiver operating characteristic (roc) curve publication-title: Radiology – volume: 2019 start-page: 1 year: 2019 end-page: 14 ident: CR70 article-title: Noesis: a framework for complex network data analysis publication-title: Complexity – volume: 32 start-page: 3653 issue: 8 year: 2020 end-page: 3663 ident: CR53 article-title: Neighborhood attention networks with adversarial learning for link prediction publication-title: IEEE Trans Neural Netw Learn Syst – ident: CR69 – volume: 102 start-page: 120 year: 2018 end-page: 125 ident: CR16 article-title: Prediction of new potential associations between lncrnas and environmental factors based on katz measure publication-title: Comput Biol Med – volume: 43 start-page: 1897 issue: 6 year: 2019 end-page: 1913 ident: CR35 article-title: Deep non-negative matrix factorization architecture based on underlying basis images learning publication-title: IEEE Trans Pattern Anal Mach Intell – ident: CR48 – ident: CR52 – volume: 314 start-page: 1 issue: 1165 year: 1986 end-page: 340 ident: CR65 article-title: The structure of the nervous system of the nematode caenorhabditis elegans publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 22 start-page: 5 issue: 1 year: 2004 end-page: 53 ident: CR62 article-title: Evaluating collaborative filtering recommender systems publication-title: ACM Trans Inform Syst (TOIS) – volume: 89 start-page: 58007 issue: 5 year: 2010 ident: CR17 article-title: Link prediction based on local random walk publication-title: Europhys Lett – volume: 570 start-page: 125783 year: 2021 ident: CR18 article-title: Biased random walk with restart for link prediction with graph embedding method publication-title: Physica A – ident: CR34 – ident: CR55 – volume: 453 start-page: 98 issue: 7191 year: 2008 end-page: 101 ident: CR21 article-title: Hierarchical structure and the prediction of missing links in networks publication-title: Nature – ident: CR41 – ident: CR24 – volume: 2023 start-page: 805 year: 2023 end-page: 812 ident: CR28 article-title: Graph2feat: Inductive link prediction via knowledge distillation publication-title: Companion Proceedings of the ACM Web Conference – volume: 1 start-page: 19 issue: 1 year: 2018 ident: 5211_CR57 publication-title: Big Data Mining and Analytics doi: 10.26599/BDMA.2017.9020002 – volume: 24 start-page: 103217 issue: 11 year: 2021 ident: 5211_CR3 publication-title: Iscience doi: 10.1016/j.isci.2021.103217 – ident: 5211_CR37 doi: 10.1145/3269206.3271697 – ident: 5211_CR69 doi: 10.1145/964725.633039 – volume: 2023 start-page: 805 year: 2023 ident: 5211_CR28 publication-title: Companion Proceedings of the ACM Web Conference – volume: 539 start-page: 122882 year: 2020 ident: 5211_CR33 publication-title: Physica A doi: 10.1016/j.physa.2019.122882 – volume: 616 start-page: 128546 year: 2023 ident: 5211_CR45 publication-title: Physica A doi: 10.1016/j.physa.2023.128546 – volume: 453 start-page: 98 issue: 7191 year: 2008 ident: 5211_CR21 publication-title: Nature doi: 10.1038/nature06830 – ident: 5211_CR63 doi: 10.1007/978-1-4614-6170-8_310 – ident: 5211_CR25 doi: 10.1145/2939672.2939754 – volume: 64 start-page: 025102 issue: 2 year: 2001 ident: 5211_CR13 publication-title: Phys Rev E doi: 10.1103/PhysRevE.64.025102 – volume: 143 start-page: 29 issue: 1 year: 1982 ident: 5211_CR61 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 188 start-page: 116033 year: 2022 ident: 5211_CR31 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116033 – volume: 43 start-page: 1897 issue: 6 year: 2019 ident: 5211_CR35 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2962679 – volume: 102 start-page: 120 year: 2018 ident: 5211_CR16 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.09.019 – volume: 610 start-page: 128428 year: 2023 ident: 5211_CR2 publication-title: Physica A doi: 10.1016/j.physa.2022.128428 – volume: 25 start-page: 211 issue: 3 year: 2003 ident: 5211_CR14 publication-title: Social networks doi: 10.1016/S0378-8733(03)00009-1 – volume: 334 start-page: 206 year: 2019 ident: 5211_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.028 – ident: 5211_CR51 doi: 10.1145/3097983.3097996 – volume: 166 start-page: 102716 year: 2020 ident: 5211_CR12 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2020.102716 – ident: 5211_CR67 doi: 10.1145/1134271.1134277 – volume: 560 start-page: 125154 year: 2020 ident: 5211_CR6 publication-title: Physica A doi: 10.1016/j.physa.2020.125154 – volume: 137 start-page: 104772 year: 2021 ident: 5211_CR8 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104772 – volume: 188 start-page: 115991 year: 2022 ident: 5211_CR11 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115991 – volume: 557 start-page: 124980 year: 2020 ident: 5211_CR19 publication-title: Physica A doi: 10.1016/j.physa.2020.124980 – ident: 5211_CR42 doi: 10.1109/TKDE.2021.3117274 – volume: 314 start-page: 1 issue: 1165 year: 1986 ident: 5211_CR65 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.1986.0056 – volume: 55 start-page: 1 issue: 9 year: 2023 ident: 5211_CR50 publication-title: ACM Comput Surv – volume: 523 start-page: 1110 year: 2019 ident: 5211_CR1 publication-title: Physica A doi: 10.1016/j.physa.2019.04.246 – ident: 5211_CR64 doi: 10.1109/ASONAM.2018.8508272 – ident: 5211_CR29 doi: 10.1145/3511808.3557430 – volume: 89 start-page: 58007 issue: 5 year: 2010 ident: 5211_CR17 publication-title: Europhys Lett doi: 10.1209/0295-5075/89/58007 – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 5211_CR32 publication-title: Sci Rep doi: 10.1038/s41598-016-0001-8 – volume: 15 start-page: 361 year: 2021 ident: 5211_CR58 publication-title: Proceedings of the International AAAI Conference on Web and Social Media doi: 10.1609/icwsm.v15i1.18067 – ident: 5211_CR52 – volume: 22 start-page: 5 issue: 1 year: 2004 ident: 5211_CR62 publication-title: ACM Trans Inform Syst (TOIS) doi: 10.1145/963770.963772 – ident: 5211_CR66 doi: 10.1609/aaai.v29i1.9277 – volume: 139 start-page: 112839 year: 2020 ident: 5211_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112839 – ident: 5211_CR55 doi: 10.1109/TKDE.2023.3238360 – ident: 5211_CR24 doi: 10.1145/2623330.2623732 – ident: 5211_CR27 doi: 10.24963/ijcai.2020/168 – ident: 5211_CR40 doi: 10.1016/j.eswa.2018.11.003 – volume: 570 start-page: 125783 year: 2021 ident: 5211_CR18 publication-title: Physica A doi: 10.1016/j.physa.2021.125783 – volume: 491 start-page: 305 year: 2022 ident: 5211_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.152 – volume: 553 start-page: 124289 year: 2020 ident: 5211_CR10 publication-title: Physica A doi: 10.1016/j.physa.2020.124289 – volume: 390 start-page: 1150 issue: 6 year: 2011 ident: 5211_CR4 publication-title: Physica A doi: 10.1016/j.physa.2010.11.027 – volume: 539 start-page: 122950 year: 2020 ident: 5211_CR20 publication-title: Physica A doi: 10.1016/j.physa.2019.122950 – ident: 5211_CR26 doi: 10.1109/INFOCOM.2019.8737631 – volume: 104 start-page: 024301 issue: 2 year: 2021 ident: 5211_CR47 publication-title: Phys Rev E doi: 10.1103/PhysRevE.104.024301 – ident: 5211_CR9 doi: 10.1093/bib/bbac597 – ident: 5211_CR43 doi: 10.1109/JSEN.2023.3257867 – volume: 42 start-page: 30 issue: 8 year: 2009 ident: 5211_CR56 publication-title: Computer doi: 10.1109/MC.2009.263 – volume: 4 start-page: 1 issue: 1 year: 2019 ident: 5211_CR46 publication-title: Applied Netw Sci doi: 10.1007/s41109-019-0170-z – ident: 5211_CR30 – volume: 173 start-page: 394 year: 2018 ident: 5211_CR60 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.007 – volume: 106 start-page: 22073 issue: 52 year: 2009 ident: 5211_CR22 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0908366106 – ident: 5211_CR34 doi: 10.1145/3229543.3229546 – volume: 45 start-page: 2627 issue: 2 year: 2022 ident: 5211_CR44 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2022.3169734 – volume: 91 start-page: 13 year: 2019 ident: 5211_CR59 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.01.016 – volume: 7 start-page: 357 year: 2021 ident: 5211_CR49 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.357 – volume: 2019 start-page: 1 year: 2019 ident: 5211_CR70 publication-title: Complexity doi: 10.1155/2019/1439415 – volume: 55 start-page: 1 issue: 2 year: 2022 ident: 5211_CR23 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3491206 – ident: 5211_CR48 – volume: 232 start-page: 107431 year: 2021 ident: 5211_CR54 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107431 – volume: 61 start-page: 905 issue: 1 year: 2022 ident: 5211_CR7 publication-title: Alex Eng J doi: 10.1016/j.aej.2021.04.081 – volume: 32 start-page: 3653 issue: 8 year: 2020 ident: 5211_CR53 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3015896 – ident: 5211_CR41 doi: 10.1145/3336191.3371800 – ident: 5211_CR68 doi: 10.1145/2882903.2915215 – ident: 5211_CR39 doi: 10.1145/3038912.3052569 – volume: 479 start-page: 174 year: 2017 ident: 5211_CR15 publication-title: Physica A doi: 10.1016/j.physa.2017.02.078 |
SSID | ssj0003301 |
Score | 2.3920903 |
Snippet | Link prediction aims to infer missing links or predict future links based on observed topology or attribute information in the network. Many link prediction... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 592 |
SubjectTerms | Algorithms Artificial Intelligence Computer Science Factorization Machines Manufacturing Mechanical Engineering Network analysis Network topologies Processes Sparsity |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXLyIz4ii6cGblmx32132SBQkmniSBE-b7WOJUVcCS0L89bbdLihRE859ZPqazrTffANwaRjSGU85zmLOMNUOAOa-oJjRrEN9kQZhalG-j-FgSO9HbOSCwmYV2r36krSa-luwGzXwHt_gzXwDxNqGOjMOSg3q3bvnh95SA2sf3WbK074FDsN45IJlfu_l54W0sjLXPkbtfdNvwLCStISZvLbnBW-LzzUSx02Hsge7zgBF3XLH7MOWyg-gUSV3QO6sHwK_VWqC8o8c52ps2cHRu6HzX6AyRY-L30TmIReZRzk0tgzWughpQxgZudBkav6BbL2XHFn4ulqgvISez45g2O893QywS8iAhT6pBWZCu1OUcMJUIESQMRJGWeT5MWVRFMsoYFp1CuplnKeeUtrHFSkNTTS5TGUc8OAYalpudQJIGkNQMo9kJhSYdVKtOCSnUcyJlIx7TSDVqiTCsZWbpBlvyYpn2UxioicxsZOYkCZcLdtMSq6Of2u3qsVO3LmdJX5MgkgPi2kBrqu1WxX_3dvpZtXPYMfX1lH5ltOCWjGdq3Nt3RT8wm3mLwip7iM priority: 102 providerName: Springer Nature |
Title | Deep non-negative matrix factorization with edge generator for link prediction in complex networks |
URI | https://link.springer.com/article/10.1007/s10489-023-05211-1 https://www.proquest.com/docview/2913751650 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241004 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6Xbz4Lc4vcvCmwSZN2vUkUzeHgog4mKfSfFQEnXObsD_f99LUoaCnQpOG8pL38r5_hBxjh3SlC83KTCsmwQBgWhjJlCzbUpgiTgqf5XuX9AfyZqiGweE2DWmVtUz0gtq-G_SRn4mMx6nioFCcjz8YokZhdDVAaCyTJhdwkrBSvHf9LYnBVveIeWBjsCTJhqFoJpTOSUwWEpi9JjCt6-fFtNA2fwVI_b3TWyerQWGknWqHN8iSG22StRqMgQbe3CL6yrkxBWOejdyz7-ZN37D9_pxWkDqh3pKi45WiE40--47TMERBcaUYyaXjCcZt_LyXEfXp5m5OR1Wq-HSbDHrdx8s-CwAKzABnzZgyYP5IrrlysTFxCeRLyzQSmVRpmtk0ViDqjIxKrYvIObBJTSETrP62hc1iHe-QBvy32yXUouJmVcRLLN1V7QIY3WqZZppbq3TUIrymXm5Cd3EEuXjNF32RkeI5UDz3FM95i5x8fzOuemv8O_ug3pQ88Nk0X5yKFjmtN2ox_Pdqe_-vtk9WBGgvla_lgDRmk093CNrHTB_5I3ZEmp3rp9suPC-6d_cP8HYgOl8KJ9hn |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQXKAXEUgo-lBNYJH4km0NVVYVleZ5A2luIH0FIEBZ2UeFP8RuZcRJWRYIbZzujaDwez_MbgJ-EkK5NYXiZGc0VOgDcCKu4VmVXCVvIpAhVvidJ_0wdDPRgCp7aXhgqq2x1YlDU7sZSjHxbZLFMdYwGxe_hLaepUZRdbUdo1GJx6B__ocs2-rW_g-e7IURv9_RvnzdTBbhFcRtzbdEnULGJtZfWyhJppmUaiUzpNM1cKjXef6ui0pgi8h4dNVuohFqiXeEyaSTS_QQzSkpJWP3d3t6L5pcyjFuO0KfhSZINmiadplVPUXGSoGo5QWVk_z-EE-v2VUI2vHO9rzDbGKjsTy1R8zDlq28w1w5_YI0uWACz4_2QVTcVr_xFQA9n1wT3_8DqET5NfyejQC-joB27CAjXuMTQUGaUOWbDO8oThX2XFQvl7f6BVXVp-mgRzj6EtUswjf_tl4E5MhSdjuKSWoV1t0DF4oxKMxM7p03UgbjlXm4bNHMaqnGVT3CYieM5cjwPHM_jDmy-fDOssTze3b3aHkre3OtRPpHCDmy1BzVZfpvayvvU1uFz__T4KD_aPzn8Dl8EWk51nGcVpsd39_4HWj5jsxbEjcH5R8v3M5vBD-M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_AkRheFFHCKeg-6JNuaPejpQ-EAMcFhFyIkeTeSvejhATKyZ0R_0X_Kme2Wy6ayBvPu902s9PZmZ3fzA_gA3VI16YyvC6M5goDAG6EVVyrelsJW8msCijfUXZ0rr6M9XgBfne1MASr7GxiMNTu1tId-ZYoUpnrFB2KrTrCIs4Gw93Jd04MUpRp7eg0qkiz4HZCu7FY5HHif_3EcG66czzAvf8oxPDw28ERj4wD3KIqzri2GC-o1KTaS2tlje_L6zwRhdJ5XrhcarQNViW1MVXiPQZxtlIZlUu7yhXSSFx3EZZyqhftwdL-4ejs68O5IGUgY04w4uFZVoxjCU8s5FMEXRKEpRMEMvv7mJz7vv-ka8MpOFyB59F9ZXutvr2EBd-swouOGoJFS_EKzMD7CWtuG974y9BbnN0QGcA9awl-YvUno2tgRld67DL0v8Yhhm40o7wym9xRFinMu2pYAL_7e9a0wPXpazh_EuGuQQ-_268Dc-RGOp2kNRUS6-0KzY4zKi9M6pw2SR_STnqljb3OiXLjupx3aSaJlyjxMki8TPvw6eGZSdvp49HZG92mlPGvn5ZzHe3D526j5sP_X-3N46u9h2eo6-Xp8ejkLSwLdKvaS6AN6M3ufvhNdItm5l3UNwYXT63ifwA60Bq9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+non-negative+matrix+factorization+with+edge+generator+for+link+prediction+in+complex+networks&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Yao%2C+Yabing&rft.au=He%2C+Yangyang&rft.au=Huang%2C+Zhentian&rft.au=Xu%2C+Zhipeng&rft.date=2024-01-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=54&rft.issue=1&rft.spage=592&rft.epage=613&rft_id=info:doi/10.1007%2Fs10489-023-05211-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_023_05211_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |